
Chapter 2
Background Theory

We start with a review of deterministic optimization problems in temporal networks.
We then discuss three popular methodologies to model and solve generic optimiza-
tion problems under uncertainty. We close with an overview of the issues that arise
when these methodologies are applied to temporal networks, and we provide a
survey of the relevant literature. More specific reviews of related work are provided
in the Chaps. 3–6.

2.1 Temporal Networks

The literature on temporal networks is vast and has been reviewed, amongst
others, in [BDMC99,BEPC96,BKPH05,Bru07,DH02,FL04,NSZ03,Pin08,Sch05].
Instead of giving a detailed account of all contributions, we classify some of the
most popular research directions according to the three dimensions “resources”,
“network” and “objective”. More elaborate classification schemes can be found
in [BDMC99, Bru07, DH02].

Resource characteristics: Optimization problems in temporal networks may
assume that a resource allocation has been fixed, or they can involve the assignment
of one or multiple resources. In the latter case, we can distinguish between three
prevalent types of resources. Non-renewable resources are available in pre-specified
quantities and are not replenished during the planning horizon. Typical examples
of non-renewable resources are capital and man-hours. In contrast, renewable
resources are replenished every time period, but the decision maker has to meet
specified per-period consumption quotas. Examples of renewable resources are
processing times on manufacturing machines and processors. In practice, many
resources are doubly constrained, that is, they share the restrictions of non-
renewable and renewable resources. Other resource characteristics include time
windows during which the resources are available, as well as spatial aspects (e.g.,
immobile resources such as a shipyard).
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Network characteristics: Network characteristics describe the properties of the
network tasks and precedences. Tasks are preemptive if their processing can be
interrupted to execute other tasks. For example, modern operating systems use
preemptive multitasking to generate the illusion of executing multiple computer
applications in parallel on a single processor. If the execution of network tasks must
not be interrupted, then the tasks are called non-preemptive. Project scheduling,
circuit design and many problems in process scheduling assume that the network
tasks are non-preemptive. In the introduction, we assumed that all precedences in
the temporal network are of finish-start type, that is, an arc from node i to node
j in the temporal network prescribes that task j cannot be started before task i

has been completed. Alternatively, one can consider generalized precedences that
stipulate lower and upper bounds on the time that may pass between the start and
completion of any two network tasks. Other network characteristics include time
windows during which the tasks must be executed (e.g., ready times and deadlines)
and cash flows that arise when the tasks are processed.

Objective function: One commonly distinguishes between regular objective func-
tions, which are optimized by the early start schedule (1.2), and nonregular objective
functions, which may not be optimized by the early start schedule. Typical regular
objective functions are the makespan and the lateness of the makespan beyond a
given deadline. Examples of nonregular objectives are the net present value and a
level resource consumption.

The methods studied in this book are primarily applicable to temporal networks
with non-preemptive tasks and non-renewable resources. Chapter 3 assumes that
the resource allocation is fixed and maximizes the expected net present value
under generalized precedences. In Chap. 4–6 we determine assignments of non-
renewable resources under finish-start precedences. Chapter 4 studies a multi-
objective problem that considers discrete resources (web services) and optimizes
the conditional value-at-risk of the makespan and resource costs. Chapters 5
and 6 assume continuous resources (e.g., capital or man-hours). Chapter 5 opti-
mizes quantiles of the makespan, whereas Chap. 6 minimizes the worst-case
makespan.

2.2 Optimization Under Uncertainty

In practice, most managerial decisions are taken under significant uncertainty about
relevant data such as future market developments and resource availabilities. If such
decision problems are formulated as optimization models, the models contain
parameters whose values are uncertain. In the following, we review three popular
approaches to model and solve optimization problems with uncertain parameters. In
the remainder of the book, we will present applications of two of these approaches
to optimization problems in temporal networks.
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Fig. 2.1 Temporal structure of a two-stage (left) and a multi-stage (right) recourse problem. In
the left time line, the wait-and-see decision y may depend on x and �. In the right time line, the
wait-and-see decision yt may depend on x and �s , s < t

2.2.1 Stochastic Programming

Stochastic programming models the uncertain problem parameters as random
variables with known probability distributions. One of the basic models is the two-
stage recourse problem.

inf
x2X

ff .x/ C E ŒQ.xI �/�g ; (2.1a)

where

Q.xI �/ D inf
y2Y.x;�/

fq.yI x; �/g : (2.1b)

In this problem, the parameter vector � is assumed to be uncertain. The decision
maker needs to take a here-and-now decision x 2 X before the value of � is
known, while the wait-and-see decision y 2 Y.x; �/ can be selected under full
knowledge of �. Conceptually, we can assume that x is chosen at the beginning of
time period 1, � is revealed during time period 1, and y is selected at the beginning
of time period 2 (after � is known), see Fig. 2.1, left. The goal is to minimize
the sum of deterministic first-stage costs f .x/ and expected second-stage costs
E ŒQ.xI �/�, where the expectation is taken with respect to �. Note that for any
value of x and �, the second-stage problem Q.xI �/ is deterministic. If there is
a finite set of values �1; �2; : : : such that � 2 ˚

�1; �2; : : :
�

with probability one,
then (2.1) can be formulated as an explicit optimization problem. Otherwise, (2.1)
can be approximated by a surrogate model that replaces the probability distribution
of � with a finite-valued approximation. In either case, the resulting optimization
model has the structure of a scenario fan whose branches represent the possible
realizations of �, see Fig. 2.2, left. The decision maker’s information set (i.e., the
set of scenarios that may be realized) is shown in Fig. 2.2, right. At the beginning
of the first time period, the decision maker is unaware of the realized scenario �k .
The information set therefore contains all scenarios. In the second time period, the
decision maker knows the realized scenario �k . The information set has therefore
shrunk to one of the singleton sets f�1g ; : : : ; f�5g.

The use of the expected value in (2.1a) reflects the assumption that the decision
maker is risk-neutral. In many applications of temporal networks, such as project
management and production scheduling, this assumption may not hold. Instead,
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Fig. 2.2 Scenario representation of two-stage recourse problems. The left chart shows that for
each realization (scenario) �k of the random vector �, a separate recourse decision y.xI �k/ can be
selected. The right chart visualizes the acquisition of information over time
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Fig. 2.3 Value-at-risk (left) and conditional value-at-risk (right) of a continuous random variable
� with probability density function f .x/

the decision maker is risk-averse and prefers solutions that do not just perform
well “on average”, but that also perform satisfactory “in most cases”. The most
widely used approach to obtain risk-averse solutions is to minimize the variance
of Q.xI �/, which traces back to the seminal paper [Mar52] on financial portfolio
selection. However, minimizing the variance of Q.xI �/ penalizes both the excess
and the shortfall of Q.xI �/ with respect to its expected value E ŒQ.xI �/�. This
may not be appropriate for optimization problems in temporal networks. If the
goal is to minimize the makespan, for example, a decision maker only wants
to penalize upward deviations from the expected value (i.e., delays), whereas
downward deviations are indeed desirable. A decision maker may therefore prefer
to optimize a one-sided quantile-based risk measure such as the value-at-risk (VaR):

VaRˇ ŒQ.xI �/� D inf f˛ 2 R W P .Q.xI �/ > ˛/ � 1 � ˇg:

For ease of exposition, we assume for the remainder of this section that the random
parameters � follow a continuous probability distribution. For ˇ 2 Œ0; 1�, we can
then interpret the ˇ-VaR of Q.xI �/ as the ˇ-quantile of Q.xI �/. For high values of
ˇ (e.g., ˇ � 0:9), minimizing the ˇ-VaR of Q.xI �/ favors solutions that perform
well in most cases. The VaR of a random variable � is illustrated in Fig. 2.3, left.

In recent years, VaR has come under criticism due to its nonconvexity, which
makes the resulting optimization models difficult to solve. Moreover, the noncon-
vexity implies that VaR is not sub-additive and hence not a coherent risk measure in
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Fig. 2.4 Scenario representation of multi-stage recourse problems. In analogy to the scenario fan
in Fig. 2.2, left, the left chart visualizes the scenario tree associated with a multi-stage recourse
problem, whereas the right chart shows the acquisition of information over time

the sense of [ADEH99]. Both drawbacks are rectified by the conditional value-at-
risk (CVaR), which is defined as follows:

CVaRˇ ŒQ.xI �/� D E
�
Q.xI �/ j Q.xI �/ � VaRˇ ŒQ.xI �/�

�
:

The ˇ-CVaR of Q.xI �/ represents the expected value of Q.xI �/ under the
assumption that Q.xI �/ exceeds its ˇ-VaR, that is, under the assumption that
Q.xI �/ is among the .1 � ˇ/ � 100% “worst” outcomes. By definition, the ˇ-CVaR
exceeds the ˇ-VaR for any ˇ 2 Œ0; 1�. The CVaR of a random variable � is illustrated
in Fig. 2.3, right. It has been shown in [RU00] that the ˇ-CVaR is equivalent to

inf
˛2R

�
˛ C 1

1 � ˇ
E ŒQ.xI �/ � ˛�C

�
;

where Œx�C D max fx; 0g. Hence, the techniques presented for recourse problems
with expected value objective functions are directly applicable to optimization
problems involving CVaR.

So far, all of the models assumed a two-stage structure (decision – realization
of uncertainty – decision). In a multi-stage recourse problem, the parameter vector
� can be subdivided into vectors �1; : : : ; �T such that � D .�1; : : : ; �T / and �t is
revealed during time period t D 1; : : : ; T . The decision maker can take a recourse
decision yt at the beginning of every time period t D 2; : : : ; T C 1, and yt

may depend on the values of �1; : : : ; �t�1, see Fig. 2.1, right. Note that yt may
not depend on the values of �s , s � t , since this information is not available at
the time the recourse decision yt is taken. This causality requirement is called
non-anticipativity. If the probability distribution of � has finitely many values,
then the optimization model associated with a multi-stage recourse problem has
the structure of a scenario tree, see Fig. 2.4. In the left chart of that figure, �k;t

denotes the t th subvector of the scenario �k D .�k;1; : : : ; �k;T /. Each path from
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the root node to a leaf node constitutes one scenario. Two scenarios �k and �l are
undistinguishable at the beginning of period t if �k;s D �l;s for all s < t . In this case,
�k and �l are contained in the same information set at time t , and non-anticipativity
stipulates that yt .xI .�k;1; : : : ; �k;t�1// D yt .xI .�l;1; : : : ; �l;t�1//. For example,
non-anticipativity requires that y2.xI �k;1/ D y2.xI �l;1/ for k; l 2 f1; : : : ; 4g and
y3.xI .�5;1; �5;2// D y3.xI .�6;1; �6;2//. In analogy to two-stage recourse problems,
a multi-stage recourse problem can be approximated by a surrogate model that
replaces the probability distribution of � with a finite-valued approximation if �

can attain infinitely many values. While convex two-stage recourse problems can
be approximated efficiently, multi-stage problems “generically are computationally
intractable already when medium-accuracy solutions are sought” [SN05]. Multi-
stage recourse problems therefore constitute very difficult optimization problems.

Apart from recourse problems, stochastic programming studies problems with
chance constraints. The basic two-stage chance constrained problem can be formu-
lated as follows:

inf
x2X

ff .x/ W P .Q.xI �/ � 0/ � 1 � �g ; (2.2)

where Q is defined in (2.1b). The temporal structure of problem (2.2) is the same
as for two-stage recourse problems, see Fig. 2.1, left. The goal is to find a here-
and-now decision x such that with a probability of at least 1 � �, there is a wait-
and-see decision y.xI �/ 2 Y.x; �/ that satisfies q.y.xI �/I x; �/ � 0. Note that
problem (2.2) is equivalent to the following problem with a VaR constraint:

inf
x2X

ff .x/ W VaR1�� ŒQ.x; �/� � 0g : (2.2’)

It is therefore not surprising that chance constrained problems inherit the compu-
tational difficulties of VaR optimization problems. Indeed, even if the second-stage
problem Q is a linear program, the feasible region of (2.2) is typically nonconvex
and disconnected [Pré95]. Moreover, calculating the left-hand side of the constraint
in (2.2) requires the evaluation of a multi-dimensional integral, which itself
constitutes a difficult problem. As a result, most solution approaches for (2.2) settle
for approximate solutions. A popular approximation is obtained by replacing the
.1 � �/-VaR in (2.2’) with the .1 � �/-CVaR:

inf
x2X

ff .x/ W CVaR1�� ŒQ.x; �/� � 0g : (2.2”)

Since CVaR represents an upper bound on VaR, this formulation provides a
conservative approximation to problem (2.2’), that is, any x 2 X that is feasible
in (2.2”) is also feasible in (2.2’) and (2.2). Similar to recourse problems, chance
constrained problems can be extended to multiple decision stages.

For an in-depth treatment of stochastic programming, the reader is referred to
the textbooks [KW94, Pré95, RS03]. We will consider two-stage recourse problems
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that optimize the expected value and CVaR in Chaps. 3 and 4, respectively. Chapter 5
studies an approximation of VaR that does not rely on scenario discretization.

2.2.2 Robust Optimization

In its basic form, robust optimization studies semi-infinite problems of the following
type:

inf
x2X

ff .x/ W gi .xI �/ � 0 8 � 2 „; i D 1; : : : ; I g : (2.3)

We interpret x as a here-and-now decision and � as an uncertain parameter
vector with support „. The goal is to minimize the deterministic costs f .x/ while
satisfying the constraints for all possible realizations of �. Note that (2.3) is a single-
stage problem since it does not contain any recourse decisions. If „ constitutes
a finite set of scenarios �1; �2; : : :, then (2.3) can be formulated as an explicit
optimization problem. If „ is of infinite cardinality, then (2.3) can be solved with
iterative solution procedures from semi-infinite optimization [HK93,RR98]. One of
the key contributions of robust optimization has been to show that for sets „ of
infinite cardinality but specific structure, one can apply duality theory to transform
problem (2.3) into an explicit optimization problem. We illustrate this approach with
an example.

Example 2.2.1. Assume that I D 1, X � R
n, „ D ˚

� 2 R
kC W W � � h

�
for

W 2 R
m�k and h 2 R

m, and g1.xI �/ D �>A x for A 2 R
k�n. Also assume that „

is nonempty and bounded. We can then reformulate the constraint in problem (2.3)
as follows:

g1.xI �/ � 0 8 � 2 „ , sup
�2„

fg1.xI �/g � 0

, max
�2Rk

C

˚
�>A x W W � � h

� � 0

, min
�2Rm

C

˚
h>� W W >� � Ax

� � 0

, h>� � 0; W >� � Ax for some � 2 R
mC:

Here, the third equivalence follows from strong linear programming duality. We
have thus transformed the semi-infinite constraint in problem (2.3) into a finite
number of constraints that involve x and new auxiliary variables �.

Much of the early work on robust optimization focuses on generalizations of
the reformulation scheme illustrated in Example 2.2.1. Unfortunately, single-stage
models such as (2.3) are too restrictive for decision problems in temporal networks.
Indeed, the task start times can typically be chosen as a wait-and-see decision,
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and optimization problems that account for this flexibility provide significantly
better solutions. We discuss this issue in more detail in Chaps. 3–6. We are therefore
interested in two-stage robust optimization problems such as the following one:

inf
x2X

sup
�2„

inf
y2Y.x;�/

ff .x/ C q.yI x; �/g : (2.4)

Here, q is the objective function of the second-stage problem Q defined in (2.1b),
and Y.x; �/ � R

l . In this problem, the here-and-now decision x is accompanied
by a wait-and-see decision y 2 Y.x; �/ that can be selected under full knowledge
of �. The temporal structure of this problem is similar to the two-stage recourse
problem (2.1), see Fig. 2.1, left. The goal is to minimize the sum of first-stage
costs f .x/ and worst-case second-stage costs sup�2„ Q.xI �/, see (2.1b), where the
worst case is taken with respect to �. Two-stage robust optimization problems are
generically intractable, see [BTGGN04]. A tractable approximation can be derived
from the following identity.

Observation 2.2.1 For any X � R
n, „ � R

k and Y.x; �/ � R
l , we have

inf
x2X

sup
�2„

inf
y2Y.x;�/

ff .x/ C q.yI x; �/g D inf
x2X;

y2Y.x/

sup
�2„

ff .x/ C q.y.�/I x; �/g ;

(2.5a)

where for x 2 X ,

Y.x/ D ˚
.y W „ 7! R

l / W y.�/ 2 Y.x; �/ 8 � 2 „
�

: (2.5b)

Observation 2.2.1 allows us to reduce the min–max–min problem (2.4) to the
min–max problem on the right-hand side of (2.5a) at the cost of augmenting the set
of first-stage decisions. For a given here-and-now decision x 2 X , Y.x/ denotes the
space of all functions on „ that map parameter realizations to feasible wait-and-see
decisions. A function y is called a decision rule because it specifies the second-stage
decision in (2.4) as a function of the uncertain parameters �. Note that the choice of
an appropriate decision rule on the right-hand side of (2.5a) is part of the first-stage
decision. The identity (2.5a) holds regardless of the properties of X and „ because
Y.x/ does not impose any structure on the decision rules (such as measurability).

Since Y.x/ constitutes a function space, further assumptions are required to
ensure that the problem on the right-hand side of (2.5a) can be solved. A popular
approach is to restrict Y.x/ to the space of affine or piecewise affine functions
of �, see [BTGN09, CSSZ08, KWG]. As we will show in Chap. 6, this restriction
allows us to reformulate the model on the right-hand side of (2.5a) as an explicit
optimization problem. Figure 2.5 compares the scenario approximation from the
previous section with the decision rule approximation. In the left chart of that
figure, the support „ of the random parameters � is replaced with a discrete-
valued approximation. For each possible realization (scenario) �k , an individual
second-stage decision y.xI �k/ may be chosen. In the right chart of Fig. 2.5, the
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Fig. 2.5 Approximations
employed by two-stage
recourse problems (left) and
two-stage robust optimization
problems (right) for a random
vector � with a continuous
probability distribution
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support „ of the random parameters � remains unchanged, but the second-stage
decision y.xI �/ is restricted to be an affine function of �.

For an introduction to robust optimization, see [BS04, BTGN09]. Two-stage
robust optimization problems are discussed in [BTGN09, CSSZ08, JLF07, LJF04,
LLMS09, Sti09]. In recent years, the theory of robust optimization has been
extended to recourse problems and chance constrained problems. For further details,
see [BP05, BTGN09, CSST10, DY10, GS10]. In Chap. 6 we will solve a makespan
minimization problem as a two-stage robust optimization problem. Instead of
approximating the optimal second-stage decision via decision rules, however, this
chapter presents a technique that provides convergent lower and upper bounds on
the optimal value of the problem. The upper bounds correspond to feasible solutions
whose objective values are bracketed by the bounds. We will compare that method
with two popular classes of decision rules.

2.2.3 Stochastic Dynamic Programming

Stochastic dynamic programming studies the modeling and solution of optimization
problems via Markov decision processes (MDPs). MDPs model dynamic decision
problems in which the outcomes are partly random and partly under the control of
the decision maker. At each time period, the MDP is in some state s, and the decision
maker takes an action a. The state s0 in the successive time period is random and
depends on both the current state s and the selected action a. However, the new state
does not depend on any other past states or actions: this is the Markov property. For
each transition of the MDP, the decision maker receives a reward that depends on
the old state, the new state and the action that triggered the transition.

In the following, we will restrict ourselves to discrete-time MDPs with finite state
and action spaces. We therefore assume that an MDP is defined through its state
space S D f1; : : : ; Sg, its action space A D f1; : : : ; Ag, and a discrete planning
horizon T D f0; 1; 2; : : :g that can be finite or infinite. The initial state is a random
variable with known probability distribution p0. If action a 2 A is chosen in state
s 2 S, then the subsequent state is s0 2 S with probability p.s0js; a/. We assume
that the probabilities p.s0js; a/, s0 2 S, sum up to one for each state–action pair
.s; a/ 2 S �A. The decision maker receives an expected reward of r.s; a; s0/ 2 R if
action a 2 A is chosen in state s 2 S and the subsequent state is s0 2 S. Without loss
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of generality, we can assume that every action is admissible in every state. Indeed,
if action a 2 A is not allowed in state s 2 S, then we can “forbid” this action by
setting all rewards r.s; a; s0/, s0 2 S, to a large negative value. Figure 2.6 visualizes
the structure of an MDP.

At each stage, the MDP is controlled through a policy � D .�t /t2T , where
�t .ajs0; a0; : : : ; st�1; at�1I st / represents the probability to choose action a 2 A
if the current state is st and the state-action history is given by the vector
.s0; a0; : : : ; st�1; at�1/. Note that contrary to the state transitions of the MDP, the
policy � need not be Markovian. If the planning horizon T is infinite, then we can
evaluate a policy � in view of its expected total reward under the discount factor
� 2 .0; 1/:

E

" 1X

tD0

�t r.st ; at ; stC1/
ˇ
ˇ̌

s0 � p0

#

: (2.6)

Here, E denotes the expectation with respect to the random process defined by the
transition probabilities p and the policy � . The notation s0 � p0 indicates that the
initial state s0 is a random variable with probability distribution p0. If the planning
horizon T is finite, say T D f0; 1; : : : ; T g, then we can evaluate a policy � in view
of its expected total reward without discounting:

E

"
TX

tD0

r.st ; at ; stC1/
ˇ
ˇ
ˇ s0 � p0

#

: (2.7)

For a fixed policy � , the policy evaluation problem asks for the value of expres-
sion (2.6) or (2.7). The policy improvement problem, on the other hand, asks for
a policy � that maximizes (2.6) or (2.7). For both objective functions, the policy
evaluation and improvement problems can be solved efficiently via policy and value
iteration.

Example 2.2.2 (Inventory Management). Consider the following infinite horizon
inventory problem. At the beginning of each time period, the decision maker can
order a 2 N0 units of a product at unit costs c. The ordered products arrive at the
beginning of the next period. During each period, an independent and identically
distributed random demand ı arises for the product. This demand is served at a unit

...

r(s0, a0, s1) r(s1, a1, s2)

a0 a1
s0

p0

s1 s2

p(⋅|s0, a0) p(⋅|s1, a1)

Fig. 2.6 Structure of a Markov decision process. The process starts in state s0 2 S , which follows
the probability distribution p0. After the action a0 2 A is chosen, the new state s1 2 S follows the
probability distribution p.�js0; a0/, and an expected reward r.s0; a0; s1/ is received
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price p from the current inventory, and there is no backlogging (i.e., demand that
cannot be satisfied within the period is lost). The inventory can hold at most I units
of the product. The goal is to find an inventory control policy that maximizes the
expected total reward under some discount factor �.

We can formulate this problem as an infinite horizon MDP as follows. The state
set S D f0; : : : ; I g describes the inventory level at the beginning of each time
period. In state s 2 S, the admissible actions f0; : : : ; I � sg determine the order
quantity. Note that the actions are state-dependent in this example. The transition
probabilities are

p.s0js; a/ D
(
P.ı D s C a � s0/ if s0 ¤ 0;
P1

iDsCa P.ı D i/ otherwise,

and the rewards are given by r.s; a; s0/ D p.s C a � s0/ � ca. Here we assume that
the random demand ı is nonnegative with probability one. A policy � could order
! 2 N units whenever the current inventory falls below some threshold � 2 N0.
This policy is defined through �t .ajs0; a0; : : : ; st�1; at�1I st / D 1 if st < � and
a D !, or st � � and a D 0, and �t .ajs0; a0; : : : ; st�1; at�1I st / D 0 otherwise.
Note that this policy � is Markovian.

There are numerous variations of the Markov decision process defined in
this section. For an overview of the major models and solution approaches, see
[Ber07, Put94].

In recent years, an approximation scheme called “approximate dynamic pro-
gramming” has received much attention. The interested reader is referred to the
textbooks [BT96, Pow07]. In this book, we will not consider the application of
Markov decision processes to temporal networks. The reader is referred to [BR97,
KA86, TSS06] and there references therein.

2.3 Optimization of Temporal Networks under Uncertainty

Decisions in temporal networks are often taken under significant uncertainty about
the network structure (i.e., the tasks and precedences of the network), the task
durations, the ready times and deadlines of the tasks, the cash flows and the avail-
ability of resources. In this book, we focus on problems in which the task durations
(Chaps. 3–6), the cash flows (Chaps. 3 and 4), the network structure (Chap. 4),
and the tasks’ ready times and deadlines (Chap. 3) are uncertain. A problem
that accounts for uncertain resource availabilities is described in [Yan05]. Further
reviews on problems with uncertain network structure are provided in [Neu79,
Neu99, Pri66].

An optimization problem under uncertainty needs to specify when information
about the uncertain parameters becomes available, and what information is revealed
about them. Both issues are straightforward in the optimization problems reviewed
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in Sect. 2.2. In a multi-stage recourse problem, for example, we observe the
subvector �t of the uncertain parameters � at the beginning of time period t C 1, see
Fig. 2.1, right. Likewise, in a stochastic dynamic program, we observe the current
state of the MDP at the beginning of each time period.

The situation is different for temporal networks, and it is this difference that
complicates the modeling and solution of decision problems in temporal networks.
It is customary to assume that the duration and cash flow of a task is observed
when the task is completed. However, the completion time of a task depends on
the task’s start time, which is chosen by the decision maker. Hence, in contrast to
the problems studied in Sect. 2.2, the times at which we learn about the random
parameters depend on the chosen decision. Recourse problems with decision-
dependent uncertainty are studied in [GG06, JWW98], and a robust optimization
problem with decision-dependent uncertainty is formulated in [CGS07]. However,
the resulting optimization problems are computationally demanding, and they
typically have to undergo drastic simplifications before they can be solved.

Apart from the time points at which information becomes available, optimization
problems in temporal networks differ from other problems in the type of the revealed
information. In many cases, the task durations and cash flows in a temporal network
do not correspond to individual parameters, but they are functions of multiple
parameters (as is the case in factor models). In such problems, we do not observe the
uncertain parameters themselves, but we accumulate knowledge about them with
the completion of each task. We can use this information to exclude parameter
realizations that are not compatible with the observed durations and cash flows.
In contrast, the multi-stage recourse and robust optimization problems reviewed
in Sect. 2.2 assume that the decision maker can directly observe the uncertain
parameter vector �.

Similar to the problems in Sect. 2.2, optimization problems in temporal networks
can contain here-and-now as well as wait-and-see decisions. Here-and-now deci-
sions are taken before any of the network tasks are started, whereas a wait-and-see
decision associated with task i 2 V (e.g., its start time or resource assignment)
may depend on all information that is available at the time task i is started. Since
the early start schedule optimizes regular objective functions (see Sect. 2.1), it is
relatively straightforward to model the task start times as a wait-and-see decision in
makespan minimization problems. We will consider problems with a here-and-now
resource allocation and wait-and-see task start times in Chaps. 4–6. The situation is
fundamentally different in net present value maximization problems where the early
start schedule is no longer guaranteed to be optimal. In Chap. 3 we consider a net
present value problem in which the resource allocation is fixed, while the task start
times can be chosen as a wait-and-see decision.

We close this section with an overview of the literature on temporal networks
under uncertainty. Detailed reviews of specific topics will be provided in later
chapters.

Although temporal networks have been analyzed for more than 50 years,
see for example [Ful61, Kel61, MRCF59], the literature on temporal networks
under uncertainty is surprisingly sparse. Until recently, most research on temporal
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networks under uncertainty assumed a fixed resource allocation and focused on
the makespan of the early start schedule. Following the classification in [M0̈1],
we can categorize the literature into methods that identify “critical” tasks or
task paths [Elm00], simulation techniques to approximate the makespan distri-
bution [AK89], approaches that bound the expected makespan [BM95, BNT02,
MN79], and methods that bound the cumulative distribution function of the
makespan [LMS01, M0̈1].

Optimization problems that maximize a network’s net present value under
uncertainty generally model the task start times as a wait-and-see decision, while the
resource allocation is assumed to be fixed. The problem has been approximated by
a two-stage recourse model in [Ben06], where an optimal delay policy is sought that
prescribes how long each task should be delayed beyond its earliest start time. Under
the assumption that the task durations are independent and exponentially distributed,
the net present value maximization problem is formulated as a continuous-time
Markov decision process in [BR97, TSS06]. Finally, approximate solutions for
net present value maximization problems have been obtained with a number of
heuristics, see [Bus95,OD97,Ö98,TFC98,WWS00]. For an overview of net present
value maximization problems in temporal networks, see [HDD97].

Makespan minimization problems under uncertainty typically assume that a
resource assignment is selected here-and-now, while the task start times are modeled
as a wait-and-see decision. For non-renewable resources, the makespan minimiza-
tion problem has been formulated as a two-stage recourse model in [Wol85]
and as a robust optimization problem in [CGS07, CSS07, JLF07, LJF04]. Except
for [CGS07], all of these contributions model the resource assignment as a here-
and-now decision. A makespan minimization problem with renewable resources is
studied in [MS00].

For reviews of different aspects of optimization problems in temporal networks
under uncertainty, see [AK89, BKPH05, Elm05, HL04, HL05, JW00, LI08, M0̈1,
Pin08, Sah04].
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