Chapter 2
Linear-Scaling DFT + U for Large
Strongly-Correlated Systems

Electronic correlation effects, perhaps even more so than large system sizes, have
long captivated electronic structure theorists. In this chapter, we seek to tackle both
challenges simultaneously, detailing and demonstrating a linear-scaling implemen-
tation of an efficacious ab initio method for strongly-correlated materials.

Specifically, we begin by describing the physics of strongly-correlated systems
and we discuss the difficulties experienced, and their origins, when exchange-
correlation (XC) functionals of the local density approximation type are applied
to such materials.

We describe the popular Density Functional Theory + Hubbard model (DFT + U)
method for overcoming these difficulties, briefly discussing its historical develop-
ment and motivating it as a corrective idempotency penalty functional of a type
frequently employed in linear-scaling DFT methods.

We detail an implementation of DFT + U for which the computational effort for
calculation of the ground state energy and forces scales linearly with system size.
Expressions for optimising the density and ionic positions are derived in full and
in a manner which is applicable to any ab initio approach which employs a set of
spatially localised, possibly nonorthogonal, functions to represent the single-particle
density matrix. We assume no specific form for the projectors used to define the
correlated subspaces in DFT + U and include the necessary adaptations to allow for
their nonorthogonality.

2.1 Strongly-Correlated Systems

The routine ab initio study of strongly correlated systems, that is those for which the
accurate description of the physics is beyond the capacity of band-structure methods
such as the unrestricted Hartree—Fock approximation [1], or, somewhat less strictly-
speaking, Kohn—Sham DFT [2, 3] within local or semi-local approximations to the
XC functional, remains a challenge for electronic structure calculations.

The physics of localised electrons bound to first-row transition metal or lanthanoid
ions in such systems is important for understanding and harnessing the behaviour
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of complex systems such as molecular magnets [4], inorganic catalysts [5] and the
organometallic molecules that facilitate some of the most critical chemical reactions
in biochemistry [6]. Indeed, it is often such physics which is central to the interesting
functionality of such materials.

Despite its success at predicting ground-state properties of materials, Kohn—Sham
DFT [2, 3] fails to describe the physics of such strongly correlated systems when
local or semi-local XC functionals are used, often predicting results that are not only
quantitatively but qualitatively inconsistent with experiment.

One example of such a failure is the case of Mott—Hubbard insulating solids [7],
characterised by narrow bands of 3d or 4f orbital orbital character adjacent to the
Fermi level; the LSDA [8] may badly underestimate local magnetic moments and
may even predict a non-zero density of states at the Fermi level [9, 10].

In order to understand the origin of this deficiency, not least because it serves to
motivate the DFT + U method, let us consider the renowned Hubbard model [11-
13] for strongly correlated fermionic systems. The Hubbard Hamiltonian is usually
written in terms of Fermionic creation, c( o) , and annihilation, c( ) , operators, where
it is defined as

A = Z tmm/cgfﬁcl(;)
mm’
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the indices {m} labelling sites in which the electrons, with spin index o, may reside.
In a continuum model for a real strongly-correlated system, it is useful to use a
spatially localised set of single-particle basis orbitals {¢,,} , which we assume here to
be spin-independent, with which the creation and annihilation operators, respectively,
are spatially resolved via replacement by field operators as per

E @) = gnmc?. and T =D gr @D (22
m m

These basis orbitals may, for example, take the form of Wannier functions constructed
from a linear-combination of Bloch states, as described in Chap. 1. Here we assume
that the basis is orthonormal, but the generalisation to the nonorthogonal case is
available [14].

In the Hubbard model, the Coulomb repulsion between electrons is introduced by
the Hubbard U parameter, that is in its orbitally-decomposed form

Ui/ = / dr / dr’ g, (0) ¢ () 0 (v, 1) g (1) @ (1)

For a given form of interaction ¥ (r, r ), the Hubbard U introduces an energy penalty
for occupying nearby orbitals and thus correlates the behaviour of different electrons.
The factor of one-half eliminates double-counting over pairs of electrons.
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The tendency for the electrons to delocalise, by minimising their kinetic energy,
is governed by the simple hopping term

bnm' = /dl' (ﬂm (I‘) [ V + Vext (r)j| Pm’ (I') (23)

which may also include any externally imposed potential.

We will briefly discuss a very simple approximation to the Hubbard model,
applied to a simple geometry. Ignoring all but density-density interactions, i.e.,
m = m"”, m" = m'”; interactions between electrons on one site, i.e., m = m’;
nearest-neighbour single-particle same-spin hopping terms only, where m’ = m + 1
in one dimension; and identical interaction strengths on each site, we simplify the

Hamiltonian to

(0’) — Z C(G)' (0)+ UZﬁ(cr) (— xr) (2.4)

mm
Here ﬁﬁ,‘f ) (G)T ( ) measures the occupation of site m with an electron of spin o
and the Pauli prmmple excludes double-occupancy by electrons with identical spins.

Let us apply this model to a periodic chain of sites, for example a one-dimensional
chain of s-orbitals or Hydrogen atoms. We may consider two limits. In the limit of
U <« t, where correlation effects are weak or the atoms lie close together, the
reduction of the kinetic energy is the dominant factor and the low-energy eigenstates
are made up of delocalised linear combinations of the basis orbitals. There is no strong
distinction between the energy terms acting on occupied and unoccupied levels and
there is a continuum of states crossing the Fermi level. At the opposite limit, where
the Hubbard U or inter-atomic spacing are large, so that U > ¢, the minimisation of
orbital double occupancy is paramount, the eigenstates become spatially localised
on their basis orbitals. In this case, at half-filling, an energy gap of approximately
U =~ I — A, where, respectively, I and A are the ionisation potential and binding
affinity of hydrogen, opens between the occupied and unoccupied levels, in the same
way as in a Mott—Hubbard insulator.

Next, let us see how Kohn—Sham DFT may fit into such a framework. The mapping
of the interacting many-electron system onto an equivalent system of noninter-
acting fermions, which are subject an effective single-particle potential, is central
to periodic band-structure methods such as Kohn—Sham DFT. In the language of the
Hubbard model, we would write the hopping matrix elements of the Kohn—Sham
Hamiltonian as

ol = / dr v, (r)[ V2 4 Vot (0) + Ve [1] (r)} Y (1), (2.5)

where, in fact, the hopping term makes up the Hamiltonian entirely.

The use of mean-field approximations for the effective potential, \7ch [n] (),
such as the LSDA [8], is appropriate and highly successful in systems where the
magnitude of the electron’s kinetic energy is large compared with that of the Coulomb
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interaction between them, so that U <« ¢ in which case the neglect of explicit
Coulomb correlations is justified. In such systems, usually comprising elements
whose 3d or 4f atomic-like states are either completely empty or filled, the electrons
are said to be delocalised, or itinerant in extended systems, and are only scattered
weakly by atomic centres.

In strongly correlated systems such as Mott—Hubbard insulators, however, the
low-dispersion electrons associated with partial occupation of the aforementioned
localised 3d or 4f atomic orbitals do not fall in the regime of U < . The LSDA may
thus be found to be severely lacking in accuracy due to its lack of explicit Coulomb
correlations.

Itis clear that within such simple mean-field band-theories, returning to our simple
example, that the hydrogen chain spuriously remains metallic as we increase the inter-
atomic distance, retaining a diminishing, though finite, density of states at the Fermi
level.

The origin of this apparent failure has been understood since the work of Perdew et
al. [15] and is related to the unphysical curvature of the energy functional with respect
to electronic occupation number [16—18] inherent to LSDA-type functionals unless
a self-interaction correction is employed [19]. In the following section, we describe
the DFT + U method that, depending on how we wish to look upon it, reintroduces
explicit Coulomb interactions to the Kohn—Sham Hamiltonian or reintroduces the
appropriate derivative discontinuity to the XC functional.

2.2 The DFT + U Method

A number of sophisticated methods to correct the description of strong correla-
tion effects within Kohn—Sham DFT have been developed which provide a good
compromise between accuracy and computational expense. Many of these methods,
notably DFT +Hubbard U (DFT+U) [20, 21] and DFT +dynamical mean field
theory (DFT + DMFT) [22, 23] for static and dynamical spatially localised Coulomb
correlation effects, respectively, share a common history and conceptual motivation
which is based on the Hubbard model we have discussed. In such methods, the elec-
tronic system is subdivided into a set of spatially localised correlated subspaces and
the remainder which acts as a bath for particle exchange. The description of the strong
Coulomb interactions, i.e., U > t, between particles in the correlated subspaces is
deemed to be beyond the capacity of the XC functional, so that explicit supplementa-
tion using the Hubbard model is required. In the remainder of the system, the kinetic
energy is supposed to be large relative to Coulomb interaction, i.e., U < ¢, and the
XC functional is assumed to perform adequately. In this manner, a Hubbard model
interaction may be used to augment the description of the screened Coulomb inter-
actions in the correlated subspaces while retaining the computationally inexpensive
mean-field model for the free-electron like remainder of the system.

Figure 2.1 illustrates, as an example, a spatially delocalised single-particle orbital,
Y (r), together with a localised Wannier function (technically an NGWF), ¢,, (),



2.2 The DFT + U Method 41

“ﬁ s 12
"."i 8 v J ﬁ';‘
— h ‘Ir* *

;’J(l‘ r,)_z fr n 1]‘ (1 )_Z(.j"dEr I'}K" jc’ilf) ru H.hrh.d(r 1') mm ¢ On h}”“ {T)

!4
.

*
""
‘

Fig.2.1 Detail of a Cu**-mediated DNA base pair [24] in the system on the right of Fig.1.1,
showing the delocalised highest occupied majority-spin molecular orbital (left) for comparison
with a localised NGWF of localised 3d-orbital character (right)

used to represent it in an artificial molecular system of technological interest.
The description of the Coulomb interactions within the partially filled Cu®* (3d)
sub-shell of such systems may benefit from the use of DFT + U.

We will henceforth describe the orbitals used to delineate the strongly corre-
lated subspaces as Hubbard projectors. These are typically spatially localised on a
particular transition-metal or lanthanoid atom and usually, but not necessarily, of the
same number per correlated site as the number of orbitals, 2/ ) 4+ 1, in the most
localised hydrogenic valence sub-shell of the atom at that site, e.g., we use five
Hubbard projectors for a 3d sub-shell. Localised Wannier functions built from the
Kohn-Sham eigenfunctions may offer an efficient set of Hubbard projectors, and we
discuss this possibility further in Chap. 3 and Ref. [25].

In DFT+U, consistency between the subspaces and the bath is provided by
ensuring that the electronic density-matrix for the complete system remains subject
to the usual requirements of idempotency, compatibility with the ground-state Hamil-
tonian and proper normalisation. In DFT + DMFT, on the other hand, self-consistency
over the density is not routinely enforced at present, although successful examples
of such calculations have been demonstrated [26]. The equivalence of the correlated
subspace Green'’s functions and the projection of the full Green’s function onto these
subspaces is, however, required.

Generally for these methods, the occupancy matrix of each correlated subspace
is the object which provides, for a given set of Hubbard U parameters which may
or may not depend on the density and its response, the necessary information on
the electronic density-matrix to the Hubbard model which describes intra-subspace
interactions. In Chap. 3, published in Ref. [25], we will describe a self-consistent
method for delineating the correlated subspaces based on Wannier functions; in
Chap. 4, published in Ref. [27], we discuss the definition of subspace occupancy
matrices when using nonorthogonal projector functions; and in Chap.7 we address
the computation of the Hubbard U parameters in the nonorthogonal formalism.
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Letusrestrict ourselves initially, for simplicity, to the case of orthonormal Hubbard
projectors labelled {m} at correlated site 7, for which the occupancy matrix of spin
o electrons is given by

’(&(a) —Tr [ (i (1)7 (n)] ( f,f)lﬁ(”)lw,ﬂf/)% (2.6)

Considering, as our starting point, the first rotationally-invariant form of DFT + U
introduced in the literature, that of Refs. [28, 29] and known as LSDA + U. In this
method, the correlation, classical Coulomb repulsion and exchange parts of the
fermionic Hubbard Hamiltonian, Eq. 2.1, are expressed separately for each spatially
localised correlated subspace. The trace of these interaction terms with the appro-
priate occupancy matrices gives the energy expectation value of the Hubbard Hamil-
tonian, for each subspace, with the Kohn—Sham density-matrix.

Summation over correlated sites and the electron spin index gives the energy
correction due to explicit Coulomb interactions for this density-matrix, which is
given by

1
Ev=53 {U(”,, D@, (D

mm" ' m'm m"m"”
To{m}
() (N (1)(0) (H(o)
+ (Umm//m/m/// - Umm//m///m/) mm nm m///} (27)

Here, the first, second and third terms correspond, respectively, to spin off-diagonal
density-density repulsion (correlation), spin-diagonal density-density repulsion and
spin-diagonal exchange effects. If unscreened Coulomb interactions are used to build
the Hubbard U parameters, this is the Hartree-Fock approximation to the Coulomb
energy of the correlated subspaces.

The contribution to the DFT energy functional arising from the correlated
subspaces and already included in the conventional exchange correlation term in
a mean-field sense must be subtracted in order to approximately remove double-
counting of the Coulomb interactions. The DFT + U energy functional is thus gener-
ally given by

Eprr+v = Eprr + Ev — Epc. (2.8)

The double-counting term used in this rotationally-invariant form of LSDA + U
model is the simple “atomic limit" approximation detailed in Ref. [30], calculated
by presupposing an integer occupancy of the correlated subspaces and thus given by

Epc = _Z {U(I)N(I)(G) (ZN(I)(U) 1)

lo o

_ g ND@©@) (N<1><<r> _ 1) ] (2.9)
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Here, the total occupancy for a given site and spin and subspace-averaged
Coulomb repulsion and spin-diagonal exchange parameters are denoted, respectively,
by

ND©) — z: ND@) (2.10)
1
o _ v 2 )
T @D + 1) oot 16 o
m’
1
I 2 : (1)
J( ) = Umm’m/m’ (212)

@0) @D +1) A

Alternative forms of the double-counting correction, such as those described in
Refs. [20, 31], are also available although we do not discuss them further.

Following Ref. [16], which offers a simplified rotationally-invariant DFT + U
functional which itself is based on previous proposals in Ref. [10], we next neglect the
corrections associated with exchange effects and with interactions between electrons
of different spin. Some manipulation allows us to re-write the DFT + U correction,
in this approximation, as

1 195 (@), (@) _ (1), ()0
EDFT+U:§Z{ZUmmmm ( 7 N M’ im )

Io Umm

_y D@ (Nm(o) _ 1) ] (2.13)

1 %) D)) (D), (Do)
= 5 Z Z { (Umm mm U ) mmU m m
lo mm'

mm mm mm m m

Finally, we may simplify this further by approximating the orbitally-decomposed
Ur(n]rzl e DY its average scalar U () in which case the first term in Eq.2.14 vanishes

to give the widely-used simplified DFT + U functional

1
— I (,, (Do) pD@), (@)
Eprriu = 3 ZZ U (nmm, S’ — Moyt i )

Io mm’
1 nf. o (Do), ()
- EZZU( )( : (G) anm/ mm : (2’15)
lo m

The interaction averaging approximation, which is expected to be most valid for
a spherically symmetric correlated subspace immersed in an isotropic environment,
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D

~ gD 1)
0~y Vm,m’e{l,...,21< +1}, (2.16)
might suggest that we may alternatively replace the scalar approximation U () by its
orbital dependent counterpart in Eq.2.14. This also gives a rather simple DFT + U
functional,

1 8 I (Do) (I)(0)
EDFT+U = E Z Umm,mm, (}'lsnr)n((f)(smm/ — I’lmm/a nm,mU ) )

lo mm’

however it is not of practical utility since it is not invariant under unitary rotations
among the Hubbard projectors. We return to the question of constructing tensorially
valid DFT + U corrections with orbital-dependent parameters in Chap. 7.

The principal effect of the DFT + U correction Eq. 2.15 is to approximately emulate
the exact XC functional by introducing a derivative discontinuity in the total-energy
with respect to the occupancy matrix of the correlated subspaces at integer values.
The DFT + U correction to the Kohn—Sham potential, given by

A 1
Vorriu = D > UPlgD) (Eamm/ —n{ >) (or | 2.17)

Io mm'

acts to restore the correct occupancy dependence of the potential, and is attractive or
repulsive for occupancy-matrix elements greater or less than one-half, respectively.
The result, to a first approximation, is the penalisation of non-integer correlated
subspace occupancies and, consequently, an opening of an energy gap of order U
between the occupied and unoccupied Kohn—Sham states which have a large overlap
with the Hubbard projectors, thus facilitating the simulation of strongly-correlated
systems such as Mott—Hubbard insulators within Kohn—Sham DFT.

The DFT + U correction to the energy functional allows a simple interpretation,
or perhaps motivation, as an idempotency penalty-functional [32] of the type often
used to maintain the idempotency of the Kohn—Sham density-matrix in linear-scaling
DFT. Assuming that the particles occupying the correlated subspaces interact strongly
with each other, compared to their interaction with the bath, each subspace effectively
acts as an individual open quantum system. As such, we could separately impose
the density-matrix idempotency condition, i.e., Fock antisymmetry, of the projected
density-matrix for each subspace.

However, the idempotency of the density-matrix for the complete Kohn—Sham
system is a condition which must be exactly satisfied, at the ground-state, and the
idempotency of each subspace density-matrix is, in general, a competing condition.
Thus, the subspace idempotency may be only partially enforced up to an idempotency
functional of the form

(o)
ZTr I:)L(I)(a) (ﬁ(l)(a) _ ﬁ(l>(a)2)]; A (Do) — % (2.18)
lo

which penalises the degradation of fermionic behaviour in each correlated subspace.
Since the strength of the effective Coulomb interactions is closely related to the extent
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to which the derivative discontinuity is lacking in the XC functional, and the latter
is responsible for the spurious partial-occupancy of localised states (or correlated
subspace idempotency deviation) by that functional, the Hubbard U parameter may
be heuristically identified with the pre-factor of the idempotency penalty-functional.

2.3 Framework for Linear-Scaling DFT + U

‘We now proceed to describe the implementation of the DFT + U functional defined by
Eq.2.15 in a contemporary approach to linear-scaling DFT. Firstly, in this section, we
establish a notational framework for expressing the Hubbard projectors, which are
permitted to be nonorthogonal for each correlated subspace, in terms of a localised
nonorthogonal set of support functions of the type typically used to represent the
Kohn—Sham density matrix in many linear-scaling approaches.

Due to the spatial localisation of both the Hubbard projectors and the support
functions, matrix sparsity patterns naturally play an important role in the construction
of our linear-scaling DFT + U method. In fact, as we will show, matrix sparsity
patterns allow us to carry out DFT+ U calculations involving a large number of
correlated subspaces in a very efficient manner.

We will make due comment on matrix sparsity issues, when appropriate, as
we describe the elements of our linear-scaling implementation of DFT + U. Linear
scaling with respect to the number of correlated subspaces in the system may be
achieved for some elements of the DFT + U module, and, in less favourable cases,
with respect to the total number of atoms in the simulation cell.

We begin by expressing the Hubbard projectors {%511 )} spanning each correlated
subspace [ in terms of the nonorthogonal basis functions {¢y} via the linear trans-
formation

oS (1) = ¢ (1) S V). (2.19)

Here, we must assume that the Hubbard projectors are fully expandable in the
frame of their surrounding NGWPFs, though this does not introduce any limitation,
in practice, since the explicit expansion of the projectors in the psinc function basis
is used in the update of the NGWFs themselves. We also assume, for notational
simplicity, that identical Hubbard projectors are used for each spin channel, although
the generalisation to spin-dependent projectors is straightforward.

Here S*? = (¢*|¢P) is the contravariant metric on the NGWFs, as usual, and it
follows that the transformation matrix between covariant basis functions and projec-
tors is given by

Vi = (0pleSD), (2.20)

which may be a very sparse matrix for a low density of correlated subspaces.
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It will be convenient to establish the adjoint (once covariant for the support func-
tion index and once for the Hubbard projector index) transformation matrix as

Wi = Vit =0 |¢a). 2.21)

oam

The metric on each correlated subspace is discussed in detail in Chap. 4 and Ref.
[27]; most of the expressions in this chapter extend readily to the delocalised Hubbard
projector duals discussed there. Here, for brevity, we will restrict ourselves to the
case of the localised Hubbard projector duals defined by

1 ! I 1
o) =1y YOm0l = (gl es)), (222)

where an individual metric tensor Oﬁ) is used for each correlated subspace, as we
propose in Chap.4 and Ref. [27], in order to maintain the tensorial invariance of the
total energy.

The generalised occupation matrix for each correlated subspace, a mixed tensor
with respect to the projector indices, is expressed in the support function represen-
tation as

n(l)’(;lf)m = (g (1)|’5(U)|(p(1)m>

"o

( (1)|¢ )K(G)Otﬁ<¢ |(p(1)>0(1)m m

"ot

— WK @BYD, o

_ (WU)K(“)V(”O(”) m,, (2.23)
m
where
K@ = Z M(G)aikfi(l:)(M(U)T)ikﬂ (2.24)
ik

is the density kernel relating support functions (assumed to be spin-independent) to
Kohn—Sham orbitals via a linear transformation matrix M (@)%, = (¢% Wi(l: )).
The DFT + U correction to the total energy, in the case of a generalised spin-

!
dependent two-index interaction tensor U (1),(,,‘7) "™ (approximations for the interaction
tensor of various rank are discussed in Chap.7), is generally computed using the
matrix trace

Eprryu = Z U(I)(U)m [ (I)ﬁff/)m” (Sm’ﬁ‘ —n(l)quo)m)]

1 UDwD gy ol
=2 5”[ x (1 _ W“)K(")V(I)OU)) } (2.25)

1,0

where here, with further examples to follow, we use multiple continued lines within
braces to describe lengthy scalar expressions.
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Of course, it is undesirable, both from the point of view of implementation and
computational efficiency, to explicitly use separate V), W@ and 0 matrices
for each site. This requires individual matrix products to be carried out for each site
before the sum over sites is computed. If care is taken, however, we may safely embed
all of these small matrices into large, very sparse, V, W and O matrices for the entire
system. These large matrices then fit seamlessly into the hierarchical, parallelised,
sparse algebra routines found in a modern linear-scaling DFT code such as ONETEP.

Let us analyse this strategy in greater detail, taking as an example the computation
of the occupancy matrix

n(l)’(;:)m’ — WrEZQK(“)aﬂ V(I) om'm’ (2.26)
Working from right to left and temporarily placing a site index before each projector
index to clarify its meaning, first consider the product

(VO)(I)m Z Vo(symr 0C/1DM Om" — vy oM D' (2.27)
J

which retains the same sparsity pattern as V due to the block-sparsity of the O matrix
(the size of each block is the number of projectors spanning the subspace on the site
in question).

Next, taking the product from the left with the density kernel,

(KVO)(J)a(I)m/ — g (©@)eap % O)I(SI)m’ ’ (2.28)

we see that this too has the same sparsity as V when no density kernel truncation
is applied, in which case the indices « and S run over all NGWFs. When kernel
truncation is enforced, however, the number of values which « can take is reduced
and the effort needed for the sum over § is diminished.

Only on the final step, where we compute

Dm’ ’
n " = Wsyma (KV 0) @D (2.29)

do we accumulate extraneous information on the off-site non-locality of the density
matrix. Were we to compute this matrix in full and then consider its square, for
example, we would find that

K " I 7 7
an))r(n ym Et}v{))( ym'’ £ n(a)’%l)m n(a)r(nl)m . (2.30)

The former is what is generated in the matrix product, while the latter is what
we require. This problem is resolved by explicitly truncating the required occupancy
matrix

Dm' /
™ = Wiryma (KV 0)( @D (2.31)
to the same sparsity pattern as O (which is also the same as that of U), thus eliminating
any unwanted off-site occupancies. In practice, the unnecessary elements are never
actually computed, and no wasted effort is incurred, since the sparse algebra system
takes into consideration the sparsity pattern of the product matrix.
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2.4 Variations with Respect to the Density Kernel

In the ONETEP code, and indeed most current linear-scaling DFT methods, the
LNVD [33-35] technique, described in Chap. 1, is used to minimise the energy with
respect to the density-matrix, bringing it closer to commutativity with the Kohn—
Sham Hamiltonian while simultaneously driving it towards idempotency. This takes
place in the inner energy minimisation loop in ONETEP, where the NGWFs are kept
fixed and a non-linear conjugate gradients minimisation of the energy with respect
to the matrix elements of the LNVD auxiliary density kernel, L@ s carried out.

The Kohn—-Sham density kernel is related to the auxiliary density kernel via one
iteration of the McWeeny purification transform, i.e.,

K@% — (3LSL — 2LSLSL)@*F . (2.32)

In our treatment of DFT + U, we go a step further and provide the more general
expressions needed for the HSMP [36] adaptation of the LNVD method, in which
a density kernel K () is expressed as a purified and normalised auxiliary density
kernel, explicitly

K©@eeBN©  (31S], — 2LSLSL)(@)*F N(©)

R@ab _ — ’
K©Y3ss, (3LSL — 2LSLSL) )7 S5,

(2.33)

where N(?) is the correct occupancy of spin channel o. The kernel renormalisation
introduces terms in the gradient akin to a chemical potential, which project out any
first-order changes to the electron number, driving the density kernel K@) towards
both normalisation and idempotency as the energy is minimised.

To locate the doubly-covariant derivative of the DFT + U energy term with respect
to the auxiliary density kernel, stressing that it is computed strictly using the purified
and renormalised density kernel, we make use of the chain-rule for matrix derivatives
to write (suppressing the spin index for concision)

0Eprr+u  OEprryu 0K*
aLeB 9K« LB’ 2.34)

It may be readily shown that the latter term is given by

aKlK'
aLeB

3(84 Sy L7 + L Sy085)

SQSﬁyLV”SnngK
—2 ( +LY SyeSpy LT + LY SJN?L’?S SEOIBZ . (2.35)

The derivative of the DFT + U energy term with respect to the purified density
kernel K*® may be broken into products of derivatives and rearranged as follows
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9Eprr+u 0 [E (k“)]aie'i
aK* g LEprT+U S K

d N
HDFT+U K@n
Ba

N aKo
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We may next write the gradient with respect to the density kernel in terms of a
preconditioned contribution to the Hamiltonian, denoted by H2FT+U | identifying
the DFT + U correction to the chemical potential needed to preserve the electron
number of the system as

DFT+U 1-6n
MDFT+U _ Hn6 K (2.37)
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The DFT+ U contribution to the Hamiltonian, used in the above and which is
computed using the purified and renormalised density kernel, in practice is given by

DFT+U __ dEprr+u
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In order to express this in terms of the NGWF representation, we begin by noting
that the partial derivative of the occupation matrix, for a given subspace, with respect
to an arbitrary density kernel K*°, is given by
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The trace of this over the Hubbard projectors gives the covariant support function
representation of the Hubbard projection for subspace C'), that is

™ ) I
> axa = Vew O WI) = P, 2.41)
m
It follows that the products of the occupancy matrix and its derivative, always
computed in the frame of Hubbard projectors in practice since there they each have
the block-diagonal sparsity pattern of O, are expressed in the support function repre-
sentation as

2111(( 'ZI:TZK O (W%) V&)/”Ou)m’”m”) (W”) KV(1>0<1>)m’f/
— Wb (P<1)KV(1> 0(1));”’ (2.42)
and, taking the complimentary product,
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K
We are free to evaluate the Hubbard U interaction operator as a mixed tensor in
the NGWF representation, so that

I 1) oy (Dmm!’ pr(Dm"” vy, (1)
U = vilommy mw, ) s (2.44)
As aresult, noting that the Hubbard projection operator and the Hubbard interaction
operator commute but that the density-matrix and the Hubbard interaction operator
may not, the DFT + U term in the covariant Hamiltonian, denoted H.(f)DFT+U, is
expressed in the support function representation by

@ p)
H(g)DFTJrUzzl _pWO gy p) ) (2.45)
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The DFT + U term in the total-energy, on the other hand, is succinctly expressed
as

1 o
Bl = 25U (POK©@ - P(’)K(")P(’)K(”))y . (2.46)
1

The associated DFT + U independent-particle, “band-structure", energy correction,

E g;T U= HLQF T+U KXt does not equal the energy term Eprr+p and so the energy
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correction entering into the computation of 27+ is not the same as the correction
to the total-energy. This explicitly demonstrates that DFT + U is a correction beyond
the independent-particle approximation.

The required DFT + U contribution to the covariant gradient is then provided by
the product of the preconditioned term in the Hamiltonian and the derivative of the
density kernel with respect to its auxiliary counterpart. We find that this is given by
(again suppressing the spin index)

8EDFT+U _ N rTDFT+U oK™
oLef  (Kv3Ss,) ** ALY
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Here, I:I.. is shorthand for the preconditioned DFT + U term in the Hamiltonian
and is given by
I:IDFT-FU — HDFT+U _ MDFT+US ) (248)

Explicitly, we may now write the DFT + U correction to the Hamiltonian as

I
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For a refinement of the auxiliary density kernel L*?, any update must also be a
contravariantly transforming tensor, as noted in Refs. [14, 37]. In order to provide
such a search direction, it is necessary that we pre- and post-multiply the above
covariant gradient with the contravariant metric tensor on the NGWFs, that is the
inverse overlap matrix of the NGWFs at the point at which the gradient itself is
computed, to give

@ap (=1 OEDFT+U (o—1\%P
GDFT+U_(S ) T (S ) (2.49)

Carrying this out, we obtain the DFT + U contribution to the contravariant density
kernel gradient,
©@ap N
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i N s
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where H is a shorthand for the preconditioned correction to the Hamiltonian given
by Eq.2.48.
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2.5 Variations with Respect to the NGWFs

Now that we have shown how to incorporate DFT + U into density-matrix based
methods which used a fixed nonorthogonal representation, we turn our attention to
the outer energy-minimisation loop in ONETEP. We consider the contribution due to
DFT + U of the total-energy variation with respect to the expansion coefficients of the
NGWEF for a fixed, optimised, density kernel. The results of this section, of course,
apply to any technique which optimises its representation functions for minimal
energy, such as those described in Refs. [38—41].

The required derivative with respect to covariant support functions may be broken
into its contributing parts as
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As for the density kernel gradient, the NGWF gradient is calculated using the
purified and renormalised density kernel and so contains a preconditioning term
which drives the trace of the density-matrix to the correct occupancy of the system.

The covariant metric explicitly depends on the covariant functions and, assuming
real-valued NGWFs for simplicity, we find that

8SAU
d¢y (r)

=8/ ¢, (1) + 87 ¢ (r). (2.52)

The terms in the parentheses of the second to last line of Eq.2.52 evaluate to
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Contraction between the DFT + U term in the Hamiltonian and these terms provide
a tensor Q°*® which generates the contribution to the NGWF gradient due to mixing
among the NGWFs, given by

G = HDFT+U(aIZr]0 IK™ 31%"0)

— +
] 0K*¥ 98S;, S (2.56)
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The remaining terms involve the Hubbard projections themselves, and changes
beyond linear mixing of the NGWFs. We begin with the action of the DFT+ U
contribution to the Hamiltonian on the correlated subspace projections, that is
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where H, OE;)DF”U is the contribution from each site in Eq. 2.45. The Hubbard projec-
tion operators depend explicitly on the covariant NGWFs which overlap with their
corresponding Hubbard projectors (or Hubbard projector duals) and this dependence
may be expressed as
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where we have assumed real-valued Hubbard projectors. We may combine the latter
two results to compute the remaining DFT + U term in the NGWF gradient, that is
for each site J,

dEpFr+u BPEU) 7 .
T , .

J) = (P,(n,) (r) O(J)m mWrleT)P(J)reHe(z) + 7t
aPEr 8¢)’ (1‘)

= J)DFT+U J /
4 KyeHe(z) +U p())gE Vs(mzou)m m(p’(n.l) )

o J)DFT+U J !
= 2KV HPITHY pOEEy D 0Umm gl (r)

— 2RV [19” )DFT+U ¢6] (r). (2.59)



54 2 Linear-Scaling DFT + U for Large Strongly-Correlated Systems

Here, due to the subspace-localised nature of the DFT + U correction, only those
NGWFs ¢, which explicitly overlap with the Hubbard projectors expressed on the
grid (p,(nj) contribute and thus need to be summed over.

To conclude, the contravariant gradient of the DFT + U energy with respect to the
NGWEFs is given by the expression

aEDﬂ_ yv ve [ fDFT+U
7, = [Q ¢U+ZK K o] | . (2.60)

Since, however, we require a covariantly transforming NGWF update in order to
improve upon those functions while preserving their tensorial character, the above
contravariant gradient needs to be multiplied with the covariant metric tensor to give
the necessary covariant DFT+ U NGWF gradient term,

8 () =284y [QV”QSV + D K”* [FI(”DF”U@]} (r). (2.61)
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2.6 Variations with Respect to Ionic Positions

While DFT + U is less commonly applied as a method to improve first-principles
atomic geometries than to rectify local moments and spectra, recent success with
corrected ionic structures [42—46] encourage us to think of DFT + U as a true correc-
tion for ab initio energeties. A linear-scaling implementation of the DFT + U force
corrections may be useful, for example, in systems such as biological organometallic
complexes, where GGA functionals may tend to systematically overbind ligands to
transition-metal ions. As such, we have implemented the DFT + U forces terms, as
well as the total-energy minimisation scheme, in the ONETEP code. We shall now
describe the required methodology.

We assume that the ground-state density for a given ionic configuration is located
before the forces are computed, so that the total-energy is variationally minimised
with respect to both the NGWF expansion coefficients and the matrix elements of
the density kernel.

The DFT + U correction then contributes to the ionic forces only via the spatial
dependence of the Hubbard projection operators, that is for the ion labelled j,

)
aEDFT U aEDFT UaP
Fj=—— 0 = " O (2.62)
J

apy] OR;
In this expression, since the Hubbard projectors are usually considered to be asso-
ciated with one atomic site only, the subspace index J need only run over subspaces



2.6 Variations with Respect to Ionic Positions 55

centred on ion j only. We will henceforth suppress the summation symbol, for nota-
tional clarity, since the generalisation to multiple subspaces per ion is straightforward.

The spatial derivative of the NGWF representation of the Hubbard projection oper-
ator may be expressed as a spatial derivative of the (real-valued) covariant projectors
and contravariant subspace metric tensor themselves. First, however, we define the
NGWF representation of the spatial derivative of the Hubbard projectors as the three-
component vector

J
X = (9| Vg

- / dr ¢ (r) [ / dG (—iG) e 'Gryl)) (G)],

and Y,(ﬂjg = XgQ is its transpose for each component. The required projection deriv-
ative is thus given by
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Here, we have neglected the term involving the partial derivative of the metric
tensor with respect to ionic positions, as it vanishes for the localised subspace repre-
sentation we use here and which we go on to discuss in more detail in Chap.4.
The neglect of this term is appropriate when using either conventional atom-centred
system-independent Hubbard projectors or the self-consistently determined variety
which we describe in Chap. 3 and Ref. [25], since a rigid displacement of all Hubbard
projectors for a correlated subspace does not change the metric tensor on that
subspace.

Combining this expression with the result of Eq.2.57, in order to evaluate the
force expression of Eq.2.62, we conclude that the tensorially consistent DFT + U
contribution to the ionic forces is given, again simplifying using the real-valued
nature of both Hubbard projectors and NGWFs, by the easily-evaluated trace of
sparse matrices

Fj = —2X() 0D wi) glDPrry gee, (2.65)
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2.7 Scaling Tests on Nickel Oxide Nano-Clusters

The first row transition-metal monoxide NiO has, for some considerable time,
posed difficulties to Kohn—Sham density-functional theory and to electronic struc-
ture theories generally. As such, it has served as a valuable proving-ground for
novel approaches such as periodic unrestricted Hartree-Fock theory [47], the self-
interaction corrected local density approximation [19], the GW approximation [48],
LDA +DMFT [49] and first-principles methods for calculating the Hubbard U para-
meter [16, 50] in DFT+ U.

Experimentally, the paramagnetic phase of NiO is found to possess a rock-salt
crystal structure with a lattice constant of approximately 4.17 A [10]. At ambient
temperature, NiO is a type-II antiferromagnetic insulator with a local magnetic
moment of between 1.64 and 1.9 up [16], with a Néel temperature of approximately
523K [9].

Due to the persistence of the magnetic moment and the optical gap, which lies
at approximately 4 eV, of this material above the Néel temperature, it falls broadly
into the category of a Mott insulator [47]. However, the material has been somewhat
reclassified as a charge-transfer insulator since experimental data has shown that
the states close to the top of the valence band possess a predominantly oxygen 2p
character while those in the conduction band are of nickel 3d-orbital character [51].

Irrespective of nomenclature, it has long been recognised that LDA-type exchange
correlation functionals [8] qualitatively fail to reproduce the physics of this material,
grossly under-estimating the local magnetic moment, the Kohn—Sham gap (if it is
imbued with a physical interpretation) and assigning an incorrect fully 3d-orbital
character to the valence band edge, but that the DFT + U method successfully corrects
these deficiencies [10, 16, 21, 50, 52].

2.7.1 Computational Methodology

We performed scaling tests on NiO nano-clusters of varying size, comparing the
computational effort required for DFT + U and uncorrected DFT calculations. We
have chosen approximately spherical nano-clusters with an even number of nickel
ions, so that we may tentatively assume an open-shell singlet multiplicity, analogous
to the bulk antiferromagnetic ground state. In fact, however, we might expect that a
transition to a ferrimagnetic or ferromagnetic ground state occurs below some critical
cluster size, as it has been predicted for very small iron oxide clusters of interest for
data-storage technology [53, 54].

While it is certainly of worthwhile to explore this possibility further using linear-
scaling DFT + U, it exceeded the scope of this study, since the spin multiplicity has
no direct bearing on computational expense. Moreover, since calculations on nano-
clusters of varying sizes may be expected to exhibit differing convergence behaviour,
we simply ran the energy-minimisation algorithm for a fixed number of iterations
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and did not attempt to achieve the ground-state. In Chap.4, published in Ref. [27],
we return to this material in its bulk form, addressing the DFT + U description of its
physical properties in detail.

2.7.2 Scaling of Computational Effort for DFT+ U

A moderate set of run-time parameters was used, since our principal interest was to
test the increase in effort needed when the DFT + U functionality was included in
the calculation. These parameters included a 500eV equivalent plane-wave cutoff
energy, a spin-polarised density kernel, the LSDA XC functional [8], a 25 a( density
kernel cutoff with 7.5 ag NGWF cutoff radii, nine NGWFs for each nickel ion and 4
each for oxygen. A fixed number of one NGWF update step and three density kernel
update steps, with three penalty-functional idempotency corrections per density
kernel update step, were used to test the scaling behaviour without the dependence of
convergence behaviour on system size. NGWF overlap matrix inversion was carried
out using Hotelling’s algorithm [55] and a cubic simulation super-cell of three times
the diameter of each nano-cluster was used, up to a maximum super-cell size of
approximately 300 ag. Hydrogenic projectors of the type discussed in Chap. 3 were
used for DFT + U.

Figure2.2 shows computational timing data for ONETEP energy-minimisation
of selected NiO nano-clusters containing up to 7,153 atoms on 300 nodes of a
commodity supercomputer. A reasonable linear fit was obtained in spite of the rather
small number of data points available; the available memory was exceeded when
attempting calculations of a larger cluster of 11,513 atoms. The zero-time intercept
lay at 450-500 atoms, indicating very efficient initialisation of the pre-requisite data
in these calculations.

The NiO nano-clusters are by no means a favourable case for the DFT + U method,
since approximately half of the ions host correlated subspaces. Nonetheless, we see a
very small increase in computational time when the DFT + U functionality is applied,
of approximately 5%, and preservation of linear-scaling performance.

Figure 2.3 shows the time spent computing the DFT + U projection operator and
its contribution to the total-energy and Hamiltonian. This indicates that no aspect
of this functionality appreciably deviates from linear-scaling behaviour. Also shown
is the timing for one calculation of the DFT + U contribution to the ionic forces,
also exhibiting favourable scaling for those calculations which fell within memory
resources. Significantly, however, we note that the total time spent in these subrou-
tines makes up only a small fraction of the increase in cost incurred by DFT + U,
remaining at less than 1% of the total computational time.

In order to understand where the dominant contribution to the additional cost
originates, if not in the DFT + U subroutines themselves, we direct the reader to
Fig.2.4, where the size-dependent sparsity of some important matrices, with and
without DFT + U, is quantified.
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Fig.2.2 Scaling tests of energy-minimisation functionality, including three density kernel optimi-
sation steps and one NGWF update step, comparing DFT and DFT + U. Four sizeable nano-clusters
of NiO were tested on 300 processing cores

oo
0012} .
5 : ]
< 0.010F b
2 0.008 | ]
6 [ ]
S 0.006F .
=1 [ ]
« [ ]
§ 0.004F .
g [ - Energy i
= r - Projection
= 0.002p - Hamiltonian
r - Forces ]
0.000 _
0 2000 4000 6000 8000

Number of atoms

Fig.2.3 Timing of the DFT + U subroutines in the test calculations shown in Fig.2.2

For a conventional DFT calculation, the sparsity of the Hamiltonian matrix is
dominated by the NGWF representation of the non-local pseudopotential. This in
turn is computed using the product of the overlap matrix between the NGWFs and the
non-local pseudopotential projectors with its transpose. In essence, pairs of NGWFs
which overlap with a common non-local projector must be represented in the Hamil-
tonian, and the same is true of pairs of NGWFs overlapping with a common Hubbard
projector when DFT + U is used.



2.7 Scaling Tests on Nickel Oxide Nano-Clusters 59

Nr——————7+————— .
F -~ NGWF overlap ]
~ 60F : ]
S r == Density kernel 1
~ 50 F ==  DFT Hamiltonian ]
5 r ===  DFT+U Hamiltonian ]
g 40 r =¥=  NGWF-Pseudo projector ]
“;0 F ===  NGWF-Hubbard projector ]
=1 [ ]
= 30 ]
= b ]
o) - ]
B 20 F ]
CE“ ¥ ]
10F ]
0 E Ve— b
1 1 1 I n 1 n " - _ 4 1
0 2000 4000 6000 8000

Number of atoms

Fig.2.4 Nano-cluster size dependence of filling factors of principal matrices. These matrix fillings
partially determine the computational cost for DFT and DFT + U

Non-local pseudopotential projectors tend to have radii not in excess of 2 ag for
lighter elements, up to and including the first-row transition metals. However, the
Hubbard projectors may require radii significantly greater than this, as indicated by
the Hubbard projector density shown in Fig.3.1 for 3d-type projectors.

In our implementation of DFT + U, we attributed a cutoff radius to all Hubbard
projectors equal to the NGWF cutoff radii of their host ions, in this case 7.5 ag. This
was primarily to allow the use of self-consistently determined Hubbard projectors
in the form of NGWFs, as we go on to discuss in Chap. 3. When using hydrogenic
projectors of smaller characteristic radii, it is almost certainly sufficient to use reduced
Hubbard projector cutoff radii for computational efficiency, but we did not explore
this possibility. The significant increase in the filling of the Hamiltonian matrix in
DFT + U over DFT, and thus the computation of it products with other quantities
such as the density kernel, is thus largely responsible for the incurred increase in
computational expense. The increased Hamiltonian filling has consequences too for
the calculation of the gradient of the energy with respect to the NGWF expansion
coefficients, as indicated in Fig. 2.5, which shows the fractional increase in time spent
in some principal operations in the energy-minimisation algorithm.

Due to the increase in the number of matrix elements in the Hamiltonian when the
DFT + U contribution is included, it takes close to twice as much effort to calculate
its expansion on the psinc grid. Moreover, since the grid-expansion of the action of
the Hamiltonian on the NGWFs is also required for the energy gradient with respect
to NGWFs, this too is made more costly by DFT + U.

Of course, when using hydrogenic Hubbard projectors, at least for first-row transi-
tion metal ions, we could safely reduce the cutoff radii of the Hubbard projectors and
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Fig.2.5 Fractional increase in time spent on selected operations when the DFT + U functionality
is activated

therefore the number of matrix elements included in the Hamiltonian, if so desired.
If carried out, this would be expected to further reduce the increase in linear-scaling
pre-factor for these systems from approximately 5% closer to the much lower fraction
which is purely due to the DFT + U subroutines.

2.8 Concluding Remarks

We have detailed a linear-scaling implementation of the widely-used DFT + U method
for treating strongly-correlated systems from first-principles. The formalism is gener-
ally appropriate to methods which minimise the energy with respect to the single-
particle density-matrix, and allows for the optimisation of a nonorthogonal represen-
tation, nonorthogonal Hubbard projectors and ionic positions.

We have demonstrated the preservation of linear-scaling performance on strongly-
correlated nano-clusters in excess of 7,000 atoms. Even for systems such as these,
with a high density of correlated sites, the increase in computational pre-factor is
rather modest. The method is, furthermore, expected to incur negligible extra cost in
large systems comprising only a small number of Hubbard subspaces.

We expect that our method may be helpful in bringing linear-scaling DFT
to bear on more problematic systems than those to which it is usually applied,
for example binding-sites in organometallic enzymes, heterostructures containing
magnetic layers for data storage and processing, defective oxides and interfaces with
catalytic oxide surfaces.
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