Chapter 2
Linear Algebra

Fix a fractional &p-ideal ¢ D 0. In this chapter we introduce the linear algebraic
notions of c-polarized RM modules and c-polarized CM modules, and show that
certain spaces of special endomorphisms of these objects carry natural quadratic
forms. The modules themselves will reappear in Chap.3 as the first homology of
abelian surfaces over C with real and complex multiplication, and the quadratic
spaces of special endomorphisms will underlie the construction of Hilbert modular
Eisenstein series in Sect. 4.5.

2.1 The Reflex Algebra

A CM type of E is an unordered pair ¥ = {7, m,} of Q-algebra homomorphisms
7y, my o E — C whose restrictions to F are related by

mi|lF = m|Foo.

By Galois theory, B — Homg_a¢(B. Q%2) establishes an equivalence between the
category of étale Q-algebras and the category of finite sets with a continuous action
of the absolute Galois group Gg = Gal(Q"¢/Q). If we fix an embedding Q¢ — C,
the set of all CM types of E becomes a Gg-set, and so determines an étale Q-algebra
which we call E®. Thus there is a canonical bijection X > ¢x

{CM types of E} = Homg_g(EF, C). (2.1)

The algebra E* and the bijection (2.1) can be made more explicit as follows.
Consider the commutative Q-algebra

M = FE Qiures E.
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12 2 Linear Algebra

On the left we view E as an F-algebra via the inclusion x +— x of F into E, and on
the right we view E as an F-algebra via the conjugate embedding x +— x°. Thus
for any a,b € E and x € F we have the relation (xa) ® b = a ® (x°b). Define
(Q-algebra automorphisms p, T € Aut(M) by

pa®b)=b®a 1(@®b)=bQa.

Viewing E as a subalgebra of M via the embedding ¢ — a ® 1, we define Q-
algebras E* and F¥ by

TN

E = M(w»

Fi = plee’) F = M{wr®)
Q.

The Q-algebra E? is the reflex algebra of E. The reflex homomorphism ¢s :
E' — C associated to the CM type ¥ = {m,m,} is defined as the restriction
to E® of the Q-algebra homomorphism M — C defined by

Ef

a®b m(a)- mb).

The reflex field of ¥ is Ex = ¢x(E"), and s denotes the ring of integers of Ex.
For a prime q of Oy let I be the residue field of g.

Let x > x' denote the restriction to E* of the automorphisma ® b > @ ® b of
M, so that F¥ is the subalgebra of E? fixed by x > xT.

Lemma 2.1.1 1. In case (cyclic) E* is isomorphic to E, and x > x is complex
conjugation.

2. In case (biquad) E* is isomorphic to E| x E,, and x +— x" is the product of the
complex conjugations.

3. In case (nongal) Elisa quartic CM field which is not Galois over Q and is not
isomorphic to E. The automorphism x + x is complex conjugation.
In particular in case (biguad) F* =~ Q x Q, and in cases (cyclic) and (nongal)

F' is a real quadratic field.

Proof. This as an easy exercise in Galois theory, and is left to the reader. O
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A Hermitian form on an E*-module V is a pairing (, ) : V x V — E® that is
E"-linear in the first variable and satisfies (v, w) = (w,v)T.

2.2 Polarized RM Modules

Definition 2.2.1 An RM module is a pair (T, k7) in which T is a Z-module, and
k7 : Op — Endg(T) is a ring homomorphism making T into a projective O -
module of rank 2.

The polarization module P(T, kr) is the Op-module of alternating Z-bilinear
forms Ay : T x T — Z satisfying

Ar(kr(X)tr, 12) = Ar(t, k7 (x)t2)
forevery x € OF. A c-polarization of (T, kr) isaAr € P(T, kr) satisfying
T = {ll eT ®;Q: /\T(ll,lz) € Zforallt, € T}

The Or-module P(T, kr) is projective of rank one. Given a ¢-polarized RM module
T = (T,kr, A7), let j — j* be the involution of Endz(7T") ®z Q determined by

Ar(jti, ) = Ar(ty, j ).
A special endomorphism of T is a j € Endz(T) satisfying
kr(x)oj = jokr(x?)

forall x € O, and satisfying j* = j. The Z-module of all special endomorphisms
of T is denoted L(T), and we set

V(T) = L(T) ®; Q.
For a prime ¢, abbreviate L¢(T) = L(T) ®z Z¢ and V(T) = V(T) ®q Q.
Let J + J' be the main involution on M,(F), characterized by JJ' = det(J),
and define a Q-vector space
WMZ(Q) = {J e M,(F) : Jo = JL}

:%(a Si)eMg(F):aeFandb,ceQ .
dca

Here § € F is any nonzero element satisfying §° = —§. The determinant det is a
quadratic form on Wy, (q)-
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Proposition 2.2.2 1. Up to isomorphism there is a unique c-polarized RM mod-
ule, T.

2. The function Q1(j) = j o J defines a quadratic form on L(T).

3. There is an isomorphism of Q-quadratic spaces

(V(T), O1) = (Wi (). det).

4. The Q-quadratic space (V(T), QT) has rank 4, signature (2, 2), determinant dr,
and Hasse invariant (normalized as in [35])

hasse(V(T), Q1) = (%) € Br,(Q).

Here Bry(Q) is the 2-torsion subgroup of the Brauer group of Q.

Proof. Let T be a c-polarized RM module. The polarization A7 has the form Ar =
Trr/go Ar for aunique O -symplectic form Ay : TxT — D7, As T is projective
of rank two as an 0p-module we may fix an &p-linear isomorphism 7" =~ Or @ a
for some fractional O'r-ideal a whose image in Pic(OF) is traditionally called the
Steinitz class of T. Writing elements of Op @ a C F @ F as column vectors, the
fractional ideal a and the isomorphism may be chosen in such a way that

Ar(a.b)y="a-(,7")-b.

The condition that A7 is a c-polarization is then equivalent to a - ¢ = ©7%'. This
proves the uniqueness of T.

Using the above isomorphism 7 = Of @ a to view elements of 7" as column
vectors, any j € V(T) can be written uniquely in the form ¢ +— J - ¢t for some
J € M,(F). The condition j = j* translates to the condition J° = J*, and the
rule j — J establishes a bijection V(T) = Wiy, () identifying O with det. All of
the remaining claims are now elementary calculations. O

Let A7 be the F-symplectic formon Tp = T ®z Q determined by A7 = Trg/go
Ar, and define algebraic groups over Q

G = ReSF/QSp(TQ, AT)
H = SO(V(T), Or).

The group G acts on V(T) through orthogonal transformations by the rule g o j =
g o j og !, and this defines a homomorphism G — H. In this way one sees that
the construction of V(T) from T gives a concrete way of realizing the exceptional
isomorphism of real Lie algebras sp(2) x sp(2) — s0(2,2). For any choice of
Jj € V(T) with Qr(j) > 0 the inclusion H; — H of the isotropy subgroup of j
in H gives a concrete way of realizing the inclusion of real Lie algebras so(1,2) —
50(2,2). The above exceptional isomorphism will allow us to identify a Hilbert
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modular surface with an orthogonal Shimura variety. The inclusions so(1,2) —
50(2,2) for varying j will then have a moduli-theoretic incarnation in the form of
a family of special cycles of codimension one, the Hirzebruch—Zagier divisors, on
this Shimura variety.

2.3 Polarized CM Modules

Definition 2.3.1 A CM module is a pair (T,«r) in which T is a Z-module and
k7 : Op — Endg(T) is a ring homomorphism making T into a projective OF-
module of rank 1.

A c-polarization of (T, k) is a c-polarization A7 of the underlying RM module.
LetT = (T, kr, Ar) be a c-polarized CM module. Elementary linear algebra shows
that the c-polarization A7 satisfies

Ar(kr (X)), 12) = A7 (t1, k7 (X)12)

forall x € Og. If ¥ = {m,m} is a CM type of E then the homomorphism
of Q-vector spaces E — C x C defined by x — (71(x), m2(x)) extends to an
isomorphism of real vector spaces Er = C x C. We therefore acquire an action
kt.x of C x C on Tg, and in particular the diagonal embedding C — C x C = Eg
makes T into a C-vector space. There is a unique choice of CM type X for which
the Hermitian form on Tr

HT(an’)=AT(i'x’Y)+iAT(an’) (22)

(the scalar multiplication i - x of C on T depends on X, as just explained) is positive
definite.

Definition 2.3.2 Given a c-polarized CM module T the CM type of T is the unique
CM type X = X(T) for which the Hermitian form (2.2) has positive definite real
part.

Remark 2.3.3 Let T be a c-polarized CM module. If we fix an isomorphism of E -
modules E = Ty, then there is a unique oy € E* such that oy = —wr and

Ar(x,y) = Trgo(orxy).

If one makes a different choice of isomorphism E == Tg then wr is multiplied by an
element of Nmg,r(E™). The CM type of T is characterized as the unique CM type
Sfor which the induced C-module structure on Er makes i - wr € Fg totally positive.

Now fix a c-polarized CM module T and recall the Q-quadratic space (V(T), QT)
of Sect. 2.2 associated to the underlying RM module. We will use the action of &g
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on T to make V(T) into a Hermitian E*-module. First define an action of the Q-
algebra M of Sect.2.1 on

V(T) = {j € Endz(T) ®2 Q: kr(x) o j = j okr(x°) forall x € OF}
by _
(a®b)e j =«r(a)ojokr(h).

The subspace V(T) C I7(T) of x-fixed endomorphisms is stable under the action
of the subalgebra E¥ C M, although it is generally false that the Z-lattice L(T) C
V(T) is stable under the action of 0. If [ is a place of F' abbreviate Vi(T) =

V(T) ®p: F/.
Lemma 2.3.4 The Q-bilinear form on V(T) defined by

1, folv = Q1 + J2) = Q1(j1) — Q1 (J2)
satisfies [x ® ji, jolt = [j1, xT @ jo]r for every x € E".

Proof. We may assume thatx = a ® b + b ® a for some a, b € E, as elements of
this form generate E¥ as a Q-module. In the interest of simplifying the notation we
suppress k7, and simply view E as embedded in Endz (7)) ®7 Q. The essential point
isthat F = {f € Endg, (T)®zQ: f* = f}.Inparticular, as j; obo jr+ jroboj
is both x-fixed and F'-linear, it belongs to F', and so commutes with a. Thus

aojioboj,—jioboj,oa=j,obojioa—aojobo j
and similar reasoning shows that

jooaojiob—boj,oa0j=bojodoj,—jioao j,o0b.
Using these relations, direct calculation shows

[x e ji, jolr — [j1.xT @ jo]lr = 0.
O

It follows from Lemma 2.3.4 that there is a unique E*-Hermitian form (i, ja)T
on V(T) satisfying
/1, olr = Trge (U1, J2)r.

and that QPF( j) = {J. j)r is the unique F*¥-quadratic form on V(T) satisfying
Or =Trpz)g 0 Q%-

For any CM type X of E the restriction of ¢ 5 to F* is an archimedean place of
F* denoted co7-. Let 0o - be the other archimedean place of F*.
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Proposition 2.3.5 Suppose T has CM type X. The F*-quadratic space (V(T), QPr)
has signature (2, 0) at oo} and has signature (0, 2) at o07..

Proof. Abbreviate cot = oo% Let ¥ = {m, mp} be the CM type of T, and identify
Eg =~ CxC using the isomorphism z — (771(z), 72(z)). This makes T into a CxC-
module, and the idempotents e;, e, € Fgr induce a decomposition Tg = 71 & T»
in which each T is a one-dimensional C-vector space on which E acts through
7, : E — C. Each T comes with an R-symplectic form A (the restriction of A7 to
Ty) for which x + Ay (ix, x) is positive definite. For any f € Homg (77, T3) define
fY € Homg(T5, Ty) by the relation A (¢, fV(52)) = A2(f (1), 12) for all #;, € T.
Using the relation e = e,, we see that j — (j|r,, j|7,) defines an injection

V(T)r — Homg (77, T7) x Homg (T3, T}),

whose image is the space of pairs (f, /). The quadratic form on Qr is identified
with fV o f. In particular restriction to T} defines an isomorphism

V(T)r = Homg(7}, T3) = Home(T), T,) & HOIIl@(Tl, T3),

where the two spaces in the direct sum are the spaces of C-linear and C-conjugate-
linear maps. Tracing through these isomorphisms, one sees that the action of E¥ is
through the reflex homomorphism ¢, ,; © E # — C on the first summand and
through the reflex homomorphism ¢, 5,3 : E ¥ — C on the second summand.
The first of these reflex homomorphisms restricts to the place oo™ of F*, while the
second restricts to the place oo™ . In other words

V(T) ®pt oo+ R 2= Home (T, T) 2.3)

V(T) ® s oo— R = Homg(T1, T7). (2.4)

Fix isomorphisms of C-vector spaces 77 =~ C =~ T, in such a way that
the R-symplectic forms A; and A, are each identified with the form Ax(x,y) =
—Tre/r(ixy) (this is possible because A (i x, x) is positive definite). Every

f € Hom¢(Ty, T;) = Home(C, C)

then has the form f(¢;) = z-t; forsome z € C,and fV(f;) = Z-t,. Thus f Vo f = zZ
proving that (2.3) is a positive definite R-quadratic space of rank 2. Similarly every

f € Homg(T1, T>) = Homg(C, C)
then has the form f(z;) = z -1, for some z € C, and fV(f;) = —Z - ;. Thus

fY o f = —zZ proving that (2.4) is negative definite of rank 2. This completes the
proof. O
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Propositions 2.2.2 and 2.3.5 imply that V(T) is free of rank one over E*, and that
the E*-Hermitian form (-,-)t on V(T) is nondegenerate. It follows that there is an
E"-linear isomorphism of F¥-quadratic spaces

(V(T), 0%) = (E*, B(T)xxT), 2.5)
for some B(T) € (F1)*.

The importance of the F*-quadratic space structure on the space V(T) may be
understood by considering the algebraic group over QQ

H* = Res 1 ,gSO(V(T), 0}).
This group is naturally a subgroup of
H = SO(V(T). Or),

and the inclusion H* — H gives a concrete way of realizing the inclusion of
real Lie algebras s0(2) x s0(2) — s0(2,2). In the discussion of moduli problems
in Chap. 3, this inclusion will have a moduli-theoretic incarnation in the form of
a codimension two cycle on a Hilbert modular surface: the cycle of points with
complex multiplication by 0.

2.4 Algebraic Groups and Class Groups

In this subsection we construct generalized class groups
Co(E) C CH(E) C C(E)

that act on the set of all ¢-polarized CM modules, and algebraic groups Sg and Tg
that act on the space of special endomorphisms of a c-polarized CM module. Let Sg
be the algebraic group over Q whose functor of points is

Sp(A) ={x e (E*®¢ A)* 1 xx" =1}
for any Q-algebra A. Let Tr be the algebraic group over Q with functor of points
Te(A) = {x € (E ®g A)* : xXx € A™}.
Let G,, be the multiplicative over Q, and view G,, as a subgroup of 7 using the
inclusion A* — (E ®gA)*. There is a natural group homomorphism E* — (E%)*

defined by x = x ® x. This homomorphism may be modified, as in the following
lemma, to yield a homomorphism of algebraic groups Tg — Sk.
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Lemma 2.4.1 Define a homomorphism vg : Tg — Sg by

xX®
ve(x) = et

If k is a field of characteristic 0, or k = A, or k = Ay, then the sequence

1 = Gu(k) = Tek) - Sp(k) — 1

is exact.

Proof. See the proof of [22, Proposition 2.13] O

For every prime { < oo define a compact open subgroup Ug = [[, Ugy of
Tg(A ) by R
Ug =Te(Ay) N O

The map vg : Tg — Sg of Lemma 2.4.1 induces an isomorphism

TEQ\TEA )/ U = Se(Q\SE(Ay)/ve(Ug).

Let /(E) be the set of all pairs Z = (3, ¢) in which 3 is a fractional ideal of Of
and { € F* satisfies 33 = {Og. Then I(E) is a group under componentwise
multiplication, and P(E) = {(z0g,z2) : z € E™} is a subgroup. Define a
generalized class group

C(E) =I(E)/P(E)

and let C4(E) C C(FE) be the subgroup consisting of those (3, ¢) for which ¢
is totally positive. The function (3,¢) +— 3 defines a homomorphism C(E) —
Pic(0f) with finite kernel, and so C(E) is finite. Given a t € Tg(Ay) let { be

the unique positive rational number that satisfies ¢ 7 = (17)/2\, and let 3 be the

fractional Og-ideal defined by S@E = tﬁE. Then t +— (3,¢) determines an
injective homomorphism

Te(@QN\Te(Ay)/Up — C4(E) (2.6)
whose image is denoted Cy(E) C C4+(E).
Let T = (T,kr,Ar) be a c-polarized CM module. Given a pair Z = (3,¢) €
I(E) define a new c-polarized CM module
(Tokr, A1) ® Z = (S, ks, As)

as follows. The underlying Z-module is S = T ®¢, 3, the action ks : O —
End(S) is ks (x)(t ® z) =t ® (xz), and Ag is defined by

As(h ® 21,6 ® 22) = Ar(kr (E ' ziZ)t, 12).
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The right hand side makes sense as ¢ 17,2, € OF. The construction T —» T Q® Z
defines an action of C(E) on the set of isomorphism classes of c-polarized CM
modules. Using the notation of Remark 2.3.3, a simple calculation shows that
wrez = (™' - wr from which it follows that

S(TRZ)= X(T) & Ze Cy(E). 2.7)

Proposition 2.4.2 1. The set X of isomorphism classes of c-polarized CM modules
is a simply transitive C(E)-set.

2. The set X x of isomorphism classes of c-polarized CM modules with a fixed CM
type X is either empty or is a simply transitive Cy(E)-set. If there is a finite
prime of F ramified in E then Xx is nonempty.

Proof. First we show that the set of c-polarized CM modules is nonempty. Let 2( be
any fractional Og-ideal, and fix an w € E* such that w = —w. Define a Z-bilinear
alternating form

Ax,y) = Trgjg(wxy)

on 2. If k : O — Endyg(2l) is the natural action, the triple (2, «, 1) is a b-polarized
CM module, where b~! = wAAD ;. Here D, is the different of E /Q. The Hilbert
class field of F is linearly disjoint from £ (as E is ramified at the archimedean
places), and so class field theory implies that the norm map from the ideal class
group of E to the ideal class group of F is surjective. Therefore we may factor
cb™! = yYY for some y € F* and some fractional &-ideal Q). If w is replaced
by yw and 2 is replaced by Y2, then T = (2, x, 1) is a c-polarized CM module. In
the notation of Remark 2.3.3, v = wr.

The proof that the action of C(E) on X is simply transitive is a routine exercise,
which we leave to the reader. This, together with (2.7), implies that X5 is either
empty or a simply transitively C4 (E)-set.

Now use X to view ER as a C-vector space, as in Sect.2.3. We may repeat the
argument of the first paragraph, but choose the initial the traceless w € E* so that
iw € Fp is totally positive. If there is at least one finite prime of F that is ramified
in E then the narrow Hilbert class field of F is linearly disjoint from E, and class
field theory implies that the norm map from the ideal class group of E to the narrow
ideal class group of F is surjective. This allows us to choose y to be totally positive,
and Remark 2.3.3 then shows that the T constructed above has CM type Y. O

The remainder of this subsection is devoted to the proof of the following
proposition, which will be a crucial ingredient in the proof of Theorem 5.3.4. For a
c-polarized CM module T set

LM =LMezZ V(T) = V() ®qQ.
Proposition 2.4.3 Assume either (cyclic) or (nongal). There is a

Z=3,0)eC(E)
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such that Nmp,q($) < 0, and such that for any c-polarized CM module T there is
an isomorphism of ﬁn-quadratic spaces

(V(M). 0%) = (V(T © 7). Q1)
identifying Z(T) with Z(T ® Z). For any such Z the reflex homomorphisms

dsaez), Pz : EF — C

have distinct restrictions to F* (equivalently, the CM types X (T ® Z) and X (T) are
neither equal nor complex conjugates).

Before the proof, we need some technical preparation. Letting co denote the
archimedean place of QQ, define finite groups of exponent 2

Geneo(E/F) = FJX/Nmg,p(EX)

Gen(E/F) = 0% /Nmg/p(05),
and the genus group
Gen(E/F) = Genso(E/F) x Geny (E/F).

The projections to the two factors are denoted z > z, and z +— zy. Given Z =

(3.¢) € I(E) we may choose an idele z € A7 such that 20 = 30%. Then
gen(Z) = ™77 defines the genus invariant

gen: C(E) — Gen(E/F).
The subgroup C4(E) C C(E) is precisely the kernel of Z +— gen(Z)so. If y :

A% — {£1} denotes the idele class character corresponding to the extension E/ F,
a brief exercise in class field theory shows that the sequence

C(E) 5 Gen(E/F) 5 {£1} > 1 (2.8)
is exact, where the arrow labeled y is the composition
Gen(E/F) — A% /Nmg,r(A%) 5 {£1}.

Lemma 2.4.4 Assuming either (cyclic) or (nongal), there is a Z € C(E) and a
u € Z> such that Nmp;q(Zeo) < 0 and

u2 . NmF/Q(zf) (S} NmE/Q(@E),

where z = gen(Z).
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Proof. If we choose a totally negative A € F* such that E = F (+/A) then our
hypothesis that £/Q is not a biquadratic extension implies Nmr/g(A) ¢ (Q%)2.
Let p be any prime such that ord,(Nmg/g(A)) is odd. Then p is either split or
ramified in F, and in either case there is a place vy of F above p for which ord,,(A)
is odd. The place vy is necessarily ramified in E, and if wy denotes the place of E
above vq then we may choose a z,, € Oy thatis not a norm from 0%

If p is splitin F then let v; # vy be the other place above p. Then ordvl Q) is
even, and class field theory (or a Hilbert symbol calculation) gives the first equality
in

Z, =Nmg, q,(0F,,) -Nmg, jq,(F,,) = Nmg,/q,(OF ).
Thus
Nmg, /0, (2y) € Nmg, /0, (0% ,).

If v is a finite place of F with v 7 v then setz, = 1 € O . Now define
Zp = l_[ZV € Genys(E/F)

and set
Zoo = (1,—1) € {£1} x {£1} = Gengo(E/ F).

and z = (zw.2y) € Gen(E/ F). By construction y(z) = 1, and so by the exactness
of 2.8 there is a Z € C(FE) such that gen(Z) = z. This choice of Z has the desired
properties.

Now assume that p is totally ramified in E. If E,, /Q), is a biquadratic field
extension then Nmg/g(A) € (Q;)Z, contradicting the choice of p. Thus either
E,,/Q, is not Galois, or E,,/Q, is Galois with cyclic Galois group. Assume first
that E,,,/Q, is Galois with cyclic Galois group. The Artin symbol [z,,; E\,,/ Fy,]
is the nontrivial element of Gal(E,,,/ F,,). By local class field theory the inclusion
Gal(E,,/ F,,) — Gal(E,,/Q,) satisfies

[Zvo; Ewo/Fvo] = [NmFVO/Ql, (Zvo); Ewo/Qp]
and we deduce that the element
NmFL’()/Q[) (zvo) € Z;/NmEWO/QP (ﬁg,wo) = Gal(Ewo/Qp)

has order 2, and hence is a square. Thus for some u, € Z;,‘ we have

MIZU ’ Nvao/Qp (zy,) € NmEp/Qp (ﬁgp)

We now set z, = 1 for every finite place v # vy and construct z and Z exactly as in
the previous paragraph. It remains to treat the case in which E,,,/Q, is not Galois.
In this case if we set L = F,,(~/A%) then L % E,,, and so class field theory
implies
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Fp =Nmg, /r, (E; ) -Nmp/g (L)

If we now factor
z,, = Nmg, /r, (a) -Nmg/F, (D)

witha € EX and b € L* then

wo
Nmg, /g, (2v,) = Nmg, /g, (a) - Nmygq,(b).

By construction of L the norm maps Ej — Q and L* — Q} have the same
image, and so
Nvao/Qp (ZVO) S NmEp/Qp (E::O).

Butz,, € Z;, and hence
Nva'o/Qp (Zw)) S NmEp/@p (ﬁgp)

The construction of z and Z now proceeds as in the previous paragraph. O

Lemma 2.4.5 Fixa Z € C(E) and a c-polarized CM module T. If we set S =
T ® Z, then there is an isomorphism of F*-quadratic spaces

(V(1). 03) = (V(S).Nmpyg(z/) - OF)

identifying Z(T) with Z(S). Herezy € %} is any representative of the finite part of
z = gen(Z).

Proof. This is a 51mple calculation. Fix a representatlve (3,¢) € I(E) of Z and let
z € A% satisfy z - ﬁE = SﬁE There is an ﬁE linear isomorphism ¥ : T —>8S
defined by (1) =t ® z. Givena j € L(T) one checks directly that

Yuj =V okr(z;) o oy

defines an element of Z(S), and that j +— . j is the desired isomorphism. O

Proof (of Proposition 2.4.3). Let Z be as in Lemma 2.4.4, and set S = T ® Z. By
Lemma 2.4.5 there is an r € 0%, and an isomorphism

(V(T), %) = (V(S), Nmg/q(r) - OF)

identifying the Z-lattices Z(T) and Z(S). Ifwesets = rQ®@r € (’Eﬁ)x then
Nmyg: gt (s) = Nmg/q(r), and

s L(S) = ks(r) o L(S) o ks(F) = L(S).
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Using the relation Qg(s e x) = Nmgz/pi(s) - Qg(x) we see that x — s e x defines
an isomorphism

(V(S),Nmgo(r) - 0% = (V(S), ),

which preserves Z(S)

If we represent Z € C(E) by a pair (3,¢) € I(E) then Nmr,g(Zoo) < 0 implies
that £ € F* is neither totally positive nor totally negative. From Remark 2.3.3 and
the discussion preceding (2.7), it follows that the CM types of S and T are neither
equal nor complex conjugates. O
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