Chapter 4
Process Modeling Notations and Tools

This chapter introduces notations for process modeling and gives an overview of
tool support for process modeling and management. The chapter is structured into
three main parts. First, it introduces a set of criteria for process modeling notations
in order to enable the reader to distinguish different process modeling notations and
to understand that different purposes might be addressed by different notations.
Second, it discusses two different process modeling notations, namely, MVP-L and
SPEM 2.0, and characterizes them according to the previously defined criteria.
Finally, it introduces process management tools by discussing the ECMA/NIST
framework and the Eclipse Process Framework (EPF) Composer. Figure 4.1
displays an overview of the chapter structure.

Criteria for Process Nol:t,a:gggsssfor Tools for Software
Modeling Notations . Process Modeling
Modeling

Fig. 4.1 Chapter structure

4.1 Objectives of This Chapter

After reading this chapter, you should be able to

— Distinguish different process modeling notations and assess their suitability with
respect to different purposes

— Explain and use the basic concepts of MVP-L

— Explain and use the basic concepts of SPEM 2.0

— Understand and explain the components of process management tools

J. Miinch et al., Software Process Definition and Management, 111
The Fraunhofer Series on Software and Systems Engineering,
DOI 10.1007/978-3-642-24291-5_4, © Springer-Verlag Berlin Heidelberg 2012

112 4 Process Modeling Notations and Tools
4.2 Introduction

When we think of process modeling notations, we can identify a plethora of
different approaches. This is due to the fact that during the historical development
of process modeling notations, different communities have influenced the discipline
of process modeling. In terms of software engineering processes, two major groups
that influenced the development of process modeling notations can be identified [1].

The first group was significantly influenced by tool developers and programmers.
Within this group, notations for the representation of processes were developed or
adopted aimed at creating representations that could be interpreted by machines.
Thus, this group focused on process automation and the notations used were
typically not designed to be interpreted by humans. The underlying vision was to
create software development environments where the execution of software devel-
opment tools would be controlled by a process-driven engine. The main focus was
on small, low-level processes such as the code—compile—test—fix cycle. As a result,
this approach focused on processes with a high potential of automation.

The second group has its origins in the community that was concerned with
software process improvement. In this discipline, the aim was to make software
development more mature by means of introducing best practices and establishing
learning cycles. For this reason, the need arose to represent software processes in
order to understand and improve the processes of software development performed
by humans. The notation constructs developed in this context aimed at describing
real-world concepts and creating models that humans can interpret. This approach,
and in particular the representation of software engineering processes, focused on
higher level processes and a minor degree of automation. Therefore, processes are
described in a more informal and less detailed way and, most importantly, they
provide guidance that can be interpreted and enacted by humans. In this context,
process guides based on natural notation became popular. They concentrate on
providing people with the information necessary to appropriately enact the process.

Currently, an abundance of different process modeling notations exists and,
therefore, a strong need for standardization has developed. As a result of this
development, the Software Process Engineering Metamodel (SPEM) was created.
Its goal is to enable the representation of different software engineering concepts.

4.3 Criteria for Assessing Process Modeling Notations

The multitude of existing process modeling notations has been developed due to
different motivations and needs. As needs usually differ greatly for different
stakeholders, purposes, and contexts, there is no best representation for processes,
and thus different representations cannot be assessed from a general point of view.
But it can be useful to compare different concepts in order to understand the specific
aspects that are addressed by a specific representation.

4.3 Criteria for Assessing Process Modeling Notations 113

This section will introduce concepts for characterizing process modeling
notations and furthermore define requirements for process modeling notations
from different perspectives. These concepts are useful for comparing different
notations for the representation of processes.

4.3.1 Characteristics of Process Modeling Notations

In order to understand the context and motivation of a certain representation,
Rombach and Verlage [1] use the following aspects for characterizing process
modeling notations.

4.3.1.1 Process Programming vs. Process Improvement

A major distinction can be made between process modeling notations for the
implementation of processes (i.e., process programming) and notations for the
conceptual modeling of processes (i.e., process improvement). Process program-
ming notations focus on a representation for interpretation and execution by
machines. Process improvement notations focus on representation of real-world
concepts and provision of a representation that can be interpreted by humans.

4.3.1.2 Hidden vs. Guiding

When the process model is used, the representation of the process models can be
hidden or presented to the process user. When hidden, the process instantiation is
completely encoded in the process models or tools that support process enactment.
Thus, only filtered information is provided concerning the current project state.
If used for guiding, the process models themselves are used to inform the user and
to provide guidance during process instantiation.

4.3.1.3 Prescriptive vs. Proscriptive

In the early days of software process research, the main focus was placed
on automating process execution with the help of software development tools.
Therefore, the user of such tools would be guided by an execution mechanism
in a prescriptive manner. This approach of prescribing the process and thus also the
human activities has been subject to criticism and is difficult to implement.
The proscriptive approach represents a nonrestrictive way of formulating processes.
The process models provide guidance in order to enable performance of the
required process steps, but process users have a certain freedom in deciding
which actions to take at a particular stage of the project.

114 4 Process Modeling Notations and Tools

4.3.1.4 Single Person vs. Multiperson

Software development projects are not performed by a single person and, in
consequence, collaboration and cooperation between persons, teams, and organi-
zations is highly relevant. Process models should support all these different levels
in order to make collaboration and cooperation possible. Historically, process
representations have evolved from a single-person focus in order to ensure proper
application of specific techniques by individuals. For the purpose of cooperation, a
multiperson focus is needed in order to coordinate the processes of different
persons. Therefore, a process representation should contain constructs for modeling
concepts of collaboration.

4.3.2 Requirements for Process Modeling Notations

In the following, a set of requirements for process modeling notations will be
described in accordance with [1]. The fulfillment of these requirements can be
seen as an indicator for the suitability of the notation to support process manage-
ment for software engineering organizations. Based on the viewpoint, the purpose,
and the context, different requirements might be relevant. A process engineer who
wants to automate a build process of a business unit might select different
requirements than an education department that aims at introducing a company-
wide training program. The stated requirements help to find suitable process
modeling notations by first selecting the relevant requirements and afterwards
selecting such notations that fulfill the requirements. The following requirements
can be applied [1].

— RI—Natural Representation: A process modeling notation should not only be
able to capture all relevant aspects of software development, but it should also be
able to represent these aspects in a natural, intuitive, and easy-to-identify manner.
A mapping between real-world phenomena and process model elements that is as
complete as possible facilitates the modeling and maintenance of these models.

— R2—Support of Measurement: A process modeling notation should take into
account the measurability of the process model. In order to enable software
process improvement, the impact of different technologies on products and
processes has to be observed. Furthermore, the scientific evaluation of the
efficiency and effectiveness of these technologies should be based on measure-
ment. For this reason, the notation has to take into account the definition of
attributes and measurement within process models.

— R3—Tailorability of Models: On the one hand, a process modeling notation
should enable a generic representation of information in order to allow for
process models that can describe commonalities of processes from several
different projects. On the other hand, no development project is completely
similar to another one and therefore, the process environment is most likely to

4.3 Criteria for Assessing Process Modeling Notations 115

change for each project. Thus, in planning a project, the differences must be
considered and the process model has to be instantiated and tailored accordingly.
The use of tailorable models limits the number of process models and thus
reduces maintenance efforts. Therefore, concepts for defining and supporting
process variability and tailoring are needed.

— R4—Formality: A process modeling notation should allow for the creation of
process models with a certain degree of formality. Formality is needed to support
communication among different process participants and to foster a common
understanding of the process model by different people. Fulfillment of this
requirement means that process model constructs are defined formally within
the process model.

— R5—Understandability: Understandability is a key aspect of a process modeling
notation, as process models are used as a reference during projects. Most
activities related to process engineering rely on human interpretation rather
than interpretation by a machine and understandability is therefore a crucial
factor for the success of any process representation. Understandability refers to
the style of presentation and to how difficult it is for its users to retrieve needed
information.

— R6—FExecutability: A process modeling notation should support the interpreta-
tion and execution of the process representation by a machine. This need arises
due to the fact that standard procedures of software development are often
supported by tools that aim at providing automated support for the process user.

— R7—Flexibility: A notation for process representation should account for
handling decisions made by humans during process performance. These
decisions are characterized by creativity and nondeterminism. A process
modeling notation thus should contain constructs that are capable of capturing
these aspects.

— R8—Traceability: Traceability should be ensured within and across layers of
abstraction (i.e., horizontal and vertical traceability). This means that, for each
piece of information, it should be possible to determine its context, the processes
that rely on it, and how it was transformed. A process modeling notation should
thus support process representations that provide constructs for the explicit
description of different relationships between various process elements.

These characteristics and requirements can be used to define a framework that
helps to distinguish different process modeling notations and their purpose. All
elements of this framework are summarized in Table 4.1 (adapted from [1]). For the
evaluation of requirements satisfaction, (+) represents full, (O) partial, and (—) no
fulfillment of the respective requirement.

In the following sections, two software process modeling notations, MVP-L and
SPEM 2.0, will be introduced. MVP-L represents a notation that offers a compre-
hensive set of modeling constructs. SPEM 2.0 will be introduced because it has the
potential to become a future process model notation standard. The framework of
characteristics and requirements that was introduced earlier will be used to give an
overview and characterization of these notations.

116 4 Process Modeling Notations and Tools

Table 4.1 Characterization framework

Characterization

Process programming vs. improvement Prescriptive vs. proscriptive

Hidden vs. guidance Single person vs. multiperson

Requirements satisfaction

R1—Natural representation (+/0/-)
R2—Support of measurement (+/0/-)
R3—Tailorability of models (+/0/-)
R4—Formality (+/0/-)
R5—Understandability (+/0/-)
R6—Executability (+/0/-)
R7—Flexibility (+/0/-)
R8—Traceability (+/0/-)

4.4 Multi-view Process Modeling Language

4.4.1 Overview

Multi-view process modeling language (MVP-L) was developed in the 1980s at the
University of Maryland. Subsequent development was conducted at the University of
Kaiserslautern, Germany. MVP-L has its origins in the Multi-view process modeling
(MVP) project, which focused on process models, their representation, and their
modularization according to views, as well as their use in the context of software
process improvement, namely, the quality improvement paradigm. MVP-L was
developed to support the creation of descriptive process models, packaging of these
models for reuse, integration of the models into prescriptive project plans, analysis of
project plans, and use of these project plans to guide future projects [2].

The main focus of MVP-L is on modeling “in-the-large.” It is assumed that the
ability to understand, guide, and support the interaction between processes is more
beneficial than the complete automation of low-level process steps [2].

4.4.2 Concepts

The main elements that are used in MVP-L for the description of process models are
processes, products, resources, and quality attributes, as well as their instantiation
in project plans [2]. A process model is actually a type description that captures the
properties common to a class of processes. For easy adaptation of process models to
different project contexts, the process models are structured using the concepts of a
process model-interface and a process model-body. An interface describes a
generalization of the formal parameters that are relevant to all models of a particu-
lar kind. As an example, a process model “Design” (Fig. 4.2, based on [2])

4.4 Multi-view Process Modeling Language 117

Project plan “Design_project”

req_doc:
Requirements_
document

des_doc:
Design_
document

design : Design

design_team : Design_group

Fig. 4.2 Example of process model “Design”

could describe a class of processes that require an input of the product type
“Requirements_document,” which must produce an output of the product type
“Design_document,” and which must be executed by a resource of the type
“Design_group.” These product and resource model declarations are part of the
interface of the process model “Design.” The actual implementation of the process
model is “hidden” in the body of the process model. Thus, MVP-L models
implement the important concept of information hiding [3]. The model-body
contains information that is only visible internally, whereas the model-interface
contains information that is visible to other models. By implementing the concept
of information hiding, changes to models or parts of models can be performed and
handled locally without affecting other models.

4.4.3 Notation Constructs

Processes, products, and resources can be used for modeling the basic elements of a
software project. Attributes can be used for defining specific properties of these
three basic elements. MVP-L calls the constructs for describing these elements
“models.” However, they can be understood as types [2].

— Product_model: Software products are the results of processes for development
or maintenance. In addition to the final software product, by-products, artifacts,
and parts of a product’s documentation are called products as well.

— Resource_model: Resources are the entities that are necessary for performing
the processes (e.g., people or tools).

— Process_model: Processes are the activities that are performed during a project.
They produce, consume, or modify products.

— Attribute_model: Attributes define properties of products, resources, and processes.
The attributes that are used are process_attribute_model, product_attribute_model,
and resource_attribute_model. Attributes correspond to measures and their values
correspond to specific measurement data.

118 4 Process Modeling Notations and Tools

In the following, these constructs will be discussed in more detail and examples
will be given for illustration purposes. The following descriptions and examples are
based on the MVP-L language report [2].

4.4.3.1 Product Models

Product models describe the structure and properties of a class of software products.
Product models do not only describe code artifacts, but all artifacts that are part of
software development activities and supporting activities. Each product representa-
tion consists of an interface and a body. Information in the <product_interface> is
visible to other objects. The product attributes are declared in the <exports> clause,
and their type must first be imported in the product interface’s <import> clause.

Example— Product Model:Requirements document

product_model Requirements document (status 0 : Product status) is
product_interface
imports
product_attribute_model Product_status;
exports
status : Product_status := status_0;

end product_interface

product_body
implementation
{textual description}

end product_body

end product_model Requirements document.

The product model “Requirements_document” imports a product attribute model
“Product_status” in order to declare a product attribute “status.” The formal instan-
tiation parameter “status_0” is used to provide the initial value for the attribute.

4.4.3.2 Resource Models

Resource models describe resources involved in performing a process. Resources can
be differentiated into organizational entities (e.g., groups or teams) and human
individuals (active resources) or tools (passive resources). Active resources perform
processes and passive resources support the performance of processes. Note that
traditional software tools can be represented in MVP-L as resources as well as
processes. A compiler, for example, could be represented as an MVP-L process

4.4 Multi-view Process Modeling Language 119

integrated into an MVP project plan dealing with program development. In contrast, an
editor may be used as a passive resource within a project plan to support the design
process. Like product models, resource models consist of a <resource_interface> and
a <resource_body>. For instantiation, parameters can be defined. Parameters are
special kinds of attributes for passing values to objects when the objects are
instantiated. In the example below, the parameter “eff_0" of the type “Resource_effort”
is used. It contains the effort that is available to a designer for the execution of the
process in the context of a specific project plan.

Example — Resource Model: Designer

resource_model Designer(eff 0: Resource effort) is
resource_interface
imports
resource_attribute_model Resource effort;
exports
effort: Resource effort := eff 0;

end resource_interface

resource_body

implementation

{ - An instance of this model represents a single member

of the design team.

- Persons assuming the role of a designer must be qualified. }
end resource_body

end resource_model Designer

4.4.3.3 Process Models

Process models contain the information that is relevant for performing a specific
task. In particular, process models combine the basic elements of products and
resources in a manner that allows producing the resulting product. Similar to
product and resource models, process models are structured into a model-interface
and a model-body.

The process interface is described through <imports>, <exports>, <con-
sume_produce>, <context>, and <criteria> clauses, as shown in the following
example, which describes an exemplary design process. The process body is defined
in terms of an <implementation> clause. The <imports> clause lists all externally
defined models used to declare formal parameters within the <product_flow> clause
or attributes within the <exports> clause. The <exports> clause lists all externally
visible attributes that can be used by other models. These constructs provide a clear

120 4 Process Modeling Notations and Tools

interface to other models. In the example described later, the attribute “effort” of the
type “Process_effort” is made available to all models importing the process model
“Design.” A product flow is implemented in the process model through the
<product_flow> clause, which lists all products that are consumed, produced, or
modified. Products that are modified are declared in the <consume_produce> clause.
For the exemplary process model “Design,” a product “req_doc” of the type
“Requirements_document” is consumed and a product “des_doc” of the type
“Design_document” is produced.

Furthermore, constraint-oriented control flows can be defined by using explicit
entry and exit criteria as well as invariants within the MVP-L process models.
The <criteria> clause within the process model interface describes the pre- and
postconditions that have to be fulfilled in order to enter or exit the respective
process. In addition, invariants are used to describe states that need to be valid
throughout the enactment of the process. Criteria are specified as Boolean
expressions. The expression following the keyword <local_entry_criteria>
defines the criteria necessary to execute the process in terms of locally defined
attributes and local interface parameters. In this example, the local invariant
specifies that the actual effort spent for any instance of the process model
“Design” should never exceed a value specified by “max_effort.” Invariants can
be used to implement elements that need to be tracked permanently during
process performance and are not allowed to exceed a certain limit. In particular,
this accounts for monotonously rising or falling elements. Project effort, for
example, should not exceed its maximum value. In the example, the local entry
criteria state that any process of the type “Design” can only be executed if the
attribute “status” of the product “req_doc” has the value “complete” and the
attribute “status” of the product “des_doc” has either the value “non_existing”
or “incomplete.” The expression following the keyword <local_exit_criteria>
defines the criteria expected upon completion of process execution in terms of
local attributes and the local interface. In the example, the locally expected result
upon completion is that the attribute “status” of the product “des_doc” has the
value “complete.” Thus, the concept of entry and exit criteria can be used to
describe an implicit constraint-oriented control flow. MVP-L also provides
constructs for defining global criteria and invariants that address global attributes,
such as calendar time.

The <implementation> clause describes how an elementary process is to be
performed. This can either be a call of a supporting tool, or simply an informal
comment characterizing the task at hand for performance by a human. Processes are
related to products via explicit <product_flow> relationships, to attributes via
<criteria> clauses, and to resources via a separate <process_resources> clause.
In the example of the process model “Design,” a resource “desl” of the type
“Designer” is designated to execute any process of the type “Design.”

4.4 Multi-view Process Modeling Language 121

Example — Process Model: Design

Process_model Design(eff_0: Process_effort, max_effort_0: Process_effort) is

process_interface
imports
process_attribute_model Process_effort;
product_model Requirements_document, Design_document;
exports
effort: Process_effort := eff_0;
max_effort: Process_effort := max_effort_0;
product_flow
consume
req_doc: Requirements_document;
produce
des_doc: Design_document;
consume_produce
entry_exit_criteria
local_entry_criteria
(req_doc.status = “complete”) and (des_doc.status =
“non_existent” or des_doc.status = “incomplete”);
local_invariant
effort <= max_effort;
local_exit_criteria
des_doc.status = “complete”;

end process_interface

process_body
implementation
{textual description}
end process_body
process_resources
personnel_assignment
imports
resource_model Designer;
objects
desl: Designer;
tool_assignment

and process_resources

end process_model Design

122 4 Process Modeling Notations and Tools

4.4.3.4 Attribute Models

Each attribute model refers to a certain model type and consists mainly of a
definition of the <attribute_model_type> (and <attribute_manipulation>, which
is not discussed here). The <attribute_model_type> characterizes the type of
values the attribute stores. This type could be an integer, a real, string, Boolean,
or enumerated type (see example).

Example - Attribute Model: Product status

product_attribute_model Product_status () is
attribute_type

LTRSS LTS

(“non_existing”, “incomplete”, “complete”);

end product_attribute_model Product_status

4.4.4 Instantiation and Enactment

The basic MVP-L models described so far can be refined and combined to create
complex process models, which can be used to describe typical software and
systems engineering processes. The instantiation of a process model allows
operationalizing the process model and creating a concrete project plan, which
can then be used for project analysis or execution. This section introduces the
MVP-L representation of project plans, with an emphasis on the instantiation of
processes and process enactment as described in [2]. The creation of project plans in
MVP-L allows for creating executable <project_plan> objects.

4.4.4.1 Instantiation

Software process models in MVP-L are instantiated through <project plan>
objects. A <project_plan> is described through <imports>, <objects>, and
<plan_object_relations> clauses. The imports clause lists all models that are used
to specify the process, product, and resource objects that make up the project plan.
These objects are declared in the <objects> clause. The objects are interconnected
according to their formal interface definition in the <plan_object_relations> clause.
A project plan needs to be interpreted by a process engine (a human or a computer) in
order to enact the contained processes.

4.4 Multi-view Process Modeling Language 123

Example — Project Plan: Design Project 2

project_plan Design_project_2 is

imports
product_model Requirements_document, Design_document;
process_model Design;
resource_model Design_group;

objects
requiremements_doc: Requirements_document(,,complete*);
design_doc: Design_document(,,non_existent™);
design: Design(0, 2000);
design_team: Design_group(0);

object_relations
design(req_doc => requirements_doc, des_doc => design_doc,
designers => design_team);

end project_plan Design_project_2

The project plan example consists of four objects: one process “design,” two
products “requirements_doc” and “design_doc,” and one resource “design_team.”
The interconnection of these products and the resource with the process “design” is
performed according to the formal interface specification of the process model
“Design.” In this example, a complete requirements document (“requirements_doc”)
is provided, the design document “design_doc” does not yet exist, and the time that is
available for the performance of the process “design” is restricted to 2000 time
units. Finally, only members of the “Design_group” are allowed to perform the
process “design.”

4.4.4.2 Enactment

The notion of a project state is the basis for the enactment model in MVP-L [2].
A project state is defined as the set of all attribute values (i.e., all attributes of all
objects instantiated within a project plan). Thus, the project state provides valuable
information about the status of the projects at any given time. This is an important
foundation for effective project control. The initial project state is defined in
terms of the initial values of all user-defined attributes and the derived values of
built-in attributes.

The values of attributes of the built-in type “Process_status” depend on the entry
and exit criteria. The only triggers that change the current project state are user
invocations of the kind “start(<object_id>)" and “complete(<object_id>)" to start
and complete processes, or the invocation “set(. ..)” to address external changes of
attributes. In each case, the new values of all user-defined and built-in attributes

124 4 Process Modeling Notations and Tools

User Event complete AND
Exit Criteria = False

active

User Event complete AND
Exit Criteria = True

User Event start

Entry Criteria = True

enabled .| disabled

Entry Criteria = False

A

Fig. 4.3 State transition model for processes

producing
. rocess starts :
non_existent P > incomplete
producing
process
terminates rework is

needed

Fig. 4.4 State transition model for products

are computed to determine the new project state. A new project state provides
information about the processes that are in execution (i.e., the value of the process
status is “active”), ready for execution (i.e., the value of the process status
is “enabled”), or not ready for execution (i.e., the value of the process status is
“disabled”). The different states of a process can be represented in a state transition
model (Fig. 4.3). Starting in the disabled state, processes may only get enabled
when the entry criteria are true. An enabled process may get active when it is
triggered by a user with the “start” invocation. As long as the exit criteria are not
fulfilled and the user does not trigger the user invocation “complete,” the process
will remain in the active state. When the exit criteria are fulfilled and the
user invocation “complete” is triggered, then the process gets disabled. Addition-
ally, for each project state, the state of the associated work products is
represented as “non_existent,” “incomplete,” or “complete” with the built-in type
“Product_status.”

Consequently, a state transition model can also be defined for products (Fig. 4.4).
At the beginning, the product does not exist. When the producing process starts,
the product state changes to incomplete. Finally, when the producing process

4.4 Multi-view Process Modeling Language 125

Processes

Resources

Q Products

Entry / Exit Criteria

Fig. 4.5 Elements of graphical MVP-L representation
_
Q consume

—>
produce

+—>
consume-produce

Fig. 4.6 Elements of MVP-L product—process relations

terminates, the product state turns to complete. When rework is needed, several
iterations between the product states complete and incomplete are possible.

In addition to the textual representation of MVP-L, a graphical representation is
defined for MVP-L in order to facilitate understanding and support process model
reviews by process users [4]. Figure 4.5 introduces a graphical representation for
MVP-L’s products, processes, resources, and entry as well as exit criteria. Figure 4.6
displays the product—process relationships.

For illustration purposes, a simple example of an actual project is provided
(Fig. 4.7). This example illustrates the notion of the project state as well as the
capabilities of MVP-L in implementing a constraint-oriented control flow using
entry and exit criteria. The exemplary process consists of three process instances,
namely, requirements specification, design, and coding. In this example, the process is
strictly sequential. There are four work products that constitute the product flow within
this process. According to Fig. 4.6, an arrow from a product to a process indicates that
a product is consumed by this process. An arrow pointing from a process to a product
indicates that a product is produced by this process. Control of the process flow is
realized implicitly via pre- and postconditions of the process. Since the process is
sequential in our case and every subprocess creates one work product, the entry

126 4 Process Modeling Notations and Tools

States
pd: PD
S-0

S-1 req_s: pd.status = complete AND rs.status = non_existent
Req_S regs.status = complete
S-2
ST '
3| __S_':f ____________________ design: rs.status = complete AND dd.status = non_existent
é Design dd.status = complete
S-4
S-5 coding: dd.status = complete AND cd.status = non_existent
I "S-é -------------------- Coding cd.status = complete
v

Fig. 4.7 Exemplary process in MVP-L graphical representation

condition could be described as follows: The prior work product has to be complete
AND the next work product has to be nonexistent. The exit condition is defined as:
The next work product has been completed. In the right column of Fig. 4.7, entry and
exit criteria are explicitly specified. For example, in order to begin coding, the status of
the design document “dd” has to be “complete” and the status of the code document
“cd” has to be “non_existent.” In order to finish coding and to exit the process,
the status of the code document has to be “complete.”

Finally, on the left of Fig. 4.7, project states are represented that correspond to the
enactment scenario provided in the state table in Fig. 4.8 (adapted from [5]). The state
table provides a sequence of project plan execution states. Starting in project state S-0,
let us assume that the product description “pd” is already “complete” and other
products are “nonexistent.” As the product description is “complete,” the process
instance requirements specification can be enabled. The process instance is initiated
with the invocation “start(req_s)” and state S-1 is reached. In S-1, the requirements
specification process instance is “active” and the requirements specification document
“rs” is being produced and is therefore in the state “incomplete.” Upon completion of
the requirements specification, “complete(req_s)” triggers another project state
change. In state S-2, the requirements specification document is “complete,” and
thus the exit criterion for requirements specification is fulfilled. The requirements
specification process instance gets “disabled.” Now the entry conditions for the design
process are fulfilled, state S-3 can be achieved (“start(design)”), and the design process
instance becomes “active.” The active design process instance creates the design
document and therefore the design document is “incomplete.” All other process
instances are ‘“disabled.” State S-4 is triggered upon completion of the design
document (i.e., its exit criterion is fulfilled and “complete(design)” is triggered).
Now the entry criteria for the coding process are fulfilled and state S-5 can be entered.

4.5 Software Process Engineering Metamodel 127

State table | S-0 S-1 S-2 S-3 S-4 S-5 S-6
. |pd complete | complete |complete | complete | complete |complete | complete
é rs n-existent | incomplete | complete complete complete complete complete
oe_ dd n-existent | n-existent |n-existent | incomplete | complete | complete | complete
cd n-existent | n-existent |n-existent | n-existent [n-existent |incomplete | complete
% enabled active disabled disabled disabled disabled disabled
g disabled disabled active disabled disabled disabled
O |coding disabled disabled disabled disabled enabled active disabled

\VAVAVAVAVAV/

(s"bas)uels
(s"bai)are|dwod
(uBisep)uels
(uBisap)ale|dwos
(Buipoo)uers
(Buipoo)ere|dwos

Fig. 4.8 Example of a state table

In S-5, the code document is under creation (code document: “incomplete”) and the
coding process instance is “active.” When the code document reaches the state
“complete,” the exit criterion for coding is fulfilled and state S-6 is reached through
user invocation “complete(coding).” In S-6, all work products are “complete” and all
process instances are “disabled” (Fig. 4.8, adapted from [5]).

In this section, the basic concepts of MVP-L were introduced. For more infor-
mation, the interested reader may refer to [2] and [4].

4.4.5 Assessment with Respect to the Defined Criteria

Table 4.2 describes the four characteristics of MVP-L as well as the satisfaction of
the eight requirements R1-R8, based on a subjective assessment. In this context,
(+) represents full, (O) partial, and (—) no fulfillment of the respective requirement.

4.5 Software Process Engineering Metamodel

4.5.1 Overview

The first version of the SPEM standard was introduced by the Object Management
Group (OMG) in 2002 and was built upon UML 1.4. It was revised in 2005 and
again in 2007, when major changes led to version SPEM 2.0, which is compliant
with UML 2. Due to UML compliance, standard UML diagrams such as activity
diagrams or state chart diagrams can be used for visualizing processes models.

128 4 Process Modeling Notations and Tools

Table 4.2 MVP-L characteristics and requirements
Characterization: MVP-L

Improvement Proscriptive

Guidance Multiperson

Requirements satisfaction: MVP-L

R1—Natural representation
R2—Support of measurement
R3—Tailorability of models
R4—Formality
R5—Understandability
R6—Executability
R7—Flexibility
R8—Traceability

O+ + OO0 QO + +

The development of SPEM was motivated by the abundance of different
concepts for process modeling and software process improvement. These different
concepts are usually described in different formats using different notations. Since
achieving consistency between different approaches became increasingly difficult,
the need for standardization arose. The SPEM standard for modeling software
development processes has the following characteristics:

“The Software and Systems Process Engineering Meta-Model (SPEM) is a process engi-
neering metamodel as well as conceptual framework, which can provide the necessary
concepts for modeling, documenting, presenting, managing, interchanging, and enacting
development methods and processes.” [6]

4.5.2 Concepts

In the following sections, the basic SPEM concepts will be introduced. The
conceptual framework of SPEM will be discussed, as will the basic notation
constructs and the structure of the SPEM standard.

4.5.2.1 Conceptual SPEM Framework

The conceptual framework of SPEM mainly summarizes the aims of the standard.
These are, on the one hand, to provide an approach for creating libraries of reusable
method content and, on the other hand, to provide concepts for the development and
management of processes. The combination of these two basic goals is seen as a
solution that enables the configuration of more elaborate process frameworks and
finally their enactment in real development projects (Fig. 4.9, based on [6]).

4.5 Software Process Engineering Metamodel 129

Standardize representation
and manage libraries of
reusable Method Content

e

Configure process
framework customized for a
specific project’s needs

Develop and manage
Processes for projects

Create project plan for
Enactment of process in the
context of a specific project

Fig. 4.9 SPEM 2.0 conceptual framework

As depicted in Fig. 4.9, the conceptual SPEM framework consists of four main
elements: method content, processes, configuration, and enactment.

Libraries of method content address the need to create a knowledge base
containing methods and key practices of software development. Method content
captures key practices and methodologies in a standardized format and stores them
in adequate libraries. This allows creating and managing reusable practices and
methodologies. Such standardized content enables inclusion and integration of
external and internal method content according to the current development
requirements of an organization, and thus provides methodological support
throughout different lifecycle development stages. Furthermore, the standardized
method content elements can be used as a basis for the creation of custom
processes.

The creation of processes can be supported based on the reusable method
content. Processes can be defined as workflows and/or breakdown structures and,
within this definition, the selected method content is supposed to be adapted to the
specific project context. SPEM intends to provide support for the systematic
development and management of development processes as well as for the adapta-
tion of processes to specific project context.

As no two development projects are exactly alike, there is a need for tailoring
specific processes from the organization’s set of standard processes. With the
element of configuration, SPEM aims at addressing concepts for the reuse of
processes, for modeling variability, and for tailoring, thus allowing users to define
their own extensions, omissions, and variability points on reused processes.

In order to support the enactment of processes within development projects,
processes need to be instantiated in a format that is ready for enactment with a
“process enactment system” (e.g., project and resource planning systems, workflow
systems). Although SPEM 2.0 provides process definition structures, which allow

130 4 Process Modeling Notations and Tools

process engineers to express how a process shall be enacted within such an
enactment system, support for enactment is generally regarded as weak [7].

4.5.3 Notation Constructs

The central idea of the SPEM is that a software development process is a collabo-
ration between abstract active entities called process roles, which perform
operations called tasks on concrete entities called work products [8].

The associations between role, task, and work product are shown in Fig. 4.10.
Tasks are performed by one or more roles. Furthermore, tasks require one or more
work products as input. They produce one or more work products as output. A role
is responsible for one or more work products.

As described within the conceptual framework, SPEM uses an explicit distinc-
tion between method content and process, and the basic three entities must therefore
be defined for both approaches.

The SPEM method content represents a library of descriptions of software
engineering methods and best practices. It defines the “who, what, and how”
of work increments that have to be done.

A SPEM process represents descriptions of coherent process steps, which
enable performance of a certain task. It defines the “when” of work
increments that have to be done.

Method content elements can be defined by using work product definitions,
role definitions, and task definitions. Furthermore, Category and Guidance can be
used. Guidance represents supporting resources, such as guidelines, whitepapers,
checklists, examples, or roadmaps, and is defined at the intersection of method
content and process because Guidance can provide support for method content as
well as for specific processes. Table 4.3 gives an overview and description of basic
notation construct elements belonging to Method Content.

Figure 4.11 shows an example representing a tester and all the tasks he performs
(create test case, implement test, perform test) as well as the work products he is
responsible for (test case, test log) within the software development process.

For the description of a Process, activities are mainly used as the major structur-
ing element. Activities can be nested in order to define work breakdown structures
or related to each other in order to define a flow of work. Furthermore, activities
may have references to method content elements. These references refer to explicit
method content by “using” the concepts Task Use, Role Use, and Work Product
Use. Table 4.4 gives an overview and a description of basic notation construct
elements belonging to Process.

4.6 Tools for Software Process Modeling 131

X0
@

10

ol Task

: - >
>
performs
*

Input/Output

*

1

responsible for *

Work Product

Fig. 4.10 Core method content concepts of role, task, and work product

Table 4.3 Key elements used for method content

Element

Description

Work product definition

Role definition

Task definition

Category
Guidance

Defines any artifact produced, consumed, or modified by a task.
Work products can be composed of other work products.
Examples: document, model, source code

Defines a role and thus related skills, competencies, and
responsibilities of one person or many persons. Is responsible for
one or many work product(s) and performs one or many task(s).
Examples: software architect, project manager, developer

Defines work being performed by one or many role(s). A task has
input and output work products. Inputs are differentiated into
mandatory and optional inputs. Tasks can be divided into steps that
describe subunits of work needed to perform the task

Category is used for structuring other elements

Can be associated with any SPEM model element to provide more
detailed information about the element. Examples: checklist,
template, example, guideline

4.5.4 Assessment with Respect to the Defined Criteria

Table 4.5 describes the four characteristics of SPEM 2.0 as well as the fulfillment
of the eight requirements R1-R8, based on a subjective assessment. In this context,
(+) represents full, (O) partial, and (—) no fulfillment of the respective requirement.

4.6 Tools for Software Process Modeling

Practitioners and process engineers are in need of software support for process
modeling in order to be able to deal efficiently with process model creation and the
administration of changes and modifications. For example, typical process guidelines

132 4 Process Modeling Notations and Tools

Define Implement Perform
Test Case Test Test

> > >

performs

O
Tester |:|

responsible for

Il
I

Test Case Test Log

Fig. 4.11 Example for the role “Tester” with related elements

Table 4.4 Key elements used for process

Element Description

Work product use Instance of a work product defined within Method Content. Can be used
multiple times within process context

Role use Instance of a role defined within Method Content. Can be used multiple times
within process context

Task use Instance of a task defined within Method Content. Can be used multiple times
within process context. Additionally, definition of task-specific steps can be
performed

Activity Activities can be used to define work breakdown structures or workflows and

thus group tasks within a software development process, which can then be
used multiple times. Activities are used to model software development

processes

Process Can be used for structuring subprocesses by associating activities or tasks to it

Guidance Can be associated with any SPEM model element to provide more detailed
information about the element. Examples: checklist, template, example,
guideline

are not only extensive but also cross-referenced, and, consequently, changes in certain
areas lead to changes in other parts. Support is therefore useful for maintaining
consistency. Such supporting software can have different functionalities. In order to
be able to compare different solutions, the introduction of a reference model is useful.
Therefore, in the first part of this section, the ECMA/NIST Reference Model for
Software Engineering Environments will be introduced, which provides a framework
for the discussion of different Software Engineering Environments (SEE). The second
part will give an overview of the Eclipse Process Framework (EPF) and especially of
the EPF Composer, as a specific tool for process modeling.

4.6.1 The ECMA/NIST Reference Model

The ECMA/NIST Reference Model for Frameworks of Software Engineering
Environments was developed jointly by ECMA (European Computer Manufacturers

4.6 Tools for Software Process Modeling 133

Table 4.5 SPEM 2.0 characteristics and requirements
Characterization: SPEM 2.0
Improvement Proscriptive
Guidance Multiperson
Requirements Satisfaction: SPEM 2.0
R1—Natural representation

R2—Support of measurement
R3—Tailorability of models
R4—Formality
R5—Understandability
R6—Executability —
R7—Flexibility
R8—Traceability

+ O+ O+

o O

Association) and NIST (National Institute of Standards and Technology, USA). The
reference model provides a framework for describing and comparing different
Software Engineering Environments (SEE) or Computer Aided Software Engineer-
ing (CASE) Tools [9]. As such, it is not a standard, but should help to identify
emerging standards. In order to promote comparability, different services are
grouped in this framework. These services are Object Management Services, Pro-
cess Management Services, Communication Services, User Interface Services,
Operating System Services, Policy Enforcement Services, and Framework Admin-
istration Services.

Furthermore, tools (respectively tool slots) are provided, which represent soft-
ware that is not part of the SEE platform but uses services of the platform and can
add further services to the platform. Based on [9], Fig. 4.12 displays an overview of
the ECMA/NIST reference model.

In the following, the services that provide the core functionalities that a SEE
should implement in some way are described in more detail (based on [9]):

— Object Management Services: The objective of these services is the definition,
storage, maintenance, management, and access of object entities and of the
relationships they have with other objects.

— Process Management Services: The objective of these services is the definition
and computer-assisted performance of software development activities through-
out the whole software lifecycle. As this service group addresses processes,
the specific services will be described below in more detail. They are:

* Process Development Service (process modeling)
¢ Process Enactment Service

¢ Process Visibility Service

» Process Monitoring Service

e Process Transaction Service

* Process Resource Service

— Communication Services: The objective of these services is to provide informa-
tion exchange among the services of an SEE.

— User Interface Services: These services are designed to allow interaction
between the user and the SEE.

134 4 Process Modeling Notations and Tools

Object Management

Services
Tool Slots
Communication
A —— Services
User Interface
) Process
Services
Management
Services

Policy Enforcement Services
Framework Administration Services

Fig. 4.12 ECMA/NIST reference model

— Operating System Services: These services provide descriptions for and integra-
tion with operation systems on which the SEE can be realized.

— Policy Enforcement Services: The purpose of these services is to provide
security in an SEE.

— Framework Administration Services: These services provide support for con-
stant adaptation of changes for the SEE.

All these service groups are further refined into specific services within the
reference model, but a detailed discussion of all services is beyond the scope of
this section. After this brief overview of the reference model, a closer examination
of the six services from the Process Management Services group will be provided
below (based on [9]):

The Process Development Service as described by ECMA/NIST shall enable the
modeling of processes within the SEE. Therefore, a form for documenting the
process models should be defined, and operations for the creation, modification, and
deletion of process models should be included. The formalism of the process
description is not restricted, thus allowing informal process description in natural
language as well as the use of formal process modeling notations.

The Process Enactment Service should facilitate control and support for the
enactment of processes defined in the SEE. The operations that are regarded as
appropriate in this context are:

— Instantiation of process definitions

— Linking together of process elements

— Enactment of instantiated process definitions

— Suspension and restart of an enacting process

— Abortion of an enacting process

— Tracing of an enacting process

— Checkpoint and rollback

— (Dynamic) Change of enacting instances of a process definition

4.6 Tools for Software Process Modeling 135

The Process Visibility Service aims at the definition and maintenance of visibil-
ity information, by defining which information should be visible to other entities
and when and where it should be visible. Operations that are regarded as appropri-
ate for visibility are:

— Establishing access to specified information for an entity

— Hiding information from other entities

— Defining and managing visible areas and communication structures
— Visualizing defined areas and communication structures

— Controlling access rights

The Process Monitoring Service observes the evolving process states, detects the
occurrence of specified process events, and enacts necessary actions based on
observation and detection. In this context, the definition of specific process events
and derived actions should be supported. Relevant operations are:

— Definition, modification, deletion, and querying of event definitions
Manipulation of the control process definitions
Attaching/detaching actions to/from events

— Querying of the state of a process

The Process Transaction Service provides support for the definition and enact-
ment of process transactions, which can be understood as process elements com-
posed of a sequence of atomic process steps. Such a transaction should be either
completed entirely or rolled back to the preenactment state. Appropriate operations,
which are described in this context, consist of:

— Creation, initiation, abortion, deletion, modification of transactions
— Commit of transactions

— Checkpoints and rollback of process states

— “Login” and “logout” of long-lived transactions

The Process Resource Service accounts for allocation and management of
resources during enactment of a defined process. The operations defined for the
Process Resource Service are:

— Definition, creation, modification, and deletion of process resource types and
resource entities

— Mapping of project resources to resource model instances

— Mapping of resource model instances to process instances

— Adaptation of mapping

In this section, an overview of the ECMA/NIST Reference Model for Software
Engineering Environments was given, which is useful for describing and comparing
tools for process management and its functionalities. In the following section, one
example of a tool that supports process modeling will be given by introducing
the Eclipse Process Framework and the EPF Composer as well as its main
functionalities.

136 4 Process Modeling Notations and Tools
4.6.2 The Eclipse Process Framework (EPF) Composer

The Eclipse Process Framework (EPF) is an open-source project within the Eclipse
Foundation and was initiated in January 2006. The EPF project has two main
objectives. The first objective is to provide an extensible framework and exemplary
tools for software process engineering. This includes support for method and
process authoring, library management, configuration, and publishing of processes.
The second objective is to provide exemplary and extensible process content for a
range of software development and management processes, and thereby support a
broad variety of project types and development styles [10].

The EPF Composer has been developed in order to fulfill the first objective.
Its conceptual framework is based on SPEM 2.0, and for this reason, the aforemen-
tioned concepts in the section about SPEM are useful for understanding the func-
tionality of this tool. The EPF Composer is equipped with predefined process
content, which addresses the second objective. The process framework provided
with the EPF Composer is called Open Unified Process, and is strongly influenced by
IBM’s Rational Unified Process [10]. As it was not the aim of the project to provide a
process framework, this process content can be understood as a suggestion. In the
meantime, further process content has been provided (e.g., agile practices).

4.6.2.1 Basic Concepts

According to SPEM 2.0, the EPF Composer' [10] implements the distinction
between Method Content and Process, providing capabilities for creating method
libraries.

Using the authoring capabilities of EPF Composer, method content can be
defined. This definition of method content resembles the creation of method content
libraries according to SPEM 2.0.

Tasks are a main element of method content. For tasks, a description can be
provided that contains general information. It is also possible to provide detailed
information and versioning. Tasks can be refined into the steps that should be
performed during task performance. These steps can be defined, ordered, and
their content can be described in detail. Moreover, the associated roles, work
products, and guidance can be added. Those are defined and described as separate
entities within the method content library and then related to a task during task
definition. This approach represents an implementation of the task concept
provided by SPEM 2.0.

The EPF Composer addresses mainly two audiences. By providing authoring
capabilities, it addresses process authors/engineers and provides them with a
tool for creating and publishing method content and processes. Simultaneously,
it provides functionalities that address process consumers/users by integrating the

! The content presented here is based on the EPF Composer Version 1.5.0.3.

4.6 Tools for Software Process Modeling 137

possibility to publish content in the form of websites that can be browsed. There, the
user can find necessary information concerning processes, methods, and guidance
(checklists, concepts, guidelines, etc.).

In addition to Method Content, EPF Composer provides capabilities for process
definition and adaption. Similar to method content, processes can be authored and
published. Within the authoring view, new processes can be composed by creating a
sequence of tasks that were already defined in method content. In this way, tasks are
integrated that contain associated roles and work products. During process compo-
sition, the predefined tasks can be modified, and it is therefore possible to tailor
specific processes from predefined method content. Furthermore, it is also possible
to tailor previously defined process compositions. The concepts of method content
and process variability will be discussed in more detail in the next section.

4.6.2.2 Method Variability

Method variability provides the capability of tailoring existing method content
without directly modifying the original content. This is an important ability,
as future updates might lead to inconsistencies in the dataset. Variability can be
used, for example, to change the description of a role, to add/change steps to an
existing task, or to add/change guidance.

The concept used is similar to inheritance in object-oriented programming.
Thus, it allows reuse of content with further specialization/modification. For
realizing this concept, the EPF Composer uses “plug-ins.” After such a plug-in
has been created, it can be defined which existing content should be “inherited.”

There are four types of method variability [10]:

— Contribute: The contributing element adds content to the base element. The
resulting published element contains the content of the base element and the
contributing element.

— Replace: The replacing element replaces the base element. The resulting
published element is the replacing element.

— Extend: The extending element inherits the content of the base element, which
can then be specialized. Both the base element and the extending element are
published.

— Extend and Replace: Similar to extend, but the base element is not published.

4.6.2.3 Process Variability

Concepts for process variability are based on activities, which are the elements used
to compose processes. Activity variability is based on the same four types of
variability as method content (see above: contribute, replace, extend, and extend
and replace).

138 4 Process Modeling Notations and Tools

Additionally, activities may be used to create capability patterns. Capability

patterns can be defined as a special type of process that describes a reusable cluster

of

activities for a certain area of application/interest. Processes can be created by

using capability patterns in the following ways [10]:

Extend: The process inherits the properties of the capability pattern. Updates to
the capability pattern or respective activities are also realized in the respective
process.

Copy: A process is created based on a copy of the capability pattern. In contrast
to extend, the respective process is not synchronized with the capability pattern
when changes occur.

Deep Copy: Similar to copy, but is applied recursively to activities of the
respective capability pattern.

References

—

10.

. Rombach HD, Verlage M (1995) Directions in software process research. In: Zelkowitz MV

(ed) Advances in computers, vol 41. Academic Press, Boston, MA

. Brockers A, Lott CM, Rombach HD, Verlage M (1995) MVP-L language report version 2,

Technical Report Nr. 265/95, University of Kaiserslautern, Department of Computer Science,
Software Engineering Chair

. Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun

ACM 15(12):1053-1058

. Brockers A, Differding C, Hoisl B, Kollnischko F, Lott CM, Miinch J, Verlage M, Vorwieger S

(1995) A Graphical Representation Schema for the Software Process Modeling Language
MVP-L, University of Kaiserslautern, Department of Computer Science, Software Engineer-
ing Chair

. Rombach HD (1991) MVP-L: a language for process modeling in-the-large. University of

Maryland, College Park, MD

. Object Management Group (2008) Software & systems process engineering meta-model

specification version 2.0. OMG, Needham, USA

. Bendraou R, Combemale B, Crogut X, Gervais M (2001) Definition of an Executable SPEM

2.0. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference (APSEC’07),
Nagoya, Japan, 5-7 Dec 2007. doi: 10.1109/ASPEC.2007.60

. Object Management Group (2005) Software process engineering meta-model specification

version 1.1. OMG, Needham, USA

. ECMA/NIST (1993) Reference model for frameworks of software engineering environments,

Technical Report ECMA TR/55
Eclipse Foundation (2009) EPF composer: open UP library. http://www.eclipse.org/epf/
downloads/tool/tool_downloads.php. Accessed 27 Jun 2011

http://www.eclipse.org/epf/downloads/tool/tool_downloads.php
http://www.eclipse.org/epf/downloads/tool/tool_downloads.php

2 Springer
http://www.springer.com/978-3-642-24290-8

Software Process Definition and Management
Mlnch, J.; Armbrust, O.; Kowalczyk, M.; Soto, M,
2012, XX, 236 p., Hardcowver

ISBN: @78-3-642-24290-8

	Chapter 4: Process Modeling Notations and Tools
	4.1 Objectives of This Chapter
	4.2 Introduction
	4.3 Criteria for Assessing Process Modeling Notations
	4.3.1 Characteristics of Process Modeling Notations
	4.3.1.1 Process Programming vs. Process Improvement
	4.3.1.2 Hidden vs. Guiding
	4.3.1.3 Prescriptive vs. Proscriptive
	4.3.1.4 Single Person vs. Multiperson

	4.3.2 Requirements for Process Modeling Notations

	4.4 Multi-view Process Modeling Language
	4.4.1 Overview
	4.4.2 Concepts
	4.4.3 Notation Constructs
	4.4.3.1 Product Models
	4.4.3.2 Resource Models
	4.4.3.3 Process Models
	4.4.3.4 Attribute Models

	4.4.4 Instantiation and Enactment
	4.4.4.1 Instantiation
	4.4.4.2 Enactment

	4.4.5 Assessment with Respect to the Defined Criteria

	4.5 Software Process Engineering Metamodel
	4.5.1 Overview
	4.5.2 Concepts
	4.5.2.1 Conceptual SPEM Framework

	4.5.3 Notation Constructs
	4.5.4 Assessment with Respect to the Defined Criteria

	4.6 Tools for Software Process Modeling
	4.6.1 The ECMA/NIST Reference Model
	4.6.2 The Eclipse Process Framework (EPF) Composer
	4.6.2.1 Basic Concepts
	4.6.2.2 Method Variability
	4.6.2.3 Process Variability

	References

