
Chapter 1
Introduction

Discretization of stochastic processes indexed by the interval [0, T ] or by the half-
line [0,∞) occurs very often. Historically it has been first used to deduce results on
continuous-time processes from similar and often simpler results for discrete-time
processes: for example Markov processes may be considered as limits of Markov
chains, which are much simpler to analyze; or, stable processes as limits of random
walks. This also applies to the theory of stochastic integration: the first constructions
of stochastic integrals, by N. Wiener and K. Itô, were based on a Riemann-type
approximation, which is a kind of discretization in time. More recently but still
quite old, and a kind of archetype of what is done in this book, is the approximation
of the quadratic variation process of a semimartingale by the approximate quadratic
variation process: this result, due to P.A. Meyer [76] in its utmost generality, turns
out to be one of the most useful results for applications.

Discretization of processes has become an increasingly popular tool in practical
applications, for mainly (but not only) two reasons: one is the overwhelming exten-
sion of Monte-Carlo methods, which serve to compute numerically the expectations
of a wide range of random variables which are often very complicated functions
of a stochastic process: this is made available by the increasing power of comput-
ers. The second reason is related to statistics: although any stochastic process can
only be observed at finitely many times, with modern techniques the frequency of
observations increases steadily: in finance for example one observes and records
prices every second, or even more frequently; in biology one measures electrical or
chemical activity at an even higher frequency.

Let us be more specific, by describing a simple but fundamental example of some
of the problems at hand. Suppose that we have a one-dimensional diffusion process
X of the form

dXt = a(Xt ) dt + σ(Xt ) dWt , X0 = x0. (1.0.1)

Here the initial value x0 ∈ R is given, and W denotes a Brownian motion defined
on some probability space, about which we do not care in this introduction. The
drift and diffusion coefficients a and σ are nice enough, so the above equation has
a unique solution.
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4 1 Introduction

Problem 1) We know a and σ , and we are interested in the law of the variable X1.
This law is usually not explicitly known, so to compute it, that is to compute the
expected value E(f (X1)) for various test functions f , one may use a Monte-Carlo
technique (other techniques based on PDEs are also available, especially in the one-
dimensional case, but do not work so well in high dimensions). To implement this
we simulate on a computer a number N of independent variables X(j)1 having the
law of X1, and an approximation of E(f (X1)) is

ZN = 1

N

N∑

j=1

f
(
X(j)1

)
. (1.0.2)

Indeed, by the law of large numbers the sequence ZN converges almost surely to
E(f (X1)) as N → ∞, and moreover the central limit theorem tells us that, when f

is for example bounded, the error made in replacing E(f (X1)) by ZN is of order
1/

√
N .

This presumes that one knows how to simulate X1, which is about as scarce
as the cases when E(f (X1)) can be explicitly computed. (More accurately some
recent techniques due to A. Beskos, O. Papaspiliopoulos and G.O. Roberts, see [16]
and [17] for example, allow to simulate X1 exactly, but they require that σ does
not vanish and, more important, that the dimension is 1; moreover, in contrast to
what follows, they cannot be extended to equations driven by processes other than
a Brownian motion.) Hence we have to rely on approximations, and the simplest
way for this is to use an Euler scheme. That is, for any integer n ≥ 1 we recursively
define the approximation Xn

i/n for i = 1, . . . , n, by setting

Xn
0 = x0, Xn

i/n = Xn
(i−1)/n + 1

n
a
(
Xn

(i−1)/n

) + σ
(
Xn

(i−1)/n

)
(Wi/n − W(i−1)/n),

the increments of the Brownian motion being easily simulated. Other, more sophis-
ticated, schemes can be used, but they all rely upon the same basic ideas.

Then in (1.0.2) we substitute the X(j)1’s with N independent copies of the simu-
lated variables Xn

1 , giving rise to an average Zn
N which now converges to E(f (Xn

1 ))

for each given n. Therefore we need to assert how close E(f (Xn
1 )) and E(f (X1))

are, and this more or less amounts to estimating the difference (X1 − Xn
1 )2. Some

calculations show that this boils down to evaluating the difference

n∑

i=1

gn

(
ω, (i − 1)/n

)(
(Wi/n − W(i−1)/n)

2 − 1

n

)

for suitable functions gn(ω, t), where ω �→ gn(ω, t) is measurable with respect to
the σ -field FW

t of the past of W before time t . That is, we have to determine the be-
havior of “functionals” of the increments of W of the form above: do they converge
when n → ∞? And if so, what is the rate of convergence?

Problem 2) The setting is the same, that is we know a and σ , but we want to find the
law of Y = ∫ 1

0 h(Xs) ds for some known function h. Again, one can use a Monte-
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Carlo technique, coupled with a preliminary Euler method: we set

Yn = 1

n

n∑

i=1

h
(
Xn

i/n

)
,

where Xn is the Euler approximation introduced above. We can then simulate N

independent versions Yn(1), . . . , Y n(N) of the variable Yn above, and

1

N

N∑

j=1

h
(
Yn(j)

)

is our approximation of E(h(Y )). If Xn is a good approximation of X, then certainly
Yn is a good approximation of 1

n

∑n
i=1 h(Xi/n), provided h satisfies some suitable

smoothness assumptions. However we have an additional problem here, namely to
evaluate the difference

1

n

n∑

i=1

h(Xi/n) −
∫ 1

0
h(Xs) ds.

The convergence to 0 of this difference is ensured by Riemann approximation, but
the rate at which it takes place is not clear, in view of the fact that the paths of X are
not smooth, albeit continuous. This is another discretization problem.

Problem 3) Suppose now that the functions a and σ are known, but depend on an ad-
ditional parameter, say θ , so we have a = a(x, θ) and σ = σ(x, θ). We observe the
process X = Xθ , which now depends on θ , over [0,1], and we want to infer θ . How-
ever, in any realistic situation we cannot really observe the whole path t �→ Xt(ω)

for t ∈ [0,1], and we simply have “discrete” observations, say at times 0, 1
n
, . . . , n

n
,

so we have n + 1 observations.
We are here in the classical setting of a parametric statistical problem. For any

given n there is no way exactly to infer θ , unless a and σ have a very special form.
But we may hope for good asymptotic estimators as n → ∞. All estimation meth-
ods, and there are many, are based on the behavior of functionals of the form

n∑

i=1

fn

(
θ,ω, (i − 1)/n,Xi/n − X(i−1)/n

)
(1.0.3)

for suitable functions fn(θ,ω, t, x), where again ω �→ fn(θ,ω, t, x) is FW
t measur-

able. The consistency of the estimators is deduced from the convergence of func-
tionals as above, and rates of convergence are deduced from associated central limit
theorems for those functionals.

Problem 4) Here the functions a and σ are unknown, and they may additionally
depend on (ω, t), as for example σ = σ(ω, t, x). We observe X at the same discrete
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times 0, 1
n
, . . . , n

n
as above. We want to infer some knowledge about the coefficients

a and σ . As is well known, we usually can say nothing about a in this setting, but
the convergence of the approximate quadratic variation mentioned before says that:

[nt]∑

i=1

(Xi/n − X(i−1)/n)
2 →

∫ t

0
σ(Xs)

2 ds

(convergence in probability, for each t ; here, [nt] denotes the integer part of the
real nt). This allows us in principle to determine asymptotically the function
t �→ σ(ω, t,Xt (ω)) on [0,1], and under suitable assumptions we even have rates
of convergence. Here again, everything hinges upon functionals as in the left side
above. Note that here we have a statistical problem similar to Problem 3, except that
we do not want to infer a parameter θ but a quantity which is fundamentally ran-
dom: this occurs for example in finance, for the estimation of the so-called stochastic
volatility.

Problem 5) A more basic problem is perhaps the following one, which deals directly
with discretized processes. Namely, let us call an n-discretized process of X the
process defined by X

(n)
t = X[nt]/n. Then of course X(n) → X pointwise in ω, locally

uniformly in time when X is continuous and for the Skorokhod topology when X is
right-continuous and with left limits. But, what is the rate of convergence?

The common feature of all the problems described above, as different as they may
appear, is the need to consider the asymptotic behavior of functionals like (1.0.3).
And, when the process X is discontinuous, many other problems about the jumps
can also be solved by using functionals of the same type.

1.1 Content and Organization of the Book

In the whole book we consider a basic underlying d-dimensional process X, al-
ways a semimartingale. This process is sampled at discrete times, most of the time
regularly spaced: that is, we have a mesh Δn > 0 and we consider the increments

Δn
i X = XiΔn − X(i−1)Δn

and two types of functionals, where f is a function on R
d :

V n(f,X)t =
[t/Δn]∑

i=1

f
(
Δn

i X
)

“non-normalized functional”

V ′n(f,X)t = Δn

[t/Δn]∑

i=1

f
(
Δn

i X/
√

Δn

)
“normalized functional”.

(1.1.1)
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The aim of this book is to provide a comprehensive treatment of the mathematical
results about functionals of this form, when the mesh Δn goes to 0. We will not
restrict ourselves to the simple case of (1.1.1), and will also consider more general
(but similar) types of functionals:

• f may depend on k successive increments of X for k ≥ 2.
• f = fn may depend on n, and also on kn successive increments, with kn → ∞.
• f = f (ω, t, x) may be a function on Ω ×R+ ×R

d , so that f (Δn
i X) is replaced

by f (ω, (i − 1)Δn,Δ
n
i X) in the first formula (1.1.1), for example.

• The sampling times are not necessarily equally spaced.

Basically, there are two different levels of results:

Level 1: We have (under appropriate assumptions, of course, and sometimes after
normalization) convergence of the functionals to a limiting process, say for example
V n(f,X) → V (f,X). This convergence typically takes place in probability, either
for a fixed time t , or “functionally” for the local uniform (in time) topology, or for
the Skorokhod topology. We call this type of convergence a Law of Large Numbers,
or LLN.

Level 2: There is a “second order” type of results, which we qualify as Central Limit
Theorems, or CLT. Namely, for a proper normalizing factor un → ∞ the sequence
un(V

n(f,X) − V (f,X)) for example converges to a limiting process. In this case,
the convergence (for a given time t , or functionally as above) is typically in law,
or more accurately “stably in law” (the definition of stable convergence in law is
recalled in detail in Chap. 2).

In connection with the previous examples, it should be emphasized that, even
though the mathematical results given below have some interest from a purely the-
oretical viewpoint, the main motivation is practical. This motivation is stressed by
the fact that the last section of most chapters contains a brief account of possible ap-
plications. These applications have indeed been the reason for which all this theory
has been developed.

As it is written, one can hardly consider this book as “applied”. Nevertheless,
we hope that the reader will get some feeling about the applications, through the
last sections mentioned above. In particular, the problem of estimating the volatility
is recurrent through the whole book, and appears in Chaps. 3, 5, 8, 9, 11, 13, 14
and 16.

Two last general comments are in order:

1. A special feature of this book is that it concentrates on the case where the un-
derlying process X has a non-trivial continuous martingale part Xc, which is
Xc

t = ∫ t

0 σ(Xs) dWs in the case of (1.0.1). All results are of course still true in
the degenerate situation where the continuous martingale part vanishes identi-
cally, but most of them become “trivial”, in the sense that the limiting processes
are also vanishing. That is, in this degenerate situation one should employ other
normalization, and use different techniques for the proofs.
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2. We are concerned with the behavior of functionals like (1.1.1) as Δn → 0, but
not as the time t goes to infinity. That is, we only consider the “finite horizon”
case. When t → ∞ the results for these functionals requires some ergodicity
assumptions on the process X: the results, as well as the techniques needed for
the proofs, are then fundamentally different.

Synopsis of the Book: Chapter 2 is devoted to recalling the basic necessary re-
sults about semimartingales and the various notions of convergence used later (Sko-
rokhod topology, stable convergence in law, and a few useful convergence criteria).
The rest of the book is divided into four main parts:

Part II: This part is about the “simple” functionals, as introduced in (1.1.1):

• Chapter 3 is devoted to the Laws of Large Numbers (first level).
• Chapter 4 contains the technical results needed for Central Limit Theorems. To

avoid fastidious repetitions, these technical results are general enough to provide
for the proofs of the CLTs for more general functionals than those of (1.1.1).

• Chapter 5 is about Central Limit Theorems (second level). For V ′n(f,X) it re-
quires few assumptions on the function f but quite a lot about the jumps of X, if
any; for V n(f,X) it requires little of X, but (in, say, the one-dimensional case) it
basically needs either f (x) ∼ x2 or f (x)/|x|3 → 0 as x → 0.

• Chapter 6 gives another kind of Central Limit Theorems (in the extended sense
used in this book) for V n(f,X), when f (x) = x: this is a case left out in the
previous Chap. 5, but it is also important because V n(f,X)t is then X

(Δn)
t − X0,

where X(Δn) is the “discretized process” X
(Δn)
t = XΔn[t/Δn].

Part III: This part concerns various extensions of the Law of Large Numbers:

• In Chap. 7 the test function f is random, that is, it depends on (ω, t, x).
• In Chap. 8 the test function f = fn may depend on n and on k (fixed) or kn (going

to infinity) successive increments.
• In Chap. 9 the test function f is truncated at a level un, with un going to

0 as Δn does; that is, instead of f (Δn
i X) we consider f (Δn

i X)1{|Δn
i X|≤un} or

f (Δn
i X)1{|Δn

i X|>un}, for example. The function f can also depend on several
successive increments.

Part IV: In this part we study the Central Limit Theorems associated with the ex-
tended LLNs of the previous part:

• Chapter 10 gives the CLTs associated with Chap. 7 (random test functions).
• Chapter 11 gives the CLTs associated with Chap. 8 when the test function depends

on k successive increments.
• Chapter 12 gives the CLTs associated with Chap. 8 when the test function depends

on kn successive increments, with kn → ∞.
• Chapter 13 gives the CLTs associated with Chap. 9 (truncated test functions).
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Part V: The last part is devoted to three problems which do not fall within the scope
of the previous chapters, but are of interest for applications:

• In Chap. 14 we consider the situation where the discretization scheme is not reg-
ular. This is of fundamental importance for applications, but only very partial
results are provided here, and only when the process X is continuous.

• In Chap. 15 we study some degenerate situations where the rate of convergence
is not the standard 1/

√
Δn one.

• In Chap. 16 we consider a situation motivated again by practical applications:
we replace the process X by a “noisy” version, that is by Zt = Xt + εt where
εt is a noise, not necessarily white but subject to some specifications. Then we
examine how the functionals (based on the observations ZiΔn instead of XiΔn )
should be modified, in order to obtain limits which are basically the same as in
the non-noisy case, and in particular do not depend on the noise.

1.2 When X is a Brownian Motion

Before proceeding to the main stream of the book, we give in some detail and with
heuristic explanations, but without formal proofs, the simplest form of the results:
we suppose that the one-dimensional process X is either a Brownian motion, or a
Brownian motion with a drift, or a Brownian motion plus a drift plus a compound
Poisson process.

Although elementary, these examples essentially show most qualitative features
found later on, although of course the simple structure accounts for much simpler
statements. So the remainder of this chapter may be skipped without harm, and
its aim is to exhibit the class of results given in this book, and their variety, in an
especially simple situation.

We start with the Brownian case, that is

X = σW, where W is a Brownian motion and σ > 0; we set c = σ 2. (1.2.1)

We will also use, for any process Y , its “discretized” version at stage n:

Y
(Δn)
t = YΔn[t/Δn].

1.2.1 The Normalized Functionals V ′n(f,X)

Recalling (1.1.1), the functionals V ′n(f,X) are easier than V n(f,X) to analyze.
Indeed, the summands f (Δn

i X/
√

Δn ) are not only i.i.d. as i varies, but they also
have the same law as n varies. We let ρc be the centered Gaussian law N (0, c) and
write ρc(f ) = ∫

f (x)ρc(dx) when the integral exists. Then, as soon as f is Borel
and integrable, resp. square integrable, with respect to ρc, then f (Δn

i X/
√

Δn ) has
expectation ρc(f ) and variance ρc(f

2) − ρc(f )2.



10 1 Introduction

The ordinary Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
readily give us the following two convergence results:

V ′n(f,X)t
P−→ tρc(f )

(1.2.2)
1√
Δn

(
V ′n(f,X)t − tρc(f )

) L−→ N
(
0, t

(
ρc

(
f 2) − ρc(f )2)),

where
P−→ and

L−→ stand for the convergence in probability and the convergence
in law, respectively. This example shows why we have put the normalizing factor
1/

√
Δn inside the function f .

The first subtle point we encounter, even in this basic case, is that, contrary to
the usual LLN, we get convergence in probability but not almost surely in the first
part of (1.2.2). The reason is as follows: let ζi be a sequence of i.i.d. variables with
the same law as f (X1). The LLN implies that Zn = t

[t/Δn]
∑[t/Δn]

i=1 ζi converges a.s.
to tρc(f ). Since V ′n(f,X)t has the same law as Zn we deduce the convergence in
probability in (1.2.2) because, for a deterministic limit, convergence in probability
and convergence in law are equivalent. However the variables V ′n(f,X)t are con-
nected one with the others in a way we do not really control when n varies, so we
cannot conclude that V ′n(f,X)t → tρc(f ) a.s.

(1.2.2) gives us the convergence for any time t , but we also have a “functional”
convergence:

1) First, recall that a sequence gn of nonnegative increasing functions on R+ con-
verging pointwise to a continuous function g also converges locally uniformly; then,
from the first part of (1.2.2) applied separately for the positive and negative parts f +
and f − of f and using a “subsequence principle” for the convergence in probability,
we obtain

V ′n(f,X)t
u.c.p.=⇒ tρc(f ) (1.2.3)

where Zn
t

u.c.p.=⇒ Zt means “convergence in probability, locally uniformly in time”:

that is, sups≤t |Zn
s − Zs | P−→ 0 for all t finite.

2) Next, if instead of the one-dimensional CLT we use the “functional CLT”, or
Donsker’s Theorem, we obtain

(
1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒
√

ρc

(
f 2

) − ρc(f )2 B (1.2.4)

where B is another standard Brownian motion, and
L=⇒ stands for the convergence

in law of processes (for the Skorokhod topology, see later for details on this topol-
ogy, even though in this special case we could also use the “local uniform topology”,
since the limit is continuous).

In (1.2.4) we see a new Brownian motion B appear. What is its connection with
the basic underlying Brownian motion W ? To study that, one can try to prove the
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“joint convergence” of the processes on the left side of (1.2.4) together with W (or
equivalently X) itself.

This is an easy task: consider the 2-dimensional process Zn whose first com-
ponent is W and the second component is the left side of (1.2.4). The discretized
version of Zn is (Zn)

(Δn)
t = √

Δn

∑[t/Δn]
i=1 ζ n

i , where the ζ n
i are 2-dimensional i.i.d.

variables as i varies, with the same distribution as (W1, f (σW1) − ρc(f )). Then
the 2-dimensional version of Donsker’s Theorem gives us that the pair of processes
with components W(Δn) and 1√

Δn
(ΔnV

′n(f,X)t − tρc(f )) converges in law to a
2-dimensional Brownian motion with variance-covariance matrix at time 1 given by

(
1 ρc(g)

ρc(g) ρc(f
2) − ρc(f )2

)
, where g(x) = xf (x)/σ.

We write this as

(
W

(Δn)
t ,

1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒ (
W,aW + a′W ′),

where a = ρc(g), a′ = (
ρc

(
f 2) − ρc(f )2 − ρc(g)2)1/2

, (1.2.5)

where W ′ is a standard Brownian motion independent of W .
In (1.2.5) we could have used another symbol in place of W since what really

matters is the joint law of the pair (W,W ′). However for the first component, not
only do we have convergence in law but pathwise convergence W(Δn) → W . This
explains why we use the notation W here, and in fact this results in a stronger form
of convergence for the second component as well. This mode of convergence, called
stable convergence in law, will be explained in detail in the next chapter.

Remark 1.2.1 We can even make f = fn depend on n, in such a way that fn con-
verges to some limit f fast enough. This is straightforward, and useful in some
applications.

Remark 1.2.2 (1.2.5) is stated in a unified way, but there are really two—quite
different—types of results here, according to the parity properties of f :

a) If f is an even function then ρc(f ) �= 0 in general, and a = 0. The limit in the
CLT is (W,a′W ′), with two independent components.

b) If f is an odd function then ρc(f ) = 0 and a �= 0 in general. The limit in the
CLT has two dependent components. A special case is f (x) = x: then a = σ and
a′ = 0, so the limit is (W,X) = (W,σW). This was to be anticipated, since in this
case V ′n(f,X) = √

Δn X(Δn), and the convergence in (1.2.5) takes place not only
in law, but even in probability.

In general, the structure of the limit is thus much simpler in case (a), and most
applications use this convergence for test functions f which are even.
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1.2.2 The Non-normalized Functionals V n(f,X)

We now turn to the processes V n(f,X). Their behavior results from the behavior
of the processes V ′n(f,X), but already in this simple case they show some dis-
tinctive features that will be encountered in more general situations. Basically, all
increments Δn

i X become small as n increases, so the behavior of f near 0 is of the
utmost importance, and in fact it conditions the normalization we have to use for the
convergence.

To begin with, we consider power functions:

fr(x) = |x|r , f r (x) = |x|rsign(x),

where r > 0 and where sign(x) takes the value +1, 0 or −1, according to whether
x > 0, x = 0 or x < 0. Note that

V n(fr ,X) = Δ
r/2−1
n V ′n(fr ,X)

and the same for f r . Moreover, if mp denotes the p absolute moment of N (0,1),
that is mp = ρ1(fp), and if hr(x) = xfr(x)/σ and hr(x) = xf ′

r (x)/σ (recall σ > 0),
we have

ρc(fr) = mrσ
r, ρc

(
f 2

r

) = m2rσ
2r , ρc(hr) = 0,

ρc(f r) = 0, ρc

(
f 2

r

) = m2rσ
2r , ρc(hr) = mr+1σ

r .

Hence we can rewrite (1.2.3) and (1.2.5) as follows, where W ′ denotes a standard
Brownian motion independent of W (we single out the two cases fr and f r , which
correspond to cases (a) and (b) in Remark 1.2.2):

Δ
1−r/2
n V n(fr ,X)t

u.c.p.=⇒ tmrσ
r ,

(1.2.6)(
W

(Δn)
t ,

1√
Δn

(
Δ

1−r/2
n V n(fr ,X)t − tmrσ

r
))

t≥0

L=⇒ (
W,σ r

√
m2r − m2

r W ′),

Δ
1−r/2
n V n(f r ,X)

u.c.p.=⇒ 0,

(1.2.7)
(
W(Δn),Δ

1/2−r/2
n V n(f r ,X)

) L=⇒ (
W,σ r

(
mr+1W +

√
m2r − m2

r+1 W ′)).

Note that the second statement implies the first one in these two properties.
Next, we consider functions f which vanish on a neighborhood of 0, say over

some interval [−ε, ε]. Since X is continuous, we have supi≤[t/Δn] |Δn
i X| → 0 point-

wise for all t , and thus for each t there is a (random) integer At such that

n ≥ At ⇒ V n(f,X)s = 0 ∀s ≤ t. (1.2.8)

Finally, we consider “general” functions f , say Borel and with polynomial
growth. If we combine (1.2.6) or (1.2.7) with (1.2.8), we see that the behavior of f
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far from 0 does not matter at all, whereas the behavior near 0 is crucial for V n(f,X)

to converge (with or without normalization). So it is no wonder that we get the fol-
lowing result:

f (x) ∼ fr(x) as x → 0 ⇒ Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ tmrσ
r ,

f (x) ∼ f r(x) as x → 0 ⇒ Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ 0.
(1.2.9)

These results are trivial consequences of the previous ones when f coincides with
fr or f r on a neighborhood of 0, whereas if they are only equivalent one needs
an (easy) additional argument. As for the CLT, we need f to coincide with fr or
f r on a neighborhood of 0 (“close enough” would be sufficient, but how “close”
is difficult to express, and “equivalent” is not enough). So we have, for any ε > 0
(recall that f is of polynomial growth):

f (x) = fr(x) if |x| ≤ ε ⇒
(

W
(Δn)
t ,

1√
Δn

(
Δ

1−r/2
n V n(f,X)t − tmrσ

r
))

t≥0

L=⇒ (
W,σ r

√
m2r − m2

r W ′),

(1.2.10)

f (x) = f r(x) if |x| ≤ ε ⇒
(
W(Δn),Δ

1/2−r/2
n V n(f,X)

) L=⇒ (
W,σ r

(
mr+1W +

√
m2r − m2

r+1 W ′))

(1.2.11)

where again W ′ is a standard Brownian motion independent of W .
These results do not exhaust all possibilities for the convergence of V n(f,X).

For example one can prove the following:

f (x) = |x|r log |x| ⇒ Δ
1−r/2
n

log(1/Δn)
V n(f,X)

u.c.p.=⇒ −1

2
tmrσ

r ,

and a CLT is also available in this situation. Or, we could consider functions f which
behave like xr as x ↓↓ 0 and like (−x)r

′
as x ↑↑ 0. However, we essentially restrict

our attention to functions behaving like fr or f r near the origin: for simplicity, and
because more general functions do not really occur in applications, and also because
the extension to processes X more general than the Brownian motion is not easy, or
not available at all, for other functions.

Example 1.2.3 Convergence of the approximate quadratic variation. The functional

V n(f2,X)t =
[t/Δn]∑

i=1

(
Δn

i X
)2

is called the “approximate quadratic variation”, and “realized quadratic variation”
or “realized volatility” in the econometrics literature. It is of course well known, and
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a consequence of (1.2.6), that it converges in probability, locally uniformly in time,
to the “true” quadratic variation which here is σ 2t . Then (1.2.6) also gives the rate
of convergence, namely that 1√

Δn
(V n(f2,X)t − tσ 2) converges in law to 2σ 4W ′;

and we even have the joint convergence with X itself, and in the limit W ′ and X (or
W ) are independent.

1.3 When X is a Brownian Motion Plus Drift

Here we replace (1.2.1) by

Xt = bt + σWt, where σ ≥ 0 and b �= 0.

1.3.1 The Normalized Functionals V ′n(f,X)

We first assume that σ > 0. The normalized increments Δn
i X/

√
Δn are still i.i.d.

when i varies, but now their laws depend on n. However, Δn
i X/

√
Δn = Yn

i +b
√

Δn

with Yn
i being N (0, σ 2) distributed. Then, clearly enough, f (Δn

i X/
√

Δn ) and
f (Y n

i ) are almost the same, at least when f is continuous, and it is no wonder
that (1.2.3) remains valid (with the same limit) here, that is

V ′n(f,X)t
u.c.p.=⇒ tρc(f ).

Moreover, it turns out that the continuity of f is not even necessary for this, being
Borel with some growth condition is again enough.

For the CLT, things are more complicated. When X = σW the CLT (1.2.4) boils
down to the ordinary (functional) CLT, or Donsker’s theorem, for the i.i.d. centered
variables ζ n

i = f (Δn
i X/

√
Δn ) − ρc(f ), but now while these variables are still i.i.d.

when i varies, they are no longer centered, and their laws depend on n.
In fact ζ n

i is distributed as f (σU +b
√

Δn )−ρc(f ), where U denotes an N (0,1)

variable. Now, assume that f is C1, with a derivative f ′ having at most polynomial
growth. Then f (σU + b

√
Δn ) − f (σU) is approximately equal to f ′(σU)b

√
Δn.

It follows that the variables ζ n
i satisfy

E
(
ζ n
i

) = √
Δn

(
bρc

(
f ′) + o(1)

)

E
((

ζ n
i

)2) = ρc

(
f 2) − ρc(f )2 + o(1)

E
((

ζ n
i

)4) = O(1).

A CLT for triangular arrays of i.i.d. variables (see the next chapter) gives us
(

1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒ (
b ρc

(
f ′) t +

√
ρc

(
f 2

) − ρc(f )2 Bt

)
t≥0.

(1.3.1)
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Comparing with (1.2.4), we see an additional bias coming in here. Exactly as in
(1.2.5), we also have a joint convergence (and stable convergence in law as well).
With the notation a, a′ and W ′ of (1.2.5), the expression is
(

W
(Δn)
t ,

1√
Δn

(
bV ′n(f,X)t − tρc(f )

))

t≥0

L=⇒ (
Wt,b ρc

(
f ′) t +aWt +a′W ′

t

)
t≥0.

(1.3.2)

Remark 1.3.1 We have the same dichotomy as in Remark 1.2.2. When f is an even
function, the limit in (1.3.2) is simply (W,a′W ′), with a′ = √

ρc(f 2) − ρc(f )2, and
in particular there is no bias (observe that f ′ is then odd, so ρc(f

′) = 0). When f

is an odd function, we do have ρc(f
′) �= 0 in general, and the bias does appear. A

special case again is when f (x) = x, so a = σ and a′ = 0 and ρc(f
′) = 1, so the

limit is (W,X) again, as it should be from the property V ′n(f,X) = √
Δn X(Δn).

Suppose now σ = 0, that is Xt = bt . Then of course there is no more randomness,
and all results ought to be elementary, but they are different from the previous ones.
For example if f is differentiable at 0, we have

1√
Δn

(
V ′n(f,X)t − tf (0)

) → b f ′(0) t,

locally uniformly in t . This can be considered as a special case of (1.3.1), with
ρ0 being the Dirac mass at 0. Note that the normalization 1/

√
Δn inside the test

function f is not really adapted to this situation, a more natural normalization would
be 1/Δn.

1.3.2 The Non-normalized Functionals V n(f,X)

For the functionals V n(f,X) we deduce the results from the previous subsection,
exactly as for Brownian motion, at least when σ > 0. We have (1.2.8) when f

vanishes on a neighborhood of 0, because this property holds for any continuous
process X. Then we have (1.2.9), and also (1.2.10) when r ≥ 1 (use Remark 1.3.1,
the condition r ≥ 1 ensures that fr is C1, except at 0 when r = 1). Only (1.2.11)
needs to be modified, as follows, and again with r ≥ 1:

f (x) = f r(x) if |x| ≤ ε ⇒ (
W(Δn),Δ

1/2−r/2
n V n(f,X)

)

L=⇒ (
Wt, r mr−1bt + σ r

(
mr+1Wt +

√
m2r − m2

r+1 W ′
t

))
t≥0. (1.3.3)

The case of the approximate quadratic variation is exactly as in Example 1.2.3.
Finally when σ = 0 we have V n(f,X)t = f (bΔn)Δn[t/Δn], and thus trivially

f differentiable at 0 ⇒ 1

Δn

(
V n(f,X)t − f (0) t

) → b f ′(0) t.
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1.4 When X is a Brownian Motion Plus Drift Plus a Compound
Poisson Process

In this section the structure of the process X is

X = Y + Z, Yt = bt + σWt, Zt =
∑

n≥1

Ψn1{Tn≤t}, (1.4.1)

where b ∈ R, σ ≥ 0 and W is a Brownian motion, and Z is a compound Poisson
process: that is, the times T1 < T2 < · · · are the arrival times of a Poisson process
on R+, say with parameter λ > 0, and independent of W , and the Ψn’s are i.i.d.
variables with law F , say, and independent of everything else. For convenience, we
put T0 = 0 and Nt = ∑

n≥1 1{Tn≤t} (which is the Poisson process mentioned above).
To avoid trivial complications, we assume λ > 0 and F({0}) = 0.

Before proceeding, we state an important remark:

Remark 1.4.1 The Poisson process N , hence X as well, has a.s. infinitely many
jumps on the whole of R+. However, in practice we are usually interested in the
behavior of our functionals on a given fixed finite interval [0, T ]. Then the subset
ΩT of Ω on which N and X have no jump on this interval has a positive probability.
On ΩT we have Xt = Yt for all t ≤ T , hence for example V n(f,X)t = V n(f,Y )t
for t ≤ T as well. Then, in restriction to the set ΩT , (V n(f,X)t )t∈[0,T ] behaves
as (V n(f,Y )t )t∈[0,T ], as described in the previous section: there is no problem for
(1.2.9) since the convergence in probability is well defined in restriction to the subset
ΩT . For the convergence in law in (1.2.10) and (1.2.11) saying that it holds “in
restriction to ΩT ” makes a priori no sense; however, as mentioned before, we do
have also the stronger stable convergence in law, for which it makes sense to speak
of the convergence in restriction to ΩT : this is our first example of the importance
of stable convergence, from a purely theoretical viewpoint.

The functionals V ′n(f,X) are particularly ill-suited when X has jumps, because
the normalized increment Δn

i X/
√

Δn “explodes” as n → ∞ if we take i = in such
that the interval ((i − 1)Δn, iΔn] contains a jump. More precisely, Δn

i X/
√

Δn is
equivalent to Ψ/

√
Δn if Ψ is the size of the jump occurring in this interval. So gen-

eral results for these functionals ask for very specific properties of f near infinity.
Therefore, below we restrict our attention to V n(f,X).

1.4.1 The Law of Large Numbers

The key point now is that (1.2.8) fails. In the situation at hand, for any t there
are at most finitely many q’s with Tq ≤ t , or equivalently Nt < ∞. The differ-
ence V n(f,X)t − V n(f,Y )t is constant in t on each interval [iΔn, jΔn) such that
(iΔn, (j − 1)Δn] contains no jump. Moreover, let us denote by Ωn

t the subset of
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Ω on which Tq − Tq−1 ≥ Δn for all q such that Tq ≤ t , and by i(n, q) the unique
(random) integer i such that (i − 1)Δn < Tq ≤ iΔn. Note that Ωn

t tends to Ω as
n → ∞, for all t . Then if we set

ζ n
q = f

(
Ψq + Δn

i(n,q)Y
) − f

(
Δn

i(n,q)Y
)
, V

n
(f )t =

N
(Δn)
t∑

q=1

ζ n
q ,

where Ψq is as in (1.4.1), we have

V n(f,X)s = V n(f,Y )s + V
n
(f )s, ∀s ≤ t, on the set Ωn

t . (1.4.2)

Observe that Δn
i(n,q)

Y → 0 for all q , because Y is continuous. Then as soon as
f is continuous and vanishes at 0, we have ζ n

q → f (Ψq), hence ζ ′n
q → f (Ψq) as

well. Since N
(Δn)
t ≤ Nt < ∞ and since P(ΔXt �= 0) = 0 for any given t (because

the Poisson process N has no fixed time of discontinuity), we deduce

V
n
(f )t

a.s.−→
Nt∑

q=1

f (Ψq) =
∑

s≤t

f (ΔXs),

where ΔXs = Xs − Xs− denotes the size of the jump of X at time s. This conver-
gence is not local uniform in time. However, it holds for the Skorokhod topology
(see Chap. 2 for details), and we write

V
n
(f )t

a.s.=⇒
∑

s≤t

f (ΔXs). (1.4.3)

When f vanishes on a neighborhood of 0 and is continuous, and if we combine
the above with (1.2.8) for Y , with (1.4.2) and with Ωn

t → Ω , we see that (1.2.8)
ought to be replaced by

V n(f,X)t
P=⇒

∑

s≤t

f (ΔXs) (1.4.4)

(convergence in probability for the Skorokhod topology).
The general case is also a combination of (1.4.2) and (1.4.4) with (1.2.9) applied

to the process Y : it all depends on the behavior of the normalizing factor Δ
1−r/2
n in

front of V n(f,Y ), which ensures the convergence. If r > 2 the normalizing factor
blows up, so V n(f,Y ) goes to 0; when r < 2 then V n(f,Y ) blows up (at least in the
first case of (1.2.9)) and when r = 2 the functionals V n(f,Y ) go to a limit, without
normalization. Therefore we end up with the following LLNs (we always suppose
f continuous, and is of polynomial growth in the last statement below; this means
that |f (x)| ≤ K(1 + |x|p) for some constants K and p):

f (x) = o
(|x|2) as x → 0 ⇒ V n(f,X)t

P=⇒
∑

s≤t

f (ΔXs)
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f (x) ∼ x2 as x → 0 ⇒ V n(f,X)t
P=⇒ ct +

∑

s≤t

f (ΔXs)

(1.4.5)

f (x) ∼ |x|r as x → 0 ⇒
⎧
⎨

⎩
V n(f,X)t

P−→ +∞ if r ∈ (0,2) and t > 0

Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ tmrσ
r .

Once more, this does not cover all possible test functions f .

1.4.2 The Central Limit Theorem

We have different CLTs associated with the different LLNs in (1.4.5). The results
rely again upon the decomposition (1.4.2). In view of (1.4.2), and since we already
have the CLT for V n(f,Y ), we basically need to establish a CLT for V

n
(f ), for

which the LLN takes the form (1.4.3). Due to some peculiarity of the Skorokhod
topology, (1.4.3) does not imply that the difference V

n
(f )t − ∑

s≤t f (ΔXs) goes
to 0 for this topology. However we do have Skorokhod convergence to 0 of the
discretized processes, that is

V̂ n(f )t := V
n
(f )t −

∑

s≤Δn[t/Δn]
f (ΔXs)

a.s.=⇒ 0,

and we are looking for a CLT for these processes V̂ n(f ).
The key steps of the argument are as follows:

Step 1) We rewrite V̂ n(f )t as V̂ n(f )t = ∑N
(Δn)
t

q=1 ηn
q , where

ηn
q = f

(
Ψq + Δn

i(n,q)Y
) − f (Ψq) − f

(
Δn

i(n,q)Y
)
.

Assuming that f is C1 with f (0) = 0, and recalling Δn
i(n,q)

Y → 0, a Taylor expan-
sion gives

ηn
q = (

f ′(Ψq) − f ′(0)
)
Δn

i(n,q)Y
(
1 + o

(
Δn

i(n,q)Y
))

.

Since Δn
i(n,q)Y = bΔn + σ

√
Δn Δn

i(n,q)W , we deduce (this has to be justified, of
course):

ηn
q = (

f ′(Ψq) − f ′(0)
)
σΔn

i(n,q)W + o(
√

Δn ). (1.4.6)

Step 2) The jump times Tq and sizes Ψq , hence the random integers i(n, q), are
independent of W . Moreover one can check that the sequence (Δn

i(n,q)
W)q≥1

is asymptotically independent of the process X as n → ∞, whereas in restric-
tion to the set Ωn

t the variables Δn
i(n,q)W for q = 1, . . . ,Nt are independent and

N (0,Δn).
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Therefore, if (Φq)q≥1 denotes a sequence of independent N (0,1) variables, in-
dependent of the process X, we deduce the following joint convergence in law, as
n → ∞:

(
X,

(
1√
Δn

ηn
q

)

q≥1

)
L−→ (

X,
((

f ′(Ψq) − f ′(0)
)
σ Φq

)
q≥1

)
.

Step 3) The previous step and (1.4.6) give

(
X,

1√
Δn

V̂ n(f )

)
L=⇒ (

X, V̂ (f )
)
, where V̂ (f )t =

Nt∑

q=1

(
f ′(Ψq) − f ′(0)

)
σ Φq

(1.4.7)
(we also have the stable convergence in law). This is the desired CLT for V̂ n.

Step 4) It remains to combine (1.4.7) with the result of the previous section, in the
light of the decomposition (1.4.2). In order to stay simple, although keeping the
variety of possible results, we only consider the absolute power functions fr(x) =
|x|r . The results strongly depend on r , as did the LLNs (1.4.5) already, but here we
have more cases.

For getting a clear picture of what happens, it is useful to rewrite (1.4.7) in a
somewhat loose form (in particular the “equality” below is in law only), as follows,
at least when r > 1 so fr is C1 and f ′

r (0) = 0:

V
n
(fr)t = An

t + Bn
t + o(

√
Δn ) “in law”, where

An
t =

N
(Δn)
t∑

q=1

fr(Ψq), Bn
t = √

Δn

Nt∑

q=1

f ′
r (Ψq)σ Φq. (1.4.8)

Analogously, we can rewrite (1.2.10) for Y as follows:

V n(fr , Y )t = A′n
t + B ′n

t + o
(
Δ

r/2−1/2
n

)
“in law”, where

A′n
t = Δ

r/2−1
n mrσ

r t, B ′n
t = Δ

r/2−1/2
n σ r

√
m2r − m2

r W ′
t .

Note that An
t � Bn

t (meaning Bn
t /An

t

P−→ 0 as n → ∞), and A′n
t � B ′n

t . Then we
can single out seven (!) different cases. For simplicity we do not write the joint con-
vergence with the process X itself, but this joint convergence nevertheless always
holds.

1) If r > 3: We have Bn
t � A′n

t , hence

1√
Δn

(
V n(fr ,X)nt −

N
(Δn)
t∑

q=1

fr(Ψq)

)
L=⇒

Nt∑

q=1

f ′
r (Ψq)σ Φq.
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2) If r = 3: Both terms Bn
t and A′n

t are of the same order of magnitude, hence

1√
Δn

(
V n(f3,X)nt −

N
(Δn)
t∑

q=1

f3(Ψq)

)
L=⇒ m3σ

3 t +
Nt∑

q=1

f ′
3(Ψq)σ Φq.

3) If 2 < r < 3: We have An
t � A′n

t � Bn
t . Then we do not have a proper CLT here,

but the following two properties:

1

Δ
r/2−1
n

(
V n(fr ,X)nt −

N
(Δn)
t∑

q=1

fr(Ψq)

)
u.c.p.=⇒ mrσ

r t,

1√
Δn

(
V n(fr ,X)nt −

N
(Δn)
t∑

q=1

fr(Ψq) − Δ
r/2−1
n mrσ

r t

)
L=⇒

Nt∑

q=1

f ′
r (Ψq)σ Φq.

4) If r = 2: Both terms An
t and A′n

t , resp. Bn
t and B ′n

t , are of the same order of
magnitude, and one can show that

1√
Δn

(
V n(f2,X)nt − σ 2t +

N
(Δn)
t∑

q=1

(Ψq)2

)
L=⇒ √

2σ 2 W ′
t + 2

Nt∑

q=1

Ψq σ Φq

(recall m2 = 1 and m4 = 3 and f ′
2(x) = 2x). Here W ′ is a Brownian motion indepen-

dent of X, and also of the sequence (Φq). Note that, if we replace t by Δn[t/Δn] in
the left side above, which does not affect the convergence, this left side is the differ-
ence between the approximate quadratic variation and the discretized true quadratic
variation.

5) If 1 < r < 2: We have A′n
t � An

t � B ′n
t � Bn

t . Then as in Case 3 we have two
results:

1

Δ
1−r/2
n

(
Δ

1−r/2
n V n(fr ,X)nt − mrσ

r t
) P=⇒

Nt∑

q=1

fr(Ψq),

1

Δ
r/2−1/2
n

(
V n(fr ,X)nt − Δ

r/2−1
n mrσ

r t −
N

(Δn)
t∑

q=1

fr(Ψq)

)
L=⇒ σ r

√
m2r − m2

r W ′
t .

6) If r = 1: The function f1 is not differentiable at 0, but one can show that V
n
(f1)

has a decomposition (1.4.8) with the same An
t and with a Bn

t satisfying An
t � Bn

t .
Now, An

t and B ′n
t have the same order of magnitude, so we get

1√
Δn

(√
Δn V n(f1,X)nt − m1σ t

) L=⇒
Nt∑

q=1

|Ψq | + |σ |
√

1 − m2
1 W ′

t .
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7) If 0 < r < 1: Again the function fr is not differentiable at 0, but obviously
V

n
(fr)t stays bounded in probability. Then we have:

1√
Δn

(
Δ

1−r/2
n V n(fr ,X)nt − mrσ

r t
) L=⇒ σ r

√
m2r − m2

r W ′
t .

The jumps have disappeared from the picture in this case, which is as in (1.2.10).

From this brief description, we are able to conclude a moral that pervades the
theory: including processes with jumps complicate matters more than one might
naively suspect.
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