
Chapter 2
Running Text

This chapter explains everything you’ve always wanted to know
about writing text, aligning it, and changing text appearance.

Recall from Chapter 1 that LaTEX is implemented on top of TEX,
which is a rewriting machine that turns token streams into token
streams. Some of the character tokens in the input stream have a
special meaning to TEX. This is studied in Section 2.1. The rest of
the chapter is about typesetting. We start with some sections about
diacritics, ligatures, dashes, emphasis, footnotes and marginal notes,
quotes and quotations. If you’re not familiar with these notions then
don’t worry, because they are explained further on. Also you can visit
the typography jargon reference on page 267. This chapter ends with
sections about changing the size and the type style of the text, the most
important text alignment techniques, and language related issues.

2.1 Special Characters

This section studies ten characters that have a special meaning to
TEX. When TEX sees these characters as tokens in the input stream,
then it usually does not typeset them but, instead, changes state. The
remainder of this section briefly explains the purpose of the tokens
and how you typeset them as characters in the output.

Table 2.1 depicts the tokens, their meaning, and the command to
typeset them. We have already studied the start-of-comment token
(%) and the backslash (\), which starts control sequences. Typesetting
a backslash is done with the commands \textbackslash and \back-
slash. The latter command is only used when specifying mathematical
formulae, which is described in Chapter 8. The parameter reference
token is described in Chapter 11. The alignment tab (&) is described
in Section 2.19.3. This token usually indicates a horizontal alignment
position in array-like structures consisting of rows and columns. The
math mode switch token ($), the subscript token (_), and the explained
token (ˆ) are described in Chapter 8. The three remaining tokens are
described in the remainder of this section.

2.1.1 Tieing Text

Remember that LaTEX is a large rewriting machine that repeatedly
turns token sequences into token sequences. At some stage it turns a

 , ,
DOI 10.1007/978-3-642-23816-1_2, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 41

42 Chapter 2

Token Purpose Command

parameter reference \#
$ math mode switch \$
% start of comment \%
& alignment tab \&
˜ text tie token \textasciitilde
_ math subscript _
ˆ math superscript \textasciicircum
{ start of group \{
} end of group \}
\ start of command \textbackslash or \backslash

The characters in the first col-
umn have a special meaning to
LaTEX. The purpose of the char-
acters is listed in the column
‘Purpose.’ The last column lists
the command that produces
the character. The command
\textbackslash is used when
typesetting normal text. The
command \backslash is used
when typesetting mathematics.

Table 2.1

token sequence into lines. This is where LaTEX (TEX really) determines
the line breaks. The tilde token (~) defines an inter-word space that
cannot be turned into a line break. As such it may be viewed as an
operator that ties words.

The following shows two important applications of the tilde oper-
ator: it prevents unpleasant linebreaks in references and citations.

… Figure˜\ref{fig:list@format}
depicts the format of a list.
It is a reproduction of˜\cite[Figure˜6.3]{Lamport:94}.

LaTEX Usage

It is usually not too difficult to decide where to use the tie op-
erator. The following are some concrete examples, which are taken
from [Knuth 1990, Chapter 14].

◦ References to named parts of a document:
� Chapter~12,
� Theorem~1.5,
� ….

Knuth [1990] recommends that you use Lemmas 5 and~6 because hav-
ing the 5 at the start of a line is not really a problem.

◦ Between a person’s forenames and between multiple surnames:
� Donald~E. Knuth,
� Luis~I. Trabb~Pardo,
� Bartel~Leendert van~der~Waarden,
� Charles~XII,
� ….

◦ Between math symbols in apposition with nouns:
� dimension~d,
� string~s of length~l,
� ….

Here the construct $〈math〉$ is used to typeset 〈math〉 as an in-line
mathematical expression.

◦ Between symbols in series:
� 1,~2, or~3.

◦ When a symbol is a tightly bound object of a preposition:

Running Text 43

� from 0 to~1,
� increase z by~1,
� ….

◦ When mathematical phrases are rendered in words:
� equals~n,
� less than~ϵ,
� modulo~2,
� for large~n,
� ….

◦ When cases are being enumerated within a paragraph:
� Show that function $f(x)$ is (1)~continuous; (2)~bounded.

2.1.2 Grouping

Grouping is a common technique in LaTEX. The opening brace ({) starts
a group and closing brace (}) closes it. Grouping has two purposes.
The first purpose of grouping is that it turns several things into one
compound thing. This may be needed, for example, if you want to
pass several words to a command that typesets its argument in bold
face text. The following demonstrates the point.

A bold \textbf{word} and
a bold \textbf letter.

A bold word and a bold letter.

The second purpose of grouping is that it lets you change cer-
tain settings and keep the changes local to the group. The following
demonstrates how this may be used to make a local change to the type
style of the text inside the group.

Normal text here.
{% Start a group.
\bfseries
% Now we have bold text.
Bold paragraphs in here.

}% Close the group.
Back to normal text again.

Normal text here. Bold para-
graphs in here. Back to normal
text again.

Inside the group you may have several paragraphs. The advantage
of the declaration \bfseries is that it defines how the text is typeset
until the end of the group. The \textbf command just typesets its
argument in a bold typeface. The argument may not contain paragraph-
breaks.

There is also a low-level TEX mechanism for creating groups. It
works just as the braces. A group is started with \begingroup and
ended with \endgroup. These tokens may be freely mixed with braces
but {/} pairs and \begingroup/\endgroup pairs should be properly
matched. So { \begingroup \endgroup } is allowed but { \begin-
group } \endgroup is not. A brace pair affects whitespace when you’re
typesetting mathematics but a \begingroup/\endgroup pair does not.

44 Chapter 2

Output Command Name

ò \‘{o} Acute accent
ó \’{o} Grave accent
ô \ˆ{o} Circumflex (hat)
õ \˜{o} Tilde (squiggle)
ö \"{o} Umlaut or dieresis
ċ \.{c} Dot accent
š \v{s} Háček (caron or check)
ŏ \u{o} Breve accent
ō \={o} Macron (bar)
ő \H{o} Long Hungarian umlaut
�oo \t{oo} Tie-after accent

ş \c{s} Cedilla accent
o. \d{o} Dot-under accent
o
¯

\b{o} Bar-under accent

Common diacritics
Table 2.2

Output Command Name

å \aa Scandinavian a-with-circle
Å \AA Scandinavian A-with-circle
ł \l Polish suppressed-l
Ł \L Polish suppressed-L
ø \o Scandinavian o-with-slash
Ø \O Scandinavian O-with-slash
¿ ?‘ Open question mark
¡ !‘ Open exclamation mark

Other special characters
Table 2.3

2.2 Diacritics

This section studies how to typeset characters with diacritics, which are
also known as accents. Table 2.2 displays some commonly occurring
diacritics and the commands that typeset them. The presentation is
based on [Knuth 1990, Chapter 9].

Using \"{i} to typeset ï may not work if you’re not using a Type 1
font (T1 font). However, typesetting ï with \"{\i} should always work.
Here the command \i is used to typeset a dotless i (ı). There is also a
command \j for a dotless j.

Table 2.3 shows some other commonly occurring special characters.

2.3 Ligatures

A ligature combines two or several characters as a special glyph. Exam-
ples of English ligatures and their equivalent character combinations
are fi (fi), ff (ff), ffi (ffi), fl (fl), and and ffl (ffl). LaTEX recognises English
ligatures and substitutes them for the characters representing them.

Table 2.4 displays some foreign ligatures. The symbol ß (eszett) is

Running Text 45

Output Command Name

œ \oe French ligature œ
Œ \OE French ligature Œ
æ \ae Scandinavian ligature æ
Æ \AE Scandinavian ligature Æ
ß \ss German ‘Eszett’ or sharp S

Foreign ligatures
Table 2.4

‘Convention’ dictates that
punctuation go inside
quotes, like ‘‘this,’’ but
some think it’s better
to do ‘‘this’’.

‘Convention’ dictates that
punctuation go inside
quotes, like “this,” but
some think it’s better to
do “this”.

Quotes
Figure 2.1

‘‘\,‘Fi’ or ‘fum?’\,’’ he asked.\\
‘‘‘Fi’ or ‘fum?’’’ he asked. \\
‘‘{}‘Fi’ or ‘fum?’{}’’ he asked.

“ ‘Fi’ or ‘fum?’ ” he asked.
“‘Fi’ or ‘fum?”’ he asked.
“‘Fi’ or ‘fum?’” he asked.

Nested quotations
Figure 2.2

a ligature of ſ s [Bringhurst 2008] and this is reflected in the LaTEX
command that typesets the symbol.

Sometimes it is better to suppress ligatures. The following is an
example: the \makebox command prevents LaTEX from turning the fi
in selfish into a ligature, which makes the result much easier to parse:
selfish, not selfish.

Mr˜Crabs is a self\makebox{}ish shellfish. LaTEX Usage

Other words that need “anti-hyphenation” pre-processing are
halflife, halfline, selfless, offline, offloaded, and so on.

2.4 Quotation Marks

This section explains how you typeset quotation marks. Figure 2.1 is
an example from [Lamport 1994, page 13]. The word ‘Convention’ in
this example is in single quotes and the word ‘this’ is in double quotes.
The quotes at the start are backquotes (‘ and ‘‘). The quotes at the
end are the usual quotes (’ and ’’). Notice that output quote between
‘it’ and ‘s’ is produced using a single quote in LaTEX.

To get properly nested quotations you insert a thin space where
the quotes “meet.” Recall that the thin space command (\,) typesets
a thin space. Figure 2.2 provides a concrete example that is taken
from [Lamport 1994, page 14]. Figure 2.2 provides another example.
The first line of this example looks much better than the other two.
Note that LaTEX parses three consecutive quotes as a pair of quotes
followed by one more quote. This is demonstrated by the second line
of the output, which looks terrible. The last line of the input avoids
the three consecutive quotes by adding an empty group that makes

46 Chapter 2

explicit where the double quotes and the single quote meet. Still the
resulting output doesn’t look great.

Intermezzo. As a general rule, British usage prefers the use of single
quotes for ordinary use. This poses a problem if an apostrophe is used
for the possessive form: He said ‘It is John’s book.’ This is why it is also
acceptable to use double quotes [Trask 1997, Chapter 8].

2.5 Dashes

There are three kinds of dashes: -, –, and —. In LaTEX you get them
by typing -, --, and ---. The second symbol can also be typeset with
the command \textendash and the last symbol with the command
\textemdash. The symbol –, which is used in mathematical expressions
such as a – b, is not a dash. This symbol is discussed in Chapter 8. The
following briefly explains how the dashes are used.

- This is the intra-word dash, which is used to hyphenate compound
modifiers such as one-to-one, light-green, and so on [Trask 1997, Chap-
ter 6]. In LaTEX you typeset this symbol as follows: -.

– This is the en-dash, which has the width of 1 en. An en is equivalent
to half the current type size, so an en-dash is shorter in normal text
than it is in large text. The en-dash is mainly used in ranges: pages
12–15 (from 12 to 15). However, the en-dash is also used to link two
names that are sharing something in common: a joint Anglo–French
venture [Allen 2001, page 45]. The LaTEX command \textendash and
the sequence -- typeset the en-dash. When you typeset an en-dash, it
looks better if you add a little space before and after. Remember that
\, produces a thin space. Use this command for the horizontal space.

… pages˜12\,--\,15 (from˜12 to˜15). LaTEX Usage

— This is the em-dash, which has the same width as an em. An em is
equal to the current type size. The em-dash separates strong interrup-
tions from the rest of the sentence—like this [Trask 1997, Chapter 6].
Bringhurst [2008, page 80] prefers the en-dash to the em-dash. The
LaTEX command \textemdash and the sequence --- typeset the em-
dash. An em-dash at the start of a line doesn’t look very good so you
should tie each em-dash to the preceding word.

… the rest of the sentence˜\textemdash
like this˜\parencite[Chapter˜6]{Trask:1997}.

LaTEX Usage

Figure 2.3 presents an example of the dashes. A few years ago
I noticed that sometimes --- doesn’t work with X ETEX (even with
Mapping = tex-text enabled). However, \textemdash always worked.

2.6 Full Stops

LaTEX usually treats a full stop (.) as an end-of-sentence indicator. By

Running Text 47

The intra-word dash is used to hyphenate
compound modifiers such as light-green,
X-ray, or one-to-one. …

The en-dash is used in ranges: pages˜12--15.
The em-dash is used to separate strong
interruptions from the rest of the
sentence˜--- like this%
˜\cite[Chapter˜6]{Trask:1997}. …

Dashes
Figure 2.3

default, LaTEX inserts a bit more space after the full stop at the end
of a sentence than it does between words. It also does this after other
punctuation symbols. The \frenchspacing command turns this fea-
ture off. The command \nonfrenchspacing turns the feature on again.
When a full stop is not the end of a sentence you need to help LaTEX a
bit by inserting the space command (\) after the full stop.

Meet me at 6˜p.m.\ at the Grand Parade. LaTEX Usage

However, when an uppercase letter is followed by a full stop, then
LaTEX assumes the full stop is for abbreviation. For example:

Donald˜E. Knuth developed the {\TeX} system. LaTEX Usage

This convention causes a problem if an uppercase letter really is
the end of a sentence. Insert a \@ before the full stop if this happens.

In Frank Herbert’s \emph{Dune} saga,
the Mother School of the Bene Gesserit
is situated on the planet Wallach IX\@.

LaTEX Usage

LaTEX inherits its habit of putting some extra space after full stops
and other punctuation symbols from TEX. Bringhurst [2008, pages 28–
30] points out that there really is no reason to add such extra space
for modern works. Following Bringhurst’s advice, this document was
typeset with \frenchspacing enabled.

2.7 Ellipsis

The command \ldots produces an ellipsis (…), which is used to indi-
cate an omission. If the ellipsis occurs at the end of a sentence, then
you still need to add an end-of-sentence marking full stop. If this
happens then Felici [2012, Figure 13.15] recommends that you put the
ellipsis close to the preceding text and then add the full stop.

Many stories start with
‘Once upon a time\ldots.’

They usually end with
‘\ldots\ and they all lived
happily ever after.’

Many stories start with ‘Once
upon a time….’ They usually end
with ‘… and they all lived happily
ever after.’

48 Chapter 2

Robert Bringhurst, author of
\emph{Elements of

Typographic Style,}
recommends setting such
punctuation symbols in
the brighter type.

\textbf{Do as he}, or
risk getting ugly type.

Robert Bringhurst, author of Ele-
ments of Typographic Style, recom-
mends setting such punctuation
symbols in the brighter type. Do
as he, or risk getting ugly type.

Good borderline punctuation
Figure 2.4

Robert Bringhurst, author of
\emph{Elements of

Typographic Style},
recommends setting such
punctuation symbols in
the brighter type.

\textbf{Do as he,} or
risk getting ugly type.

Robert Bringhurst, author of Ele-
ments of Typographic Style, recom-
mends setting such punctuation
symbols in the brighter type. Do
as he, or risk getting ugly type.

Poor borderline punctuation
Figure 2.5

2.8 Emphasis

Emphasis is a typographic tool for typesetting text in a different typeface.
The idea is that this makes the text stand out. Emphasis is especially
useful when introducing a new concept, such as in this paragraph.

In some documents, emphasis is implemented by typesetting text
in a bold face typeface, by typesetting it in uppercase typeface, or
(worse) by underlining the text. LaTEX emphasises text in paragraphs
by italicising the text. Trask [1997, page 82] calls this the preferred style
for emphasis. The LaTEX command for emphasis is \emph.

Emphasised \emph{example}. Emphasised example.

2.9 Borderline Punctuation

Bold text looks darker than normal, upright text and italicised text
look brighter than normal, upright text. When small punctuation
symbols get caught between darker and brighter type it is time to
pay attention. Robert Bringhurst, author of Elements of Typographic
Style, recommends setting such punctuation symbols in the brighter
type [Bringhurst 2008]. Do as he, or risk getting ugly type. Figures 2.4
and 2.5 demonstrate what you get if you follow Bringhurst’s advice and
what if you don’t. The figures do not excel in terms of maintainability
because they hardcode the author’s name and the title of the work.

2.10 Footnotes and Marginal Notes

It is generally accepted that using footnotes and marginal notes should
be used sparingly because they are disruptive. However, proper use of

Running Text 49

Footnotes\footnote{A footnote is a note
of reference, explanation, or comment that is
usually placed below the text on a printed page.}
can be a nuisance. This is especially true if
there are many.\footnote{Like here.} The more you see
them, the more annoying they get.\footnote{Got it?}

Footnotesa can be a nuisance. This is especially true if there are
many.b The more you see them, the more annoying they get.c

aA footnote is a note of reference, explanation, or comment that is usually placed
below the text on a printed page.

bLike here.
cGot it?

Using footnotes
Figure 2.6

marginal notes in documents with wide margins can be very effective.
Not surprisingly, LaTEX provides a command for footnotes and a

command for marginal notes. Figure 2.6 demonstrates how to spec-
ify footnotes in LaTEX. A marginal note or marginal paragraph is like a
footnote, but placed in the margin as on this page. The command Avoid marginal notes in

very narrow margins.\marginpar{〈text〉} puts 〈text〉 in the margin as a marginal note. By
passing an optional argument to the command you can put differ-
ent text on odd (recto/front/right) pages and on even (verso/back/left)
pages. The optional argument is used for even pages and the required
argument is used for odd pages. If you’re using both the optional and
required argument then it is easy to remember which is which: the
optional argument is to the left of the required argument so it’s for
the left page; the required argument is for the right page. Note that
narrow marginal notes may look better with ragged text, which is text
that is aligned to one side only. On the right (left) pages you use ragged
right (left) text. Section 2.19.2 explains how to typeset ragged text.

2.11 Displayed Quotations and Verses

The quote and quotation environments are for typesetting displayed
quotations. The former is for short quotations; the latter is for longer
quotations. Figure 2.7 shows how you use the quote environment. The
command \\ in Figure 2.7 forces a line break.

The verse environment typesets poetry and verse. Figure 2.8 shows
how you use the environment. In this example, the command \qquad
inserts two quads. Here a quad is an amount of space that is equivalent
to the current type size. So if you use a 12 pt typeface then a quad
results in a 12 pt space in normal text. The command \\ inside the
verse environment determines the line breaks. Remember that the
command \, before the letter S inserts a thin space.

2.12 Line Breaks

In the previous section, the command \\ inserted a line break in
displayed quotations and verses. The command also works inside

50 Chapter 2

Blah blah blah blah blah blah blah blah blah blah blah.
\begin{quote}

Next to the originator of a good sentence
is the first quoter of it. \\
\emph{Ralph Waldo Emerson}

\end{quote}
Blah blah blah blah blah blah blah blah blah blah blah.

Blah blah blah blah blah blah blah blah blah blah blah.

Next to the originator of a good sentence is the first
quoter of it.
Ralph Waldo Emerson

Blah blah blah blah blah blah blah blah blah blah blah.

The quote environment
Figure 2.7

The following anti-limerick is
attributed to W.\,S. Gilbert.

\begin{verse}
There was an old man of St.˜Bees, \\
Who was stung in the arm by a wasp; \\

\qquad When they asked, ’’Does it hurt?’’ \\
\qquad He replied, ’’No, it does n’t, \\

But I thought all the while ’t was a Hornet.’’
\end{verse}

The following anti-limerick is attributed to W. S. Gilbert.

There was an old man of St. Bees,
Who was stung in the arm by a wasp;

When they asked, ”Does it hurt?”
He replied, ”No, it does n’t,

But I thought all the while ’t was a Hornet.”

The verse environment
Figure 2.8

paragraphs. An optional argument determines the extra vertical space
of the line break: \\[〈extra vertical space〉]. A line break at the end
of a page may trigger a page break. If you don’t want a page break then
you should use the command *. It is identical to \\ but it inhibits
page breaks.

2.13 Controlling the Size

With the proper class and packages there is usually no need to change
the type size of your text. However, sometimes it has its merits, e.g.,
when you’re designing your own titlepage or environment. Table 2.5
lists the declarations and environment that change the type size.
The preferred “size” for long-ish algorithms and program listings is
\scriptsize. If you’re using a package to typeset listings then the
package usually chooses the right size. If not, it probably lets you
specify the type size. Figure 2.9 shows how you change the size of text.

Running Text 51

Declaration Environment Example

\tiny tiny Example

\scriptsize scriptsize Example

\footnotesize footnotesize Example
\small small Example
\normalsize normalsize Example
\large large Example
\Large Large Example
\LARGE LARGE Example
\huge huge Example
\Huge Huge Example

Size-affecting declarations and
environments

Table 2.5

{\tiny Mumble. \\
\begin{normalsize}

What?
\end{normalsize} \\
\begin{Huge}

Mumble!
\end{Huge} }

Mumble.

What?

Mumble!

Controlling the size
Figure 2.9

2.14 Seriffed and Sans Serif Typefaces

LaTEX has several commands that change the type style. Before studying
these commands it is useful to study the difference between seriffed
and sans serif typefaces and when to use them.

A serif is a little decoration at the end of some of the strokes of
some of the letters. In a seriffed typeface the letters have serifs. Seriffed
typefaces are sometimes called roman typefaces but in LaTEX roman
means upright. In a sans serif typeface the letters lack serifs.

Most books use a seriffed typeface for the running text [Unger
2007, pp. 167–168] and the most popular typeface for the running text
of books and reports is (Monotype/Linotype) Times Roman [Felici 2012], a
seriffed typeface. Seriffed typefaces are also used for the running text
of most papers, theses, and dissertations in science. Turabian [2007,
pp. 374–375] recommends that you use a typeface that is designed for
text and that you use a size in the range of 10–12 pt, with 12 pt being
the preferred size. Admittedly, the being designed for text is a bit vague
but Turabian [2007] give two examples, both of which are seriffed.

As lines get longer and longer, seriffed typefaces are easier to read
and make fast reading easier [Unger 2007]. Sans serif typefaces may
look better on the screen but the ultimate criterion for printed matter
is how the text looks in print, so never choose the typeface for your
printed text based on how it looks on the screen.

If a typeface family has a seriffed and sans serif typeface of the same

52 Chapter 2

type size (point size), then the seriffed typeface usually requires more
horizontal space [Unger 2007]. Stated differently, sans serif typefaces
are usually more efficient when it comes to saving space. This may be
exploited by using sans serif typefaces in captions, in brochures, in
short narrow columns, or on road signs [Unger 2007].

If you don’t change the typeface then LaTEX will typeset the body of
your document in Computer Modern. An example of Computer Modern
may be found in Table 2.6, further on in this chapter.

2.15 Small Caps Letters

Small caps letters are used to typeset acronyms and abbreviations. Their
shape is the same as uppercase letter but their height is smaller, which
lets them blend in better with the rest of the text. For example, compare
NO SHOUTING with no shouting. The latter is easier on the eye.

Adding extra space uniformly to the left and right of characters
in a passage of text is called tracking or letterspacing. The extra space
that is added per letter is called the tracking space. Tracking passages
of small caps text is a common technique to improve the legibility.
For example non-spaced small caps is not spaced, whereas spaced
small caps is letterspaced.

The command \textsc typesets lowercase letters in small caps.
The easiest way to automatically letterspace such text is to use the
microtype package with the option tracking=smallcaps. After this all
small caps text will be letterspaced.

\textsc{No shouting}. No shouting.

The microtype package also provides character protrusion (margin
kerning) and font expansion. Character protrusion adjusts the charac-
ters at the margins of the text. Font expansion uses narrow or wider
font versions so as to make the overall appearance of the text more
uniform, avoiding long cramped, dark lines with many characters and
long loose, bright lines with few characters. As a side-effect, font expan-
sion may also be used to choose better hyphenation points [Schlicht
2010]. This document was typeset using the microtype package with
the following options.

\usepackage[final,tracking=smallcaps,
expansion=alltext,protrusion=true]{microtype}

LaTEX Usage

Bringhurst [2008, page 30] recommends that you add 5–10% of the
type size (point size) for the tracking space. The microtype package
expects the extra tracking in thousands of the type size. The following
sets the tracking space to 5% for the sc (small caps) shape.

\SetTracking{encoding=*,shape=sc}{50} LaTEX Usage

Most microtype users agree that the package improves the appear-
ance of their documents.

Running Text 53

Declaration Command Example

\mdseries \textmd Medium Series
\normalfont \textnormal Normal Style
\rmfamily \textrm Roman family
\upshape \textup Upright Shape
\itshape \textit Italic Shape
\slshape \textsl Slanted Shape
\bfseries \textbf Boldface Series
\scshape \textsc Small Caps Shape
\sffamily \textsf Sans Serif Family
\ttfamily \texttt Typewriter Family

Type style affecting declara-
tions and commands. The last
column shows the result in
Computer Modern (LaTEX’s de-
fault typeface). The first four
lines usually correspond to the
default style. The first nine type-
faces are proportional. They
may have glyphs with different
widths, e.g., compareM and i.
Small caps letters are useful for
abbreviations. The last typeface
is non-proportional, which is
useful in program listings.

Table 2.6

2.16 Controlling the Type Style

Changing the type size is hardly ever needed in an article, thesis, report,
or book. Changing the type style is required much more, but usually
this is done automatically by the commands that typeset the title of
your document, the section titles, the captions, and so on.

There are ten LaTEX type style affecting declarations. Each declara-
tion has a command that takes an argument and applies the type style
of the declaration to the argument. The arguments cannot have para-
graph breaks. The declarations and commands are listed in Table 2.6.

Intermezzo. If you really must change the type style of your text then it
is probably for a specific purpose. For example, to change the type style
of a newly defined word, to change the type style of an identifier in an
algorithm, and so on. Rather than hard-coding the style in your input, it is
better if you define a user-defined command that typesets your text in the
required style and use the command to typeset your text. The command’s
name should reflect its purpose. For example \identifier to typeset an
identifier in an algorithm, \package to typeset the name of a LaTEX package,
and so on. Using this approach improves maintainability. For example, if
you want to change the type style of all identifiers in your text then you
only need to make changes in the definition of the command that typesets
identifiers. Defining your own commands is discussed in Chapter 11.

2.17 Abbreviations

This section is about abbreviations. It provides some guidelines about
their spelling and how to typeset them in LaTEX.

2.17.1 Initialisms

Abbreviations that are made up of the initial letters of the abbreviated
words are called initialisms. Non-standard initialism are usually written
with a full stop after each part in the abbreviation: Ph.D. (Philosophiae

54 Chapter 2

In˜2010 Prof.˜Donald Knuth was invited to the
annual TeX User Group Conference in San Francisco, Ca.\
to speak about a revolutionary successor to \TeX.

This remarkable system is entirely menu driven and
incorporates facilities for social networking.
Pronouncing the name involves making the sound of a bell.

Finer points of typesetting ab-
breviations

Figure 2.10

Doctor), D.Phil. (Doctor of Philosophy), M.Sc. (Master of Science), and
so on. However, if the initialisms are standard, then you omit the full
stops, so B.B.C. becomes bbc, 4 G.L. (fourth-Generation Language)
becomes 4gl, and Ph.D. becomes Ph D (in LaTEX Ph~D). Bringhurst
[2008, page 48] recommends typesetting abbreviations with more than
two uppercase letters in spaced small capitals: spaced small caps.
Section 2.15 explains how to get spaced small caps.

Some authors recommend that you letterspace Uniform Resource
Locators (urls), phone numbers, and email addresses because they
are not words. See for example [Bringhurst 2008] or [Hedrick 2003].

Abbreviations of personal names such as D. E. K., J. F. K., J. S. B., and
the like should not be letterspaced.

2.17.2 Acronyms

An acronym is an initialism that is pronounced as a word. For example,
radar (RAdio Detection And Ranging), sonar (SOund Navigation And
Ranging), nasa (National Aeronautics and Space Administration),
and ebcdic (Extended Binary Coded Decimal Interchange Code);
but not acm (Association for Computing Machinery), bbc (British
Broadcasting Corporation), and rsvp (Répondez S’il Vous Plaît). Note
that not all acronyms are spelt with uppercase letters; if you’re not
certain, look up the spelling. Since acronyms are just a special form
of initialisms, we should follow Bringhurst’s advice, and write them
with small caps if they are spelt with (two or more) uppercase letters.

2.17.3 Shortenings

A word that is abbreviated by taking the first few letters of that word
is called a shortening. To avoid ambiguity, shortenings are usually
written with a full stop at the end of each part. For example, p. (page),
proc. (proceedings), sym. (symposium), fig. (figure), Feb. (February),
Prof. (Professor), and so on. The abbreviation pp. is for pages.

Remember that LaTEX inserts a little extra white space after a full
stop if \frencspacing isn’t enabled. If an abbreviation is not at the
end of a sentence and ends with a full stop then this extra space may
look bad. To suppress the extra white space you have to hardcode a
space command (\) after the abbreviation or tie the abbreviation and
the following word. Figure 2.10 provides a small example.

Running Text 55

2.17.4 Introducing Abbreviations

The first time you introduce an abbreviation you should explain it.
Most authors first spell out the abbreviation and then provide the ab-
breviation in parenthesis. The acronym package provides some support
for defining and referencing abbreviations in a consistent style. This
is done using the standard label-referencing technique. The package
provides commands for singular and plural versions of abbreviations
and for abbreviated and unabbreviated versions.

Page 4 of this book introduces an acronym for integrated develop-
ment environments. This text was generated by the following input.

… many \acp{IDE} … LaTEX Input

The command \acp in this example is provided by the acronym
package. The command introduces the plural version of an abbrevi-
ation. The acronym package also provides the \ac command, which
introduces the singular version of an abbreviation. The argument IDE
of the \acp command is the label of the acronym. Some other part of
the input associates the label IDE with the abbreviated version ‘ide’
and the expanded version ‘Integrated Development Environment.’
This was (essentially) done as follows:

\acro{IDE}[\textsc{ide}]%
{Integrated Development Environment}

LaTEX Input

When this book was generated and the command \acp was used
in the second last input, this was the first time the label IDE was refer-
enced, which is why it resulted in the following output.

… many Integrated Development Environments (ides) … LaTEX Output

The label IDE is also referenced in other locations in the input,
but when that happens it always results in the abbreviated version of
the acronym: ide. More information about the acronym package may
be found in the package documentation [Oetiker 2010].

2.17.5 British and American Spelling

There are differences between American and British usage in time ab-
breviations. According to Trask [1997] Americans write 10:05 am (Ante
Meridiem) for five past ten in the morning and 13:15 pm (Post Meri-
diem) for a quarter past one in the afternoon. British spelling prefers
10.05 a.m. and 13.15 p.m. [Trask 1997]. Felici [2012] notices that Ameri-
cans have also started using the British form.

For titles such as Mister, Doctor, and so on, British and American
usage differ. Britsh usage is the same as for shortenings. For example,
Mr Happy, Dr Who, and Fr Dougal McGuire. Americans add the full
stop: Mr. Ed, Dr. Quinn, Medicine Woman, and Fr. Bob Maguire.

56 Chapter 2

Abbreviation Latin meaning English meaning

e.g. exempli gratia for example
i.e. id est that is/in other words
etc. et cetera and so forth

viz. videlicet that is to say/namely
cf. confer compare
et al. et aluis and others

Latin abbreviations. The first
column lists the abbreviations,
the second the original Latin
meaning, and the last the En-
glish translation. Note that the
abbreviations at the bottom of
the table are slanted. This is in-
tensional and preferred usage.

Table 2.7

2.17.6 Latin Abbreviations

This section studies some Latin abbreviations that are commonly used
in scientific writing. Table 2.7 presents the more commonly occurring
abbreviations, their Latin meaning, and the English translation.

Note that some abbreviations are typeset in italics. This is not by
accident: this is how they should be typeset—but conventions may
differ from field to field. Also note that the al in et al. gets a full stop
because it is an abbreviation of aluis but that the et does not get a full
stop because it is already spelt out in full. Remember Bringhurst’s
advice and put the full stop inside the argument of \emph: \emph{et
al.} Finally note that etc. is short for et cetera, not for ectcetra.

Trask [1997] discourages these abbreviations. Trask continues by
pointing out that writing statements like the following are wrong
because the reader should be invited to consult the reference.

The Australian language Dyirbal has a remarkable gender
system, cf. [Dixon 1972].

Trask proposes the following solution.

The Australian language Dyirbal has a remarkable gender
system; see [Dixon 1972].

Abbreviations such as etc., i.e., and e.g. require additional punctua-
tion [Strunk, and White 2000]:

◦ Abbreviations such as bbc, nbc, etc., are called initialisms.
◦ Shortenings, i.e., abbreviations that are formed by taking the first

letters of the abbreviated word, usually end with a full stop.
◦ Abbreviations are not always spelt te same, e.g., Ph.D. and Ph D.

2.17.7 Units

The Système International d’Unités/International System of Units
(si) provides rules for consistent typesetting of quantities of units.
Heldoorn [2007] provides a summary of these rules. The following is
a summary of the main rules.

◦ The base unit symbols are printed in upright roman: g (gram), m
(metre), t (tonne), …. Exceptions are unit symbols that are spelt in
Greek and the symbols for inch, degrees, seconds, and so on.

Running Text 57

Fill in the missing word.\\
Fill in the missing
.

Fill in the missing word.
Fill in the missing .

The \phantom command
Figure 2.11

◦ The first letter of the unit symbol is uppercase if it is derived from a
proper name: Å (Ångström), N (Newton), Pa (Pascal), ….

◦ The plural form of the base unit symbol is the same as the singular.
◦ The base unit symbols do not receive an end-of-abbreviation full stop.

Needless to say, it is important that you typeset quantities of units
correctly and consistently. The hard way is doing it by hand. The easy
way is doing it with LaTEX.

At the moment of writing the most popular package for specifying
si units is the siunitx package [Wright 2011].

◦ It provides support to configure how the si units are typeset. For
example, kg m s–1, versus kg m s-1, versus kg m/s, and so on.

◦ It provides commands to typeset quantities of units: \SI[mode=text]
{1.23}{\kilogram} will give you 1.23 kg and \SI{1.01}{\kilogram}
will typeset 1.01 kg in the default typesetting mode.

◦ The package provides macros to typeset lists of quantities in a given
unit. For example \SIlist{0.1;0.2;1.0}{\milli\metre} gives you
0.1, 0.2 and 1.0 mm if the default typesetting mode is text. If you
add the option list-final-separator={, and~} then you get 0.1, 0.2,
and 1.0 mm.

◦ By default, unit symbols are typeset using the default math roman
font but you can also use different fonts.

Discussing the entire siunitx package is beyond the scope of this
book. The interested reader is referred to the package documenta-
tion [Wright 2011] for further information.

2.18 Phantom Text

Some commands don’t typeset anything with ink but do affect the
horizontal and vertical spacing. The following is the first of three
useful versions.

This command “typesets” its argument using invisible ink. The di-
mensions of the box are the same as the dimensions required for
typesetting 〈stuff〉. ☐√

Figure 2.11 demonstrates how you use the command. The \hphan-
tom and \vphantom commands are horizontal and vertical versions of
the \phantom command. The following explains how they work.

\hphantom{〈stuff〉}
This is the horizontal version of the \phantom command. The com-
mand creates a box with zero height and the same width as its argu-
ment, 〈stuff〉. ☐√

58 Chapter 2

\begin{center}
Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{center}

Blah.
Blah blah blah.

Blah blah blah blah blah blah
blah blah blah blah blah blah

blah blah blah.

The center environment
Figure 2.12

\vphantom{〈stuff〉}
This is the vertical version of the \phantom command. The command
creates a box with zero width and the same height as its argument,
〈stuff〉. It is especially useful for getting the right size for delimiters
such as parentheses in mathematical formulae that span multiple
lines. This is explained in more detail in Section 8.8.1. ☐√

2.19 Alignment

This section studies three commands and two environments that
change the text alignment. The first command centres text. The second
and third command align text to the left and to the right. The first of
the environments is the tabular environment, which typesets row-
based content with horizontal alignment positions (columns). The
last environment is the tabbing environment. This environment lets
you define horizontal alignment (tab) positions and lets you position
text relative to these alignment positions.

2.19.1 Centred Text

The center environment centres text. The example in Figure 2.12
demonstrates the environment. The example is inspired by Iggy Pop.

2.19.2 Flushed/Ragged Text

The flushleft environment and the \raggedright declaration typeset
text that is aligned to the left. Likewise, the flushright environment
and \raggedleft declaration typeset text that is aligned to the right.
The example in Figure 2.13 shows the effect of the flushleft environ-
ment.

2.19.3 Basic tabular Constructs

The tabular environment typesets text with rows and alignment posi-
tions for columns. The environment also has siblings called tabular*
and array. The tabular* environment works similar to tabular but it
takes an additional argument that determines the width of the result-
ing construct. This environment is explained in Section 2.19.5. The

Running Text 59

\begin{flushleft}
Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{flushleft}

Blah.
Blah blah blah.
Blah blah blah blah blah blah
blah blah blah blah blah blah
blah blah blah.

The flushleft environment
Figure 2.13

array environment can only be used in math mode. The tabular and
tabular* environments can be used in both text and math mode.

The remainder of this section introduces the tabular environment.
This introduction should more than likely suffice for day-to-day usage.
A more detailed presentation is provided in Section 2.19.5.

In its simplest form the tabular environment is used as follows.

\begin{tabular}[〈global alignment〉]
{〈column alignment〉}

〈text〉 & 〈text〉 & … & 〈text〉 \\
…
〈text〉 & 〈text〉 & … & 〈text〉 \\
〈text〉 & 〈text〉 & … & 〈text〉

\end{tabular}

LaTEX Usage

The body of the environment contains a sequence of rows that are
delimited by linebreaks (\\). Each row is a sequence of alignments
tab-delimited 〈text〉. The i-th 〈text〉 in a row corresponds to the i-th
column. The following explains the arguments of the environment:

〈global alignment〉
This optional argument determines the vertical alignment of the
environment. Allowed values are t (align on the top row), c (align on
the centre), or b (align on the bottom row). The default value of this
argument is c. ☐√

〈column alignment〉
This argument determines the column alignment and additional
decorations. For day-to-day usage, the following options are relevant.

l This option corresponds to a left-aligned column.
r This corresponds to a right-aligned column.
c This corresponds to a centred column.
p{〈width〉} This option corresponds to a top-aligned 〈width〉-

wide column that is typeset as a paragraph in the “usual” way.
Some commands such as \\ are not allowed at the top level.

| This option does not correspond to an actual column but
results in additional decoration. It results in a vertical line
drawn at at the “current” position. For example, if 〈column
alignment〉 is l|cr then there will be a vertical line separat-
ing the first two columns. Using this option is discouraged
because the vertical lines usually distract. ☐√

The tabular environment also defines the following commands,

60 Chapter 2

\begin{tabular}{l|crp{3.1cm}}
\hline

1 & 2 & 3
& Box me in,

but not too
tight, please.

\\\hline
11 & 12 & 13 & Excellent.

\\ 111 & 112 & 113 & Thank you!
\\\hline
\end{tabular}

1 2 3 Box me in, but not
too tight, please.

11 12 13 Excellent.
111 112 113 Thank you!

Using the tabular environ-
ment

Figure 2.14

which may be used inside the environment. You can only use these
commands at the start of a row.

\hline

This command inserts a horizontal rule. The command may only be
used at the start of a row. ☐√

\cline{〈number₁〉}{〈number₂〉}
This draws a horizontal line from the start of column 〈number₁〉 to the
end of column 〈number₂〉. ☐√

\vline

This results in a vertical line. The command may only be used if the
column is aligned to the left, to the right, or to the centre. ☐√

Figure 2.14 presents a simple example of the tabular environment.
The example shows all alignments and the paragraph feature.

Note that line breaks are inserted automatically inside p-type
columns. Line breaks are not allowed in columns aligned with l, r,
or c.

Intermezzo. The column alignment option | and the commands \hline,
\cline, and \vline are irresistible to new users. This may be because
most examples of the tabular environment involve the option and these
commands. It is understandable that new users want to repeat this, espe-
cially when they’re not aware that using the option and the commands in
moderation is better because the grid lines are dazzling and distracting.
Chapter 6 provides some guidelines on how to design good tables.

Regular m× n tables with the same alignment in the same column
are rare. The following command lets you join columns within a row
and override the default alignment.

\multicolumn{〈number〉}{〈column alignment〉}{〈text〉}
This inserts 〈text〉 into a single column that is formed by combining
the next 〈number〉 columns in the current row. The alignment of the
column is determined by 〈column alignment〉. This command is espe-
cially useful for overriding the default alignment in column headings
of a table. An example is presented in the next section. ☐√

Running Text 61

2.19.4 The booktabs Package

The booktabs package adds some extra functionality to the tabular
environment. The package discourages vertical grid lines. Using the
booktabs package results in better looking tables.

◦ The package provides different commands for different rules.
◦ The package provides different rules that may have different widths.
◦ The package provides commands for temporarily/permanently chang-

ing the width.
◦ The package has a command that adds extra line space.
◦ The package is compatible-ish with the colortbl package, which is

used to specify coloured tables.

The booktabs package provides the following commands. The first
four commands take an option that specifies the width of the rule.
The first four commands can only be used at the start of a row.

\toprule[〈width〉]
This typesets the full horizontal rule at the top the table. ☐√

\bottomrule[〈width〉]
This typesets the full horizontal rule at the bottom of the table. ☐√

\midrule[〈width〉]
This typesets the remaining full horizontal rules in the table. ☐√

\cmidrule[〈width〉]{〈number₁〉-〈number₂〉}
This typesets a partial horizontal rule. The rule is supposed to be used
in the middle of the table. It ranges from the start of column 〈number₁〉
to the end of column 〈number₂〉. ☐√

\addlinespace[〈height〉]
This command is usually used immediately after a line break and it
inserts more vertical line space to the height of 〈height〉. ☐√

Figure 2.15 demonstrates how to use the booktabs-provided rule
commands. The resulting output is presented in Figure 2.16. Notice
that the inter-linespacing is much better than the output in Figure 2.14.
Also notice the different widths of the rules.

2.19.5 Advanced tabular Constructs

Using basic tabular constructs usually suffices for day-to-day typeset-
ting. This section explains the techniques that give you the power to
typeset more advanced tabular constructs.

The following starts by presenting two addition column options.
This is followed by some style parameters that control the default size
and spacing of the tabular, tabular*, and array environments. The
column options are as follows.

*{〈number〉}{〈column options〉}
This inserts 〈number〉 copies of 〈column options〉. For example, *{2}{
lr} is equivalent to lrlr. ☐√

@{〈text〉}
This is called an @-expression. It inserts 〈text〉 at the current position.

62 Chapter 2

\begin{tabular}[c]{lrrp{47mm}}
\toprule \multicolumn{1}{r}{\textbf{Destination}}

& \multicolumn{1}{r}{\textbf{Duration}}
& \multicolumn{1}{r}{\textbf{Price}}
& \multicolumn{1}{r}{\textbf{Description}}

\\\midrule
Cork City
& 7 Days & \euro 300.00
& Visit Langer Land. Price includes visits

to Rory Gallagher Place and de Maarkit.
\\ Dingle

& 8 Days & \euro 400.00
& Have fun with Fungie.

\\\bottomrule
\end{tabular}

Input of booktabs package
Figure 2.15

Destination Duration Price Description

Cork City 7 Days €300.00 Visit Langer Land. Price in-
cludes visits to Rory Gal-
lagher Place and de Maarkit.

Dingle 8 Days €400.00 Have fun with Fungie.

Output of booktabs package.
The input of this figure is listed
in Figure 2.15. Clearly, book-
tabs rules rule.

Figure 2.16

This is useful if you want to add certain text or symbols at the given
position. For example @{.} inserts a full stop at the current position.

LaTEX normally inserts some horizontal space before the first col-
umn and after the last column. It inserts twice that amount of space
between adjacent columns. However, this space is suppressed if an
@-expression precedes or follows a column option. For example, if
〈column alignment〉 is equal to @{}ll@{}l@{} then this suppresses the
horizontal space before the first column, after the last column, and
between the second and last column. The length \tabcolsep controls
the extra horzontal space that is inserted. The value of the command
is half the width that is inserted between columns.

A horizontal spacing command in an @-expression controls the
separation of two adjacent columns. For example, @{\hspace{〈width〉}
} inserts a horizontal 〈width〉-wide space.

Finally, @-expressions may also adjust the default column separa-
tion. The \extracolsep{〈width〉} adds additional horizontal 〈width〉-
wide space between subsequent columns. However, additional width
is never inserted before the first column. The \extracolsep{\fill}
inserts the maximum possible amount of horizontal space. This is
useful if you want to extend the width to the maximum possible width.

The columns in the second table in Figure 2.17 are spread out
evenly with an @-expression. The third table adds the usual space to
the start of the first and the end of the last column. The first table is
added for comparison. ☐√

Running Text 63

\begin{tabular*}{3cm}{@{}lcr@{}}
\toprule M & M & M \\\bottomrule

\end{tabular*}
\begin{tabular*}{3cm}

{@{\extracolsep{\fill}}%
lcr%
@{\hspace{0pt}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}
\begin{tabular*}{3cm}

{@{\hspace{\tabcolsep}}%
@{\extracolsep{\fill}}%
lcr%
@{\hspace{\tabcolsep}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}

M M M M M M M M M

Controlling column widths
with an @-expression. The
output is spaced out for clarity.

Figure 2.17

The following commands control the default appearance of tabu-
lar, tabular*, and array environments.

\arraycolsep

The value of this length command is equal to half the default horizon-
tal distance between adjacent columns in the array environment. This
amount of space is also equal to the default horizontal space inserted
before the first column and after the last column. ☐√

\tabcolsep

The value of this length command is equal to half the default horizon-
tal distance between adjacent columns in the tabular and tabular*
environments. Again, this is equal to the default horizontal space that
is inserted before the first column and after the last column. ☐√

\arrayrulewidth

The value of this length command is the width of the lines resulting
from a | in the 〈column options〉 argument and the lines resulting
from the commands \cline, \hline, and \vline. ☐√

\doublerulesep

The value of this length command is the distance between two adjacent
lines resulting from a || in the 〈column options〉 argument or two
adjacent lines resulting from the \hline command. ☐√

\arraystretch

This command determines the distance between successive rows. It
defaults to 1 and “multiplying” it by x results in rows that are x times
further apart. So, by redefining this command to 0.50 you halve the
row distance. Redefining commands is explained in Chapter 11. ☐√

2.19.6 The tabbing Environment

The tabbing environment is useful for positioning material relative
to user-defined alignment positions. The remainder of this section

64 Chapter 2

\begin{tabbing}
From \=here to \=there \\

\>and \>then\\
\>\>all\\
\>the \>way\\

back \>to \>here.
\end{tabbing}

From here to there
and then

all
the way

back to here.

The tabbing environment
Figure 2.18

\begin{tt}\begin{tabbing}
AAA\=AAA\=AAA\=AAA \kill
FUNC euc(INT a,

INT b): INT \\
BEGIN \+ \\

WHILE (b != 0) DO \\
BEGIN \+ \\

INT rem = a MOD b;\\
a = b; \\
b = rem; \- \\

END \\
RETURN a; \- \\

END;
\end{tabbing}\end{tt}

FUNC euc(INT a, INT b): INT
BEGIN

WHILE (b != 0) DO
BEGIN

INT rem = a MOD b;
a = b;
b = rem;

END
RETURN a;

END;

Advanced tabbing
Figure 2.19

describes some basic usage of the environment. The reader is referred
to [Lamport 1994, pages 201–203] for more detailed information.

The tabbing environment can only be used in paragraph mode (the
“usual mode”). It produces lines of text with alignment in columns
based upon tab positions.

\=

Defines the next tab (alignment) position. ☐√
\\

Inserts a line break and resets the next tab position to the value of
left_margin_tab. ☐√

\kill

Throws away the current line but remembers the tab positions defined
with \=. ☐√

\+

Increments left_margin_tab. ☐√
\-

Decrements left_margin_tab. ☐√
\>

Move to the next tab stop. ☐√
Figures 2.18 and 2.19 present two examples of the tabbing envi-

ronment. The examples do not demonstrate the full functionality of
the environment.

Running Text 65

\usepackage[dutch,british]{babel}...
\selectlanguage{dutch}
% Dutch text here.
Nederlandse tekst hier.

\selectlanguage{british}
% Engelse tekst hier.
English text here.

Using the babel package
Figure 2.20

2.20 Language Related Issues

As suggested by its title, this section is concerned with language related
issues. The remaining three sections deal with hyphenation, foreign
languages, and spelling.

2.20.1 Hyphenation

LaTEX’s (TEX’s really) automatic hyphenation is second to none. How-
ever, sometimes even TEX gets it wrong. There are two ways to over-
come such problems.

◦ The command \- in a word tells LaTEX that it may hyphenate the word
at that position.

Er\-go\-no\-mic has three hyphenation positions. LaTEX Usage

◦ Specifying the same hyphenation patterns is messy and prone to errors.
Using the \hyphenation command is a much cleaner solution. This
command takes one argument, which should be a comma-separated
list of words. For each word you can put a hyphen at the (only) possible,
desired, or allowed hyphenation positions. You may use the command
several times. The following is an example.

\hyphenation{fortran,er-go-no-mic} LaTEX Usage

2.20.2 Foreign Languages

The babel package supports multi-lingual documents. The package
supports proper hyphenation, switches between different languages
in one single document, definition of foreign languages, commands
that recognise the “current” language, and so on. Figure 2.20 provides
a minimal example. Rik Kabel kindly informed that X ETEX users use
the polyglossia package instead of babel. One of the advantages
of the polyglossia package is that it automatically loads the bidi
package when bi-directional scripts are used.

66 Chapter 2

2.20.3 Spell-Checking

LaTEX does not support automatic spell-checking. Note that spell-
checking isn’t trivial anyway because commands may generate text.
Text may come from external files, so make sure you spell-check your
bibliography files.

However, most modern ides have a spell checker. The ispell
program, which can be run from the command line, has a LaTEX spell-
check mode. The -t flag tells the command that the input is LaTEX.

$ ispell -l -t -S input.tex | sort -u Unix Session

http://www.springer.com/978-3-642-23815-4

	Chapter 2 Running Text
	2.1 Special Characters
	2.1.1 Tieing Text
	2.1.2 Grouping

	2.2 Diacritics
	2.3 Ligatures
	2.4 Quotation Marks
	2.5 Dashes
	2.6 Full Stops
	2.7 Ellipsis
	2.8 Emphasis
	2.9 Borderline Punctuation
	2.10 Footnotes and Marginal Notes
	2.11 Displayed Quotations and Verses
	2.12 Line Breaks
	2.13 Controlling the Size
	2.14 Seriffed and Sans Serif Typefaces
	2.15 Small Caps Letters
	2.16 Controlling the Type Style
	2.17 Abbreviations
	2.17.1 Initialisms
	2.17.2 Acronyms
	2.17.3 Shortenings
	2.17.4 Introducing Abbreviations
	2.17.5 British and American Spelling
	2.17.6 Latin Abbreviations
	2.17.7 Units

	2.18 Phantom Text
	2.19 Alignment
	2.19.1 Centred Text
	2.19.2 Flushed/Ragged Text
	2.19.3 Basic tabular Constructs
	2.19.4 The booktabs Package
	2.19.5 Advanced tabular Constructs
	2.19.6 The tabbing Environment

	2.20 Language Related Issues
	2.20.1 Hyphenation
	2.20.2 Foreign Languages
	2.20.3 Spell-Checking

