Chapter 2
Contextuality

We have seen in the previous chapter that the analysis of von Neumann has little
impact on the question of whether a viable hidden variables theory may be con-
structed. However, further mathematical results were developed by Gleason [1] in
1957 and by Simon Kochen and Specker in 1967 [2], which were claimed by some'
to imply the impossibility of hidden variables. In the words of Kochen and Specker
[2, p. 73]: “If a physicist X believes in hidden variables. .. ... the prediction of X
contradicts the prediction of quantum mechanics”. The Gleason, and Kochen and
Specker arguments are in fact, stronger than von Neumann’s in that they assume
linearity only for commuting observables. Despite this, a close analysis reveals that
the impossibility proofs of Gleason and of Kochen and Specker share with von Neu-
mann’s proof the neglect of the possibility of a hidden variables feature called con-
textuality [5, 6]. We will find that this shortcoming makes these theorems inadequate
as proofs of the impossibility of hidden variables.

We begin this chapter with the presentation of Gleason’s theorem and the theorem
of Kochen and Specker. This will be followed by a discussion of contextuality and its
relevance to these analyses. We will make clear in this discussion why the theorems
in question fail as impossibility proofs. As far as the question of what conclusions do
follow, we show that these theorems’ implications can be expressed in a simple and
concise fashion, which we refer to as “spectral-incompatibility”. We conclude the
chapter with the discussion of an experimental procedure first discussed by Albert?
which provides further insight into contextuality.

I See [2-4].
2 See Albert [7].
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24 2 Contextuality

2.1 Gleason’s Theorem

Von Neumann’s theorem addressed the question of the form taken by a function E(O)
of the observables. Gleason’s theorem essentially addresses the same question,’ the
most significant difference being that the linearity assumption is relaxed to the extent
that it is demanded that E be linear on only commuting sets of observables. Besides
this, Gleason’s theorem involves a function E on only the projection operators of
the system, rather than on all observables. Finally, Gleason’s theorem contains the
assumption that the system’s Hilbert space is at least three dimensional. As for the
conclusion of the theorem, this is identical to von Neumann’s: E (P) takes the form
E(P) = Tr(U P) where U is a positive operator and Tr(U) = 1.

Let us make the requirement of linearity on the commuting observables somewhat
more explicit. First we note that any set of projection {P;, P, ...} onto mutually
orthogonal subspaces {H1, H>, ...} will form a commuting set. Furthermore, if P
projects onto the direct sum H1 @ H> & . . . of these subspaces, then { P, Py, P>, ...}
will also form a commuting set. It is in the case of this latter type of set that the
linearity requirement comes into play, since these observables obey the relationship

P=P+P+---. (2.1)
The condition on the function E is then
E(P)=E(P)+E(P)+---. (2.2)

The formal statement of Gleason’s theorem is expressed as follows. For any quantum
system whose Hilbert space is at least three dimensional, any expectation function
E(P) obeying the conditions (2.2), 0 < E(P) < 1, and E(1) = 1 must take the
form

E(P) = Tr(UP), 2.3)

where Tr(U) = 1 and U is a positive operator. We do not present the proof of this
result* here. In the next section, we present an outline the proof of Kochen and
Specker’s theorem. The same impossibility result derivable from Gleason’s work
also follows from this theorem.

3 The original form presented by A.M. Gleason referred to a probability measure on the subspaces

of a Hilbert space, but the equivalence of such a construction with a value map on the projection
operators is simple and immediate. This may be seen by considering that there is a one-to-one
correspondence between the subspaces and projections of a Hilbert space and that the values taken
by the projections are 1 and 0, so that a function mapping projections to their eigenvalues is a special
case of a probability measure on these operators.

4 See Bell [5]. Bell proves that any function E (P) satisfying the conditions of Gleason’s theorem
cannot map the projection operators to their eigenvalues.
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It is straightforward to demonstrate that the function E(P) considered within
Gleason’s theorem cannot be a value map function on these observables. To demon-
strate this, one may argue in the same fashion as was done by von Neumann, since
the form developed here for E(P) is the same as that concluded by the latter. (See
Sect. 1.4.3). We recall that if E(O) is to represent a dispersion free state specified by
Y and A, it must take the form of such a value map, and E(O) evidently cannot be
the expectation function for such a state. It is on this basis that the impossibility of
hidden variables has been claimed to follow from Gleason’s theorem.

2.2 Kochen and Specker’s Theorem

As with Gleason’s theorem, the essential assumption of Kochen and Specker’s the-
orem is that the expectation function £(O) must be linear on commuting sets of
observables. It differs from the former only in the set of observables considered.
Gleason’s theorem was addressed to the projection operators on a Hilbert space of
arbitrary dimension N. Kochen and Specker consider the squares {sg’ ¢} of the spin
components of a spin 1 particle. One may note that these observables are formally
identical to projection operators on a three-dimensional Hilbert space. Thus, the
Kochen and Specker observables are a subset® of the “N = 3” case of the Gleason
observables. Among the observables {sgg ¢} any subset {sf, sg, s)%} corresponding to
mutually orthogonal component directions x, y, z will be a commuting set. Each such
set obeys the relationship

sy sy 48l =2. (2.4)

For every such subset, Kochen and Specker require that E (s927 ¢) must obey
2 2 2y
E(sy) + E(sy) + E(s7) = 2. (2.5)

Kochen and Specker theorem states that there exists no function E(sgg ¢) on the
squares of the spin components of a spin 1 particle which maps each observable to
either O or 1 and which satisfies (2.5).

We now make some comments regarding the nature of this theorem’s proof. The
problem becomes somewhat simpler to discuss when formulated in terms of a geo-
metric model. Imagine a sphere of unit radius surrounding the origin in IR3. It is easy
to see that each point on this sphere’s surface corresponds to a direction in space,
which implies that each point is associated with one observable of the set {sez, ¢}. With
this, £ may be regarded as a function on the surface of the unit sphere. Since the
eigenvalues of each of these spin observables are 0 and 1, it must be that £(O) must
take on these values, if it is to assume the form of a value map function. Satisfaction
of (2.5) requires that for each set of mutually orthogonal directions, E must assign to

5 The set of projections on a three-dimensional space is actually a larger class of observables.
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one of them 0 and to the other directions 1. To gain some understanding® of why such
an assignment of values must fail, we proceed as follows. To label the points on the
sphere, we imagine that each point on the sphere to which the number 0 is assigned is
painted red, and each point assigned 1 is painted blue. We label each direction as by
the unit vector 7. Since one direction of every mutually perpendicular set is assigned
red, then in total we require that one-third of the sphere is painted red. If we consider
the components of the spin in opposite directions 8, ¢, and 180° — 6, 180+ ¢, these
values are always opposite, i.e., if s, takes the value +1, then s_, takes the value
—1. This implies that the values of sg’ ® and S%BOO—(J, 180+ will be equal. Therefore,
we must have that points on the sphere lying directly opposite each other, i.e., the
“antipodes”, must receive the same assignment from E. Suppose that one direction
and its antipode are painted red. These points form the two poles of a great circle, and
all points along this circle must then be painted blue, since all such points represent
directions orthogonal to the directions of our two ‘red’ points. For every such pair of
red points on the sphere, there must be many more blue points introduced, and we
will find this makes it impossible to make one-third of the sphere red, as would be
necessary to satisfy (2.5).

Suppose we paint the entire first octant of the sphere red. In terms of the coordi-
nates used by geographers, this is similar to the region in the Northern hemisphere
between 0 and 90° longitude. If the point at the north pole is painted red then the
great circle at the equator must be blue. Suppose that the 0 and 90° meridians are
also painted red. Then the octant which is the antipode of the first octant must also
be painted red. This octant would be within the ‘southern hemisphere’ between
180 and 270° longitude. If we now apply the condition that for every point painted
red, all points lying on the great circle defined with the point at its pole, we find
that all remaining points of the sphere must then be colored blue, thereby preventing
the addition of more red points. This assignment implies that more than two-thirds
of the sphere is blue, therefore some sets of mutually perpendicular directions are
all colored blue. An example of such a set of directions is provided by the points
on the sphere’s surface lying in the mutually orthogonal directions represented by
(0.5,0.5, —0.7071), (—0.1464, 0.8535, 0.5), (0.8535, —0.1464, 0.5). Each of these
points lies in a quadrant to which we have assigned the color blue by the above
scheme. This assignment of values to the spatial directions must therefore fail to meet
the criteria demanded of the function E (sgg ¢) in Kochen and Specker’s premises:

that E (s(%! ¢) satisfies (2.5) and maps the observables to their values.

In their proof, Kochen and Specker show that for a discrete set of 117 different
directions in space, it is impossible to give appropriate value assignments to the cor-
responding spin observables.” Kochen and Specker then assert that hidden variables
cannot agree with the predictions of quantum mechanics. Their conclusion is that if
some physicist ‘X’, mistakenly decides to accept the validity of hidden variables then

6 We follow here the argument given in Belinfante [8, p. 38]

7 Since their presentation, the proof has been simplified by Peres in 1991 [9] whose proof is based

on examination of 33 such 7 vectors. We also note that a proof presented by Bell [5] may be shown
to lead easily to a proof of Kochen and Specker. See Mermin in this connection [10].
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“the prediction of X (for some measurements) contradicts the prediction of quantum
mechanics” [2, p 73]. The authors cite a particular system on which one can per-
form an experiment they claim reveals the failure of the hidden variables prediction.
We will demonstrate in the next section of this work that what follows from Kochen
and Specker’s theorem is only that a non-contextual hidden variables theory will con-
flict with quantum mechanics, so that the general possibility of hidden variables has
not been disproved. Furthermore, we show that if the type of experiment envisioned
by these authors is considered in more detail, it does not indicate where hidden vari-
ables must fail, but instead serves as an illustration indicating that the requirement
of contextuality is a quite natural one.

More recent proofs have been offered involving smaller numbers of spin com-
ponent observables rather than the 117 utilized by the original Kochen and Specker
proof. In particular, Asher Peres has shown?® that value assignments to a particular
set of 33 spin observables cannot be made such that quantum mechanical prescrip-
tions are met.

2.3 Contextuality and Gleason’s, and Kochen
and Specker’s Impossibility Proofs

We have seen that the theorems of Gleason, and Kochen and Specker each demon-
strate the impossibility of value maps on some sets of observables such that the
constraining relationships on each commuting set are obeyed. One might be at first
inclined to conclude with Kochen and Specker that such results imply the impossibil-
ity of a hidden variables theory. However, if we consider that there exists a successful
theory of hidden variables, namely Bohmian mechanics [12] (see Sect. 1.1.2), we see
that such a conclusion is in error. Moreover, an explicit analysis of Gleason’s theo-
rem has been carried out by Bell [5, 6] and its inadequacy as an impossibility proof
was shown. Bell’s argument may easily be adapted” to provide a similar demonstra-
tion regarding Kochen and Specker’s theorem. The key concept underlying Bell’s
argument is that of contextuality, and we now present a discussion of this notion.
Essentially, contextuality refers to the dependence of measurement results on the
detailed experimental arrangement being employed. In discussing this notion, we
will find that an inspection of the quantum formalism suggests that contextuality is
a natural feature to expect in a theory explaining the quantum phenomena. Further-
more we shall find that the concept is in accord with Niels Bohr’s remarks regarding
the fundamental principles of quantum mechanics. According to Bohr [13] “a closer
examination reveals that the procedure of measurement has an essential influence
on the conditions on which the very definition of the physical quantities in question

8 See[l11].

9 As we have mentioned, since the observables are formally equivalent to projections on a three-
dimensional Hilbert space, this theorem is actually a special case of Gleason’s. Therefore, Bell’s
argument essentially addresses the Kochen and Specker theorem as well as Gleason’s.
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rests.” In addition, he stresses [14, p. 210] “the impossibility of any sharp distinction
between the behavior of atomic objects and the interaction with the measuring instru-
ments which serve to define the conditions under which the phenomena appear.” The
concept of contextuality represents a concrete manifestation of the quantum theoret-
ical aspect to which Bohr refers. We will first explain the concept itself in detail, and
then focus on its relevance to the theorems of Gleason, and Kochen and Specker.

We begin by recalling a particular feature of the quantum formalism. In the pre-
sentation of this formalism given in chapter one, we discussed the representation of
the system’s state, the rules for the state’s time evolution, and the rules governing
the measurement of an observable. The measurement rules are quite crucial, since it
is only through measurement that the physical significance of the abstract quantum
state (given by ¥) is made manifest. Among these rules, one finds that any commut-
ing set of observables may be measured simultaneously. With a little consideration,
one is led to observe that the possibility exists for a variety of different experimental
procedures to measure a single observable. Consider for example, an observable O
which is a member of the commuting set {O, Ay, A, ...}. We label this set as C.
A simultaneous measurement of the set C certainly gives among its results a value for
O and thus may be regarded as providing a measurement of O. It is possible that O
may be a member of another commuting set of observables C' = {O, By, Bz, ...},
so that a simultaneous measurement of C” also provides a measurement of O. Let
us suppose further that the members of set {A;} fail to commute with those of {B;}.
It is then clear that experiments measuring C and C’ are quite different, and hence
must be distinct. A concrete difference appears for example, in the effects of such
experiments on the system wave function. The measurement rules tell us that the
wave function subsequent to an ideal measurement of a commuting set is prescribed
by the Eq.1.12, according to which the post-measurement wave function is cal-
culated from the pre-measurement wave function by taking the projection of the
latter into the joint-eigenspace of that set. Since the members of C and C’ fail to
commute, the joint-eigenspaces of the two are necessarily different, and the system
wave function will not generally be affected in the same way by the two experimental
procedures. Apparently the concept of ‘the measurement of an observable’ is ambigu-
ous, since there can be distinct experimental procedures for the measurement of a
single observable.

There are, in fact, more subtle distinctions between different procedures for mea-
suring the same observable, and these also may be important. To introduce the
experimental procedure of measurement into our formal notation, we shall write
£(0), £'(0), etc., to represent experimental procedures used to measure the observ-
able O. From what we have seen here, it is quite natural to expect that a hidden vari-
ables theory should allow for the possibility that different experimental procedures,
e.g., £(0) and £'(0), for the measurement of an observable might yield different
results on an individual system. This is contextuality.

Examples of observables for which there exist incompatible measurement pro-
cedures are found among the observables addressed in each of the theorems of
Gleason, and Kochen and Specker. Among observables addressed by Gleason are the
one-dimensional projection operators { Py} on an N-dimensional Hilbert space H y .
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Consider a one-dimensional projection Py where ¢ belongs to two sets of ortho-
normal vectors given by {¢, ¥1, ¥2,...} and {¢, x1, x2, ...}. Note that the sets
{¥1,Yn,...}and {x1, x2, ...} are constrained only in that they span Hj; (the orthog-
onal complement of the one-dimensional space spanned by ¢). Given this, there
exist examples of such sets for which some members of {11, V2, ...} are distinct
from and not orthogonal to the vectors in {x1, x2, ...}. Since any distinct vectors
that are not orthogonal correspond to projections which fail to commute, the exper-
imental procedures £(Py) measuring {Py, Py,, Py,, ...} and £'(Ps) measuring
{Pg, Py,, Py,, ...} are incompatible. The argument just given applies also to the
Kochen and Specker observables (the squares of the spin components of a spin 1
particle), since these are formally identical to projections on a three-dimensional
Hilbert space To be explicit the observable s is a member of the commuting sets
{s2 y, sz } and {s 52 v ,} where the y” and 7’ are oblique relative to the y and z axes.

In this case, sf,, s do not commute with s2
to measure these sets are incompatible.

While it is true that the arguments against hidden variables derived from these
theorems are superior to von Neumann’s, since they require agreement only with
operator relationships among commuting sets, these arguments nevertheless possess
the following shortcoming. Clearly, the mathematical functions considered in each
case, E(P) and E (s92‘ ¢) do not allow for the possibility that the results of mea-
suring each observable using different and possibly incompatible procedures may
lead to different results. What the theorems demonstrate is that no hidden variables
formulation based on assignment of a unique value to each observable can possibly
agree with quantum mechanics. But this is a result we might well have expected from
the fact that the quantum formalism allows the possibility of incompatible experi-
mental procedures for the measurement of an observable. For this reason, neither
of the theorems here considered—Gleason’s theorem, and Kochen and Specker’s
theorem—imply the impossibility of hidden variables, since they fail to account for
such a fundamental feature of the quantum formalism’s rules of measurement.

o 2. Thus, the experimental procedures

2.3.1 Procedure to Measure the Kochen
and Specker Observables

In a discussion of the implications of their theorem, Kochen and Specker mention a
system for which well-known techniques of atomic spectroscopy may be used to mea-
sure the relevant spin observables. Although these authors mention this experiment
to support their case against hidden variables, the examination of such an experiment
actually reinforces the assertion that one should allow for contextuality—the very
concept that refutes their argument against hidden variables.
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Kochen and Specker note'? that for an atom of orthohelium'! which is subjected
to an electric field of a certain configuration, the first-order effects of this field on
the electrons may be accounted for by adding a term of the form an + bS§ + CS?

to the electronic Hamiltonian. Here a, b, ¢ are distinct constants, and Sf, S}Z,, SZ2 are
the squares of the components of the total spin of the two electrons with respect to
the Cartesian axes x, y, z. The Cartesian axes are defined by the orientation of the
applied external field. For such a system, an experiment measuring the energy of the
electrons also measures the squares of the three spin components. To see this, note
that the value of the perturbation energy will be (a + b), (a + ¢), or (b + c¢) if the
joint values of the set S%, Sg, SZ2 equal respectively {1, 1, 0}, {1, 0, 1}, or {0, 1, 1}.
To understand why the external electric field affects the orthohelium electrons in
this way, consider the ground state of orthohelium.'? The wave function of this state
is given by a spatial part ¢ (r1, r2), depending only on ry, r (the radial coordinates of
the electrons), multiplied by the spin part, which is a linear combination of the eigen-
vectors Y41, Yo, ¥—1 of S;, corresponding to S; = +1, 0, —1, respectively. Thus,
the ground state may be represented by any vector in the three-dimensional Hilbert
space spanned by the vectors ¢ (r1, r2) V41, ¢ (r1, r2) Yo, ¢ (r1, r2)¥—1. The external
electric field will have the effect of “lifting the degeneracy” of the state, i.e., the new
Hamiltonian will not be degenerate in this space, but its eigenvalues will correspond
to three unique orthogonal vectors. Suppose that we consider a particular set of Carte-
sian axes x, y, z. We apply an electric field which is of orthorhombic symmetry'3
with respect to these axes. It can be shown!# that the eigenvectors ofthe Hamiltonian

10" One can derive the analogous first-order perturbation term arising for a charged particle of
orbital angular momentum L = 1 in such an electric field using the fact that the joint-eigenstates
of L2, L%, L% are the eigenstates of the potential energy due to the field. This latter result is shown
in Kittel [15, p. 427].

I Orthohelium and parahelium are two species of helium which are distinguished by the total
spin S of the two electrons: for the former we have S = 1, and for the latter S = 0. There is a rule
of atomic spectroscopy which prohibits atomic transitions for which AS = 1, so that no transitions
from one form to the other can occur spontaneously.

12° Using spectroscopic notation, this state would be written as the 23 S state of orthohelium. The
‘2’ refers to the fact that the principal quantum number 7 of the state equals 2, ‘S’ denotes that the
total orbital angular momentum is zero, and the ‘3’ superscript means that it is a spin triplet state.
Orthohelium has no state of principal quantum number n = 1, since the Pauli exclusion principle
forbids the ‘13 S’ state.

13 Orthorhombic symmetry is defined by the criterion that rotation about either the x or y axis by
180° would bring such a field back to itself.

14 A straightforward way to see this is by analogy with a charged particle of orbital angular
momentum L = 1. The effects of an electric or magnetic field on a charged particle of spin 1 are
analogous to the effects of the same field on a charged particle of orbital angular momentum 1. To
calculate the first-order effects of an electric field of orthorhombic symmetry for such a particle,
one can examine the spatial dependence of the L, = 1,0, —1 states ¥_1, Yo, ¥+, together with
the spatial dependence of the perturbation potential V (r), to show that the states 1/+/(¥1 — ¥_1),
1/3/2(1 + ¥_1), and v are the eigenstates of such a perturbation. A convenient choice of V for
this purpose is V = Ax? + By? + Cz2. See Kittel in [15, p. 427].
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due to this field are vy = 1/V2((Y1 — Y1), vo = 1/+/2(1 + ¥_1) and v3 = Y.
We drop the factor ¢ (71, r2) for convenience of expression. These vectors are also
the joint-eigenvectors of the observables Sf, S%, S?, as we can easily show. When
expressed as a matrix in the {11, Yo, ¥_1} basis, the vectors vy, vy, v3 take the
form

1
7
n=| 0 (2.6)
1
V2
€
2
w=]0 Q2.7)
1
7
0
vy =1 2.8)
0

If we then express Sf, Sf, S22 as matrices in terms of the same basis, then by elemen-
tary matrix multiplication, one can show that v| corresponds to the joint-eigenvalue
n = {0, 1, 1}, vy corresponds to u = {1, 0, 1}, and v3 corresponds to u = {1, 1, 0}.
Thus, the eigenvectors vy, va, v3 of the Hamiltonian term H’ which arises from a per-
turbing electric field (defined with respect to x, y, z) are also the joint-eigenvectors
of the set {Sf, S?, 522}' This implies that we can represent H’ by the expression
as? + ng + cSZ2, where H'’s eigenvalues are {(b + ¢), (a + ¢), (a + b)}.

All of this leads to the following conclusion regarding the measurement of the spin
of the orthohelium ground state electrons. Let the system be subjected to an electric
field with orthorhombic symmetry with respect to a given set of Cartesian axes x, y, z.
Under these circumstances, the measurement of the total Hamiltonian will yield a
result equal (to first-order approximation) to the (unperturbed) ground state energy
plus one of the perturbation corrections {(b + ¢), (a + ¢), (a + b)}. If the measured
value of the perturbation energy is (a + b), (a 4+ ¢), or (b + c) then the joint values
of the set {S7, S7, S2} are given respectively by {1, 1,0}, {1,0, 1}, or {0, 1, 1}.

It is quite apparent from this example that it would be unreasonable to require
that a hidden variables theory must assign a single value to S)%, independent of the
experimental procedure.

2.4 Contextuality Theorems and Spectral Incompatibility

We saw in our discussion of von Neumann’s theorem that its implications toward
hidden variables amounted to the assertion that there can be no mathematical function
E(O) thatis linear on the observables and which maps them to their eigenvalues. This
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was neither a surprising, nor particularly enlightening result, since it follows also from
acasual observation of some example of linearly related non-commuting observables,
as we saw in examining the observables 1/+/2(c, + 0y), 0y, oy of a spin % particle.
The theorems of Gleason, and Kochen and Specker, imply a somewhat less obvious
type of impossibility: there exists no function E(O) mapping the observables to
their eigenvalues, which obeys all relationships constraining commuting observables.
What we develop here is a somewhat simpler expression of the implication of these
theorems. We will find that they imply the spectral-incompatibility of the value map
function: there exists no mathematical function that assigns to each commuting set
of observables a joint-eigenvalue of that set.

We begin by recalling the notions of joint eigenvectors and joint eigenvalues of
a commuting set of observables (O 1 0% ..).Fora commuting set, the eigenvalue
Eq.1.5 O|y) = wl¥) is replaced by a set of relationships (1.7): Oiw) = Mi|1//)
i =1,2,..., one for each member of the commuting set. If a given |¢) satisfies this
relationship for a/l members of the set, it is referred to as a joint-eigenvector. The
set of numbers (u!, u?, ...) that allow the equations to be satisfied for this vector
are collectively referred to as the joint-eigenvalue corresponding to this eigenvector,
and the symbol p = (1, 12, ...) is used to refer to this set. The set of all joint-
eigenvalues {u,} is given the name ‘joint-eigenspectrum’.

In general, the members of any given commuting set of observables might not be
independent, i.e., they may be constrained by mathematical relationships. We label
the relationships for any given commuting set {O', 02, ...} as

fi(o',0%..)=0
£00%..)=0 (2.9)

The Egs.2.1 in Gleason’s theorem, and 2.4 in Kochen and Specker’s theorem are
just such relations. We now demonstrate the following two results. First, that every
member of the joint-eigenspectrum must satisfy all relationships (2.9). Second, that
any set of numbers &1, &, . . . satisfying all of these relationships is a joint-eigenvalue.

To demonstrate the first of these, we suppose that p = (u', u?, ... is a
joint-eigenvalue of the commuting set {O', 02, ...}, with joint-eigenspace H.
We then consider the operation of fi(Ol, 02,..)) on a vector Y € 'H where
fi(0', 0%, ..)) = 01is one of the relationships constraining the commuting set.
We find

fi(0', 0%, . )Y = fiGui, w2, .. )Y =0. (2.10)

The second equality implies that f; (i1, iz, ...) = 0. Since f;(O', 02,..)=0is
an arbitrary member of the relationships (2.9) for the commuting set {01 L 02, .. 1
it follows that every joint-eigenvalue p of the set must satisfy all such relationships.

We now discuss the demonstration of the second point. Suppose that the numbers
{&1, &, ...} satisfy all of (2.9) for some commuting set {0, 02, .. .}. We consider
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the following relation:

(|:(01 - ,ui)Z + (02 - u%)z + ] [(01 - ,u%)z + (02 — ,u%)z + ] ) ¥ =0.

(2.11)
Here, we operate on the vector i with a product whose factors each consist of a sum of
various operators. The product is taken over all joint-eigenvalues {u; }. We represent
each joint-eigenvalue u; by a set (,uil, ,u?, .. ) . The validity of (2.11) is easily seen.
Since the joint-eigenspaces of any commuting set are complete, the vector ¥ must
lie within such a space. Suppose that v € H;, where H; is the joint-eigenspace
corresponding to f;. Then the ith factor in the product of operators in (2.11) must
give zero when operating on . Therefore, the entire product operating on v must
also give zero. Since ¥ is an arbitrary vector, it follows that

[(01 - ,u{)z—f- (02 - u%)2+ . ] |:(01 - u%)z + (02 - u%)z + .- :| ...=0.
(2.12)
Note that (2.12) is itself a constraining relationship on the commuting set, so that it
must be satisfied by the numbers (&1, &, . ..). This can only be true if these numbers
form a joint-eigenvalue of {01, 02, .. .}, and this is the result we were to prove.
From this, we can discern a simple way to understand the implications of the
theorems of Gleason, and Kochen and Specker toward the question of a value map.
The requirement (2.2) Gleason’s theorem places on the function E(P) can be re-
stated as the requirement that for each commuting set, £(P) must satisfy all the
relationships constraining its members. From the above argument, it follows that this
assumption is equivalent to the constraint that £ (P) must assign to each commuting
setajoint-eigenvalue. The same is also true of assumption that £ (sgq ¢) satisfy Eq.2.5.
Thus, both of these theorems can be regarded as proofs of the impossibility of
a function mapping the observables to their values such that each commuting set is
assigned a joint-eigenvalue. An appropriate name for such a proof would seem to be
‘spectral-incompatibility theorem.’

2.5 Albert’s Example and Contextuality

In thinking about any given physical phenomenon, it is natural to try to picture to
oneself the properties of the system being studied. In using the quantum formalism
to develop such a picture, one may tend to regard the ‘observables’ of this formal-
ism, i.e., the Hermitian operators (see Sect. 1.3), as representative of these properties.
However, the central role played by the experimental procedure £(O) in the measure-
ment of any given observable O seems to suggest that such a view of the operators
may be untenable. We describe an experiment originally discussed by David Albert!?
that indicates that this is indeed the case: the Hermitian operators cannot be regarded

15 See Albert in [7]. The experiment is also discussed by Ghirardi in [16].
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as representative of the properties of the system.!® Albert considers two laboratory
procedures that may be used to measure the z-component of the spin of a spin % par-
ticle. Although the two procedures are quite similar to one another, they cannot be
regarded as identical when considered in light of the hidden variables theory known
as Bohmian mechanics. This is a particularly striking instance of contextuality, and
it indicates the inadequacy of the conception that the spin operator o, represents an
intrinsic property of the particle. From Albert’s example, one can clearly see that the
outcome of the o, measurement depends not only on the parameters of the particle
itself, but also on the complete experimental setup.

The Albert example is concerned with the measurement of spin'” as performed
using a Stern—Gerlach magnet. The schematic diagram given in Fig.2.1. exhibits
the configuration used in both of the measurement procedures to be described here.
Note that we use a Cartesian coordinate system for which the x-axis lies along
the horizontal direction with positive x directed toward the right, and the z-axis lies
along the vertical direction with positive z directed upward. The y-axis (not shown) is
perpendicular to the plane of the figure, and—since we use a right-handed coordinate
system—positive y points into this plane. The long axis of the Stern—Gerlach magnet
system is oriented along the x-axis, as shown. The upper and lower magnets of the
apparatus are located in the directions of positive z and negative z. We define the
Cartesian system further by requiring that x-axis (the line defined by y = 0, z = 0)
passes through the center of the Stern—-Gerlach magnet system.

In each experiment, the spin % particle to be measured is incident on the apparatus
along the positive x-axis. In the region of space the particle occupies before entering
the Stern—Gerlach apparatus, its wave function is of the form

Vi) =@ () 1) +11), (2.13)

where the vectors | 1) and | |) are the eigenvectors of o, corresponding to eigen-
values —1—% and —%, respectively. Here ¢, (r) is a localized wave packet moving in
the positive x direction toward the magnet.

We wish to consider two experiments that differ only in the orientation of the
magnetic field inside the Stern—Gerlach apparatus. In experiment 1, the upper magnet
has a strong magnetic north pole toward the region of particle passage, while the lower
has a somewhat weaker magnetic south pole toward this region. In experiment 2, the
magnets are such that the gradient of the field points in the opposite direction, i.e., the
upper magnet has a strong magnetic south pole toward the region of passage, while
the lower has a weak magnetic north pole towards it. After passing the Stern—Gerlach
apparatus, the particle will be described by a wave function of one of the following
forms:

16 This idea has been propounded by Daumer et al. in [17]. See also Bell in [18].

17" As is usual in discussions of Stern—Gerlach experiments, we consider only those effects relating
to the interaction of the magnetic field with the magnetic moment of the particle. We consider the
electric charge of the particle to be zero.
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Experiment 1 north pole

Z
/Up;cr wave packet
_—
* Direction of
L Lower wave packet
incident wave packet

Experiment 2 south pole

zZ
/Up;cr wave packet
* Direction of
. Lower wave packet
incident wave packet

Fig.2.1 Geometry of the Stern-Gerlach Experiments

1
Yy = — (@7 (] 1)+ ¢ ®] 1)
Jf (2.14)
YEr) = — (¢ O] 1) + ¢ @] ).

V2

Here 1,0,1 (r) corresponds to experiment 1, and wtz(r) corresponds to experiment 2.
Inboth cases, the function ¢;" (r) represents a localized wave packet moving obliquely
upward and ¢, (r) represents a localized wave packet moving obliquely downward.
To measure o, one places detectors in the paths of these wave packets. Examination
of the first equation of (2.14) shows that for experiment 1, if the particle is detected
in the upper path, the result of our o, measurement is +%. If the particle is detected
in the lower path, the result is —%. For experiment 2, the second equation of (2.14)
leads to the conclusion that similar detections are associated with results opposite in
sign to those of experiment 1. Thus, for experiment 2, detection in the upper path
implies o, = —%, while detection in the lower implies o, = —i—%.

‘We make here a few remarks regarding the symmetry of the system. We constrain
the form of the wave packet ¢; (r) of (2.13), by demanding that it has no dependence
on y, and that it exhibits reflection symmetry through the plane defined by z = 0,
ie., ¢/ (x, 2) = ¢;(x, —z). Moreover, the vertical extent of this wave packet is to be
the same size as the vertical spacing between the upper and lower magnets of the
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apparatus. As regards the wave packets ¢, (r) and ¢, (r) of five, if the magnetic field
within the apparatus is such that d B, /7 is constant'® then for both experiments, these
packets move at equal angles above and below the horizontal (See Fig.2.1). Thus,
the particle is described both before and after it passes the Stern—Gerlach magnet, by
a wave function which has reflection symmetry through the plane defined by z = 0.

2.5.1 Bohmian Mechanics and Albert’s Example

We have mentioned that the hidden variables theory developed by David Bohm
[12] gives an explanation of quantum phenomena which is empirically equivalent to
that given by the quantum formalism. Bohmian mechanics allows us to regard any
given system as a set of particles having well-defined (but distinctly non-Newtonian
[20]) trajectories. Within Bohmian mechanics, it is the configuration of the system
q = (g1, 92, q3, -..) which plays the role of the hidden variables parameter . Thus,
the state description in this theory consists of both ¥ and . Bohmian mechanics
does not involve a change in the mathematical form of v : just as in the quantum
formalism, v is a vector in the Hilbert space associated with the system, and it
evolves with time according to the Schrodinger equation:

na
ihe - = Hy. (2.15)

The system configuration q is governed by the equation:
d *V
A _ (h/m)Im vV (2.16)
dt vy

In the case of a particle with spin, we make use of the spinor inner-product in this
equation. For example, in the case of a spin % particle whose wave function is
Y = x4+@I[1) + x=(r)||), the Eq.2.16 assumes the form

18 The term added to the particle’s Hamiltonian to account for a magnetic field is gs - B, where s
is the spin, B is the magnetic field and g is the gyromagnetic ratio. To determine the form of this
term in the case of a Stern—Gerlach apparatus, we require the configuration of the magnetic field.
A Stern—Gerlach magnet apparatus has a “long axis” which for the example of Fig.2.1 lies along
the x-axis. Since the component of the magnetic field along this axis will vanish except within a
small region before and after the apparatus, the effects of By may be neglected. Furthermore, B,
and B within the apparatus may be regarded as being independent of x. The magnetic field in the
x, z plane between the magnets lies in the z-direction, i.e., B(x, 0, z) = B; (z)lz. Over the region of
incidence of the particle, the field is such that aaii is constant. See for example, Weidner and Sells
[19] for a more detailed discussion of the Stern—Gerlach apparatus. The motion of the particle in
the y-direction is of no importance to us, and so we do not consider the effects of any Hamiltonian
terms involving only y dependence. The results we discuss in the present section are those which
arise from taking account of the magnetic field by adding to the Hamiltonian term of the form

g0.B:z = 0) + go (4 =0)) =
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d_q = (h/m)lm(

(2.17)

X3@Vyx () + Xi(l')VX—(l'))
dr

X3 x4 (r) + xE(r) x—(r)

As we expect from the fact that this theory is in empirical agreement with quantum
theory, Bohmian mechanics does not generally provide, given ¥ and q, a mapping
from the observables to their values. In other words, it does not provide a non-
contextual value map for each state. As we shall see, the choice of experimental
procedure plays such a pronounced role in the Bohmian mechanics description of
Albert’s spin measurements, that one cannot possibly regard the spin operator as
representative of an objective property of the particle.

We first discuss the Bohmian mechanics description of the Albert experiments.
Since the wave function and its evolution are the same as in quantum mechanics, the
particle’s wave function  is taken to be exactly as described above. As far as the con-
figuration q is concerned, there are two important features of the Bohmian evolution
equations to be considered: the uniqueness of the trajectories and the equivariance of
the time evolution. The first feature refers to the fact that each initial ¥ and q leads to
a unique trajectory. Since the particle being measured has a fixed initial wave func-
tion, its initial conditions are defined solely by its initial position. The equivariance
of the system’s time evolution is a more complex property. Suppose that at some
time ¢, the probability that the system’s configuration is within the region dq about
q obeys the relationship:

P(q € dq) = [¥(q)|°dq. (2.18)

According to equivariance, this relationship will continue to hold for all later times
t' : t' > t.In considering the Bohmian mechanics description of a system, we assume
that the particle initially obeys (2.18). By equivariance, we then have that for all later
times the particle will be guided to “follow” the motion of the wave function. Thus,
after it passes through the Stern—Gerlach apparatus, the particle will enter either the
upward or downward moving packet. From consideration of the uniqueness of the
trajectory and the equivariance of the time evolution, it follows that the question of
which branch of the wave function the particle enters depends solely on its initial
position.

If we consider the situation in a little more detail, we find a simple criterion on
the initial position of the particle that determines which branch of the wave function
it will enter. Recall that the initial (2.13) and final (2.14) wave function have no
dependence on the y coordinate, and that they exhibit reflection symmetry through
the z = 0 plane. From this symmetry together with the uniqueness of Bohmian
trajectories, it follows that the particle cannot cross the z = 0 plane. In conjunction
with equivariance, this result implies that if the particle’s initial z coordinate is greater
than zero, it must enter the upper branch, and if its initial z is less than zero the particle
must enter the lower branch.

If we now consider the above described spin measurements, we find a somewhat
curious situation. For any given initial configuration ¢, the question of whether the
measurement result is o, = —l—% or o; = —% depends on the configuration of
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the experimental apparatus. Suppose that the particle has an initial z > 0, so that
according to the results just shown, it will enter the upper branch of the wave function.
If the magnetic field inside the Stern—Gerlach apparatus is such that 0B,/dz <
0, then the particle’s final wave function is given by the first equation in (2.14),
and its detection in the upper branch then implies that o, = + % If, on the other
hand, the magnetic field of the Stern—Gerlach magnet has the opposite orientation,
ie., dB;/dz > 0, then the second equation in (2.14) obtains and the detection in
the upper branch implies that o, = — % Thus, we arrive at the conclusion that the
“measurement of o,” gives a different result for two situations that differ only in
the experimental configuration.

The quantum formalism’s rules of measurement strongly suggest that the
Hermitian operators represent objective properties of the system. Moreover, such
a conception is a common element of the expositions given in quantum mechanics
textbooks. On the other hand, the fact that the result of the “measurement” of o,
can depend on properties of both system and apparatus contradicts this conception.
In general, one must consider the results of the “measurement of an observable”
to be a joint-product of system and measuring apparatus. Recall Niels Bohr’s com-
ment that [13] “a closer examination reveals that the procedure of measurement has
an essential influence on the conditions on which the very definition of the physical
quantities in question rests.” For further discussion of the role of Hermitian operators
in quantum theory, the reader is directed to Daumer, Diirr, Goldstein, and Zanghi in
[17]. According to these authors: “the basic problem with quantum theory . .. more
Jundamental than the measurement problem and all the rest, is a naive realism about
operators . . . by (this) we refer to various, not entirely sharply defined, ways of taking
too seriously the notion of operator-as-observable, and in particular to the all too
casual talk about ‘measuring operators’ which tends to occur as soon as a physicist
enters quantum mode.”
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