
Chapter 2
Estimation

Abstract Estimation is the inference of properties of a distribution from an observed
random sample. Estimators can be derived by various approaches. To quantify the
quality of a given estimate, confidence intervals can be computed; the bootstrap
is a general purpose method for this. Vulnerability of some estimators to sample
contaminations leads to robust alternatives.
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“Data! Data! Data!” he cried impatiently. “I can’t make
bricks without clay”

Sherlock Holmes

2.1 Introduction

We assume that n independent and identically distributed random samples X1, . . . , Xn

are drawn, whose realizations form an observation x1, . . . , xn . Our goal is to infer
one or more parameters θ of the distribution of the Xi . For this, we construct an
estimator θ̂n by finding a function g, such that

θ̂n = g(X1, . . . , Xn)

is a “good guess” of the true value θ. Since θ̂n depends on the data, it is a random vari-
able. Finding its distribution allows us to compute confidence intervals that quantify
how likely it is that the true value θ is close to the estimate θ̂n .

Example 10 Let us revisit the problem of sequence matching from Example 8 (p. 19)
we already know that the number of matches in two random sequences is a random
variable M ∼ Binom (n, p), but do not know the probability p, and want to infer it
from given data. For this, let us assume we are given two sequences of length n each,
and record the matches m1, . . . , mn, where again mi = 1 if position i is a match, and
mi = 0 if it is a mismatch, as well as the total number of matches m = m1+· · ·+mn .
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30 2 Estimation

For any fixed value of p, we can compute the probability to see exactly the observed
matches m1, . . . , mn . The main new idea is to consider this probability as a function
of the parameter p for given observations. This function is known as the likelihood
function

Ln(p) = P(M1 = m1, . . . , Mn = mn) =
n∏

i=1

P(Mi = mi ) = pm(1 − p)n−m;

note that we can only write the joint probability as a product because we assume
the positions (and therefore the individual matches) to be independent. We then
seek the value p̂n that maximizes this likelihood and gives the highest probability
for the observed outcome. In this sense, it therefore “best” explains the observed
data. Maximizing the likelihood is straightforward in this case: we differentiate the
likelihood function with respect to p and find its roots by solving the equation

∂Ln(p)

∂p
= 0.

Taking the derivative of Ln(p) requires repeated application of the product-rule.
It is therefore more convenient to use the log-likelihood for the maximization, given
by

�n(p) = log Ln(p) =
n∑

i=1

log P(Mi = mi ) = m log(p) + (n − m) log(1 − p).

Maximizing either Ln(p) or �n(p) yields the exact same result, as the logarithm is
a strictly increasing function, but we can conveniently differentiate each summand
individually in the log-likelihood. In our case,

0 = ∂�n(p)

∂p
= m

1

p
+ (n − m)

(
− 1

1 − p

)
,

which gives

m

p
= n − m

1 − p
⇐⇒ p = m

n
.

Thus, the desired estimate of the parameter value p is p̂n = m/n, the proportion of
matches in the sequence.

It is important to understand the fundamental difference between the parameter p
and its estimate p̂n : the parameter p is a fixed number, relating to the model describing
the experiment. It is independent of the particular outcome m of the experiment.
In contrast, its estimate p̂n is a function of the data and takes different values for
different samples. For studying general properties of this estimator, we will therefore
consider p̂n as the random variable M/n rather than its realization m/n. It then has
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Fig. 2.1 Left: values of 1000 repetitions of estimating the matching probability of Binom(100,0.25)
experiments. Right: density of estimate (solid) and Norm(0.25,0.001875) approximation (dashed)

a distribution and if we were to repeat the same experiment over and over, p would
always be the same, but the estimate would yield a different realization of p̂n each
time.

Because an estimator is a random variable, it is helpful to either compute its entire
distribution or some of its moments. For our example, we can easily work out the
expectation and the variance of our estimator:

E( p̂n) = E

(
M

n

)
= 1

n
E(M) = np

n
= p,

which shows that the estimator is unbiased and thus—on average—yields the correct
value for the parameter, and

Var( p̂n) = 1

n2 Var(M) = p(1 − p)

n
.

The variance of the estimator decreases with increasing sample size n, which is
intuitively plausible: by using more data, we are more confident about the correct
value of the parameter p and expect the estimator to get closer to the true value with
high probability. We also get a lower variance of the estimate if the variance of the
data is smaller.

The estimator of a true parameter value p = 0.25 is studied in Fig. 2.1 on 1000
pairs of unrelated sequences of length 100. On the left, the values of p̂n are given for
each such pair. Most estimates lie reasonably close to the true value, but there are also
some larger deviations. On the right, the empirical density function of p̂n is given
(solid line) together with a normal density with the same expectation and variance
(dashed line). The values of the estimate closely follow the normal distribution and
the mean nicely corresponds to the correct parameter value p.
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2.2 Constructing Estimators

To derive an estimator for a parameter θ, we need to construct the function
g(X1, . . . , Xn). There are multiple methods to do this and we will discuss the
maximum-likelihood and the least-squares approach in more depth. Both methods
rely on finding the parameter value that “best” explains the observed data, but there
definition of “best” is different and requires finding the minimum or maximum of
a certain function. A third approach, the minimax principle, will be presented in a
more general framework in Sect. 2.5.

2.2.1 Maximum-Likelihood

To apply maximum-likelihood estimation in the general case, we need to specify a
family of distributions that is parametrized by θ such that each value of θ selects
one particular distribution from this family. In the previous example, this family was
the set of all binomial distributions with fixed n, where each value for p selects one
particular member of this family.

Here, we consider the density function f (x; θ), describing the family of dis-
tributions, and aim at estimating the parameter θ. The likelihood function for this
parameter is

Ln(θ) =
n∏

i=1

f (xi ; θ),

which in the discrete case corresponds to the joint probability that the underlying
distribution generates the observed sample x1, . . . , xn . For a family of continuous
distributions, this product can no longer be directly interpreted as a probability, but
the overall reasoning remains the same. The corresponding log-likelihood function is

�n(θ) = log (Ln(θ)) =
n∑

i=1

log ( f (xi ; θ)) .

The maximum-likelihood estimator (MLE) θ̂n of θ then corresponds to the value
that maximizes the likelihood functions:

θ̂n := argmaxθ Ln(θ) = argmaxθ �n(θ).

Example 11 Let us suppose that we perform n measurements and have good reason
to expect them to be normally distributed such that X1, . . . , Xn ∼ Norm (μ, σ 2).

The normal distribution can often be justified with the Central Limit Theorem. We
want to estimate both parameters from the n observed values x1, . . . , xn using the
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maximum-likelihood approach. Let us denote the parameters as θ = (μ, σ ) and start
with setting up the likelihood function

Ln(θ) = 1

π

n∏

i=1

1

σ
exp

(
− (Xi − μ)2

2σ 2

)
∝ σ−n exp

(
− 1

2σ 2

n∑

i=1

(Xi − μ)2

)
,

where we ignored constant factors in the second equation, as they do not con-
tribute to the maximization (the symbol ∝ means “proportional to”). Abbreviating
X̄ = 1

n

∑
Xi and S2 = 1

n

∑
(Xi − X̄)2, we can eliminate the sum and simplify to

Ln(θ) ∝ σ−n exp

(
−nS2

2σ 2

)
exp

(
−n(X̄ − μ)2

2σ 2

)
,

from which we immediately derive the log-likelihood function

�n(θ) ∝ −n log(σ ) − nS2

2σ 2 − n(X̄ − μ)2

2σ 2 .

We maximize this function by taking the derivatives with respect to μ and σ, respec-
tively. For deriving μ̂n, the equation reads

∂�n(θ)

∂μ
= − n

2σ 2

(−2X̄ + 2μ
)
,

and finding the roots yields the estimator

−2X̄ + 2μ = 0 ⇐⇒ X̄ = μ.

Not surprising, the arithmetic mean is an estimator for the expectation. The maximum-
likelihood estimators for the two parameters are then

μ̂n = X̄ = 1

n

n∑

i=1

Xi and σ̂ 2
n = S2 = 1

n

n∑

i=1

(Xi − X̄)2,

where the derivation of σ̂n follows the same ideas.

Calculating the distribution of an estimator will become crucial for establishing
the bounds of a particular estimate. While this calculation is often difficult for general
estimators, maximum-likelihood estimators have the convenient property of being
asymptotically normal. Formally,

θ̂n − θ√
V ar(θ̂n)

→ Norm(0, 1) as n → ∞,

which simply means that if the sample size gets large enough, any maximum-
likelihood estimator has a normal distribution. In retrospect, this explains the sur-
prisingly good fit of the empirical and normal density in our introductory example
(see Fig. 2.1 (right)).
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2.2.2 Least-Squares

Instead of maximizing the likelihood of the observed outcome, we can also construct
an estimator by looking at the distance of the observed outcome and the outcome
that we would expect with a particular parameter value. The value that minimizes
this distance is then an estimate for the parameter.

Let us denote by h(θ) the expected value of observations for parameter value θ.

With measurements xi , we then minimize the distance

d(θ) =
n∑

i=1

(xi − h(θ))2.

The least-squares estimate (LSE) θ̂n is then the value that minimized this squared
difference between observed and expected data. This is a very common approach in
regression (Chap. 4).

Example 12 Let us consider the sequence matching again, this time from a least-
squares perspective, and compare the matches with their expected value. At each
position i, the expected value of a match is E(Mi ) = p, while the observed match
mi is either zero or one. We minimize the sum of their squared differences:

p̃n = argminp

n∑

i=1

(mi − p)2 .

Minimization is again done by finding the roots of the derivative. A quick calculation
reveals

∂

∂p

n∑

i=1

(mi − p)2 = ∂

∂p

(
n∑

i=1

m2
i − 2p

n∑

i=1

mi +
n∑

i=1

p2

)
= 0 − 2m + 2np,

which yields p̃n = m
n . In this example, the least-squares and the maximum-likelihood

estimator are identical, but this is not always the case.

2.2.3 Properties of Estimators

In principle, there is no reason why we should not define an estimator
θ̂n = g(X1, . . . , Xn)= 0, which completely ignores the data. It is a formally valid
estimator, but quite useless in practice. The question therefore arises, how we can
capture properties of an estimator and conclude that, for example the MLE is more
useful than the proposed “zero-estimator”?

Consistency. The first useful property of an estimator is consistency, which means
that with increasing sample size, the estimate approaches the true parameter value:

http://dx.doi.org/10.1007/978-3-642-23502-3_4


2.2 Constructing Estimators 35

θ̂n → θ as n → ∞.

While all three estimators ( p̂n, X̄ , S2) in the binomial and normal examples are
consistent, the above estimator θ̂n ≡ 0 is obviously not, because the estimate does
not get any closer to the true value, no matter how many samples we take.

Unbiasedness. Even if an estimator is consistent, it might still be that it system-
atically over- or underestimates the true value and introduces a bias in the estimate.
The bias is given by the difference of expected and true value

E(θ̂n) − θ,

and an estimator is called unbiased if this difference is zero. If we were to repeat the
same sampling procedure multiple times, an unbiased estimator would on average
neither over- nor underestimate the true parameter value.

The following example shows the bias in one of the estimators we constructed
earlier.

Example 13 Consider the estimates for the parameters μ and σ 2 of a normal dis-
tribution as given above. Are they unbiased? Let us start with X̄ ; its unbiasedness is
easily established by exploiting the linearity of the expectation:

E(X̄) = E

(
1

n

n∑

i=1

Xi

)
= 1

n

n∑

i=1

E(Xi ) = 1

n
nμ = μ.

The calculation for S2 is slightly more elaborate and we skip some details:

E(S2) = 1

n

n∑

i=1

E

(
(Xi − X̄)2

)
= 1

n

n∑

i=1

E
(
(Xi − μ)(X̄ − μ)

)

= σ 2 − 2

n
σ 2 + nσ 2

n2 = σ 2
(

1 − 1

n

)
	= σ 2.

The MLE for the variance is therefore biased and systematically underestimates the
true variance. It is nevertheless consistent, as the bias is proportional to 1/n and
decreases rapidly to zero for increasing n.

The reason for this can presumably be best explained with the following argument:
we use n sample points X1, . . . , Xn for estimation and thus divide by n. However,
we also use the estimate x̄ instead of the true expectation μ. The value of any sample
point is completely determined if we know X̄ and the other remaining points. The
degrees of freedom in the estimate are therefore n − 1 rather than n, as we already
“used” one degree for estimating μ. Indeed,

S2 = σ̂ 2
n = 1

n − 1

n∑

i=1

(
Xi − X̄

)2

is an unbiased estimator for the variance, but not a maximum-likelihood estimator.
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Properties of ML-Estimators. Conveniently, maximum-likelihood estimators auto-
matically have many desired properties. They are

• consistent: they approach the true parameter value with increasing sample size,
• equivariant: if r is a function, then r(θ̂n) is also the MLE of r(θ),

• not necessarily unbiased, so we need to take caution here,

• asymptotically normal: θ̂n−θ√
Var(θ̂n)

→ Norm (0, 1) as n → ∞.

2.3 Confidence Intervals

The discussed properties of estimators provide valuable information for comparing
and choosing an estimator, but they say rather little about the quality of a particular
estimate. For example, consistency guarantees that the estimated value will approach
the true value in the limit, but does not give information on how close it is to the true
value, given some data with a certain number of samples.

For quantifying the quality of a particular estimate, we can compute a confidence
interval (CI) around the estimate θ̂n, such that this interval covers the true value θ

with some high probability 1−α. The narrower this interval, the closer we are to the
true value, with high probability.

Let us go through the main ideas first, before we look into two concrete examples.
For an estimator θ̂n, the (1 − α)-confidence interval is the interval

C =
[
θ̂n − l, θ̂n + u

]
,

for a lower value l and an upper value u such that

P(θ ∈ C) = 1 − α. (2.1)

This interval C is random, because the value of θ̂n depends on the data. The location
of the interval is determined by θ̂n, and its width depends on the distribution of the
estimator and in particular on the estimator’s variance Var(θ̂n). If the estimator’s
variance decreases, the confidence interval gets narrower. This allows us to conclude
that the difference of true value and estimate gets smaller with decreasing variance,
with high probability. We usually need to work with the square-root of the estimator’s
variance, which we call the standard error:

se(θ̂n) =
√

Var(θ̂n).

For computing the confidence interval, we start by normalizing the estimator by
shifting it by (the unknown) true parameter θ and scaling by 1/se(θ̂n). Provided the
estimator is unbiased, this normalization simply shifts the estimator’s distribution by
its mean and scales by the standard error, which results in a new random variable
with mean zero and standard error one. Equation 2.1 then becomes
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P

(
θ̂n − θ

se(θ̂n)
∈

[ −l

se(θ̂n)
,

u

se(θ̂n)

])
= 1 − α. (2.2)

Solving (2.2) requires that we find the two quantiles qα/2, q1−α/2 of the distribution of
the normalized estimator, with 1−α/2−α/2 = 1−α. From these quantiles, we work
out the upper value u = q1−α/2se(θ̂n) and thus the interval bound θ̂n +q1−α/2se(θ̂n),

and similar for the lower value l. For an unbiased estimator, the (1 − α)-confidence
interval therefore takes the general form

C =
[
θ̂n + qα/2se(θ̂n), θ̂n + q1−α/2se(θ̂n)

]
,

which simplifies by qα/2 = −q1−α/2 if the estimator additionally has a symmetric
distribution around its mean. The two main remaining problems are then to establish
the distribution of θ̂n to calculate the quantiles and to estimate its variance.

If θ̂n is an unbiased maximum-likelihood estimator, we already know that the
estimator has a normal distribution and the correct quantiles are zα/2 and z1−α/2.

The shifted and scaled interval is then symmetric around zero and the confidence
interval is immediately given by

C =
[
θ̂n − z1−α/2se(θ̂n), θ̂n + z1−α/2se(θ̂n)

]
.

Before we deal with the more general case of estimators that are not ML, let
us first look into two concrete examples and work out confidence intervals for the
sequence matching problem and the estimates for the normal parameters.

Example 14 We would like to compute an interval [ p̂n − l, p̂n + u] around the
estimate p̂n of the matching probability, such that the interval contains the true value
p with given probability 1 − α:

P(p ∈ [ p̂n − l, p̂n + u]) = P( p̂n − l ≤ p ≤ p̂n + u) = 1 − α.

Because p̂n is the maximum-likelihood estimator of p, its distribution approaches
a normal distribution for large n. Its normalized form has a standard normal
distribution:

p − p̂n

se( p̂n)
∼ Norm (0, 1).

We can therefore immediately solve the following equation by using the correspond-
ing quantiles zα for u and l

P

( −l

se( p̂n)
≤ p − p̂n

se( p̂n)
≤ u

se( p̂n)

)
= 1 − α.
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By exploiting the symmetry of the normal distribution, we derive

u

se( p̂n)
= z1−α/2 ⇐⇒ u = z1−α/2se( p̂n) and l = zα/2se( p̂n),

The standard error of p̂n is se( p̂n) = √
p(1 − p)/n, leading to the requested

confidence interval

C =
[

p̂n + zα/2

√
p̂n(1 − p̂n)

n
, p̂n + z1−α/2

√
p̂n(1 − p̂n)

n

]
,

where we replaced the unknown true parameter value p by its estimate p̂n .

An immediate caveat of the approximation of the true distribution of the estimator
p̂n by its asymptotic normal distribution is that this confidence interval is only valid
for large sample sizes n and parameter values not too close to zero or one. For small
p, for example, the confidence interval would also consider the case that p̂n takes on a
negative value, which is not possible. Hence, the approximations for this confidence
interval are not always valid and more sophisticated intervals exist.

Example 15 Let us consider the estimator for the expectation of normally distributed
data, i.e., X̄ = 1

n

∑n
i=1 Xi with Xi ∼ Norm (μ, σ 2). Being the ML-estimator, this

random variable has a normal distribution. We already checked that it is unbiased,
and we easily compute its variance Var(X̄) as

Var(X̄) = Var

(
1

n

n∑

i=1

Xi

)
= 1

n2

n∑

i=1

Var(Xi ) = 1

n2 nσ 2 = σ 2

n
,

where we could take the sum outside the variance because we assumed the Xi to be
independent. Thus, the normalized distribution of the difference in true and estimated
mean is

X̄ − μ

σ/
√

n
∼ Norm (0, 1).

Again, we do not know the true variance and need to estimate is using the unbiased
estimator S2 = 1

n−1

∑n
i=1(Xi − X̄)2, which leads to the normalized random variable

X̄ − μ

S/
√

n
,

which does not have a standard normal distribution. We can derive its correct distrib-
ution by looking at the estimated variance in more detail. In particular, let us consider
the quotient of the true and estimated variance:

(n − 1)
S2

σ 2 = (n − 1)

1
n−1

∑n
i=1(Xi − X̄)2

σ 2 =
n∑

i=1

(
Xi − X̄

σ

)2

.
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Each summand is the square of a standard normal variable and there are (n − 1)

independent such variables. Thus, from Sect. 1.4, we know that the sum has a
χ2-distribution with (n − 1) degrees of freedom. Replacing the true variance by
its estimate, we derive the distribution

X̄ − μ

S/
√

n
= X̄ − μ

σ/
√

n
× σ/

√
n

S/
√

n
∼ Norm(0, 1)√

1
n−1χ2(n − 1)

,

which from Sect. 1.4 we recognize as a t-distribution with (n−1) degrees of freedom.
We therefore derive the correct (1 − α)-confidence interval

C =
[

X̄ − t1−α/2(n − 1
S√
n
, X̄ + t1−α/2(n − 1)

S√
n

]

for the estimator X̄ of the expected value. Again, this interval gets narrower if we
increase the sample size n or decrease the variance σ 2 of the data.

As an example, let us repeatedly take 10 samples from a Norm(5,16) distribution
and compute the corresponding 0.9-confidence interval for the estimated mean X̄ .

For each such computation, we derive a slightly different interval, both in terms of
the center of the interval (due to the estimated mean X̄ ) and the length of the interval
(due to the estimated variance of X̄ ). For 25 repetitions, the confidence intervals are
plotted next to each other in Fig. 2.2. Some intervals, such as the 5th and the 24th,
do not cover the true value. To demonstrate the effect of estimating the variance,
we compute the correct t-based and the incorrect normal confidence intervals, both
using the estimated variance, for the 5th sample (which is too far away from the true
mean) as

Ct = [1.396, 4.717] and Cnorm = [0.631, 5.482].

The normal quantiles overestimate the width of the interval, such that the normal
interval contains the true value, while the t-based does not.

2.3.1 The Bootstrap

For computing the confidence interval for a given estimate, we frequently encounter
two problems: finding the variance of an estimator, and working out the distribu-
tion of an estimator that is not an MLE. In addition, the theory leading to normal
(or t-based) confidence intervals is based on the asymptotic distribution of the esti-
mator, which might be quite different than the distribution for small sample sizes.
A very popular way for solving these problems is by using the bootstrap method,
which aims at estimating all necessary quantities directly from the data themselves.
While mainly used for computing the estimator’s variance, the bootstrap method

http://dx.doi.org/10.1007/978-3-642-23502-3_1
http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Fig. 2.2 Result of 25 repetitions of estimating the mean of a Norm(5,16) distribution, each with
10 samples. Dashed line: True value of mean µ = 5, solid lines: 0.9-confidence intervals for
estimators, points: estimated value of mean in ith repetition

also allows to compute higher moments, and even allows computation of confidence
intervals for estimators with non-normal distribution.

Let us suppose we take b independent samples Y1, . . . , Yb from a distribution.
Then, by the laws of large numbers, the sample mean approaches the true expectation
for increasing b. The same argument still holds if we apply a function h on mean and
expectation:

1

b

b∑

i=1

h(Yi ) → E(h(Y1)).

For example, we recover the variance estimator by choosing h = (Yi − Ȳ )2.
The key idea on how this helps is the following: let us consider any estimator θ̂n and

denote by F(x) = P(θ̂n ≤ x) its cumulative distribution function. For the beginning,
we are interested in calculating Var(θ̂n). This is comparatively easy if we know the
distribution F of the estimator. If we do not, we can try to estimate this distribution
by F̂, and subsequently estimate the variance using this estimated distribution as an
approximation. Let us assume we are given a set of data x1, . . . , xn . For estimating
F̂, we re-sample new data from this given set, uniformly and with replacement, such
that each xi has the same probability to be re-sampled, and can also be re-sampled
several times. We repeat this re-sampling b times, where x	

j,1, . . . , x	
j,n is the jth new

sample. From each such sample, we compute the estimator θ̂ 	
n, j , leading to a total

of b estimates. Each sample is prone to be different from the others, and so are the
estimated values.

If the data are a representative sample, this re-sampling gets us all the information
needed: there are only few sample points with extreme values. These therefore get
re-sampled rarely and are only present in a few bootstrap samples. On the other hand,
“typical” values are sampled often, possibly even multiple times, into one bootstrap
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sample. The estimation is then performed more often on sets of “typical” data values
than on more extreme, more unlikely combinations of values. This in turn gives a
correct impression of how the estimator varies with varying data.

Overall, there are nn different ways draw new samples of size n; this number is
very large even for moderate n which ensures that we do get a different sample each
time. The name “bootstrap” refers to the seemingly impossible task to lift ourselves
out of the unknown variance problem by using the straps of our own boots, namely
the data we have.

The algorithm. We can write the general bootstrap procedure for estimating the
variance in a more algorithmic form as

• Draw X	
1, . . . , X	

n uniformly with replacement from {x1, . . . , xn}.
• Compute θ̂ 	

n,i = g(X	
1, . . . , X	

n) from this bootstrap sample.

• Repeat the two steps b times to get the estimates θ̂ 	
n,1, . . . , θ̂

	
n,b.

• Compute the estimator’s bootstrap variance estimate

Var(θ̂n) ≈ vboot = 1

b

b∑

i=1

⎛

⎝θ̂ 	
n,i − 1

b

b∑

j=1

θ̂ 	
n, j

⎞

⎠
2

.

In R, the package boot offers a function boot() that simplifies the compu-
tation of statistics by the bootstrap method. Once the b bootstrapped values for θ̂n

are computed, there are several ways to form a confidence interval.
The normal CI. If the estimator has a normal distribution, we may simply replace

the variance Var(θ̂n) by its bootstrap estimate vboot and form the usual normal
(or t-based) confidence interval

Cnorm = θ̂n ± z1−α/2
√

vboot.

The percentile CI. The second method relies on using the bootstrap samples of
estimator values to compute the empirical quantile of its distribution and works
for all unbiased estimators. For this, we sort the bootstrap estimates such that
θ̂ 	

n,(1) ≤ · · · ≤ θ̂ 	
n,(b); again, the estimate with index (i) is the ith smallest one.

Then for k = bα (suitably rounded to the next integer), θ̂ 	
α := θ̂ 	

n,(k) is the empirical

α-quantile of the distribution of θ̂n and we form the empirical percentile confidence
interval

Cpercentile =
[
θ̂ 	
α/2, θ̂

	
1−α/2

]
.

Example 16 Sometimes, the data are not normally distributed, but their logarithms
are. The log-normal distribution with parameters μ and σ 2 is the distribution of
X = exp(Y ), with Y ∼ Norm (μ, σ 2). These parameters are the mean and variance
of Y, but not of X. The distribution of X is asymmetric and we want to quantify this
asymmetry using the skewness measure from Sect. 1.6.5. An unbiased estimator for
the skewness θ of a sample is

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Fig. 2.3 Density of
skewness estimates for
log-normal sample of size
500. Normal (solid) and pivot
(dashed) 0.95-confidence
intervals are given, computed
from b = 100 bootstrap
samples. The circle is the
original estimate of skewness
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Instead of working out the distribution of this estimator, we apply the bootstrap
method to derive the percentile and normal confidence interval for a given estimate.

For illustration, we generate n = 500 samples X1, . . . , Xn of log-normal random
variables with parameters μ = 0, σ = 1. We then compute the skewness estimate
θ̂n, followed by b = 100 bootstrap samples from the Xi . Normal and pivot confidence
intervals are finally computed for α = 0.05.

The results are given in Fig. 2.3, where the estimate θ̂n is indicated by the small
circle, and the normal and percentile 0.95-CIs are given by the solid and dashed
lines, respectively. The solid black line gives the empirical density function of
the estimator θ̂n estimated from the bootstrap samples. Interestingly, the percentile
confidence interval is not symmetric around the estimate, because of a skewed esti-
mator distribution.

2.4 Robust Estimation

There is one major problem with the estimators that we discussed so far: they all
assume that each sample point is taken from the same underlying distribution, and
there are thus no contaminations in the sample. A contamination can be an “outlier”
that, by eye, can clearly be identified as an incorrect measurement, for example.
Many estimators are very sensitive to such contaminations.

Example 17 A sample of n = 20 points from a Norm(5,4) is taken. In addition, the
sample data is contaminated by only n′ = 2 outliers, leading to the empirical density
given in Fig. 2.4. Estimating the mean of the sample distribution gives the location
indicated by the solid vertical line; it is substantially shifted to the right from the
correct expected value which would be somewhere near the maximum of the density
in this case.
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To quantify how sensitive an estimator is to contaminations in the sample, the
robustness of an estimator is measured by its breakdown point. It refers to the pro-
portion of contaminations an estimator can handle before it gives arbitrarily large
values. For the arithmetic mean, even one contamination has the capacity to make
the estimate arbitrarily large, as even a single outlier very far away from the rest of
the sample “pulls” the whole estimate away from the correct mean of the uncontam-
inated sample. Its breakdown point is therefore zero. The same argument holds for
the two estimators for the variance, which both also have a breakdown point of zero.

While this might in practice not be as dramatic as theory suggests, simply because
contaminations far away from the sample are often unlikely, it is nevertheless a reason
to be uncomfortable, as it means that even a small amount of contamination can
potentially yield very misleading results. For a small number of sample points, we
might try a visual inspection to see if there are any unusual values in the sample,
but this is clearly not a good strategy if we want to investigate large amounts of
data. We will therefore investigate robust estimators with high breakdown points
as alternatives for common estimators. Here, we will discuss robust alternatives for
estimating the location and scale. They all rely on order statistics of the sorted sample,
again denoted x(1) ≤ · · · ≤ x(n), and typically estimate empirical quantiles.

2.4.1 Location: Median and k-Trimmed Mean

Median. In addition to the expectation, the median is another measure for the location
of a distribution. It corresponds to the 0.5-quantile q0.5 of a distribution such that
P(X ≤ q0.5) = 0.5. We can estimate any α-quantile from the sorted sample simply
by finding the correct index from k = nα. If k is an integer, we simply select the kth
smallest value, i.e., q̂(α) = x(k). If k is not an integer, we compute the two nearest
integer k′, k′′ and interpolate the corresponding values x(k′) and x(k′′). Various ways
for interpolation exist, many of which are implemented in thequantile () function
in R. The estimate q̂(0.5) for the median is therefore simply the sample point in the
middle (or the average of the two surrounding ones). As such, it does not use any
information about the actual values of the sample points, but only uses information
about the rank, i.e., their indices in the sorted sample.

Example 18 For n = 8 given sample points
6.39, 0.887, 1.521, 8.635, 7.742, 7.462, 6.631, 5.511,

the sorted values are
0.887, 1.521, 5.511, 6.39, 6.631, 7.462, 7.742, 8.635.

The median is estimated as q̂(0.5) = 1
2 × (6.39 + 6.631) = 6.5105 by interpolating

between the two sample points with ranks 4 and 5.
Changing the largest value from 8.635 to 108.635 changes the mean substan-

tially from μ̂ = 5.5974 to μ̂′ = 18.0974, but leaves the median unchanged at
q̂ ′(0.5) = 6.5105. In R, the median is computed by median().
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Fig. 2.4 Estimation of the location of a sample of 20 normally distributed points contaminated with
2 “outliers” with values 50 and 100. The true mean is µ = 5. The two outliers “pull” the estimation
of the mean to the right, leading to x̄ = 10.72 (solid line). The robust estimate of the median is
m̂n+n′ = 3.82 (dashed line), with a true median of 5

For the contaminated normal sample of Example 17, the estimated median
q̂0.5 = 3.821 is given by the dashed vertical line in Fig. 2.4. It is reasonably close to
the true median q0.5 = 5 and largely unaffected by the two contaminations.

Let us look at the robustness of the median. We note that because it only considers
ranks and not values, we can increase all points larger than the median arbitrarily
without changing it. The same holds for decreasing smaller values and we conclude
that the median has breakdown point 50%.

Both the mean and the median are measures for the location of the distribution,
trying to give a single number to describe where “most” of the values are. The mean
gives the expectation or average of a sample, wheres the median indicates the point
such that half of the data is smaller (resp. larger). If the distribution is symmetric, the
two values are identical, but they differ for skewed distributions. Because of its large
breakdown point, the median is often the better choice for estimating the location.
However, it cannot always be interpreted as the expected value of the distribution.

Trimmed means. If we still want to specifically estimate the expectation robustly,
the k-trimmed mean is a good alternative to the median. It also uses the sorted values
of the sample, but drops the k lowest and highest sample points of the data. The
rationale is that contaminations are likely to be much smaller or much larger than
the uncontaminated sample points. Formally,

μ̂(k) = 1

n − 2k

n−k∑

i=k+1

x(i).

For k = 0, we recover the ordinary arithmetic mean again, for k = n/2 (taken
to the next suitable integer), we recover the median. The k-trimmed mean is thus
a generalization of both estimators. The choice for k is somewhat arbitrary of
course, and should always be stated if this estimator is used; common choices are
k = 0.05 × n and k = 0.25 × n.
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Example 19 For the 8 sample points of the previous example and k = 1, the
k-trimmed mean reads

μ̂(1) = 1

8
(x(2) + · · · + x(7)) = 5.876,

so the smallest and largest value are ignored and the ordinary arithmetic mean is com-
puted from the remaining data. Again, changing the largest sample value from 8.635
to 108.635 does not change the estimate, as this point is ignored in the computation.
In R, the k-trimmed mean can be accessed by mean(. . . , trim=. . . ).

2.4.2 Scale: MAD and IQR

Similar considerations lead to two robust alternatives for measuring the scale of
a distribution: the median absolute deviation (MAD) and the inter-quartile-range
(IQR).

Median absolute deviation. The MAD follows the same ideas as the variance, but
measures the median of the absolute distance to the median:

MAD = mediani (|xi − median j (x j )|).
Inter-quartile range. The IQR computes the difference between the 0.25- and

0.75-quantile, and is given by the rectangle in a boxplot (see Sect. 1.8.4) that contains
the medium 50% of the data:

IQR = q 3
4

− q 1
4
.

Comparison to the variance. Both the MAD and the IQR give different measures
for the scale compared to the variance. Similar to the median, they both are more
based on the ranks and not the absolute values of the particular data, and have high
breakdown points. For the normal distribution, σ ≈ 1.48 × MAD, so variance and
MAD are scaled versions of each other. InR, both MAD and IQR are easily accessible
via the functions mad() and IQR().

Example 20 For n = 20 samples contaminated with n′ = 2 “outliers” of Example
17, the various estimators are summarized in the following table. The second column
gives the values estimated on the contaminated sample, the third column gives the
values computed on the uncontaminated subset of the sample.

Estimator Value True value
x̄ = μ̂ 11.19 4.81

m̂ = q(0.5) 4.39 4.28

μ̂(α = 0.1) 5.11 4.62
s = σ̂ 22.12 1.95

IQR 2.46 1.52

MAD 1.23 1.07

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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As we would expect, the mean and the standard deviation give very different
values on the contaminated and uncontaminated sample. In contrast, their robust
counterparts all give estimates on the contaminated sample that are reasonably close
to the uncontaminated values.

2.5 Minimax Estimation and Missing Observations

In addition to maximum-likelihood and least-squares, minimax estimation is a third
principle to construct estimators.

2.5.1 Loss and Risk

Before introducing minimax estimation, let us briefly look into a theoretical frame-
work that allows us to compare the performance of various estimators and derive
new principles for their construction.

The loss-function L (θ, θ̂ ) measures the distance from the true parameter value
and its estimate. Two popular choices for loss functions are the squared loss
L (θ, θ̂ ) = (θ − θ̂ )2 and the absolute loss L (θ, θ̂ ) = |θ − θ̂ |.

The loss depends on the actual value of the estimator, and thus on the specific
sample. To get a more general measure, we therefore look at the expected loss, known
as the risk of the estimator

R(θ, θ̂ ) = E
(
L (θ, θ̂ )

)
.

For example, the risk of an unbiased estimator θ̂ with respect to the squared loss
function is simply its variance:

R(θ, θ̂ ) = E
(
L (θ, θ̂ )

) = E
(
(θ − θ̂ )2) = E

(
(θ̂ − E(θ̂))2).

A small risk indicates that on average, for all possible true parameter values, the
estimator is not too far off.

Example 21 Let us calculate the risk for the maximum-likelihood estimator p̂n of
the matching probability p in the sequence matching example with respect to squared
loss of the MLE p̂n = M/n:

R(p, p̂) = E
(
( p̂n − p)2) = Var( p̂n) = p(1 − p)

n
.

As shown in Fig. 2.5 (solid line), the risk is highest for p ≈ 1/2 and lowest for
values near the boundary. Intuitively, for p = 0, we will not observe any matches,
and always estimate correctly.
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Fig. 2.5 Risk function for MLE p̂ (solid line) and minimax estimator p̃ (dashed line) of the matching
probability p

2.5.2 Minimax Estimators

For some applications, we might be interested in having a guarantee that the risk is
not too high for any possible true value of the parameter. For this, we construct a
minimax estimator θ̃ such that the maximal risk

max
θ

R(θ, θ̃ )

is minimal. This means that while we allow the loss of this estimator to be larger for
some values of θ, it will stay lower on average than any other estimator.

Example 22 Let us consider a different estimator for the matching example:

p̃n = M + 1
2

√
n

n + √
n

has squared loss risk

R(p, p̃n) = n

4(n + √
n)2

,

which is constant for all parameter values p and is smaller than the maximal risk of
the MLE p̂n . Indeed, maxp R(p, p̂n) = 1/4n but R(p, p̃n) < 1/4n for all p, as one
easily verifies. As we see in Fig. 2.5, however, the risk is not always lower than the
MLE-risk, but is lower for mid-range parameter values and higher in the extremes.

Minimax estimators are also useful if some potential outcomes of an experiment
have small probabilities and may not be observed due to a small sample size.

Example 23 Let us consider the following problem: the possible outcome of an
experiment is one of s different types, such as A/C/G/T in the former random
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sequence examples, with each sequence position being one of the four possible
nucleotides.

Such experiments are described by a multinomial distribution, which is a gener-
alization of the binomial distribution to more than two outcomes. The probability for
an observation of category i is pi , and

∑s
i=1 pi = 1. A result of such an experiment

is a vector (X1, . . . , Xs) containing the number of samples of category i in Xi , so
that

∑s
i=1 Xi = n is the total number of sample points.1

The probability mass function of (X1, . . . , Xs) is given by

P(X1 = k1, . . . , Xs = ks) = n!
k1! · · · ks ! pk1

1 · · · pks
s ,

and the binomial distribution is recovered by setting s = 2, in which case p2 =
1− p1 and k2 = n −k1, leading to the binomial coefficient. The expected number of
observations in the ith category is E(Xi ) = npi . In the sequence example, we would
thus expect to see npA A and npG G in a sequence of length n. The probability of
category i can be estimated by the maximum-likelihood estimator

p̂n,i = ki

n
.

A common rule-of-thumb suggests choosing a sample size n such that at least five
observations are expected in each category for estimating the various probabilities
with some confidence:

n min
i

(pn,i ) ≥ 5 ⇒ n ≥ 5

mini (pn,i )
.

For the possible nucleotides with probabilities

(pA, pC , pG , pT ) = (1/2, 1/4, 1/8, 1/8),

we would thus need at least 5/0.125 = 40 samples to reliably estimate all probabil-
ities.

In practice, we usually do not know these probabilities, of course, and sometimes
have no control over the possible sample size n. Imagine that we only have a sequence
of 20 nucleotides. If it happens not to have any G, we consequently estimate p̂G = 0.

This will have undesired consequences if we use these values for a model to describe
the sequence matching probabilities, because the model would assume that G can
never occur and will thus incorrectly predict the possible number of matchings.

One way of dealing with this problem is to introduce pseudo-counts by pretending
that there is a certain number of observations in each category to begin with. For
example, let us put a observations in each category before conducting the actual

1 Note that in contrast to the previous notation, all Xi together describe one experiment (or sample
point).
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experiment, and therefore see xi + a observations in category i after the experiment.
Then, we can use the estimate

p̃n,i = xi + a

sa + n

for the categories’ probabilities, which is simply the MLE for the modified data.
With a > 0, each estimate is strictly larger than (but potentially very close to) zero.

Let us assume we observed (xA, xC , xG , xT ) = (13, 6, 0, 1). How large should
we choose a? If we choose it too large, it would spoil the whole estimation and assign
almost identical probabilities everywhere, independent of the data. For example, with
a = 1000 the estimates are

( p̃A, p̃C , p̃G , p̃T ) = (0.252, 0.25, 0.249, 0.249).

If we choose a too small, it might not have an effect and we end up with non-zero,
but extremely low probabilities. Indeed, for a = 0.1,

( p̃A, p̃C , p̃G , p̃T ) = (0.642, 0.299, 0.005, 0.054).

We can calculate a reasonable compromise by selecting a such that we minimize
the maximal risk of the corresponding estimator. For parameters of the multinomial
distribution, this minimax estimator is achieved by choosing

a =
√

n

s
.

For the example, a = 1.118 and we estimate

( p̃A, p̃C , p̃G , p̃T ) = (0.577, 0.291, 0.046, 0.087),

which is fairly close to the correct values, taking into account that we do not have
many data available.

The seemingly ad-hoc estimator in Sect. 2.5.2 for the binomial case was derived
in this way.

2.6 Fisher-Information and Cramér-Rao Bound

We conclude the chapter by a brief discussion of the idea of Fisher-information, from
which we can derive a theoretical lower bound for the variance of an estimator. This
bound tells us how precise we can actually estimate a given parameter with a fixed
number of samples.

Recall the definition �n(θ) = ∑
i log( f (xi ; θ))of the log-likelihood function. The

Fisher-score is simply the derivative of this function with respect to the parameter(s),



50 2 Estimation

Fisher-score = ∂�n(θ)

∂θ
,

and we calculate a maximum-likelihood estimator by finding its roots. In addition,
the Fisher-information describes the curvature of the likelihood function around a
parameter value θ. It is given by

In(θ) =
n∑

i=1

Var

(
∂�n(θ)

∂θ

)
= −nE

(
∂2�n(θ)

∂θ2

)
= nI (θ).

Loosely speaking, a large information indicates that the likelihood function will
change noticeably when moving from θ to a nearby value θ ′; the parameter value can
then be estimated more reliably. A small information indicates a shallow “valley” in
the likelihood function, where substantially different parameter values lead to almost
identical values of �n(θ).

Example 24 Let us again consider the matching example with log-likelihood
function �n(p) = M log(p) + (n − M) log(1 − p) and

∂�n(p)

∂p
= M

p
− n − M

1 − p
.

The Fisher-information is

In(p) = −nE

(
∂2�n(p)

∂p2

)
= −nE

(
− M

p2 − n − M

(1 − p)2

)

= n

p2 E(M) + n

(1 − p)2 E(n − M) = n

p(1 − p)
.

For sequences of length n = 20 nucleotides and m = 12 observed matches, the
log-likelihood function and its Fisher-information are given in Fig. 2.6. As expected,
the log-likelihood is highest at p = m/n. The Fisher-information does not take
into consideration the actual observed matches and shows that for parameters p in
the mid-range, the information carried by a sample is much lower than for more
extreme parameter values near zero or one. This tells us that true values near the
boundaries are much easier to estimate, as they lead to more dramatic expected
changes in the likelihood function. These properties of the likelihood and information
functions become more pronounced if we increase the number of samples from
n = 20 to n = 60.

Cramér-Rao bound. The main importance of the Fisher-information is that it
allows us to calculate the smallest possible variance that can be achieved with a
given estimator and a given sample size. This Cramér-Rao bound states that

Var(θ̂n) ≥ 1

In(θ)
,

and we cannot decrease the variance of an estimator θ̂n below the reciprocal of
its information. For getting estimates with lower variance and thus, for example,
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Fig. 2.6 Log-likelihood function �n(p) (left) and Fisher information In(p) (right) for the sequence
matching example with n = 20 and m = 12 observed matches (solid lines) and n = 60, m = 36
(dashed lines)

narrower confidence intervals, we either need to increase the sample size (because
In(θ) ≈ nI (θ)) or choose another estimator. Indeed, some estimators can be shown
to have lowest variance among all other estimators for the same parameters.

2.7 Summary

Estimation allows us to infer the value of various properties of a distribution, such as
its location, from data. We can construct corresponding estimators by the maximum-
likelihood, the least-squares, and the minimax approach. Estimators are random vari-
ables because their realization depends on a given random sample. Their properties
such as consistency and unbiasedness allow us to compare different estimators.

For a concrete estimation, we can compute confidence intervals around the esti-
mated value to quantify how good the estimate is. These intervals contain the true
value with high probability. For their computation, we need to know the distribution
of the estimator to find the corresponding quantiles, and its standard error to scale
correctly. The bootstrap offers a practical method to establish confidence intervals
by resampling the data and computing empirical quantiles from the corresponding
estimated values.

The breakdown point describes the sensitivity of an estimator to contaminations
in the data. Because many classical estimators have a very low breakdown point,
we should usually try to use robust alternatives, such as the median. Many robust
estimators are based on the ranks of sample points rather than their values.

Missing observations and small sample sizes can cause major problems when
estimating multinomial probabilities. Using minimax estimation to calculate pseudo-
counts enables us to partly circumvent these problems.
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