Chapter 2
Dirichlet Problem in Domains of C"

Vincent Guedj and Ahmed Zeriahi

Abstract This lecture treats the Dirichlet problem for the homogeneous
complex Monge—-Ampere equation in domains 2 C C". The most important
result, due to Bedford and Taylor [BT76], yields the optimal interior
regularity of the solution when 2 = B is the unit ball. We provide a complete
proof, following the simplifications of Demailly [Dem93].

2.1 Introduction

The goal of this lecture is to study the Dirichlet problem in bounded
domains of C" for the complex Monge—Ampere operator. If Q € C" is such a
domain and ¢ : 2 — R are continuous boundary values, the goal is to find a
plurisubharmonic function u : 2 — R solution of the following nonlinear PDE
with prescribed boundary values,

DirMA(, ¢) :=

(dd°u)™ =0 in Q2
Ulgn = ¢

and to study regularity properties of u in terms of those of . Here d = d+0

and d° = 5—(9 — ) are real operators so that
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2
(dd°u)™ = cdet ( Ou ) dv,

8@827

when u € C?(Q), for some normalizing constant ¢ > 0 and dV denotes the
Lebesgue volume form in C™.

The complex Monge-Ampere operator (ddu)™ still makes sense when u
is poorly regular, as we shall explain in Sect.2.5.1. The property “ujpq = ¢”
has to be understood as

lim wu(z) =¢(¢), forall (e .

Q35z—¢

Whether it holds depends both on the continuity properties of ¢ and on
the geometry of 0. We shall usually assume € is smooth and strictly
pseudoconver, a notion recalled in Sect. 2.3.1.

Nota Bene. These notes are written by Vincent Guedj and Ahmed Zeriahi
after the lecture delivered by Ahmed Zeriahi in Marseille, March 2009.
There is no claim for any originality, all the material presented here being
quite classical. As the audience consisted of non specialists, we have tried to
make these lecture notes accessible with only few prerequisites.

2.2 The Classical Dirichlet Problem in C

In dimension one, the Monge—Ampere operator coincides with the Laplacian.
It is thus much easier to study. We briefly recall here how to solve the Dirichlet
problem in this case, first in the unit disk by using the Poisson representation
formula — a tool not available in higher dimension-, then in general bounded
domains of C using the method of barriers which can be adapted in higher
dimension.

2.2.1 Unat Disk

We study here DirMA(D, ¢) where D = {¢ € C/|¢| < 1} is the unit disk.
It admits a unique solution u, which can be expressed by averaging against
the Poisson kernel.

Proposition 2.1 Assume ¢ € C°(0D). Then

1 2
1- |Z| 3T
U (2) ;:/0 —|Zi€2m0|2cp(e2 %)do
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is the unique solution to DirMA(D, ). It is harmonic (hence real-analytic)
i D and continuous up to the boundary.

Proof. Observe that the Poisson kernel is the real part of a holomorphic

function in D,
17|Z|2 _p e2i7r0+Z
|2 — e2im0)2 5 _ e2ind

This shows that u, is harmonic in ), as an average of harmonic functions.

We now establish the continuity up to the boundary. Fix ¢ = e?*% ¢ 9D
and € > 0. Since ¢ is assumed to be continuous at ¢, we can find § > 0 such
that [p(e?™%) — p(¢)| < £/2 whenever |e?™? — (| < §. Observing that

1 2
1 — 2| _
/0 |2762m0|2d9:1’

we infer

1— |22
lup(z) — p(Q)] <e/2+2M T ma2 4
? e2im6 _¢|>5 |Z — 62”79|2
where M = supg: |¢|. Note that |z — e?7™| > §/2 if z is close enough to ¢
and |e?7? — (| > 6. The latter integral is therefore bounded from above by
4(1 — |2]?)/4? hence converges to zero as z approaches the unit circle. O

It is clear from the proof above that one can control the modulus of
continuity of u, on I in terms of that of ¢. For instance if ¢ is Holder
continuous, then so is u,. Let us denote by

Lipo(K) :={u: K - R/3C >0, Va,y € K, |u(z) —u(y)| < Clz —y|“}

the set of a-Holder continuous functions on a Borel set K, 0 < o < 1.

Exercise 2.2

(1) Show that ¢ € Lips(0D) = u, € Lip,(D) when 0 < a < 1.
(2) By considering ¢(e*™)=|sind|, show that the result does not hold
with o = 1.

Beware that the exercise is trickier than it perhaps seems at first glance:
following the proof of the previous proposition, you should be able to obtain
u, € Lipg(D) with 8 = a/(a + 2). Proving that u, is actually a-Hélder is
slightly more subtle, give it a try!

The fact that the class Lip; does not behave well for the Dirichlet problem
is a classical fact in the study of elliptic PDE’s. Note that one can similarly

show (see [GT83]) that
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@ € CH*(ID) = u, € CH*(D)
for all k € N and 0 < o < 1. In particular
¢ € C(ID) = u, € C*(D).

We will soon see that this is far from being true in higher dimension.

2.2.2 Perron Envelopes

We now consider DirMA(€, ), the Dirichlet problem corresponding to a
bounded domain Q2 € C. Here ¢ : 92 — R is a fixed continuous function on
the boundary of €.

It follows from the maximum principle for harmonic functions that if a
solution exists, it is unique. More generally if u, v are subharmonic functions
on 2 such that Au < Awv in the weak sense of measures on Q and (u—v), > 0
on 09 (i.e. u > v on 9N), then u > v in Q. Indeed, v — u is subharmonic on
Q and (v —u)* <0 on 99, so that v —u < 0 in Q by the maximum principle
for subharmonic functions.

This shows that if  is the solution of the Dirichlet problem DirMA (£, ¢),
then any “subsolution” v € SH(Q) such that v* < ¢ on 90 satisfies v < u
on ). Therefore

Uy :=sup{v/v € SH(Q),v" < ¢ on 00N} < u.

Observe that u itself is a subsolution so that actually u = wu,. In other words,
if the Dirichlet problem DirMA (€, ¢) admits a solution, then it is the “Perron
envelope” u, defined above [Per23].

One can easily show, by “balayage” (using a max construction together
with solutions of the Dirichlet problem in small disks) that u, is harmonic
in Q. The problem is therefore reduced to checking whether u,, has the right
boundary values. This depends on the geometry of 0f.

Definition 2.3 A barrier al the point (o € 0 is a non positive subharmonic
function b € SH(Q) such that lime_,¢, b(¢) =0 and b* < 0 in Q\{(o}.

The interest in this notion lies in the following

Lemma 2.4 If there exists a barrier at a boundary point (o € OS2, then

lim uy,(2) = (o).

Z—}Co

Proof. Fix € > 0. Since ¢ is continuous we can find § > 0 such that

©(Co) — & < p(€) < w(Co) + ¢ for ¢ € 9N with |¢ — (o] < 0.
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Since b* < 0 on the compact subset OQ\D({p, d), it follows from upper
semi-continuity of b* that for A > 1 large enough, Ab* 4+ ¢(¢p) — ¢ < ¢
on 0. Thus Ab+ ¢({o) — ¢ is a subsolution, hence

Ab(2) + ¢(Co) — e < uy(z), Vz e

Letting z — (o and then ¢ — 0 shows that ¢(¢p) < Iminf, ¢, u,(2).

Consider now the Dirichlet problem DirMA(Q, —¢). It follows from the
maximum principle that u, +u_, < 0 in £, hence u, < —u_,. Previous
reasoning thus yields

(C0) 2 =(=¢(C)) = —liminfu_y(z) > limsup u,(2),

z—Co z—Co

hence finally lim,_.¢, u(z) = ¢((o). O

Constructing barriers is thus the final step towards a solution of the
Dirichlet problem. It turns out that they always exist when the boundary 052
is Lipschitz. Note that some hypothesis on 0f2 has to be made: the problem
DirMA (D*, ) has no solution when € = D* is the unit disk minus the origin
and ¢ is zero on the unit circle and 1 at the origin: in this case u, is the
constant function zero, hence it does not have the right boundary value at
the origin.

2.3 Maximal Plurisubharmonic Functions

We now start to consider similar questions in higher dimension. Observe that
some further constraints have to be put either on the geometry of 02 or on
the behavior of the boundary values : if f(D) C 09 is a holomorphic disk
(image of the unit disk by a non constant holomorphic map) lying within the
boundary, then ¢ has to be subharmonic along f(D) if the Dirichlet problem
DirMA(£2, ) ever has a solution. In order to avoid difficulties related to such
questions, we restrict ourselves to considering smooth strictly pseudoconvex
domains 2.

2.3.1 Strictly Pseudoconvex Domains

Although it makes sense to study the Dirichlet problem for the complex
Monge-Ampere operator on a general domain Q&C", we will restrict
ourselves and consider only domains that are bounded, with smooth boundary
and such that the latter has a certain convexity property:
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Definition 2.5 A bounded domain 2 € C™ is strictly pseudoconvex if
there exists a smooth strictly plurisubharmonic function p on some open
neighborhood ' of Q such that Q :={z € Q' / p(z) < 0}.

A classical result asserts that a bounded domain is strictly pseudoconvex
if and only if it is locally biholomorphic to a strictly convex domain. Slightly
more general are weakly pseudoconvexr domains and hyperconvex domains.
The former coincide with domains of holomorphy (this is the famous Levi
problem), while the latter are still defined as {p < 0} but for a function that
is only weakly (i.e. not necessarily strictly) plurisubharmonic and exhaustive.

There do exist some interesting results concerning the Dirichlet problem
on these more general domains, as well as on non pseudoconvex ones (see e.g.
[Sad82, BI00, Guan02]). These are technically more involved and beyond the
scope of this lecture.

2.3.2 Perron—Bremermann Envelope

Following the one variable solution to the Dirichlet problem, it is natural to
consider

u, ==sup{v /v e B(Q,¢)}

where

B(Q, ) := {v € PSH(Q); v*(¢) :=limsupv(z) < ¢(¢), V¢ € 89} ,

z—C

is the family of subsolutions for the boundary data (.

The function u, is called the Perron-Bremermann envelope associated to
the boundary data ¢. Bremermann [Bre59] has shown that the function u,,
is a plurisubharmonic function in  with boundary values ¢, Walsh [Wa68]
further showed that u, is continuous in {2:

Theorem 2.6 Let Q@ € C™ be a smoothly bounded strictly pseudoconvex
subset of (CZ. The upper envelope u, is a continuous plurisubharmonic
Sfunction on Q with boundary values ¢ i.e.

lim u,(2) = @(¢) for all ¢ € ON.

z—C

Proof. Let p be a strictly plurisubharmonic defining function of Q = {p < 0}.
Observe that the family B(€, ) is not empty: for A > 1 large enough, the
function A(p — 1) is one of its members (recall that ¢ is continuous hence
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bounded from below on 99). Note also that B(f,¢) is locally uniformly
bounded from above in €2: the constant function sup ¢ dominates all members
of B(Q, ¢).

It follows that the upper semi-continuous regularization U, := uj, is
plurisubharmonic in 2. We are going to prove that U, has boundary values ¢.
This will imply that U, € B(£, ¢), so that u, = U, in Q.

As in one variable, we plan to construct a plurisubharmonic barrier
function at each point {, € €. Since p is strictly plurisubharmonic in a
neighborhood of Q, we can choose A > 1 large enough so that the function
by = Ap(z) — |z — (o|? is a plurisubharmonic barrier at the point (p i.e.
bo is plurisubharmonic in €2, continuous up to the boundary and such that
bo(Co) = 0 with by < 0 in the complement Q\ {¢o}.

Fix € > 0 and take n > 0 such that ¢((p) —e < ¢(¢) for ¢ € 9Q and
|¢ = o] < n. Choose C' > 1 big enough so that Cby + ¢({p) — ¢ < ¢ on IN.
This implies that the function v(z) := Cby + ¢({o) — € is plurisubharmonic
in a neighborhood of Q) and such that v < ¢ on 99Q. Thus we have v < u,
on 2, which implies that ¢((o) — e < liminf. ¢, u,(2). We infer

z—C

1iHLi?f U, (z) > liminf u,(2) > ¢(C) (2.1)

for all ¢ € 09.

In the same way, we can construct a plurisubharmonic subsolution w for
the boundary data —¢ such that lim, ¢, w(z) = —¢((p)—¢. By the maximum
principle, for any v € B(Q, ), we have v +w < 0 in Q, hence u, +w < 0
on . By upper regularization we infer U, +w < 0 in ), which implies

limsup Uy, (z) < —liminf w(z) = ¢({o) +¢.

z—Co z—Co

Therefore we have proved that

limsup Uy, (2) < ¢(¢), V¢ € 09. (2.2)

z—C

This shows that U, € B(€,¢) hence U, < u, in Q so that U, = wu,.
Inequalities (2.1), (2.2) show that the envelope u, has boundary values .

It remains to prove that v = w,, is lower semi-continuous in 2. Fix ¢ > 0.
Since 0f) is compact, we can choose 1 > 0 so small that

2€Q, (€0 |z—(<n=]u(z) —e(Q) <e. (2.3)

Fix a € C" with ||a| < 5 and set € := Q — a. Then u(¢ + a) < ¢(¢) + ¢ if
CeQnNIQand u*(z+a) < p(z+a)+e <u(z)+2eif z € QNN Tt follows
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that the function

v(z) =

{sup{u(z), w(z+a) —2e} for z€ QNQ
u(z) for z € Q\Q

is plurisubharmonic in 2 and satisfies the condition v* < ¢ on 0f2. Therefore
v < Uy, = u in €, in particular

u(z+a)—2e<u(z) forzeQ and acC" |al <n.

This shows that u = u, is lower semi-continuous in 2. O

2.3.3 Maximal Plurisubharmonic Functions

Recall that harmonic functions are “above” sub-harmonic ones. This property
actually characterizes harmonicity and was illustrated in Sect. 2.2 by the fact
that we could recover the harmonic solution to the Dirichlet problem as an
upper envelope.

It is therefore natural to consider, among all plurisubharmonic functions,
those which are maximal, a notion introduced by Sadullaev [Sad81].

Definition 2.7 A plurisubharmonic function u : Q@ — [—oo, +00[ is said
to be maximal in Q if for any plurisubharmonic function v defined on a
subdomain D € 2, v < u on 0D implies v < u in D.

Of course a pluriharmonic function is maximal (and smooth, as it is locally
the real part of holomorphic function). However, in contrast to the one
variable case, maximal plurisubharmonic functions need not be continuous:
any (discontinuous) subharmonic function in the unit disk D gives rise to
a maximal plurisubharmonic in D? when considered as a function of two
complex variables. This is a particular case of the following criterion of
maximality.

Lemma 2.8 Let u : Q — [—00,400] be a plurisubharmonic function in Q.
If for any zy € ) there is a complex curve Z € ) containing zy such that
u|Z is harmonic on Z NSY, then u is mazimal in ).

We leave the easy proof as an exercise. One may wonder whether
maximality can always be explained by the existence of “harmonic disks”.
This is indeed true if the function is regular enough (by Theorem 2.20
below and Frobenius theorem), however there are less regular maximal psh
functions with no harmonic disk: this is the topic of the lecture by Dujardin
[DG09).



2 Dirichlet Problem in Domains of C™ 21

As one can guess, the Perron—Bremermann envelope is maximal:

Proposition 2.9 Let Q2 € C" be a bounded strictly pseudoconvex domain in
C™ and ¢ € C°(0Q) a continuous function on Q0. Then u, is the unique
mazximal plurisubharmonic function on Q with boundary values .

Proof. We first show that u, is maximal on 2. Let v be a plurisubharmonic
function in some subdomain D € (2 such that v < w, on 9D. Then the
function

sup{ug,v} in D
w =
up in Q\D

is plurisubharmonic in € and satisfies w* < ¢ on 0f2. Therefore w < u,, in
@ hence v < w < uy, in D, which proves our claim.

We now prove uniqueness. Let v a maximal plurisubharmonic function in
Q2 such that lim. ¢ v(z) = ¢(¢) for any ¢ € 9Q. It follows that v < u, in
2 while for any fixed ¢ > 0, the set {v+¢ < u,} € Q is relatively compact
in Q. Let D € Q be any domain such that {v+¢c < u,} € D. Thenv+¢is a
maximal plurisubharmonic function satisfying v + & > u, on 0D. Therefore
v+¢€ > u, in D. Letting € decrease to zero and D increase to 2 we infer
Uy < v in € O

In dimension one the upper envelope u, is harmonic on €2, hence it
is smooth and satisfies the partial differential equation Au,=0 on (.
It is natural to wonder whether a similar result holds in higher dimension
as well. We study the regularity question in the next section. The PDE
characterization is postponed to the last section.

2.4 Regularity of Perron—-Bremermann Envelopes

In this section we study the propagation of regularity from ¢ to u,. We start
by explaining the fundamental result of Bedford and Taylor [BT76], following
a simplified proof due to Demailly [Dem93]. We then list various results, open
questions and examples that illustrate some of the difficulties encountered
with DirMA(Q, ¢) when n > 2.

2.4.1 Unit Ball

Our goal here is to prove the following result due to Bedford and Taylor
[BT76].
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Theorem 2.10 Let B denote the unit ball in C™.
If ¢ € CHY(OB,R) then Uy 15 @ CYl-function in B.

Recall that a function f : M — R defined on a smooth real submanifold is
Ch1if f is differentiable and df is a locally Lipschitz 1-form on M. Observe
that a CM!'-function has locally bounded second order derivatives almost
everywhere.

Proof. We will show in Proposition 2.12 below that u = wu, is Lipschitz
continuous up to the boundary. We focus here on the second order estimates.
By Lemma 2.11 below, it suffices to prove that for any z € Q and h € C"
with |h| < 1 we have

u(z +h) +u(z — h) — 2u(z) < Col|h|%

The idea is to study the boundary behavior of the plurisubharmonic
function z — 3 (u(z+h)+u(z—h)) in order to compare it with the function
u in . This does not make sense since the translations do not preserve the
boundary. We are instead going to move point z by automorphisms of the unit
ball: the group of holomorphic automorphisms of the latter acts transitively
on it and this is the main reason why we prove this result for the unit ball
rather than for a general strictly pseudoconvex domain (which has generically
few such automorphisms).

Fix a point a € B\{0} and consider the mapping

Pa(z) —a+ (1 la]*)!/2(z — Pa(2))

Falz) = 1—(z,a)

where P,(2) := ||a]|72(2, a)a is the orthogonal projection on the complex line
C-a. Here (z,a) = Y. | z;a; denotes the hermitian scalar product of z and a.
We let the reader check that F, is an holomorphic automorphism of the unit
ball B which sends a to the origin. The interested reader will find further
information on these automorphisms in [Ru80].

An elementary computation yields

z—a+ O(la|?)

=z—a+(z,a)z all?) =z — all?
T +(z,a)z + O(||a]|%) h+O(|lall"),

Fo(z) =

where h :=a — (z,a)z and O(||al|?) is uniform with respect to z € B.
Consider the function v(z) := uwo F,(z)+uo F_4(z). It is plurisubharmonic
in B and has boundary values equal to
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since F, preserves OB. We can extend ¢ as a Ch!-smooth function so that
p(Fra(2)) < @(z F h) + Ci|al* and

(2 +h) +@(z = h) — 20(z) < Al|h|?
whenever z € B and ||h]] < §. Altogether this yields
9(2) < @(z + ) + @(z — h) +2C1||al* < 2¢(2) + A|[A]* + 2C1 [lal|?

for 2 € OB. We infer v(z) < 2u(z) + A||h||* + 2C1]|a||* when 2 € B.

Observe that the mapping a — h = h(a, z) is a local diffeomorphism in a
neighborhood of the origin as long as ||z|| < 1. An easy computation shows
that the inverse map h + a has norm < (1 — ||z]|?)~L.

Fix a compact set K C B. Then there is exists 6 > 0 small enough and
a constant Cy = C3(K) > 0 such that for z € K and |h| < ¢ we have
la] < Calhl.

It follows that for any z € K and |h| <9,

u(z +h) +ulz — h) — 2u(z) < Cs|h|?,

where C's > 0 is a uniform constant depending on K, which proves the required
estimates. O

Let us stress that we haven’t proved that u, is CY! up to the boundary
of the unit ball. This would require further regularity of the boundary values
(see Sect.2.4.3). In other words the constant Cs in the proof above depends
on dist(z, 0B).

It remains to prove the following criterion.

Lemma 2.11 Let u be a plurisubharmonic function in a domain Q € C".
Assume that there exists constants A,5 > 0 such that

u(z +h) +u(z — h) —2u(z) < A||h||?, YO < |h]| <6

and for all z € Q,dist(z,0Q) > §. Then u is CY'l-smooth and its second
derivatives, which exist almost everywhere, satisfy HD2U||LOO(Q) < A.

Moreover the Monge—Ampére measure (dd°u)™ is absolutely continuous
w.r.t. the Lebesque measure dV in Q, with

. \n 0%u
(dd U) = Cp det<m) ﬂn;

where By, is the standard volume form on C™.
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Proof. Let us := u x p. denote the standard regularization of u defined in
Q. = {z € Q/dist(z,09) > e} for 0 < ¢ <« 1. Fix § > 0 small enough and
0 < e < /2. Then for ||h|| < §/2, we have

ue(z +h) +uc(z — h) — 2u(z) < A||h|*
It follows from Taylor’s formula that if z € €,

d? ue(z + th) + uc(z — th) — 2uc(2)
prok ue(z + th)|i=o = hr(I)l+ 2 ,

therefore D?u.(z) - h? < A||h||? for all z € Q. and h € C". Now for z € €.,

" 0% 02u 02u.
2 B2 €
D?uc(z)-h? =" (azja Byt + 25— a hihi + hhk)

Pyt 0Z;0%),
Recall that u. is plurisubharmonic in 2., hence
2 2 2
D?u.(z) - h? 4+ Duc(z 2462«]6% k> 0.

The above upper-bound therefore also yields a lower-bound,
D?u.(z) - h? > —D?u.(2) - [ih)> > —Al|h|?,

for any z € Q. and h € C™. This implies that [|D?u.(2)| pe(q.) < A.

We have thus shown that Du, is uniformly Lipschitz in €2.. We infer that
Du is Lipschitz in Q and Du. — Du uniformly on compact subsets of €2. Since
the dual of L! is L™, it follows from the Alaoglu-Banach theorem that, up
to extracting a subsequence, there exists a bounded function V' such that
D?u. — V weakly in L. Now D?u. — D?u in the sense of distributions
hence V = D?u. Therefore u is C1'-smooth in €, its second order derivatives
exist almost everywhere with || D?u(2)||p~ < A.

Recall that if f € L} (Q) then f. := fxp. = fin L} (). In particular

0%u, R 9%u
aZjaék aZjaik

in L7, (Q) D L=().

Using generalized Holder’s inequality, we infer det ( azj-g;k) — det (%)
in L} ().

Recall that (dd®u)™ is well defined in the weak sense of Bedford-Taylor
[BT82] as the weak limit of the smooth forms (dd“u.)", since (u.) decreases
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1

to u as € decreases to 0. Since convergence in L;

we infer that

implies weak convergence,

0%u
‘u)"t = — . O
(dd°u) cpdet <8Zj32k) Bn

2.4.2 Strictly Pseudoconvex Domains

We now consider the more general case of a smoothly bounded strictly
pseudoconvex domain 2 € C".

We show here that the upper envelope u,, is Lipschitz up to the boundary
as soon as the boundary value ¢ is C'*1.

Proposition 2.12 Let Q € C" be a smoothly bounded strictly pseudoconvex
set. If ¢ € CL1 (O, R) then the envelope ., is Lipschitz continuous on .

Proof. Let p be a smooth defining function of 2 which is strictly psh in a
neighborhood €’ of Q.

We can find a Cl''-extension F of ¢ with compact support in C" such that
| Fllcricny < Cllgllerian)- Replacing F by F' + Ap, with A > 1, we can
further assume that F' is plurisubharmonic in a neighborhood €’ of Q.

Applying the same process to the boundary data —¢ we choose a C*! psh
function G in €’ such that G = —¢ on 9. Observe that F' is a subsolution
while the function —G is a supersolution, hence F' < u < —G in Q.

Since F' < u in €2, the envelope u can be extended as a psh function in
Q' by setting u = F in Q'\Q. Fix § > 0 so small that z + h € ' whenever
z € Q and ||h]] < d. Fix h € C™ such that ||| < J. Recall that F and G are
Lipschitz, thus

[F(z+h) = F(z)] < Ci||h]] and  [G(z +h) = G(2)] < Cu[h]]

for any z € Q.
Observe that the function v(z) := u(z + h) — Cy||h|| is well defined and
psh in the open set Q. If z € 90 and z € Q, (i.e. z+ h € Q), then

v(2) = u(z + h) = Ci[|h] < =G(z + h) = Cu||h] < =G(2) = ¢(2) = u(2).
This shows that the function w defined by

wl(z) = {max{v(z),u(z)} if z€ QN
" uz) ifze o\
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is plurisubharmonic in 2. Since w < ¢ on 92 we get w < w in 2, hence v < u
in 2. We have thus shown that

u(z+h) —u(z) < CL|h|

whenever z € QN Qp, [[h]| < J and 2z € Q. Replacing h by —h shows that
|u(z + h) —u(z)| < C1||h]|, which proves that u is Lipschitz on €. 0

The C!'-regularity in © of u, has been established by Krylov [Kry89] by
a probabilistic approach based on controlled diffusion process, as advocated
by Gaveau [Gav77]. We refer the reader to the notes by Delarue [Del09] (see
Chap.4) for an introduction to this point of view.

2.4.3 Further Results and Counterexamples

2.4.3.1 No More than C%!

It is tempting to think that the envelope u, is C*°-smooth when so is ¢, as
it is the case in dimension one. This fails when n > 2. The following example
of Gamelin and Sibony shows that the envelope u, is not better than C!:!
even if ¢ is real analytic.

Example 2.13 Let B € C? be the open unit ball. For (z,w) € 0B, set

p(z,w) = (|2]* = 1/2)* = (Jw|* — 1/2)*.

Observe that ¢ is real-analytic on OB. We claim that
up(z,w) = max{ip(2), Y(w)},  (z,w) € B,
where
¥(z) == (max{0, |z|* — 1/2})2, z e C.

Indeed denote by w the right hand side of the above formula. It has the right
boundary values so we simply have to check that it is maximal. Now observe
that if (z,w) € B then either |2|*> < 1/2 or |w|* < 1/2. In each case u depends
only on one variable hence it is mazimal. Therefore u = u, and the reader
will easily check that it is not C2-smooth.

It is perhaps worth mentioning that in the non degenerate case, the unique
solution of the Dirichlet problem M A(u) = dV (=volume form) with smooth
boundary values ¢ is smooth, as was established by Caffarelli et al. [CKNS85].
The reader will find a detailed proof of this result in Boucksom’s lecture
[Bou09] (Chap. 7).
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On the other hand when the domain is merely weakly pseudoconvex, the
regularity theory breaks down dramatically as shown in [Co97, Li04].

2.4.3.2 Regularity Up to the Boundary

Looking carefully at the proof of Theorem 2.10, the reader will convince
himself that the C''-norm of u, does not blow up faster than 1/dist(-,9¢2)?
as one approaches the boundary.

It is expected that wu, is Cll-smooth up to the boundary when ¢ €
C>1(082). This has been established by Caffarelli et al. [CNS86] for the real
homogeneous Monge—Ampere equation. The only known approach to the
complex case is due to Krylov (see Delarue’s lecture [Del09, Chap. 3]).

The following example (adaptation of an example in [CNS86]) shows that
there is a necessary loss in the regularity up to the boundary:

Example 2.14 Consider u(z,w) = (1 + R(w))?**, where 0 < o < 1. This
is a plurisubharmonic function in the unit ball B € C? which is smooth and
mazximal, continuous up to the boundary B, hence it coincides with U, for the
boundary values

o(z,w) = (1 + R(w))** € Lipsa(OB)

The only problematic point is of course (0,—1) € IB.

Observe that w = u, is only in Lipga(ﬁ) : this can be seen by a radial
approach to the boundary point (0,—1), while the tangential (boundary)
approach allows to gain a factor 2.

2.4.3.3 Holder Regularity

Let © be a smoothly bounded strictly pseudoconvex domain in C". We have
given above the proof due to Bedford and Taylor [BT76] that u,, is Lipschitz
on Q whenever ¢ is C''-smooth. In the same vein, these authors have shown
that u, € Lipg (ﬁ) is Holder continuous on € with exponent

5 HTO‘ if o eCh(09), 0<a<l
$ if o € Lip,(02), 0<a<1
When 2 is merely weakly pseudoconvex, a similar result holds with a
weaker exponent § when € is of “finite type” [Co97]. It has been moreover
proved by Coman that this propagation of Holder regularity characterizes
finite type domains (see also [Li04]).
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2.5 Dirichlet Problem in Domains of C*

In this section we apply Bedford—Taylor’s result to show that the Perron—
Bremermann envelope u,, solves the Dirichlet problem DirMA (£, ¢). Since u,
is not very regular, this requires to first extend the definition of the complex
Monge—Ampere operator.

2.5.1 Domain of Definition of MA

Let ¢ € PSH(Q2) be a plurisubharmonic function. When ¢ is smooth, the
Monge-Ampere measure M A(p) is absolutely continuous with respect to
the Euclidean Lebesgue measure dV/,

MA(p) = (dd°p)™ := c det ¢ \ v

for some normalizing constant ¢ > 0. We would like to extend the definition
of this operator and apply it to non smooth functions ¢.

It is known that one can not define the Monge—Ampere measure M A(y)
for any such function: Kiselman gives in [Kis83] an elementary example of a
function ¢ € PSH (B) which is smooth but along some hyperplane H, hence
M A(p) is well defined in B\ H but it has locally infinite mass near H.

Following Bedford and Taylor [BT82], we say that ¢ belongs to the domain
of definition of the complex Monge—Ampere operator in Q2 (¢ € DomM A(Q))
if for every x € (2 and for every sequence ¢; of smooth and psh functions
decreasing to ¢ in a neighborhood V,, of x, the sequence of positive measures
MA(pj) converges, in the weak sense of Radon measures, to a measure /i,
independent of the sequence (¢;). One then sets M A(p) := fi,.

Although this definition may seem cumbersome, this is precisely the way
one usually computes derivatives in the sense of distributions. It is moreover
motivated by the following result established by Bedford and Taylor in
[BT82].

Theorem 2.15 PSH N L2 (Q) @ DomM A(RQ).

loc

Thus the complex Monge—Ampere operator is well defined for psh functions
that are locally bounded, which is what we basically needs here since u, is
continuous. It follows straightforwardly from the definition that the operator
MA is continuous along decreasing sequences.

More involved is the continuity along increasing sequences which was also
established by Bedford and Taylor in [BT82]. Note however that MA is
discontinuous along non monotonic sequences. We propose one example as
an exercise for the reader.
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Exercise 2.16 Set p;(z,w) = % log[1 + |27 4+ w7|?].

1) Verify that the functions ¢; are smooth, psh, with M A(p;) =0 in C2.
2) Show that (¢;) converges in Li, (C?) towards

loc

o(z,w) = logmax(1, |z|, |w|) € PSHN L;2,(C?)

loc

and verify that M A(y) is the Lebesque measure on the real torus S* x St.

When n = 2, it was observed by Bedford and Taylor in [BT78] that one
can define M A(p) as soon as Vi € L7 (Q). In this case dp A d°p is well
defined hence so is the current pdd®p (by integration by parts) and one can

thus set
MA(p) := dd(pdd®p)

where the derivatives are taken in the sense of distributions (currents). It
turns out in this case that if ¢; are smooth, psh, and decrease to ¢, then ¢;
converge to ¢ in the Sobolev norm Wlif It was recently shown by Blocki
[B104] that one can not make sense of M A(¢) when n =2 and Vi ¢ L? ().

loc

2.5.2 The Comparison Principle

The comparison principle is one of the most effective tools in pluripotential
theory. It is a non linear version of the classical maximum principle. The
central result, again due to Bedford and Taylor [BT87] is the following:

Theorem 2.17 Let u,v be locally bounded psh functions in a domain
QeC". Then

1{u>v} (ddc max{u, U})n = 1{u>v} (ddcu)n,

in the sense of Borel measures in 2.

Proof. Set D := {u > v}. Observe that if u is continuous then the set D is
an open subset of Q and max{u,v} = w in D. Therefore we have

(dd® max{u,v})" = (ddu)",

weakly in the open set D, as desired.

The general case proceeds by approximation: one can approximate u
from above by a decreasing sequence of psh continuous functions (by local
convolutions) and it suffices to establish fine convergence results in order to
pass to the limit. These convergence results are of course the hard technical
part of the argument and will not be reproduced here. Let us simply mention
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that the key properties for these to hold is that u is quasicontinuous, i.e.
it coincides with a continuous function on a set of arbitrary large size with
respect to the Monge—Ampere measures involved. O

We derive from this identity two corollaries which are often called
“maximum principle” in the literature.

Corollary 2.18 Let Q € C" be a bounded domain and let u,v be locally
bounded psh functions such that liminf, 90 (u(z) — v(z)) > 0. Then

/ (ddv)™ < / (ddu)".
{u<v} {u<v}

Proof. Since {u —¢ < v} N {u < v} as € \y 0, we can assume that
liminf, ,p0(u(z) —v(z)) > e > 0. We can thus fix a compact subset K € Q
such that u(z) — v(z) > & on Q\ K. Therefore max{u,v} = u on Q\K.

We infer the following “mass conservation property”,

/Q (dd° max{u, v})" = /Q (dd°u)".

Indeed set w := max{u,v} and observe that (dd“w)™ — (dd°u)" = dd°S
weakly in the sense of currents on Q, where S := w(dd“w)" ! — u(dd®u)" 1.
Since w = u on Q\K, it follows that S = 0 in the open set Q\K thus
the support of the current dd®S is contained in K. Taking a smooth test
function x on 2 such that x = 1 in a neighborhood of K, we conclude that
Jqdd®S = [oxdd°S = [, S Add°x = 0, since dd®x = 0 on the support of
current S.
The mass conservation property together with Theorem 2.17 yields

/ (ddv)" = / (dd® max{u,v})"
{u<v} {u<v}

:/Q(ddcmax{u,v})"—/ dd® max{u, v})"

{uzv}

< /Q(ddcu)"— /{ u>v}(ddcmaX{u,v})"

= /(ddcu)"f/ (ddu)™ :/ (dd°u)".
Q {u>v} {u<v}

We have thus shown that f{u<v}(ddcv)n < f{u<v}(ddcu)". Replacing u by
u — ¢ and letting € decrease to zero yields the desired inequality. O
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Corollary 2.19 Let u,v be locally bounded psh functions in a bounded
domain Q @ C" such that liminf, 90 (u(z) —v(z)) > 0. Then

(ddu)™ < (ddv)" = v < wu in Q.

Proof. Define for ¢ > 0, v. := v + ep, where p(z) := ||z]|> — R? is chosen so
that p < 0 in Q. Observe that {u < v.} € {u < v} € Q. It follows therefore
from the previous corollary that

/ (ddve)"™ < / (dd°u)™.
{u<wve} {u<wv:}

Since (ddv.)™ > (ddv)"+e™(ddp)™ > (ddu)™, we infer f{u@ }(ddcp)" =0.
This means that the sets {u < v.} all have Lebesgue measure zero, £ > 0.
Since {u < v} = ;5 {u < vy}, it follows that the set {u < v} also has
Lebesgue measure 0 so that v < w in © by the submean value inequality. O

2.5.83 Characterization of Maximal Plurisubharmonic
Functions

Theorem 2.20 A function w € PSH N Ly (Q) is mazimal if and only
if MA(u)=0. In particular the Perron-Bremermann envelope u, satis-
fies MA(u,)=0 hence it is the unique solution to the Dirichlet problem

DirMA(Q, ).

Proof. Tf (dd°u)™ = 0 on €, it follows from the comparison principle that u
is a maximal plurisubharmonic function on 2.

Conversely assume that v is maximal on 2 and let B € ) be an Euclidean
ball. Let ¢ be the restriction of u to the boundary 0B. Since u is maximal,
it coincides with the Perron-Bremmerman envelope u = u, with respect to
the domain B.

Let (¢;) be a decreasing sequence of C?-smooth functions on 9B which
converges to ¢ on the boundary 0B. We let the reader check that u; := u,;
decreases to u = uy,. By Bedford-Taylor’s result, u; is C*!(B), hence it
satisfies (ddu;)™ = 0 on B by Lemma 2.21 below. Since the Monge—Ampére
operator is continuous along decreasing sequences we infer (dd°u)™ = 0 in B.
Since B was arbitrary this yields (dd°u)™ = 0 in all of Q. O

It remains to check that regular maximal functions have zero Monge—
Ampere measure.

Lemma 2.21 Let u: 2 — R be a mazimal plurisubharmonic function. If u
is Cb1-smooth then M A(u) = 0.
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Proof. Tt follows from Lemma 2.11 that u admits second derivatives at
almost every point and that its Monge—Ampere measure M A(u) is absolutely
continuous with respect to Lebesgue measure, with density defined almost

everywhere by det ( 652%)' We are going to show that the latter is zero
J

whenever defined.
The second order Taylor expansion of u at zg gives,

2u

0
8zj82k

u(zo +h) = RP(h)+ ) _ (20)hjh + o(||h]|?),

J.k
where

ou 0%u
P(h) == u(z) +2»_ 5. (20)h; + > 5205 (20)hjhg.
i gk

Assume that det (afjauik (Zo)) > 0. Then there exists ¢ > 0 and r > 0 small

enough such that for ||h|| = 7, we have u(z9 + h) = RP(h) + c||h||* > RP(h).
Therefore the function v(z) := RP(z¢ + z) is a plurisubharmonic function
such that v(zo) = u(zp) and v(z) < u(z) on the boundary of the ball B(z, r),
which contradicts the fact that  is maximal on 2. o

Remark 2.22 One can similarly show that a psh function ¢ which belongs to
the domain of definition of the complex Monge—Ampére operator is mazximal
if and only if M A(p) =0 [Bl04].
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