
Chapter 2
Linear Algebra

Fix a fractional OF -ideal c � OF . In this chapter we introduce the linear algebraic
notions of c-polarized RM modules and c-polarized CM modules, and show that
certain spaces of special endomorphisms of these objects carry natural quadratic
forms. The modules themselves will reappear in Chap. 3 as the first homology of
abelian surfaces over C with real and complex multiplication, and the quadratic
spaces of special endomorphisms will underlie the construction of Hilbert modular
Eisenstein series in Sect. 4.5.

2.1 The Reflex Algebra

A CM type of E is an unordered pair ˙ D f�1; �2g of Q-algebra homomorphisms
�1; �2 W E ! C whose restrictions to F are related by

�1jF D �2jF ı �:

By Galois theory, B 7! HomQ�alg.B;Q
alg/ establishes an equivalence between the

category of étale Q-algebras and the category of finite sets with a continuous action
of the absolute Galois groupGQ D Gal.Qalg=Q/. If we fix an embeddingQalg ! C,
the set of all CM types ofE becomes aGQ-set, and so determines an étale Q-algebra
which we call E]. Thus there is a canonical bijection˙ 7! �˙

fCM types of Eg Š HomQ�alg.E
];C/: (2.1)

The algebra E] and the bijection (2.1) can be made more explicit as follows.
Consider the commutative Q-algebra

M D E ˝id;F;� E:
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12 2 Linear Algebra

On the left we viewE as an F -algebra via the inclusion x 7! x of F intoE , and on
the right we view E as an F -algebra via the conjugate embedding x 7! x� . Thus
for any a; b 2 E and x 2 F we have the relation .xa/ ˝ b D a ˝ .x�b/: Define
Q-algebra automorphisms �; � 2 Aut.M/ by

�.a˝ b/ D b ˝ a �.a ˝ b/ D b ˝ a:

Viewing E as a subalgebra of M via the embedding a 7! a ˝ 1, we define Q-
algebras E] and F ] by

M
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�

��
��
��
��
�

E] D M h�i E D M h��i

F ] D M h�;�2i

��
��

��
��

��
�

F D M h��;�2i

��
��
��
��
��
�

Q:

The Q-algebra E] is the reflex algebra of E . The reflex homomorphism �˙ W
E] ! C associated to the CM type ˙ D f�1; �2g is defined as the restriction
to E] of the Q-algebra homomorphismM ! C defined by

a ˝ b 7! �1.a/ � �2.b/:

The reflex field of ˙ is E˙ D �˙.E
]/, and O˙ denotes the ring of integers of E˙ .

For a prime q of O˙ let Fq be the residue field of q.
Let x 7! x� denote the restriction to E] of the automorphism a˝ b 7! a˝ b of

M , so that F ] is the subalgebra of E] fixed by x 7! x�.

Lemma 2.1.1 1. In case (cyclic) E] is isomorphic to E , and x 7! x� is complex
conjugation.

2. In case (biquad)E] is isomorphic to E1 � E2, and x 7! x� is the product of the
complex conjugations.

3. In case (nongal) E] is a quartic CM field which is not Galois over Q and is not
isomorphic to E . The automorphism x 7! x� is complex conjugation.
In particular in case (biquad) F ] Š Q � Q, and in cases (cyclic) and (nongal)

F ] is a real quadratic field.

Proof. This as an easy exercise in Galois theory, and is left to the reader. ut
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A Hermitian form on an E]-module V is a pairing h ; i W V � V ! E] that is
E]-linear in the first variable and satisfies hv;wi D hw; vi�.

2.2 Polarized RM Modules

Definition 2.2.1 An RM module is a pair .T; �T / in which T is a Z-module, and
�T W OF ! EndZ.T / is a ring homomorphism making T into a projective OF -
module of rank 2.

The polarization module P.T; �T / is the OF -module of alternating Z-bilinear
forms 	T W T � T ! Z satisfying

	T .�T .x/t1; t2/ D 	T .t1; �T .x/t2/

for every x 2 OF . A c-polarization of .T; �T / is a 	T 2 P.T; �T / satisfying

cT D ft1 2 T ˝Z Q W 	T .t1; t2/ 2 Z for all t2 2 T g:

The OF -moduleP.T; �T / is projective of rank one. Given a c-polarized RM module
T D .T; �T ; 	T /, let j 7! j � be the involution of EndZ.T /˝Z Q determined by

	T .jt1; t2/ D 	T .t1; j
�t2/:

A special endomorphism of T is a j 2 EndZ.T / satisfying

�T .x/ ı j D j ı �T .x� /

for all x 2 OF , and satisfying j � D j . The Z-module of all special endomorphisms
of T is denoted L.T/, and we set

V.T/ D L.T/˝Z Q:

For a prime `, abbreviate L`.T/ D L.T/˝Z Z` and V`.T/ D V.T/˝Q Q`:

Let J 7! J 
 be the main involution on M2.F /, characterized by JJ 
 D det.J /,
and define a Q-vector space

WM2.Q/ D fJ 2 M2.F / W J � D J 
g

D
��

a ıb

ıc a�

�
2 M2.F / W a 2 F and b; c 2 Q

�
:

Here ı 2 F is any nonzero element satisfying ı� D �ı. The determinant det is a
quadratic form onWM2.Q/.
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Proposition 2.2.2 1. Up to isomorphism there is a unique c-polarized RM mod-
ule, T.

2. The functionQT.j / D j ı j defines a quadratic form on L.T/.
3. There is an isomorphism of Q-quadratic spaces

�
V.T/;QT

� Š �
WM2.Q/; det

�
:

4. The Q-quadratic space
�
V.T/;QT

�
has rank 4, signature .2; 2/, determinant dF ,

and Hasse invariant (normalized as in [35])

hasse.V .T/;QT/ D
��dF ;�1

Q

�
2 Br2.Q/:

Here Br2.Q/ is the 2-torsion subgroup of the Brauer group of Q.

Proof. Let T be a c-polarized RM module. The polarization 	T has the form 	T D
TrF=Qı�T for a unique OF -symplectic form�T W T �T ! D�1

F . As T is projective
of rank two as an OF -module we may fix an OF -linear isomorphism T Š OF ˚ a
for some fractional OF -ideal a whose image in Pic.OF / is traditionally called the
Steinitz class of T . Writing elements of OF ˚ a � F ˚ F as column vectors, the
fractional ideal a and the isomorphism may be chosen in such a way that

�T .a; b/ D t a � � �1
1

� � b:

The condition that 	T is a c-polarization is then equivalent to a � c D D�1
F . This

proves the uniqueness of T.
Using the above isomorphism T Š OF ˚ a to view elements of T as column

vectors, any j 2 V.T/ can be written uniquely in the form t 7! J � t� for some
J 2 M2.F /. The condition j D j � translates to the condition J � D J 
, and the
rule j 7! J establishes a bijection V.T/ Š WM2.Q/ identifyingQT with det. All of
the remaining claims are now elementary calculations. ut

Let�T be the F -symplectic form on TQ D T ˝ZQ determined by 	T D TrF=Qı
�T , and define algebraic groups over Q

G D ResF=QSp.TQ; �T /

H D SO.V .T/;QT/:

The group G acts on V.T/ through orthogonal transformations by the rule g � j D
g ı j ı g�1, and this defines a homomorphism G ! H . In this way one sees that
the construction of V.T/ from T gives a concrete way of realizing the exceptional
isomorphism of real Lie algebras sp.2/ � sp.2/ ! so.2; 2/: For any choice of
j 2 V.T/ with QT.j / > 0 the inclusion Hj ! H of the isotropy subgroup of j
inH gives a concrete way of realizing the inclusion of real Lie algebras so.1; 2/ !
so.2; 2/: The above exceptional isomorphism will allow us to identify a Hilbert
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modular surface with an orthogonal Shimura variety. The inclusions so.1; 2/ !
so.2; 2/ for varying j will then have a moduli-theoretic incarnation in the form of
a family of special cycles of codimension one, the Hirzebruch–Zagier divisors, on
this Shimura variety.

2.3 Polarized CM Modules

Definition 2.3.1 A CM module is a pair .T; �T / in which T is a Z-module and
�T W OE ! EndZ.T / is a ring homomorphism making T into a projective OE -
module of rank 1.

A c-polarization of .T; �T / is a c-polarization 	T of the underlying RM module.
Let T D .T; �T ; 	T / be a c-polarized CM module. Elementary linear algebra shows
that the c-polarization 	T satisfies

	T .�T .x/t1; t2/ D 	T .t1; �T .x/t2/

for all x 2 OE . If ˙ D f�1; �2g is a CM type of E then the homomorphism
of Q-vector spaces E ! C � C defined by x 7! .�1.x/; �2.x// extends to an
isomorphism of real vector spaces ER Š C � C: We therefore acquire an action
�T;˙ of C � C on TR, and in particular the diagonal embedding C ! C � C Š ER

makes TR into a C-vector space. There is a unique choice of CM type ˙ for which
the Hermitian form on TR

HT .x; y/ D 	T .i � x; y/C i	T .x; y/ (2.2)

(the scalar multiplication i �x of C on TR depends on˙ , as just explained) is positive
definite.

Definition 2.3.2 Given a c-polarized CM module T the CM type of T is the unique
CM type ˙ D ˙.T/ for which the Hermitian form (2.2) has positive definite real
part.

Remark 2.3.3 Let T be a c-polarized CM module. If we fix an isomorphism of E-
modules E Š TQ, then there is a unique !T 2 E� such that !T D �!T and

	T .x; y/ D TrE=Q.!Txy/:

If one makes a different choice of isomorphism E Š TQ then !T is multiplied by an
element of NmE=F .E

�/. The CM type of T is characterized as the unique CM type
for which the induced C-module structure on ER makes i �!T 2 FR totally positive.

Now fix a c-polarized CM module T and recall the Q-quadratic space
�
V.T/;QT

�
of Sect. 2.2 associated to the underlying RM module. We will use the action of OE
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on T to make V.T/ into a Hermitian E]-module. First define an action of the Q-
algebraM of Sect. 2.1 on

QV .T/ D fj 2 EndZ.T /˝Z Q W �T .x/ ı j D j ı �T .x� / for all x 2 OF g

by
.a ˝ b/ � j D �T .a/ ı j ı �T .b/:

The subspace V.T/ � QV .T/ of �-fixed endomorphisms is stable under the action
of the subalgebra E] � M , although it is generally false that the Z-lattice L.T/ �
V.T/ is stable under the action of OE] . If l is a place of F ] abbreviate Vl.T/ D
V.T/˝F ] F

]

l :

Lemma 2.3.4 The Q-bilinear form on V.T/ defined by

Œj1; j2�T D QT.j1 C j2/ �QT.j1/ �QT.j2/

satisfies Œx � j1; j2�T D Œj1; x
� � j2�T for every x 2 E].

Proof. We may assume that x D a ˝ b C b ˝ a for some a; b 2 E , as elements of
this form generate E] as a Q-module. In the interest of simplifying the notation we
suppress �T , and simply viewE as embedded in EndZ.T /˝ZQ. The essential point
is that F D ff 2 EndOF .T /˝ZQ W f � D f g. In particular, as j1ıbıj2Cj2ıbıj1
is both �-fixed and F -linear, it belongs to F , and so commutes with a. Thus

a ı j1 ı b ı j2 � j1 ı b ı j2 ı a D j2 ı b ı j1 ı a � a ı j2 ı b ı j1
and similar reasoning shows that

j2 ı a ı j1 ı b � b ı j2 ı a ı j1 D b ı j1 ı a ı j2 � j1 ı a ı j2 ı b:

Using these relations, direct calculation shows

Œx � j1; j2�T � Œj1; x
� � j2�T D 0:

ut
It follows from Lemma 2.3.4 that there is a unique E]-Hermitian form hj1; j2iT

on V.T/ satisfying
Œj1; j2�T D TrE]=Qhj1; j2iT;

and that Q]
T.j / D hj; j iT is the unique F ]-quadratic form on V.T/ satisfying

QT D TrF ]=Q ıQ]
T:

For any CM type ˙ of E the restriction of �˙ to F ] is an archimedean place of
F ] denoted 1�̇ . Let 1C

˙ be the other archimedean place of F ].
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Proposition 2.3.5 Suppose T has CM type˙ . The F ]-quadratic space .V .T/;Q]
T/

has signature .2; 0/ at 1C
˙ , and has signature .0; 2/ at 1�̇ .

Proof. Abbreviate 1˙ D 1˙̇. Let˙ D f�1; �2g be the CM type of T, and identify
ER Š C�C using the isomorphism z 7! .�1.z/; �2.z//. This makes TR into a C�C-
module, and the idempotents e1; e2 2 FR induce a decomposition TR Š T1 ˚ T2
in which each Tk is a one-dimensional C-vector space on which E acts through
�k W E ! C. Each Tk comes with an R-symplectic form 	k (the restriction of 	T to
Tk) for which x 7! 	k.ix; x/ is positive definite. For any f 2 HomR.T1; T2/ define
f _ 2 HomR.T2; T1/ by the relation 	1.t1; f _.t2// D 	2.f .t1/; t2/ for all tk 2 Tk .
Using the relation e�1 D e2, we see that j 7! .j jT1 ; j jT2 / defines an injection

V.T/R ! HomR.T1; T2/ � HomR.T2; T1/;

whose image is the space of pairs .f; f _/. The quadratic form on QT is identified
with f _ ı f . In particular restriction to T1 defines an isomorphism

V.T/R Š HomR.T1; T2/ D HomC.T1; T2/˚ HomC.T1; T2/;

where the two spaces in the direct sum are the spaces of C-linear and C-conjugate-
linear maps. Tracing through these isomorphisms, one sees that the action of E] is
through the reflex homomorphism �f�1;�2g W E] ! C on the first summand and
through the reflex homomorphism �f�1;�2g W E] ! C on the second summand.
The first of these reflex homomorphisms restricts to the place 1C of F ], while the
second restricts to the place 1�. In other words

V.T/˝F ];1C R Š HomC.T1; T2/ (2.3)

V.T/˝F ];1� R Š HomC.T1; T2/: (2.4)

Fix isomorphisms of C-vector spaces T1 Š C Š T2 in such a way that
the R-symplectic forms 	1 and 	2 are each identified with the form 	k.x; y/ D
�TrC=R.ixy/ (this is possible because 	k.ix; x/ is positive definite). Every

f 2 HomC.T1; T2/ Š HomC.C;C/

then has the form f .t1/ D z�t1 for some z 2 C, and f _.t1/ D z�t2. Thus f _ıf D zz
proving that (2.3) is a positive definite R-quadratic space of rank 2. Similarly every

f 2 HomC.T1; T2/ Š HomC.C;C/

then has the form f .t1/ D z � t1 for some z 2 C, and f _.t1/ D �z � t2. Thus
f _ ı f D �zz proving that (2.4) is negative definite of rank 2. This completes the
proof. ut
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Propositions 2.2.2 and 2.3.5 imply that V.T/ is free of rank one overE], and that
the E]-Hermitian form h�; �iT on V.T/ is nondegenerate. It follows that there is an
E]-linear isomorphism of F ]-quadratic spaces

�
V.T/;Q]

T

� Š �
E]; ˇ.T/xx�

�
; (2.5)

for some ˇ.T/ 2 .F ]/�.
The importance of the F ]-quadratic space structure on the space V.T/ may be

understood by considering the algebraic group over Q

H] D ResF ]=QSO.V .T/;Q]
T/:

This group is naturally a subgroup of

H D SO.V .T/;QT/;

and the inclusion H] ! H gives a concrete way of realizing the inclusion of
real Lie algebras so.2/ � so.2/ ! so.2; 2/: In the discussion of moduli problems
in Chap. 3, this inclusion will have a moduli-theoretic incarnation in the form of
a codimension two cycle on a Hilbert modular surface: the cycle of points with
complex multiplication by OE .

2.4 Algebraic Groups and Class Groups

In this subsection we construct generalized class groups

C0.E/ � CC.E/ � C.E/

that act on the set of all c-polarized CM modules, and algebraic groups SE and TE
that act on the space of special endomorphisms of a c-polarized CM module. Let SE
be the algebraic group over Q whose functor of points is

SE.A/ D fx 2 .E] ˝Q A/
� W xx� D 1g

for any Q-algebra A. Let TE be the algebraic group over Q with functor of points

TE.A/ D fx 2 .E ˝Q A/
� W xx 2 A�g:

Let Gm be the multiplicative over Q, and view Gm as a subgroup of TE using the
inclusionA� ! .E˝QA/

�. There is a natural group homomorphismE� ! .E]/�
defined by x 7! x ˝ x. This homomorphism may be modified, as in the following
lemma, to yield a homomorphism of algebraic groups TE ! SE .



2.4 Algebraic Groups and Class Groups 19

Lemma 2.4.1 Define a homomorphism 
E W TE ! SE by


E.x/ D x ˝ x

xx
:

If k is a field of characteristic 0, or k D A , or k D Af , then the sequence

1 ! Gm.k/ ! TE.k/

E�! SE.k/ ! 1

is exact.

Proof. See the proof of [22, Proposition 2.13] ut
For every prime ` < 1 define a compact open subgroup UE D Q

` UE;` of
TE.Af / by

UE D TE.Af / \ bO�
E:

The map 
E W TE ! SE of Lemma 2.4.1 induces an isomorphism

TE.Q/nTE.Af /=UE Š SE.Q/nSE.Af /=
E.UE/:

Let I.E/ be the set of all pairs Z D .Z; �/ in which Z is a fractional ideal of OE

and � 2 F � satisfies ZZ D �OE: Then I.E/ is a group under componentwise
multiplication, and P.E/ D f.zOE; zz/ W z 2 E�g is a subgroup. Define a
generalized class group

C.E/ D I.E/=P.E/

and let CC.E/ � C.E/ be the subgroup consisting of those .Z; �/ for which �
is totally positive. The function .Z; �/ 7! Z defines a homomorphism C.E/ !
Pic.OE/ with finite kernel, and so C.E/ is finite. Given a t 2 TE.Af / let � be
the unique positive rational number that satisfies �bZ D .t t /bZ, and let Z be the
fractional OE -ideal defined by ZbOE D tbOE . Then t 7! .Z; �/ determines an
injective homomorphism

TE.Q/nTE.Af /=UE ! CC.E/ (2.6)

whose image is denoted C0.E/ � CC.E/:
Let T D .T; �T ; 	T / be a c-polarized CM module. Given a pair Z D .Z; �/ 2

I.E/ define a new c-polarized CM module

.T; �T ; 	T /˝ Z D .S; �S ; 	S/

as follows. The underlying Z-module is S D T ˝OE Z, the action �S W OE !
End.S/ is �S.x/.t ˝ z/ D t ˝ .xz/, and 	S is defined by

	S
�
t1 ˝ z1; t2 ˝ z2

� D 	T .�T .�
�1z1z2/t1; t2/:
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The right hand side makes sense as ��1z1z2 2 OE . The construction T 7! T ˝ Z
defines an action of C.E/ on the set of isomorphism classes of c-polarized CM
modules. Using the notation of Remark 2.3.3, a simple calculation shows that
!T˝Z D ��1 � !T from which it follows that

˙.T ˝ Z/ D ˙.T/ ” Z 2 CC.E/: (2.7)

Proposition 2.4.2 1. The set X of isomorphism classes of c-polarized CM modules
is a simply transitive C.E/-set.

2. The set X˙ of isomorphism classes of c-polarized CM modules with a fixed CM
type ˙ is either empty or is a simply transitive CC.E/-set. If there is a finite
prime of F ramified in E then X˙ is nonempty.

Proof. First we show that the set of c-polarized CM modules is nonempty. Let A be
any fractional OE -ideal, and fix an ! 2 E� such that ! D �!. Define a Z-bilinear
alternating form

	.x; y/ D TrE=Q.!xy/

on A. If � W OE ! EndZ.A/ is the natural action, the triple .A; �; 	/ is a b-polarized
CM module, where b�1 D !AADE: Here DE is the different of E=Q. The Hilbert
class field of F is linearly disjoint from E (as E is ramified at the archimedean
places), and so class field theory implies that the norm map from the ideal class
group of E to the ideal class group of F is surjective. Therefore we may factor
cb�1 D yYY for some y 2 F � and some fractional OE -ideal Y. If ! is replaced
by y! and A is replaced by YA, then T D .A; �; 	/ is a c-polarized CM module. In
the notation of Remark 2.3.3, ! D !T.

The proof that the action of C.E/ on X is simply transitive is a routine exercise,
which we leave to the reader. This, together with (2.7), implies that X˙ is either
empty or a simply transitively CC.E/-set.

Now use ˙ to view ER as a C-vector space, as in Sect. 2.3. We may repeat the
argument of the first paragraph, but choose the initial the traceless ! 2 E� so that
i! 2 FR is totally positive. If there is at least one finite prime of F that is ramified
in E then the narrow Hilbert class field of F is linearly disjoint from E , and class
field theory implies that the norm map from the ideal class group ofE to the narrow
ideal class group of F is surjective. This allows us to choose y to be totally positive,
and Remark 2.3.3 then shows that the T constructed above has CM type ˙ . ut

The remainder of this subsection is devoted to the proof of the following
proposition, which will be a crucial ingredient in the proof of Theorem 5.3.4. For a
c-polarized CM module T set

bL.T/ D L.T/˝Z
bZ bV .T/ D V.T/˝Q

bQ:
Proposition 2.4.3 Assume either (cyclic) or (nongal). There is a

Z D .Z; �/ 2 C.E/
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such that NmF=Q.�/ < 0, and such that for any c-polarized CM module T there is

an isomorphism of bF ]-quadratic spaces

�bV .T/;Q]
T

� Š �bV .T ˝ Z/;Q]
T˝Z

�

identifying bL.T/ with bL.T ˝ Z/. For any such Z the reflex homomorphisms

�˙.T˝Z/; �˙.T/ W E] ! C

have distinct restrictions to F ] (equivalently, the CM types˙.T˝Z/ and˙.T/ are
neither equal nor complex conjugates).

Before the proof, we need some technical preparation. Letting 1 denote the
archimedean place of Q, define finite groups of exponent 2

Gen1.E=F / D F �1=NmE=F .E
�1/

Genf .E=F / D bO�
F =NmE=F .bO�

E/;

and the genus group

Gen.E=F / D Gen1.E=F / � Genf .E=F /:

The projections to the two factors are denoted z 7! z1 and z 7! zf . Given Z D
.Z; �/ 2 I.E/ we may choose an idele z 2 A

�
E such that zbOE D ZbOE . Then

gen.Z/ D ��1zz defines the genus invariant

gen W C.E/ ! Gen.E=F /:

The subgroup CC.E/ � C.E/ is precisely the kernel of Z 7! gen.Z/1. If � W
A�
F ! f˙1g denotes the idele class character corresponding to the extension E=F ,

a brief exercise in class field theory shows that the sequence

C.E/
gen��! Gen.E=F /

��! f˙1g ! 1 (2.8)

is exact, where the arrow labeled � is the composition

Gen.E=F / ! A
�
F =NmE=F .A

�
E/

��! f˙1g:

Lemma 2.4.4 Assuming either (cyclic) or (nongal), there is a Z 2 C.E/ and a
u 2 bZ� such that NmF=Q.z1/ < 0 and

u2 � NmF=Q.zf / 2 NmE=Q.bO�
E/;

where z D gen.Z/.
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Proof. If we choose a totally negative � 2 F � such that E D F.
p
�/ then our

hypothesis that E=Q is not a biquadratic extension implies NmF=Q.�/ 62 .Q�/2:
Let p be any prime such that ordp.NmF=Q.�// is odd. Then p is either split or
ramified in F , and in either case there is a place v0 of F above p for which ordv0 .�/

is odd. The place v0 is necessarily ramified in E , and if w0 denotes the place of E
above v0 then we may choose a zv0 2 O�

F;v0
that is not a norm from O�

E;w0
.

If p is split in F then let v1 6D v0 be the other place above p. Then ordv1.�/ is
even, and class field theory (or a Hilbert symbol calculation) gives the first equality
in

Z
�
p D NmEv0 =Qp

.O�
E;v0 / � NmEv1 =Qp

.O�
E;v1 / D NmEp=Qp .O

�
E;p/:

Thus
NmFv0 =Qp

.zv0 / 2 NmEp=Qp .O
�
E;p/:

If v is a finite place of F with v 6D v0 then set zv D 1 2 O�
F;v. Now define

zf D
Y

v

zv 2 Genf .E=F /

and set
z1 D .1;�1/ 2 f˙1g � f˙1g Š Gen1.E=F /:

and z D .z1; zf / 2 Gen.E=F /. By construction �.z/ D 1, and so by the exactness
of 2.8 there is a Z 2 C.E/ such that gen.Z/ D z. This choice of Z has the desired
properties.

Now assume that p is totally ramified in E . If Ew0=Qp is a biquadratic field
extension then NmF=Q.�/ 2 .Q�

p /
2, contradicting the choice of p. Thus either

Ew0=Qp is not Galois, or Ew0=Qp is Galois with cyclic Galois group. Assume first
that Ew0=Qp is Galois with cyclic Galois group. The Artin symbol Œzv0 IEw0=Fv0 �

is the nontrivial element of Gal.Ew0=Fv0 /. By local class field theory the inclusion
Gal.Ew0=Fv0 / ! Gal.Ew0=Qp/ satisfies

Œzv0 IEw0=Fv0 � 7! ŒNmFv0 =Qp
.zv0 /IEw0=Qp�

and we deduce that the element

NmFv0 =Qp
.zv0 / 2 Z

�
p =NmEw0 =Qp

.O�
E;w0 / Š Gal.Ew0=Qp/

has order 2, and hence is a square. Thus for some up 2 Z�
p we have

u2p � NmFv0 =Qp
.zv0 / 2 NmEp=Qp .O

�
E;p/:

We now set zv D 1 for every finite place v 6D v0 and construct z and Z exactly as in
the previous paragraph. It remains to treat the case in which Ew0=Qp is not Galois.
In this case if we set L D Fv0 .

p
��/ then L 6Š Ew0 , and so class field theory

implies
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F �
v0 D NmEw0 =Fv0

.E�
w0/ � NmL=Fv0

.L�/:

If we now factor
zv0 D NmEw0 =Fv0

.a/ � NmL=Fv0
.b/

with a 2 E�
w0 and b 2 L� then

NmFv0 =Qp
.zv0 / D NmEw0 =Qp

.a/ � NmL=Qp .b/:

By construction of L the norm maps E�
w0 ! Q�

p and L� ! Q�
p have the same

image, and so
NmFv0 =Qp

.zv0 / 2 NmEp=Qp .E
�
w0/:

But zv0 2 Z�
p , and hence

NmFv0 =Qp
.zv0 / 2 NmEp=Qp .O

�
E;p/:

The construction of z and Z now proceeds as in the previous paragraph. ut
Lemma 2.4.5 Fix a Z 2 C.E/ and a c-polarized CM module T. If we set S D
T ˝ Z, then there is an isomorphism of bF ]-quadratic spaces

�bV .T/;Q]
T

� Š �bV .S/;NmF=Q.zf / �Q]

S

�

identifying bL.T/ with bL.S/. Here zf 2 bO�
F is any representative of the finite part of

z D gen.Z/.

Proof. This is a simple calculation. Fix a representative .Z; �/ 2 I.E/ of Z and let
z 2 A�

E satisfy z � bOE D ZbOE: There is an bOE-linear isomorphism  W bT ! bS
defined by  .t/ D t ˝ zf : Given a j 2 bL.T/ one checks directly that

 �j D  ı �T .z�1
f / ı j ı  �1

defines an element of bL.S/, and that j 7!  �j is the desired isomorphism. ut
Proof (of Proposition 2.4.3). Let Z be as in Lemma 2.4.4, and set S D T ˝ Z. By
Lemma 2.4.5 there is an r 2 bO�

E , and an isomorphism

.bV .T/;Q]
T/ Š .bV .S/;NmE=Q.r/ �Q]

S/

identifying the bZ-lattices bL.T/ and bL.S/. If we set s D r ˝ r 2 .bE]/� then
NmE]=F ].s/ D NmE=Q.r/, and

s � bL.S/ D �S.r/ ı bL.S/ ı �S.r/ D bL.S/:
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Using the relationQ]

S.s � x/ D NmE]=F ].s/ �Q]

S.x/ we see that x 7! s � x defines
an isomorphism

.bV .S/;NmE=Q.r/ �Q]

S/ Š .bV .S/;Q]

S/;

which preserves bL.S/.
If we represent Z 2 C.E/ by a pair .Z; �/ 2 I.E/ then NmF=Q.z1/ < 0 implies

that � 2 F � is neither totally positive nor totally negative. From Remark 2.3.3 and
the discussion preceding (2.7), it follows that the CM types of S and T are neither
equal nor complex conjugates. ut
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