
Chapter 1

Scheduling Models

The so-called resource-constrained project scheduling problem (RCPSP) is one
of the basic complex scheduling problems. In Section 1.1 we introduce this
problem and some of its generalizations. Machine scheduling problems, which
may be considered as special cases of the RCPSP, are described in Section 1.2.
Several applications of the RCPSP are discussed in Section 1.3. Finally, some
reference notes can be found in Section 1.4.

1.1 The RCPSP and some Generalizations

The resource-constrained project scheduling problem (RCPSP) is a very general
scheduling problem which may be used to model many applications in practice
(e.g. a production process, a software project, a school timetable, the construc-
tion of a house or the renovation of an airport). The objective is to schedule
some activities over time such that scarce resource capacities are respected and
a certain objective function is optimized. Examples for resources may be ma-
chines, people, rooms, money or energy, which are only available with limited
capacities. As objective functions, for example, the project duration, the devi-
ation from deadlines, or costs concerning resources may be minimized.

The resource-constrained project scheduling problem (RCPSP) may
be formulated as follows. Given are a time horizon [0, T ], n activities (jobs)
i = 1, . . . , n and r renewable resources k = 1, . . . , r. A constant amount of
Rk units of resource k is available at any time t = 0, . . . , T . Activity i must be
processed for pi time units. During this time period a constant amount of rik
units of resource k is occupied. All data are assumed to be integers.

Furthermore, precedence constraints are defined between some activities.
They are given by a set A of relations i→ j, where i→ j means that activity j
cannot start before activity i is completed.

Usually, we assume that activities are not preempted, i.e. if activity i starts
at time Si, it completes at time Ci = Si + pi. We may relax this condition by
allowing preemption (activity splitting). In this case the processing of any
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activity may be interrupted and resumed later. It will be stated explicitly if we
consider models with preemption.

The objective is to determine starting times Si ∈ {0, 1, . . . , T} for the activities
i = 1, . . . , n in such a way that

• at each time the total resource demand is less than or equal to the resource
availability Rk of each resource k = 1, . . . , r,

• the given precedence constraints are fulfilled, i.e. Si + pi ≤ Sj if i → j,
and

• the makespan Cmax =
n

max
i=1
{Ci} is minimized, where Ci := Si + pi is the

completion time of activity i.

The vector S = (Si)
n
i=1 defines a schedule of the project. S is called feasible if

all resource and precedence constraints are fulfilled. If the time horizon T is large
enough, the precedence constraints are acyclic, and rik ≤ Rk for all i = 1, . . . , n
and k = 1, . . . , r holds, always a feasible schedule exists: the activities may be
processed in a topological ordering (i.e. an ordering which is compatible with
the precedence constraints) consecutively one after the other, which leads to a

schedule with Cmax =
n∑
i=1

pi.

It is often useful to add a unique dummy starting activity 0 and a unique
dummy termination activity n + 1, which indicate the start and the end
of the project, respectively. The dummy activities need no resources and have
processing time zero. In order to impose 0 → i → n + 1 for all activities
i = 1, . . . , n we set 0→ i for all activities i without any predecessor and i→ n+1
for all activities i without any successor. Then S0 is the starting time of the
project and Sn+1 may be interpreted as the makespan of the project. Usually
we set S0 := 0.

We may represent the structure of a project by a so-called activity-on-node
network G = (V, A), where the vertex set V := {0, 1, . . . , n, n + 1} contains
all activities and the set of arcs A = {(i, j) | i, j ∈ V ; i → j} represents the
precedence constraints. Each vertex i ∈ V is weighted with the corresponding
processing time pi.

For each activity i we define

P red(i) := {j | (j, i) ∈ A} and Succ(i) := {j | (i, j) ∈ A}

as the sets of predecessors and successors of activity i, respectively.

Another representation of projects is based on so-called activity-on-arc net-
works where each activity is modeled by an arc. Since this representation has
some disadvantages, in most cases activity-on-node networks are preferred.
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Example 1.1 : Consider a project with n = 4 activities, r = 2 resources with
capacities R1 = 5, R2 = 7, a precedence relation 2→ 3 and the following data:

i 1 2 3 4
pi 4 3 5 8
ri1 2 1 2 2
ri2 3 5 2 4
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Figure 1.1: The activity-on-node network for Example 1.1
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Figure 1.2: Two feasible schedules for Example 1.1

Figure 1.1 illustrates the corresponding activity-on-node network, where the
dummy activities 0 and 5 have been added and the vertices are weighted with the
processing times. In Figure 1.2(a) a so-calledGantt chart of a feasible schedule
with Cmax = 15 is drawn. This schedule does not minimize the makespan, since
by moving activity 1 to the right, a shorter schedule is obtained. An optimal
schedule with makespan Cmax = 12 is shown in (b). �

In the following we will discuss different generalizations of the RCPSP.
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Generalized precedence constraints

A precedence relation i→ j with the meaning Si + pi ≤ Sj may be generalized
by a start-start relation of the form

Si + dij ≤ Sj (1.1)

with an arbitrary integer number dij ∈ Z. The interpretation of relation (1.1)
depends on the sign of dij:

• If dij ≥ 0, we must have Sj ≥ Si + dij, i.e. activity j cannot start before
dij time units after the start of activity i. This means that activity j does
not start before activity i and dij is a minimal distance (time-lag) between
both starting times (cf. Figure 1.3(a)).

• If dij < 0, we must have Si ≤ Sj + |dij|, i.e. activity i cannot start more
than |dij| time units later than activity j. On the other hand, this implies
that the earliest start of activity j is |dij| time units before the start of
activity i. If Sj ≤ Si, this means that |dij| is a maximal distance between
both starting times (cf. Figure 1.3(b)).

i

j�
dij

j

i� |dij|

(a) positive time-lag (b) negative time-lag

Figure 1.3: Positive and negative time-lags

If dij > 0 holds, the value is also called a positive time-lag; if dij < 0, it
is called a negative time-lag. Time-lags dij may be incorporated into the
activity-on-node network G by adding all arcs i → j to G and weighting them
with the distances dij.

Relations (1.1) are very general timing relations between activities. For example,
(1.1) with dij = pi is equivalent to the precedence relation i→ j. More generally,
besides start-start relations also finish-start, finish-finish or start-finish relations
may be considered. But if no preemption is allowed, any type of these rela-
tions can be transformed to any other type. For example, finish-start relations
Ci + lij ≤ Sj with finish-start time-lags lij can be transformed into start-start
relations Si + pi + lij ≤ Sj by setting dij := pi + lij.

Generalized precedence relations may, for example, be used in order to model
certain timing restrictions for a chemical process. If Si + pi + lij ≤ Sj and
Sj − uij − pi ≤ Si with 0 ≤ lij ≤ uij is required, then the time between the
completion time of activity i and the starting time of activity j must be at
least lij but no more than uij. This may be modeled by the minimal time-lag
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dij = pi + lij and the maximal time-lag dji = −(pi + uij). If, for example, an
activity j must start at least 4 time units and at most 7 time units after the
completion of activity i, we have to fulfill Si + pi + 4 ≤ Sj and Sj ≤ Si + pi + 7,
which can be modeled by the minimal time-lag dij = pi + 4 and the maximal
time-lag dji = −(pi + 7).

In the special case 0 ≤ lij = uij activity j must start exactly lij time units
after the completion of activity i. If lij = uij = 0, then activity j must start
immediately after activity i finishes (no-wait constraint).

Also release times ri and deadlines di of activities i can be modeled by relations
of the form (1.1). While a release time ri is an earliest starting time for activity
i, a deadline di is a latest completion time for i. To model release times we
add the restrictions S0 + ri ≤ Si, i.e. we have minimal time-lags d0i = ri. To
model deadlines we add the restrictions Si−(di−pi) ≤ S0, i.e. we have maximal
time-lags di0 = −(di − pi). In both cases we assume that S0 = 0. If ri ≤ di
for a release time ri and a deadline di, then the interval [ri, di] is called a time
window for activity i. Activity i must be processed completely within its time
window.

Sometimes, also so-called feeding precedence constraints are given which
mean that some overlapping in the execution of two activities is allowed. For
example, if activity j may already be started after 30% of activity i have been
completed, the inequality Sj ≥ Si + fij · pi with fij = 0.3 has to be satisfied.

Time-dependent resource profiles

A time period t is defined as the time interval [t−1, t[ for t = 1, 2, . . . , T , where T
denotes a given time limit for the project. Until now we assumed that Rk units
of resource k are available in each time period and that rik units of resource k are
occupied in each time period t in which activity i is processed. This assumption
may be generalized using the concept of time-dependent resource profiles.
In this situation the availability Rk(t) of resource k is a function depending on
the time periods t. Especially, Rk(t) = 0 states that resource k is not available
in time period t. The resource availability may be represented by pairs (tμk , Rμ

k)
for μ = 1, . . . , mk, where 0 = t1k < t2k < . . . < tmk

k = T are the jump points of
the function and Rμ

k denotes the resource capacity in the time interval [tμk , tμ+1k [
for μ = 1, . . . , mk − 1.

If time-dependent resource profiles are given, it is much more difficult to find a
feasible schedule in the interval [0, T ] respecting all resource constraints.

Example 1.2 : Consider an instance of a project with n = 6 activities, r = 2
resources, precedence constraints 1→ 4→ 5, 2→ 3 and the following data:

i 1 2 3 4 5 6
pi 2 2 3 2 2 4
ri1 1 0 1 0 1 0
ri2 1 2 3 2 4 2
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Figure 1.4: A feasible schedule for time-dependent resource profiles

Let the time-dependent resource profile of resource 1 be defined by the pairs
(0, 1), (2, 0), (3, 1), (11, 0), (15, 0), and the resource profile of resource 2 by
(0, 3), (2, 2), (4, 3), (6, 5), (9, 4), (11, 2), (15, 0).

In Figure 1.4 a feasible schedule is represented by the corresponding Gantt chart.
This schedule does not minimize the makespan because by moving activity 3 two
units to the right and scheduling activity 6 between activity 1 and activity 3 a
feasible schedule with smaller makespan is obtained. �

A resource is called disjunctive if Rk(t) ∈ {0, 1} for t = 1, . . . , T holds, other-
wise it is called cumulative. If resource k is disjunctive, two activities i, j with
rik = rjk = 1 can never be processed simultaneously.

Time-dependent resource profiles may, for example, be used in order to model a
situation in which the numbers of available workers vary over time (e.g., at week-
ends less people are working). Sometimes restricted preemptions may be allowed
in connection with time-dependent resource profiles. If due to an unavailability
of a resource an activity cannot finish its processing, it may be suspended at
the beginning of the unavailability period and continued when the resource is
available again.

Multiple modes

In the multi-mode situation a set Mi of so-called modes (processing alter-
natives) is associated with each activity i. The processing time of activity i in
mode m is given by pim and the per period usage of a renewable resource k is
given by rikm. One has to assign a mode to each activity and to schedule the
activities in the assigned modes.
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Multiple modes may, for example, be used in order to model a situation in which
an activity can be quickly processed by many workers or more slowly with less
people.

Sometimes, it is required that a subset of activities must be processed in the
same mode (so-called mode identity constraints).

A special case of the multi-mode RCPSP is the discrete time/resource trade-
off problem (DTRTP) where only one single renewable resource (e.g., modeling
available staff) with capacity R1 is given. For each activity i a work content Wi is
specified (e.g., the amount of person-days required to process i). From this work
content Wi a finite set of feasible modesMi for activity i is derived where each
mode m ∈ Mi is characterized by a processing time pim ∈ N (e.g., indicating
the number of days needed) and a resource requirement rim ∈ N with rim ≤ R1
(e.g., required persons per day). Feasible modes m have to satisfy rim ·pim ≥Wi

in order to fulfill the required work content. Furthermore, a mode m ∈ Mi is
called efficient if no other feasible mode m′ ∈ Mi exists with rim′ < rim and
pim′ ≤ pim or rim′ = rim and pim′ < pim. It is easy to see that it is sufficient to
consider only efficient modes.

Let us consider an example with R1 = 10. Then, for an activity i with work con-
tent Wi = 12 the following modes (where for each processing time the smallest
feasible resource requirements are chosen) are feasible:

m 1 2 3 4 5 6 7 8 9 10 11
pim 2 3 4 5 6 7 8 9 10 11 12
rim 6 4 3 3 2 2 2 2 2 2 1
eff. × × × − × − − − − − ×

Since mode 4 has a larger processing time than mode 3 (and the same resource
requirement), it is not efficient. Similarly, modes 6 to 10 are worse than the
efficient mode 5. Thus, the set Mi of efficient modes contains only the five
modesMi = {1, 2, 3, 5, 12}.

Non-renewable resources

Besides renewable resources like machines or people we may also have so-called
non-renewable resources like money or energy. While renewable resources
are available with a constant amount in each time period again, the availability
of non-renewable resources is limited for the whole time horizon of the project.
This means that non-renewable resources are consumed, i.e. when an activity i
is processed, the available amount Rk of a non-renewable resource k is decreased
by rik.

Non-renewable resources are only important in connection with multi-mode
problems, because in the single-mode case the resource requirements of non-
renewable resources are schedule independent (the available non-renewable re-
sources may be sufficient or not). On the other hand, in the multi-mode case
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the resource requirements of non-renewable resources depend on the choice of
modes (i.e. feasible and infeasible mode assignments may exist).

Besides upper bound values Rk for the total usage of a non-renewable resource
in some applications also lower bound values Lk may have to be respected. For
example, a worker may not only have a maximal but also a minimal working
time per month. In such a situation only mode assignments satisfying both
bounds are feasible.

To distinguish between renewable and non-renewable resources, if both are
needed, we write Kρ for the set of renewable resources, Kν for the set of non-
renewable resources, rρikm, Rρ

k for the renewable resource data and rνikm, Rν
k for

the non-renewable resource data.

Example 1.3 : Consider an instance of a multi-mode project with n = 2 ac-
tivities, where each activity i can be processed in two different modes m = 1, 2.
We have one renewable resource 1 with capacity Rρ

1 = 4 and one non-renewable
resource 2 with capacity Rν

2 = 10. Furthermore, the processing times pim of the
activities i = 1, 2 in modes m = 1, 2 are given by p11 = 2, p12 = 5, p21 = 2,
p22 = 6 and the resource requirements rikm are

rρ111 = 4, rρ112 = 2, rν121 = 6, rν122 = 2 for activity 1, and
rρ211 = 3, rρ212 = 1, rν221 = 5, rν222 = 3 for activity 2.

(a) Schedule with Cmax = 8

�
1

0 2 8

Rρ
1 = 4

(1,1)

(2,2)

(b) Schedule with Cmax = 7

�
1

0 5 7

Rρ
1 = 4

(1,2)
(2,1)

(c) Optimal schedule with Cmax = 6

�
1

0 5 6

Rρ
1 = 4

(1,2)

(2,2)

Figure 1.5: Three feasible schedules for Example 1.3

Due to rν121+rν221 = 6+5 = 11 > 10 = Rν
2 the non-renewable resource 2 does not

allow that activities 1 and 2 are both processed in mode one. Furthermore, we
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have rν121 + rν222 = 6 + 3 = 9, rν122 + rν221 = 2 + 5 = 7, and rν122 + rν222 = 2 + 3 = 5.
Thus, the remaining three activity-mode combinations for the two activities are
feasible: (1, 1) with (2, 2), (1, 2) with (2, 1) and (1, 2) with (2, 2). If we compare
the corresponding schedules shown in Figure 1.5, we see that the schedule in
(c) has the smallest makespan Cmax = 6. In this schedule 2+3=5 units of the
non-renewable resource 2 are needed. �

Doubly-constrained resources

A combination of renewable and non-renewable resources are so-called doubly-
constrained resources which are constrained in each time period and for the
whole project. With this type of resources, for example, a situation can be
modeled in which the working time of a worker per day and the working time
for the whole project is limited. Since a doubly-constrained resource can be
treated by introducing a renewable and a non-renewable resource for it, this
type of resources does not have to be considered separately.

Partially renewable resources

A generalization of renewable and non-renewable resources are so-called par-
tially renewable resources Kπ for which the availability is restricted over sub-
sets of time periods from the set {1, . . . , T} with a given time horizon T . Associ-
ated with each partially renewable resource k ∈ Kπ are (not necessarily disjoint)
subsets of time periods Pk(1), . . . , Pk(uk) ⊆ {1, . . . , T}, where for the time pe-
riods in the subset Pk(τ) (τ = 1, . . . , uk) in total Rπ

k(τ) units of resource k are
available. In all other time periods which are not contained in the subsets the
resource capacity is assumed to be unlimited.

Furthermore, for each activity i its per-period requirement rπik of resource k ∈ Kπ

is given. If activity i is (partially) processed in Pk(τ), it consumes rπik units of
resource k in each time period of Pk(τ) in which it is processed.

Example 1.4 : Consider an instance with n = 3 activities, r = 2 partially
renewable resources and time horizon T = 10. Associated with the resource k =
1 are the subsets P1(1) = {1, 2, 3, 4, 5}with Rπ

1 (1) = 6 and P1(2) = {6, 7, 8, 9, 10}
with Rπ

1 (2) = 8. Associated with the resource k = 2 is the subset P2(1) =
{3, 4, 8, 9} with Rπ

2 (1) = 1, in the remaining time periods resource 2 is not
constrained. Furthermore, the activities have the processing times p1 = 3, p2 =
3, p3 = 1 and the per-period resource requirements rπik are given by

rπ11 = 1, rπ21 = 2, rπ31 = 3, rπ12 = rπ22 = rπ32 = 1.

A feasible schedule for this instance is shown in Figure 1.6. In this schedule
activity 1 needs 3 units of resource 1 in the subset P1(1) and 1 unit of resource
2 in P2(1). Activity 2 needs 2 units of resource 1 in P1(1), 2 · 2 = 4 units of
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1

Figure 1.6: Feasible schedule for Example 1.4

resource 1 in P1(2), and activity 3 needs 3 units of resource 1 in P1(2). Activity
2 cannot start in time period 4 ∈ P2(1) since resource 2 is already completely
consumed in time period 3 ∈ P2(1) by activity 1. Furthermore, activity 3 cannot
be scheduled in a time period of the subset P1(1) since after scheduling activities
1 and 2 the remaining capacity 1 in P1(1) is less than rπ31 = 3. Note that it would
also be feasible to process activity 3 in the time periods 6 or 7 in P1(2). �

Often, the subsets Pk(τ) are intervals (like the sets P1(1), P1(2) above). As an
example consider a worker with a working time of 40 hours per week. This may
be modeled by a partially renewable resource which is available for 40 hours
in every week. On the other hand, we may also model a situation in which a
worker is allowed to work on at most 5 weekend days per month. In this case a
partially renewable resource with capacity 5 is introduced which is constrained
over the subset of all weekend time periods.

Renewable resources Kρ may be considered as a special case of partially re-
newable resources by introducing for each resource k ∈ Kρ and for t = 1, . . . , T
subsets Pk(t) := {t} consisting of single time periods. Furthermore, the capacity
is set to Rπ

k(t) := Rρ
k (or Rk(t) in the case of time-dependent resource profiles)

and the per-period requirement of activity i is defined by rπik := rρik.

Also non-renewable resources Kν may be considered as a special case of partially
renewable resources by introducing for each resource k ∈ Kν one subset Pk(1) :=
{1, . . . , T} covering the complete time horizon. Furthermore, the capacity is
set to Rπ

k(1) := Rν
k and the per-period requirement of activity i is defined by

rπik := rνik/pi (recall that for non-renewable resources the resource requirements
are given for the whole time horizon and not per period).

Storage resources

The availability of renewable resources like machines or people is independent
of their previous utilization. For so-called storage resources (sometimes also
called “cumulative” resources, not to be mixed up with the definition of disjunc-
tive/cumulative resources on page 6) the resource availability at a certain time
depends on the resource requirements of activities scheduled up to this time.
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Such a resource can model the inventory level in some storage facility which is
depleted and replenished over time.

For a storage resource k each activity i has resource demands r+ik, r−
ik ∈ N where

r+ik is the amount of resource k that is replenished by activity i, and r−
ik denotes

the amount of resource k that is depleted by i. It is assumed that storage
resources are depleted at start times and replenished at completion times of the
activities. The value r+0k of the dummy start activity 0 corresponds to the initial
capacity of resource k. Associated with each storage resource k are a lower
capacity (safety stock) Rk ≥ 0 and an upper capacity Rk ≥ 0. In a feasible
schedule for all time periods the accumulated inventory level of every resource
k must be contained in the interval [Rk, Rk], i.e.

Rk ≤
∑

{i|Si+pi≤t}
r+ik −

∑
{i|Si≤t}

r−
ik ≤ Rk for all t = 1, . . . , T.

Renewable resources Kρ may be considered as a special case of storage resources
with Rk = 0, Rk = Rρ

k and r+0k = Rρ
k. While activity i depletes r−

ik = rρik units
of resource k at its start, it replenishes r+ik = rρik at its completion. Also non-
renewable resources Kν may be considered as a special case of storage resources
with Rk = 0, Rk = Rν

k and r+0k = Rν
k. All activities i are depleting activities with

r−
ik = rνik.

With the concept of storage resources we may model storage facilities (like tanks,
containers or buffers), inventories of intermediate products within a production
process, or investment capital.

Setup or transfer times

In a scheduling model with setup times (changeover times, transfer times)
between the processing of activities resources are not available for a certain
period since they have to be changed or transported. Setup times may, for
example, be used to model changeover times of a machine which occur when
the machine is changed for the production of a different product (e.g., if a
painting machine has to be prepared for a different color). Another application
are transfer times where resources have to be transported from one location to
another before they can be used again.

Usually, setup times are assumed to be sequence-dependent, i.e. the time needed
for changing the resource depends on the previous and the next activity. If skij
denotes the setup time between activities i, j for resource k, we must satisfy
Ci + skij ≤ Sj when acitivity j is directly processed after activity i on resource k.

Often one assumes that the setup times satisfy the strong triangle inequality

skih + skhj ≥ skij for all i, j, h ∈ V, k = 1, . . . , r (1.2)

or at least the weak triangle inequality

skih + ph + skhj ≥ skij for all i, j, h ∈ V, k = 1, . . . , r. (1.3)
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Other objective functions

Besides the objective of minimizing the makespan Cmax :=
n

max
i=1
{Ci} one may

consider other objective functions f(C1, . . . , Cn) depending on the completion

times of the activities. Examples are the total flow time
n∑
i=1

Ci or more gener-

ally theweighted (total) flow time
n∑
i=1

wiCi with non-negative weights wi ≥ 0.

Other objective functions depend on due dates di which are associated with the
activities. With the lateness Li := Ci−di, the tardiness Ti := max{0, Ci−di},

and the unit penalty Ui :=

{
0, if Ci ≤ di
1, otherwise

the following objective functions

are common:

the maximum lateness Lmax :=
n

max
i=1

Li

the total tardiness
n∑
i=1

Ti

the total weighted tardiness
n∑
i=1

wiTi

the number of late activities
n∑
i=1

Ui

the weighted number of late activities
n∑
i=1

wiUi.

All these objective functions f are monotone non-decreasing in the completion
times Ci, i.e. they satisfy f(C1, . . . , Cn) ≤ f(C ′

1, . . . , C ′
n) for completion time

vectors C, C ′ with Ci ≤ C ′
i for all i = 1, . . . , n. They are also called regular.

On the other hand, monotone non-increasing functions are called antiregular.

The maximum earliness
n

max
i=1

Ei with Ei := max{0, di − Ci} is an exam-

ple for an antiregular objective function, the weighted earliness-tardiness
n∑
i=1

wE
i Ei +

n∑
i=1

wT
i Ti with earliness weights wE

i ≥ 0 and tardiness weights wT
i ≥ 0

is neither regular nor antiregular. Also the objective function
∑

wiCi with ar-
bitrary weights wi ∈ R is nonregular. If wi > 0, activity i should be completed
as early as possible, if wi < 0, activity i should be completed as late as possible.

Another nonregular objective function related to the last one deals with the
so-called net present value. Associated with each activity i is a so-called
cash-flow cFi ∈ R which is supposed to occur at the completion time Ci of i. It
may be positive (i.e. a payment is received) or negative (i.e. a payment has to
be given). The objective is to maximize the so-called net present value (NPV)
n∑
i=1

cFi e−αCi , where α ≥ 0 is a given discount rate.

Besides these time-oriented objective functions also resource-based objective
functions may be considered. They occur for example in the area of resource
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investment and resource levelling problems. In the resource investment prob-
lem (RIP) the resource capacities Rk are not given, but have to be determined
as additional decision variables. Providing one unit of resource k costs ck ≥ 0.
The objective is to find a schedule with Cmax ≤ T for a given deadline T where

the resource investment costs
r∑

k=1

ckRk are minimized.

In resource levelling problems (RLP) the variation of the resource usage
over time is measured. Let ck ≥ 0 be the cost for resource k and denote by rSk (t)
the resource usage of resource k in period t ∈ {1, . . . , T} for a given schedule
S, where rSk (0) := 0 is assumed. Besides the resouce capacity Rk a target value
Yk ≥ 0 for resource k is given.

In resource deviation problems the deviations (overloads) of the resource
usages from a given resource profile are minimized. This can be done by mini-
mizing

the deviation
r∑

k=1

ck
T∑
t=1

|rSk (t)− Yk|,

the overload
r∑

k=1

ck
T∑
t=1

max{0, rSk (t)− Yk}, or

the squared deviation
r∑

k=1

ck
T∑
t=1

(rSk (t)− Yk)
2.

The value Yk may also be replaced by the average resource usage

rk :=
n∑
i=1

rikpi/T.

On the other hand, in so-called resource variation problems, the resource
usages should not vary much over time. This can be achieved by minimizing

r∑
k=1

ck

T∑
t=1

|rSk (t)− rSk (t− 1)|,

r∑
k=1

ck

T∑
t=1

max{0, rSk (t)− rSk (t− 1)}, or

r∑
k=1

ck

T∑
t=1

(rSk (t)− rSk (t− 1))2.

Finally, we note that an RCPSP with maximum lateness objective function can
be reduced to an RCPSP with makespan objective function and negative time-

lags. This follows from the fact that Lmax =
n

max
i=1
{Ci−di} =

n
max
i=1
{Si+pi−di} ≤

L for a threshold value L if and only if Si + pi − di ≤ L for all activities
i = 1, . . . , n. By setting time-lags di,n+1 := −(di−pi) for the dummy terminating
activity n + 1, the relations Si + pi − di = Si + di,n+1 ≤ Sn+1 must be satisfied.
Thus, by minimizing the makespan (which is equivalent to minimizing Sn+1) we
minimize the maximum lateness Lmax.
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1.2 Machine Scheduling

Important special cases of resource-constrained project scheduling problems are
machine scheduling problems (where the resources correspond to machines).
They will be discussed in more detail in this section.

1.2.1 Single-machine scheduling

In the simplest machine scheduling model we are given n jobs j = 1, . . . , n with
processing times pj which have to be processed on a single machine. Additionally,
precedence constraints may be given. Such a problem can be modeled by an
RCPSP with one renewable disjunctive resource r = 1, capacity R1 = 1 and
resource requirements rj1 = 1 for all jobs j = 1, . . . , n.

Example 1.5 : Consider an instance with n = 5 jobs, processing times p1 = 3,
p2 = 2, p3 = 4, p4 = 2, p5 = 3 and precedence constraints 1→ 3, 2→ 4, 4→ 5.
A feasible schedule for this instance with makespan Cmax = 14 is shown in Figure
1.7.

� t
1 2 3 4 5

0 3 5 9 11 14

Figure 1.7: Single machine schedule
�

1.2.2 Parallel machine scheduling

Instead of a single machine we may have m machines M1, . . . , Mm on which the
jobs have to be processed. If the machines are identical, the processing time pj
of job j does not depend on the machine on which j is processed. This problem
corresponds to an RCPSP with one cumulative resource where R1 = m and
rj1 = 1 for j = 1, . . . , n.

Example 1.6 : Consider an instance with n = 8 jobs, m = 3 machines, pro-
cessing times p1 = 1, p2 = 3, p3 = 4, p4 = 2, p5 = 2, p6 = 3, p7 = 1, p8 = 5
and precedence constraints as shown in the left part of Figure 1.8. A feasible
schedule with makespan Cmax = 9 is shown in the right part of the figure. �

Contrary to identical machines, for so-called unrelated machines the processing
time pjk of job j depends on the machine Mk (k = 1, . . . , m) on which j is
processed. The machines are called uniform if pjk = pj/sk where sk may be
interpreted as the speed of machine Mk. Problems with unrelated machines can
be modeled as a multi-mode RCPSP with m renewable resources and Rk = 1 for
k = 1, . . . , m. Each job j has m modes corresponding to the machines on which
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Figure 1.8: Schedule for identical parallel machines

j may be processed. If job j is processed in mode k, then pjk is its processing
time and j uses only one unit of resource k (machine Mk).

A further generalization are scheduling problems with multi-purpose ma-
chines (flexible machines). In this situation we associate with each job j a
subset of machines μj ⊆ {M1, . . . , Mm} indicating that j can be executed by
any machine of this set. If job j is processed on machine Mk, then its pro-
cessing time is equal to pjk (or simply to pj if the processing time does not
depend on the assigned machine). This problem can be formulated as above
as a multi-mode RCPSP with m renewable resources where each job j has |μj|
modes corresponding to the machines on which j may be processed.

1.2.3 Shop scheduling

In so-called shop scheduling problems the jobs consist of several operations which
have to be processed on different machines. In general-shop scheduling prob-
lems we have jobs j = 1, . . . , n and m machines M1, . . . , Mm. Job j consists
of nj operations O1j , . . . , Onj ,j. Two operations of the same job cannot be pro-
cessed at the same time and a machine can process at most one operation at any
time. Operation Oij must be processed for pij time units on a dedicated ma-
chine μij ∈ {M1, . . . , Mm}. Furthermore, precedence constraints may be given
between arbitrary operations.

Such a general-shop scheduling problem can be modeled as an RCPSP with
r = m + n renewable resources and Rk = 1 for k = 1, . . . , m + n. While
the resources k = 1, . . . , m correspond to the machines, the resources m + j
(j = 1, . . . , n) are needed to model the fact that different operations of job j

cannot be processed at the same time. Furthermore, we have
n∑

j=1

nj activities

Oij, where operation Oij needs one unit of “machine resource” μij and one unit
of “job resource” m + j.

Important special cases of the general-shop scheduling problem are job-shop,
flow-shop, and open-shop problems, which will be discussed next.
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Job-shop problems

A job-shop problem is a general-shop scheduling problem with chain prece-
dences of the form

O1j → O2j → . . .→ Onj ,j

for j = 1, . . . , n (i.e. there are no precedences between operations of different
jobs and the precedences between operations of the same job build a chain). Note
that for a job-shop problem no “job resource” is needed, since all operations of
the same job are linked by a precedence relation (and thus cannot be processed
simultaneously).

Flow-shop problems

A flow-shop problem is a special job-shop problem with nj = m operations
for j = 1, . . . , n and μij = Mi for i = 1, . . . , m, j = 1, . . . , n, i.e. operation Oij

must be processed on Mi. In a so-called permutation flow-shop problem
the jobs have to be processed in the same order on all machines.

Example 1.7 : In Figure 1.9 a feasible schedule for a permutation flow-shop
problem with n = 4 jobs and m = 3 machines is shown.

M1

M2

M3

O11 O12 O13 O14

O21 O22 O23 O24

O31 O32 O33 O34

Figure 1.9: Permutation schedule for a flow-shop problem
�

Open-shop problems

An open-shop problem is like a flow-shop problem but without any precedence
relations between the operations. Thus, it also has to be decided in which order
the operations of a job are processed.

Example 1.8 : In Figure 1.10 a feasible schedule for an open-shop problem
with n = 2 jobs and m = 3 machines is shown. In this schedule the operations
of job 1 are processed in the order (O11, O31, O21), the operations of job 2 are
processed in the order (O32, O22, O12). �
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M1

M2

M3

O11 O12

O22 O21

O32 O31

Figure 1.10: Feasible schedule for an open-shop problem

1.2.4 Multi-processor task scheduling

In a multi-processor task scheduling problem we have n jobs j = 1, . . . , n
and m machines M1, . . . , Mm. Associated with each job j is a processing time
pj and a subset of machines μj ⊆ {M1, . . . , Mm}. During its processing job j
occupies all machines in μj simultaneously. Furthermore, precedence constraints
may be given between certain jobs.

This problem can be formulated as an RCPSP with r = m renewable resources
and Rk = 1 for k = 1, . . . , r. Furthermore,

rjk =

{
1, if Mk ∈ μj

0, otherwise.

Example 1.9 : Consider the following instance with n = 5 jobs and m = 3
machines:

j 1 2 3 4 5
μj {M1, M2} {M2, M3} {M1, M2} {M3} {M1, M2, M3}
pj 1 2 2 3 1

In Figure 1.11 a feasible schedule with makespan Cmax = 7 for this instance is
shown. It does not minimize the makespan since by processing job 1 together
with job 4 we can get a schedule with Cmax = 6.

M1

M2

M3

1

2

3

4

5

0 1 3 5 7

Figure 1.11: Feasible schedule for a multi-processor task problem
�

Multi-mode multi-processor task scheduling problems are a combination of
problems with multi-processor tasks and multi-purpose machines. This means
that with each job a set of different machine subsets (processing alternatives) is
associated and a job needs all machines from a subset simultaneously.
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1.3 Applications of the RCPSP

In this section we present several applications of the RCPSP from different areas.

Application 1.1 : A cutting-stock problem

Materials such as paper, textiles, cellophane, etc. are manufactured in standard
rolls of a large width W which is the same for all rolls. These rolls have to be
cut into smaller rolls i = 1, . . . , n with widths wi such that the number of sliced
rolls is minimized. In Figure 1.12 a solution of a cutting-stock problem with
n = 15 smaller rolls is illustrated. In this solution 7 rolls have to be cut.

�
Cmax

W

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1.12: Solution of a cutting-stock problem

This problem can be formulated as an RCPSP with only one renewable resource
where R1 = W units of the resource are available. The activities i = 1, . . . , n
correspond to the rolls to be cut. Activity i has processing time pi = 1 and uses
ri1 = wi units of this resource. The makespan corresponds to the number of
standard rolls to be cut, i.e. a schedule with a minimal makespan corresponds
to a solution with a minimal number of sliced standard rolls. �

Application 1.2 : Aircraft maintenance

After a certain flight duration airplanes or helicopters have to be inspected.
Such an inspection consists of 300-400 tasks, each requiring 1-4 technicians for a
certain duration. Furthermore, with each task a working area in the airplane is
associated. Since in working areas like the cockpit or the cargo bay the physical
space is very restricted, only a limited number of technicians can work in such
an area simultaneously. Between certain tasks precedences may exist. The
objective is to find a schedule such that

• all maintenance tasks are executed for their given durations,

• for all tasks sufficient technicians are available,

• for all tasks the physical space of all areas is respected,
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• the precedences are respected, and

• the total duration is minimized.

This problem can be formulated as an RCPSP minimizing the makespan. The
inspection tasks correspond to activities, and the technicians are modeled by
a renewable resource whose capacity is equal to the number of available tech-
nicians. Each activity i has a given duration pi and needs a specified number
ai of technicians. In order to model the space restrictions, for each working
area an additional renewable resource is introduced whose capacity equals the
maximal number of technicians who can work simultaneously in the area. Then
each activity i additionally requires ai units from its corresponding working area
resource. The given precedences between certain tasks are modeled by corre-
sponding precedence relations. �

Application 1.3 : Scheduling of ground handling operations

At an airport several activities have to be performed when an aircraft stays
on the ground. Besides technical services (like fuelling, wheel and tire checks,
ground power supply, cooling and heating, cleaning of cockpit windows, de-
icing) passenger-related activities have to be executed (unloading and loading
of baggage, disembarkment and embarkment of passengers, catering and cabin
cleaning). Between some of these activities precedence relations exist (some
of them also with timing restrictions in form of minimal or maximal time-lags).
Furthermore, resources (like technical staff, ramp equipment, baggage cars) with
limited capacities are needed. The objective is to find a feasible schedule such
that the ground time of the aircrafts is as small as possible. This problem may
be modeled as an RCPSP with generalized precedence constraints. �

Application 1.4 : Gate scheduling

Another optimization problem arising at an airport is the assignment of flights
to terminal positions (gates). Given is a flight schedule containing for every
flight its arrival time, the assigned aircraft and the next flight for this aircraft
with a corresponding departure time. With each flight a subset of gates is
associated to which the aircraft can be assigned (due to length restrictions not
every assignment is feasible). An aircraft goes through two or three stages
at the airport: arrival, optional intermediate parking, and departure. At any
stage a gate must be assigned to the aircraft, different gates are possible, then
the aircraft has to travel between them (so-called towing). The objective is to
assign each flight to one or more feasible gates and to determine starting and
completion times for these assignments such that no conflict between different
aircrafts arise, the total flight-gate preference value (e.g., taking into account
passenger walking distances) is maximized, and the number of required towing
operations is as small as possible.

This problem may be formulated as multi-mode RCPSP where the gates corre-
pond to resources and modes. For every flight three activities are introduced:
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one arrival, one parking, and one departure activity. These three activities are
linked by precedence relations ensuring that they are processed in this order (cf.
Figure 1.13).

arrival i

�
pmini

Si Ci

� parking j

pminj

Sj Cj

� departure k

�
pmink

Sk Ck

transfer transfer

Figure 1.13: Three activities for every flight

• For an arrival activity i its starting time Si is fixed to the arrival time of the
corresponding flight. Contrary to the standard RCPSP no fixed processing
time, but only a minimal processing time pmin

i is given (modeling the
minimum time required for passenger disembarkment, baggage unloading,
etc.). The completion Ci is a decision variable and must satisfy Ci ≥
Si + pmin

i .

• Symmetrically, for a departure activity k the completion time Ck is fixed to
the departure time of the corresponding flight and a minimum processing
time pmin

k is given. The starting time Sk has to be determined such that
Sk ≤ Ck − pmin

k holds.

• For every flight between the arrival and departure activities a parking
activity j is introduced. For this activity, both the starting time Sj and
the completion time Cj have to be determined. Since during the stay
at the airport an aircraft must always be assigned to some position, the
starting time Sj has to be equal to Ci plus the transfer time needed for
the towing operation between arrival and parking gate. Similarly, the
completion time Cj has to be equal to Sk minus the transfer time needed
for the towing operation between parking and departure gate. These two
equality constraints can be modeled by minimal and maximal time-lags
(with the same value). Finally, again a minimal processing time pmin

j for
parking is given, i.e. we must satify Cj − Sj ≥ pmin

j .

Every gate is modeled as a disjunctive resource to which only one aircraft can
be assigned at any time. Additionally, between two successive assignments se-
quence dependent setup (transfer) times may have to be taken into account.
Furthermore, for every activity a set of modes is introduced corresponding to
all gates to which the aircraft can be assigned. The objective is to find modes
as well as starting and completion times for all activities such that the timing
and resource constraints are respected and the objective function is optimized.

�
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Application 1.5 : Batch scheduling in process industries

In process industries (e.g., chemical, pharmaceutical, or food industry) final
products are built by several successive transformations of intermediate prod-
ucts. In this context operations correspond to chemical reactions in processing
units like reactors, heaters or filters. An operation must be carried out on one
out of several alternative processing units. Each operation needs several input
products and produces different output products. Intermediate products may
be perishable (i.e. have only a limited shelf-life and must be consumed after
this period) or may be stocked in dedicated storage facilities like tanks or silos.
Furthermore, cleaning times may have to be taken into account on processing
units between different operations.

In a batch processing mode the intermediate and final products are partitioned
into different batches which specified sizes (specifying the quantities of needed
input products and produced output products). All input products have to be
available at the start of an operation, the output is available after the completion
of an operation.

After the sizes of the batches have been determined, in the scheduling problem

• the operations have to be allocated to processing units and storage facili-
ties, and

• the operations have to be scheduled such that the capacities of all process-
ing units and storage facilities are not exceeded and the total processing
time is minimized.

This batch scheduling problem can be formulated as an RCPSP with renewable
and storage resources, setup times, and makespan objective. Each processing
unit type is modeled as a renewable resource whose capacity is equal to the
number of available processing units belonging to this type. Each operation
corresponds to an activity which needs a specified processing unit for a certain
amount of time. Precedence constraints exist between operations which are
linked due to the production structure (e.g., from input to intermediate products
as well as from intermediate to output products). Every intermediate product
corresponds to a storage resource k. If an operation i produces an intermediate
product, r+ik equals the number of units produced, if i consumes an intermediate
product, r−

ik equals the number of units consumed. The capacity Rk is equal to
the safety stock of the product and Rk equals the maximal number of units that
can be stored. For perishable products with zero shelf life time, we have Rk =
Rk = 0. Finally, the cleaning times may be modeled as sequence-dependent
setup times for the activities on the resources corresponding to the processing
units.

In an extended model for each operation several processing alternatives may
exist (differing in the required processing unit and the processing time needed).
Such a situation can be modeled as a multi-mode RCPSP where each processing
alternative corresponds to a mode. Furthermore, also minimal and maximal
time-lags may be given between certain operations. �
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Application 1.6 : High-school timetabling

In a basic high-school timetabling problem we are given m classes c1, . . . , cm, h
teachers A1, . . . , Ah and T teaching periods t = 1, . . . , T . Furthermore, we have
lectures i = 1, . . . , n. Associated with each lecture i is a unique teacher Aμ(i)

and a unique class cν(i). A teacher Aj may be available only in certain teaching
periods. The corresponding timetabling problem is to assign the lectures to the
teaching periods such that

• each class has at most one lecture in any time period,

• each teacher has at most one lecture in any time period, and

• each teacher has only to teach in time periods where he is available.

This problem may be formulated as an RCPSP with time-dependent resource
profiles and n activities, where each activity corresponds to a lecture i given by
teacher Aμ(i) for class cν(i).

Furthermore, we have r := m + h resources k = 1, . . . , m, m + 1, . . . , m + h.
The first m resources 1, . . . , m correspond to the classes, the last h resources
m + 1, . . . , m + h to the teachers A1, . . . , Ah. We have Rk = 1 for k = 1, . . . , m.
The availability of the resources k = m + 1, . . . , m + h is time-dependent:

Rm+j(t) =

{
1, if teacher Aj is available in period t
0, otherwise.

If activity i is a lecture for class cl given by teacher Aj , then its resource require-
ment for resource k is

rik =

{
1, if k = l or k = m + j
0, otherwise.

In a basic version of the problem one has to find a feasible schedule with Cmax ≤
T . In practice, many additional constraints may have to be satisfied, e.g.

• for each class or teacher the number of teaching periods per day is bounded
from above and below,

• certain lectures must be taught in special rooms,

• some pairs of lectures have to be scheduled simultaneously,

• the lectures of a class given by the same teacher should be spread uniformly
over the week,

• classes or teachers should not have much idle periods on a day, etc.
�
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Application 1.7 : An audit-staff scheduling problem

A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am. Job Jl

consists of nl tasks (l = 1, . . . , g). There may be precedence constraints i1 → i2
between tasks i1, i2 of the same job. Associated with each job Jl is a release
time rl, a due date dl and a weight wl.

Each task must be processed by exactly one auditor. If task i is processed by
auditor Ak, then its processing time is pik. Auditor Ak is available during disjoint
time intervals [sνk, lνk ] (ν = 1, . . . , mk) with lνk ≤ sν+1k for ν = 1, . . . , mk − 1.
Furthermore, the total working time of Ak is bounded from below by H−

k and
from above by H+

k with H−
k ≤ H+

k (k = 1, . . . , m).

We have to find an assignment α(i) for each task i = 1, . . . , n :=
g∑

l=1

nl to an

auditor Aα(i) and to schedule the assigned tasks such that

• each task is processed without preemption in a time window of the assigned
auditor,

• the total workload of Ak is bounded by H−
k and H+

k for k = 1, . . . , m,

• the precedence constraints are satisfied,

• all tasks of Jl do not start before time rl, and

• the total weighted tardiness
g∑

l=1

wlTl is minimized.

Other features may be added to the model:

• Restricted preemption in the sense that if a task cannot be finished within
one working interval of an auditor, it must be continued at the beginning
of the next interval of the same auditor.

• Setup times and setup costs if an auditor moves from one job to another.

• Costs cik for assigning task i to auditor Ak. By setting cik := ∞ we may
model that task i cannot be assigned to auditor Ak. In this situation the

term
n∑
i=1

ciα(i) may be added to the objective function.

Audit-staff scheduling problems may be modeled as multi-mode resource-con-
strained project scheduling problems with time-dependent resource profiles. For
each auditor a doubly-constrained resource is introduced which on the one hand
as a renewable resource is constrained by the availability profile of the auditor
and, on the other hand as a non-renewable resource, by the working time bounds
H−

k , H+
k .

In Figure 1.14 an example for an audit-staff scheduling problem with g = 2 jobs
and m = 3 auditors is considered. We assume r1 = r2 = 0, d1 = 11, d2 = 12 and
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Figure 1.14: An audit staff schedule

w1 = 1, w2 = 2. Auditor A1 is not available in the time intervals [3, 6], [7, 8],
[10, 11], [12, 15], A2 is not available in the intervals [0, 2], [5, 6], [9, 10], [11, 14],
and A3 is not available in [2, 5],[10, 12],[15, 16]. Additionally, we assume that
restricted preemptions are allowed.

In Figure 1.14 also a feasible schedule is shown, where the shaded areas indicate
the time periods during which the auditors are not available. The objective
function value of this schedule is w1T1 + w2T2 = 1 · 0 + 2 · (14− 12) = 4. �

Application 1.8 : Sports league scheduling

We consider a sports league consisting of 2n different teams i = 1, . . . , 2n which
play a single or double round robin tournament during a season. While in a
single round robin tournament (SRRT) each team plays against each other team
exactly once (either at home or away), in a double round robin tournament
(DRRT) each team plays against each other team twice (once at home, once
away). We consider so-called temporally-constrained tournaments in which the
number of rounds (days for games) is equal to the minimal number of days
required to schedule all games.

For a SRRT this means that 2n− 1 rounds t = 1, . . . , 2n− 1 are given, in which
the

(
2n
2

)
= n(2n − 1) games are scheduled. Every team has to play exactly

one game in each round, i.e. n games occur in each round. If no additional
constraints have to be respected, a feasible SRRT schedule exists for every even
number 2n of teams and can be constructed by using a graph model. An example
for such a feasible SRRT schedule with 2n = 6 teams and 2n − 1 = 5 rounds
can be found in Figure 1.15.

If the league consists of an odd number 2n+1 of teams, in each round one team
has a ‘bye’, i.e. does not play. This situation may be reduced to the previous
case with an even number of teams by adding a dummy team 2n + 2. Then in
each round the team playing against 2n + 2 has a bye.
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round 1 round 2 round 3 round 4 round 5
1-6 1-3 1-5 1-2 1-4
2-5 2-6 2-4 3-5 2-3
3-4 4-5 3-6 4-6 5-6

Figure 1.15: Feasible SRRT schedule with 2n = 6 teams

For a DRRT we assume that the season is partitioned into two half series, where
each half consists of 2n−1 rounds and each pairing has to occur exactly once in
each half series. If the pairing i− j is a home game for team i in the first half, it
is a home game for team j in the second half. The second half series is usually
not scheduled independently from the first. Often, the second series is planned
complementarily to the first, i.e. the pairings of round 2n− 1 + t in the second
half series are the same as in round t of the first half series for t = 1, . . . , 2n− 1
(with exchanged home teams).

An example for a feasible DRRT schedule with 2n = 6 teams and 2(2n−1) = 10
rounds can be found in Figure 1.16.

1 2 3 4 5 6 7 8 9 10
1-6 3-1 1-5 2-1 1-4 6-1 1-3 5-1 1-2 4-1
2-5 6-2 4-2 5-3 3-2 5-2 2-6 2-4 3-5 2-3
4-3 5-4 3-6 6-4 5-6 3-4 4-5 6-3 4-6 6-5

Figure 1.16: Feasible DRRT schedule with 2n = 6 teams

When the season for a sports league is planned, in general many constraints
have to be respected. In particular, organisational, attractiveness, and fairness
constraints are important. Organisational constraints cover a set of rules which
have to guarantee that all the games can be scheduled according to the reg-
ulations. Attractiveness constraints focus on what stadium visitors, television
spectators and the players expect from the sequence of games (i.e. a varied,
eventful, and exciting season). Finally, fairness constraints have to guarantee
that no team is handicapped or favored in comparison with the competitors.

We assume that all requirements for the second half can be transformed into
requirements for the first half series (e.g., if in a round of the second half the
stadium for a team is unavailable, the team has to play at home in the corre-
sponding round of the first half). Thus, it is sufficient to find a schedule for
the first half series consisting of the rounds t = 1, . . . , T := 2n − 1 taking into
account constraints for the second half series.

Such a problem may be formulated as a multi-mode RCPSP with time-dependent
resource profiles as follows. Since we only plan one half series, we have n(2n−1)
games which are represented by all pairs (i, j) with i, j ∈ {1, . . . , 2n} and i < j.
These pairs correspond to activities, which may be processed in two different
modes (in mode H scheduling the game at the home stadium of team i, or in
mode A scheduling the game at the home stadium of team j). All activities
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have unit processing times in each mode. We introduce 2n team resources for
i = 1, . . . , 2n with constant capacity 1, ensuring that each team plays at most
one game in each round. An activity corresponding to the game (i, j) needs one
unit of the two team resources belonging to teams i and j.

In the following we describe additional constraints which can be formulated with
the concepts of resources:

• Stadium availabilities: Due to some other events (e.g., concerts or
games of other sports disciplines) some stadiums may not be available
in certain rounds. We assume that each team i specifies for all rounds
t = 1, . . . , T̂ := 2(2n− 1) the values

Sit =

{
1, if the stadium of i is available in round t
0, otherwise.

If Sit = 0 for some round t holds, team i cannot play a home game in
round t, i.e. it has to play away.

To model such a situation we introduce 4n stadium resources STADRES1(i)
(first half series) and STADRES2(i) (transformation of second half) for
i = 1, . . . , 2n with variable 0-1 resource profiles

STADRES1(i)(t) = Sit ∈ {0, 1} und STADRES2(i)(t) = Si,t+2n−1 ∈ {0, 1}

for t = 1, . . . , 2n − 1 ensuring that the stadium availabilities Siτ (τ =
1, . . . , T̂ ) are respected in the first and second half series.

An activity corresponding to the game (i, j) needs one unit of stadium
resources STADRES1(i) and STADRES2(j) in mode H and one unit of
STADRES1(j) and STADRES2(i) in mode A, respectively.

• Regions: If teams are located close to each other in a region, not all
of them should play at home in a round simultaneously (since otherwise
not sufficient police is available and the trains may be overcrowded). We
assume that ρ regions R1, . . . ,Rρ are specified as subsets of teams which

are located in the same region. In each round at most � |Rr |
2
	 teams from

region Rr may have a home game. For example, if a region contains 5
teams, we require that at most �5

2
	 = 3 of them have a home game in the

same round. If, especially, two teams share the same stadium, a region
containing these two teams may be used to model the situation that in no
round the two teams can play at home simultaneously.

To model regions we introduce 2ρ region resources REGRES1(r) (first half
series) and REGRES2(r) (transformation of second half) for regions r =

1, . . . , ρ with constant capacity � |Rr |
2
	.

An activity corresponding to the game (i, j) needs one unit of region re-
sources REGRES1(reg[i]) and REGRES2(reg[j]) in mode H and one unit
of region resources REGRES1(reg[j]) and REGRES2(reg[i]) in mode A,
respectively, where reg[i] denotes the region of team i.
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• Games with forbidden rounds: Certain games may not be scheduled
in certain rounds (e.g., games between two teams in the same region if in
that region already another event takes place in this round, top games not
at the beginning of the season, games between league climbers not at the
end). We assume that for all such games (i, j) a subset T̂(i,j) ⊂ {1, . . . , T}
of forbidden rounds is given.

To model this case we introduce for each game (i, j) with forbidden rounds
one resource FORBRES(i,j) with variable 0-1 resource profile

FORBRES(i, j)(t) =

{
0, if t ∈ T̂(i,j)
1, otherwise.

Then an activity corresponding to a forbidden game (i, j) needs one unit
of resource FORBRES(i,j) in both modes.

• Attractive games: In order to distribute interesting games over the
whole season, in each round the number of attractive games may not ex-
ceed a given number. We assume that all attractive games (e.g., top games
or local derbies) are specified in a set AG and that a limit agmax for the
number of attractive games per round is given. We introduce one resource
AGRES with constant capacity agmax and each activity corresponding to an
attractive game (i, j) needs one unit of resource AGRES in both modes.

• Distribution of home and away games: In each half series each
team should play approximately half of its games at home, the other half
away. Thus, at most �2n−1

2
	 home games (away games) may be sched-

uled for each team in the first half. For this purpose we introduce 2n
non-renewable home resources HOMERES(i) and 2n non-renewable away
resources AWAYRES(i) for teams i = 1, . . . , 2n with capacity �2n−1

2
	.

An activity corresponding to the game (i, j) needs one unit of home re-
source HOMERES(i) and one unit of away resource AWAYRES(j) in mode H
and one unit of HOMERES(j) and AWAYRES(i) in mode A, respectively.

Soft constraints may be:

• Home/away preferences: Besides the (hard) stadium unavailabilities
Sit, teams may have preferences for home or away games in certain rounds.
For example, during public festivals home games are preferred, while away
games are preferred when another attractive event in the same region is
already scheduled on a certain date (e.g., also games of other leagues).

• Opponent strengths: In order to distribute games against stronger and
weaker opponents evenly over the season, for each team the opponents in
two consecutive rounds should have different strengths.

• Breaks: Often it is not desired that teams play two home or two away
games in two consecutive rounds.

Violations of all these constraints may be penalized in the objective function
(e.g., by summing up penalties for all violations). �
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1.4 Reference Notes

In recent years a large number of papers has been published in the area of
project scheduling. The most important results and corresponding references
can be found in the books by Demeulemeester and Herroelen [58], Neumann
et al. [153], Artigues et al. [7] and the handbooks [191] edited by Wȩglarz as
well as [107] edited by Józefowska and Wȩglarz. Survey articles were written by
Özdamar and Ulusoy [159], Herroelen et al. [100], Brucker et al. [28], Kolisch
and Padman [120] and Wȩglarz et al. [192].

The concept of partially renewable resources was introduced by Böttcher et al.
[23] and Schirmer and Drexl [173]. The discrete time/resource trade-off problem
(DTRTP) was first studied by De Reyck et al. [59] and later also tackled in
Demeulemeester et al. [55]. Storage resources are considered in Neumann and
Schwindt [151], models for resource transfers in Krüger and Scholl [129]. The
concept of mode identity is described in Salewski et al. [171]. In the literature
several additional variants of resources have been introduced (e.g., so-called
synchronizing resources or allocatable resources). Such variants and extensions
of the RCPSP are summarized in Hartmann and Briskorn [93] as well as in
Wȩglarz et al. [192].

For machine scheduling problems cf. the books of B�lażewicz et al. [20], [21],
Brucker [27], Pinedo [165], [166] and the handbook [135] edited by Leung.

Connections between packing problems and project scheduling models are consi-
dered in Hartmann [90]. In Brimberg et al. [26] aircraft maintenance problems
with restricted working areas are studied. The handling of airport ground pro-
cesses is discussed in Kuster and Jannach [131] as well as in Dorndorf [65]. In
[65] also models and solution algorithms for gate scheduling can be found. Batch
scheduling problems in process industries have been studied by Schwindt and
Trautmann [175] and Neumann et al. [152].

A survey on timetabling problems is given in Schaerf [172], connections between
timetabling and resource-constrained project scheduling problems are discussed
in Brucker and Knust [35]. An RCPSP model for a school timetabling prob-
lem can be found in Drexl and Salewski [70], a course scheduling problem at
Lufthansa was solved by Haase et al. [88]. Solution algorithms for audit-staff
scheduling problems were developed in Dodin et al. [63] and Brucker and Schu-
macher [40]. Drexl and Knust [69] present graph- and resource-based models for
sports league scheduling problems, a special problem of scheduling a table-tennis
league is treated in Knust [116]. The annotated bibliography by Kendall et al.
[109] provides a general overview on sports scheduling.

Additional applications of RCPSP models and solution methods can be found
in Mellentien et al. [143] (scheduling the factory pick-up of new cars), Bomsdorf
and Derigs [24] (movie shoot scheduling problem), Bartels and Zimmermann
[14] (scheduling tests in automotive R&D projects), Lorenzoni et al. [136] (port
operations).



http://www.springer.com/978-3-642-23928-1
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