
Chapter 4

Process Modeling Notations and Tools

This chapter introduces notations for process modeling and gives an overview of

tool support for process modeling and management. The chapter is structured into

three main parts. First, it introduces a set of criteria for process modeling notations

in order to enable the reader to distinguish different process modeling notations and

to understand that different purposes might be addressed by different notations.

Second, it discusses two different process modeling notations, namely, MVP-L and

SPEM 2.0, and characterizes them according to the previously defined criteria.

Finally, it introduces process management tools by discussing the ECMA/NIST

framework and the Eclipse Process Framework (EPF) Composer. Figure 4.1

displays an overview of the chapter structure.

4.1 Objectives of This Chapter

After reading this chapter, you should be able to

– Distinguish different process modeling notations and assess their suitability with

respect to different purposes

– Explain and use the basic concepts of MVP-L

– Explain and use the basic concepts of SPEM 2.0

– Understand and explain the components of process management tools

Criteria for Process
Modeling Notations

Notations for
Process

Modeling

Tools for Software
Process Modeling

Fig. 4.1 Chapter structure

J. M€unch et al., Software Process Definition and Management,
The Fraunhofer Series on Software and Systems Engineering,

DOI 10.1007/978-3-642-24291-5_4, # Springer-Verlag Berlin Heidelberg 2012

111

4.2 Introduction

When we think of process modeling notations, we can identify a plethora of

different approaches. This is due to the fact that during the historical development

of process modeling notations, different communities have influenced the discipline

of process modeling. In terms of software engineering processes, two major groups

that influenced the development of process modeling notations can be identified [1].

The first group was significantly influenced by tool developers and programmers.

Within this group, notations for the representation of processes were developed or

adopted aimed at creating representations that could be interpreted by machines.

Thus, this group focused on process automation and the notations used were

typically not designed to be interpreted by humans. The underlying vision was to

create software development environments where the execution of software devel-

opment tools would be controlled by a process-driven engine. The main focus was

on small, low-level processes such as the code–compile–test–fix cycle. As a result,

this approach focused on processes with a high potential of automation.

The second group has its origins in the community that was concerned with

software process improvement. In this discipline, the aim was to make software

development more mature by means of introducing best practices and establishing

learning cycles. For this reason, the need arose to represent software processes in

order to understand and improve the processes of software development performed

by humans. The notation constructs developed in this context aimed at describing

real-world concepts and creating models that humans can interpret. This approach,

and in particular the representation of software engineering processes, focused on

higher level processes and a minor degree of automation. Therefore, processes are

described in a more informal and less detailed way and, most importantly, they

provide guidance that can be interpreted and enacted by humans. In this context,

process guides based on natural notation became popular. They concentrate on

providing people with the information necessary to appropriately enact the process.

Currently, an abundance of different process modeling notations exists and,

therefore, a strong need for standardization has developed. As a result of this

development, the Software Process Engineering Metamodel (SPEM) was created.

Its goal is to enable the representation of different software engineering concepts.

4.3 Criteria for Assessing Process Modeling Notations

The multitude of existing process modeling notations has been developed due to

different motivations and needs. As needs usually differ greatly for different

stakeholders, purposes, and contexts, there is no best representation for processes,

and thus different representations cannot be assessed from a general point of view.

But it can be useful to compare different concepts in order to understand the specific

aspects that are addressed by a specific representation.

112 4 Process Modeling Notations and Tools

This section will introduce concepts for characterizing process modeling

notations and furthermore define requirements for process modeling notations

from different perspectives. These concepts are useful for comparing different

notations for the representation of processes.

4.3.1 Characteristics of Process Modeling Notations

In order to understand the context and motivation of a certain representation,

Rombach and Verlage [1] use the following aspects for characterizing process

modeling notations.

4.3.1.1 Process Programming vs. Process Improvement

A major distinction can be made between process modeling notations for the

implementation of processes (i.e., process programming) and notations for the

conceptual modeling of processes (i.e., process improvement). Process program-

ming notations focus on a representation for interpretation and execution by

machines. Process improvement notations focus on representation of real-world

concepts and provision of a representation that can be interpreted by humans.

4.3.1.2 Hidden vs. Guiding

When the process model is used, the representation of the process models can be

hidden or presented to the process user. When hidden, the process instantiation is

completely encoded in the process models or tools that support process enactment.

Thus, only filtered information is provided concerning the current project state.

If used for guiding, the process models themselves are used to inform the user and

to provide guidance during process instantiation.

4.3.1.3 Prescriptive vs. Proscriptive

In the early days of software process research, the main focus was placed

on automating process execution with the help of software development tools.

Therefore, the user of such tools would be guided by an execution mechanism

in a prescriptive manner. This approach of prescribing the process and thus also the

human activities has been subject to criticism and is difficult to implement.

The proscriptive approach represents a nonrestrictive way of formulating processes.

The process models provide guidance in order to enable performance of the

required process steps, but process users have a certain freedom in deciding

which actions to take at a particular stage of the project.

4.3 Criteria for Assessing Process Modeling Notations 113

4.3.1.4 Single Person vs. Multiperson

Software development projects are not performed by a single person and, in

consequence, collaboration and cooperation between persons, teams, and organi-

zations is highly relevant. Process models should support all these different levels

in order to make collaboration and cooperation possible. Historically, process

representations have evolved from a single-person focus in order to ensure proper

application of specific techniques by individuals. For the purpose of cooperation, a

multiperson focus is needed in order to coordinate the processes of different

persons. Therefore, a process representation should contain constructs for modeling

concepts of collaboration.

4.3.2 Requirements for Process Modeling Notations

In the following, a set of requirements for process modeling notations will be

described in accordance with [1]. The fulfillment of these requirements can be

seen as an indicator for the suitability of the notation to support process manage-

ment for software engineering organizations. Based on the viewpoint, the purpose,

and the context, different requirements might be relevant. A process engineer who

wants to automate a build process of a business unit might select different

requirements than an education department that aims at introducing a company-

wide training program. The stated requirements help to find suitable process

modeling notations by first selecting the relevant requirements and afterwards

selecting such notations that fulfill the requirements. The following requirements

can be applied [1].

– R1—Natural Representation: A process modeling notation should not only be

able to capture all relevant aspects of software development, but it should also be

able to represent these aspects in a natural, intuitive, and easy-to-identify manner.

Amapping between real-world phenomena and process model elements that is as

complete as possible facilitates the modeling and maintenance of these models.

– R2—Support of Measurement: A process modeling notation should take into

account the measurability of the process model. In order to enable software

process improvement, the impact of different technologies on products and

processes has to be observed. Furthermore, the scientific evaluation of the

efficiency and effectiveness of these technologies should be based on measure-

ment. For this reason, the notation has to take into account the definition of

attributes and measurement within process models.

– R3—Tailorability of Models: On the one hand, a process modeling notation

should enable a generic representation of information in order to allow for

process models that can describe commonalities of processes from several

different projects. On the other hand, no development project is completely

similar to another one and therefore, the process environment is most likely to

114 4 Process Modeling Notations and Tools

change for each project. Thus, in planning a project, the differences must be

considered and the process model has to be instantiated and tailored accordingly.

The use of tailorable models limits the number of process models and thus

reduces maintenance efforts. Therefore, concepts for defining and supporting

process variability and tailoring are needed.

– R4—Formality: A process modeling notation should allow for the creation of

process models with a certain degree of formality. Formality is needed to support

communication among different process participants and to foster a common

understanding of the process model by different people. Fulfillment of this

requirement means that process model constructs are defined formally within

the process model.

– R5—Understandability: Understandability is a key aspect of a process modeling

notation, as process models are used as a reference during projects. Most

activities related to process engineering rely on human interpretation rather

than interpretation by a machine and understandability is therefore a crucial

factor for the success of any process representation. Understandability refers to

the style of presentation and to how difficult it is for its users to retrieve needed

information.

– R6—Executability: A process modeling notation should support the interpreta-

tion and execution of the process representation by a machine. This need arises

due to the fact that standard procedures of software development are often

supported by tools that aim at providing automated support for the process user.

– R7—Flexibility: A notation for process representation should account for

handling decisions made by humans during process performance. These

decisions are characterized by creativity and nondeterminism. A process

modeling notation thus should contain constructs that are capable of capturing

these aspects.

– R8—Traceability: Traceability should be ensured within and across layers of

abstraction (i.e., horizontal and vertical traceability). This means that, for each

piece of information, it should be possible to determine its context, the processes

that rely on it, and how it was transformed. A process modeling notation should

thus support process representations that provide constructs for the explicit

description of different relationships between various process elements.

These characteristics and requirements can be used to define a framework that

helps to distinguish different process modeling notations and their purpose. All

elements of this framework are summarized in Table 4.1 (adapted from [1]). For the

evaluation of requirements satisfaction, (+) represents full, (O) partial, and (�) no

fulfillment of the respective requirement.

In the following sections, two software process modeling notations, MVP-L and

SPEM 2.0, will be introduced. MVP-L represents a notation that offers a compre-

hensive set of modeling constructs. SPEM 2.0 will be introduced because it has the

potential to become a future process model notation standard. The framework of

characteristics and requirements that was introduced earlier will be used to give an

overview and characterization of these notations.

4.3 Criteria for Assessing Process Modeling Notations 115

4.4 Multi-view Process Modeling Language

4.4.1 Overview

Multi-view process modeling language (MVP-L) was developed in the 1980s at the

University of Maryland. Subsequent development was conducted at the University of

Kaiserslautern, Germany. MVP-L has its origins in the Multi-view process modeling

(MVP) project, which focused on process models, their representation, and their

modularization according to views, as well as their use in the context of software

process improvement, namely, the quality improvement paradigm. MVP-L was

developed to support the creation of descriptive process models, packaging of these

models for reuse, integration of the models into prescriptive project plans, analysis of

project plans, and use of these project plans to guide future projects [2].

The main focus of MVP-L is on modeling “in-the-large.” It is assumed that the

ability to understand, guide, and support the interaction between processes is more

beneficial than the complete automation of low-level process steps [2].

4.4.2 Concepts

The main elements that are used in MVP-L for the description of process models are

processes, products, resources, and quality attributes, as well as their instantiation

in project plans [2]. A process model is actually a type description that captures the

properties common to a class of processes. For easy adaptation of process models to

different project contexts, the process models are structured using the concepts of a

process model-interface and a process model-body. An interface describes a

generalization of the formal parameters that are relevant to all models of a particu-

lar kind. As an example, a process model “Design” (Fig. 4.2, based on [2])

Table 4.1 Characterization framework

Characterization

Process programming vs. improvement Prescriptive vs. proscriptive

Hidden vs. guidance Single person vs. multiperson

Requirements satisfaction

R1—Natural representation (+/O/�)

R2—Support of measurement (+/O/�)

R3—Tailorability of models (+/O/�)

R4—Formality (+/O/�)

R5—Understandability (+/O/�)

R6—Executability (+/O/�)

R7—Flexibility (+/O/�)

R8—Traceability (+/O/�)

116 4 Process Modeling Notations and Tools

could describe a class of processes that require an input of the product type

“Requirements_document,” which must produce an output of the product type

“Design_document,” and which must be executed by a resource of the type

“Design_group.” These product and resource model declarations are part of the

interface of the process model “Design.” The actual implementation of the process

model is “hidden” in the body of the process model. Thus, MVP-L models

implement the important concept of information hiding [3]. The model-body

contains information that is only visible internally, whereas the model-interface

contains information that is visible to other models. By implementing the concept

of information hiding, changes to models or parts of models can be performed and

handled locally without affecting other models.

4.4.3 Notation Constructs

Processes, products, and resources can be used for modeling the basic elements of a

software project. Attributes can be used for defining specific properties of these

three basic elements. MVP-L calls the constructs for describing these elements

“models.” However, they can be understood as types [2].

– Product_model: Software products are the results of processes for development

or maintenance. In addition to the final software product, by-products, artifacts,

and parts of a product’s documentation are called products as well.

– Resource_model: Resources are the entities that are necessary for performing

the processes (e.g., people or tools).

– Process_model: Processes are the activities that are performed during a project.

They produce, consume, or modify products.

– Attribute_model:Attributes define properties of products, resources, and processes.
The attributes that are used are process_attribute_model, product_attribute_model,

and resource_attribute_model. Attributes correspond to measures and their values

correspond to specific measurement data.

design : Design
req_doc:

Requirements_
document

des_doc:
Design_

document

design_team : Design_group

Project plan “Design_project”

Fig. 4.2 Example of process model “Design”

4.4 Multi-view Process Modeling Language 117

In the following, these constructs will be discussed in more detail and examples

will be given for illustration purposes. The following descriptions and examples are

based on the MVP-L language report [2].

4.4.3.1 Product Models

Product models describe the structure and properties of a class of software products.

Product models do not only describe code artifacts, but all artifacts that are part of

software development activities and supporting activities. Each product representa-

tion consists of an interface and a body. Information in the <product_interface> is

visible to other objects. The product attributes are declared in the<exports> clause,

and their type must first be imported in the product interface’s <import> clause.

The product model “Requirements_document” imports a product attribute model

“Product_status” in order to declare a product attribute “status.” The formal instan-

tiation parameter “status_0” is used to provide the initial value for the attribute.

4.4.3.2 Resource Models

Resource models describe resources involved in performing a process. Resources can

be differentiated into organizational entities (e.g., groups or teams) and human

individuals (active resources) or tools (passive resources). Active resources perform

processes and passive resources support the performance of processes. Note that

traditional software tools can be represented in MVP-L as resources as well as

processes. A compiler, for example, could be represented as an MVP-L process

118 4 Process Modeling Notations and Tools

integrated into anMVP project plan dealing with program development. In contrast, an

editor may be used as a passive resource within a project plan to support the design

process. Like product models, resource models consist of a<resource_interface> and

a <resource_body>. For instantiation, parameters can be defined. Parameters are

special kinds of attributes for passing values to objects when the objects are

instantiated. In the example below, the parameter “eff_0” of the type “Resource_effort”

is used. It contains the effort that is available to a designer for the execution of the

process in the context of a specific project plan.

4.4.3.3 Process Models

Process models contain the information that is relevant for performing a specific

task. In particular, process models combine the basic elements of products and

resources in a manner that allows producing the resulting product. Similar to

product and resource models, process models are structured into a model-interface

and a model-body.

The process interface is described through <imports>, <exports>, <con-

sume_produce>, <context>, and <criteria> clauses, as shown in the following

example, which describes an exemplary design process. The process body is defined

in terms of an <implementation> clause. The <imports> clause lists all externally

defined models used to declare formal parameters within the<product_flow> clause

or attributes within the <exports> clause. The <exports> clause lists all externally

visible attributes that can be used by other models. These constructs provide a clear

4.4 Multi-view Process Modeling Language 119

interface to other models. In the example described later, the attribute “effort” of the

type “Process_effort” is made available to all models importing the process model

“Design.” A product flow is implemented in the process model through the

<product_flow> clause, which lists all products that are consumed, produced, or

modified. Products that are modified are declared in the<consume_produce> clause.

For the exemplary process model “Design,” a product “req_doc” of the type

“Requirements_document” is consumed and a product “des_doc” of the type

“Design_document” is produced.

Furthermore, constraint-oriented control flows can be defined by using explicit
entry and exit criteria as well as invariants within the MVP-L process models.

The <criteria> clause within the process model interface describes the pre- and

postconditions that have to be fulfilled in order to enter or exit the respective

process. In addition, invariants are used to describe states that need to be valid

throughout the enactment of the process. Criteria are specified as Boolean

expressions. The expression following the keyword <local_entry_criteria>
defines the criteria necessary to execute the process in terms of locally defined

attributes and local interface parameters. In this example, the local invariant

specifies that the actual effort spent for any instance of the process model

“Design” should never exceed a value specified by “max_effort.” Invariants can

be used to implement elements that need to be tracked permanently during

process performance and are not allowed to exceed a certain limit. In particular,

this accounts for monotonously rising or falling elements. Project effort, for

example, should not exceed its maximum value. In the example, the local entry

criteria state that any process of the type “Design” can only be executed if the

attribute “status” of the product “req_doc” has the value “complete” and the

attribute “status” of the product “des_doc” has either the value “non_existing”

or “incomplete.” The expression following the keyword <local_exit_criteria>
defines the criteria expected upon completion of process execution in terms of

local attributes and the local interface. In the example, the locally expected result

upon completion is that the attribute “status” of the product “des_doc” has the

value “complete.” Thus, the concept of entry and exit criteria can be used to

describe an implicit constraint-oriented control flow. MVP-L also provides

constructs for defining global criteria and invariants that address global attributes,

such as calendar time.

The <implementation> clause describes how an elementary process is to be

performed. This can either be a call of a supporting tool, or simply an informal

comment characterizing the task at hand for performance by a human. Processes are

related to products via explicit <product_flow> relationships, to attributes via

<criteria> clauses, and to resources via a separate <process_resources> clause.

In the example of the process model “Design,” a resource “des1” of the type

“Designer” is designated to execute any process of the type “Design.”

120 4 Process Modeling Notations and Tools

Example – Process Model: Design

Process_model Design(eff_0: Process_effort, max_effort_0: Process_effort) is

process_interface

imports

process_attribute_model Process_effort;

product_model Requirements_document, Design_document;

exports

effort: Process_effort := eff_0;

max_effort: Process_effort := max_effort_0;

product_flow

consume

req_doc: Requirements_document;

produce

des_doc: Design_document;

consume_produce

entry_exit_criteria

local_entry_criteria

(req_doc.status = “complete”) and (des_doc.status =

“non_existent” or des_doc.status = “incomplete”);

local_invariant

effort <= max_effort;

local_exit_criteria

des_doc.status = “complete”;

end process_interface

process_body

implementation

{textual description}

end process_body

process_resources

personnel_assignment

imports

resource_model Designer;

objects

des1: Designer;

tool_assignment

and process_resources

end process_model Design

4.4 Multi-view Process Modeling Language 121

4.4.3.4 Attribute Models

Each attribute model refers to a certain model type and consists mainly of a

definition of the <attribute_model_type> (and <attribute_manipulation>, which

is not discussed here). The <attribute_model_type> characterizes the type of

values the attribute stores. This type could be an integer, a real, string, Boolean,

or enumerated type (see example).

Example - Attribute Model: Product status

product_attribute_model Product_status () is

attribute_type

(“non_existing”, “incomplete”, “complete”);

...

end product_attribute_model Product_status

4.4.4 Instantiation and Enactment

The basic MVP-L models described so far can be refined and combined to create

complex process models, which can be used to describe typical software and

systems engineering processes. The instantiation of a process model allows

operationalizing the process model and creating a concrete project plan, which

can then be used for project analysis or execution. This section introduces the

MVP-L representation of project plans, with an emphasis on the instantiation of

processes and process enactment as described in [2]. The creation of project plans in

MVP-L allows for creating executable <project_plan> objects.

4.4.4.1 Instantiation

Software process models in MVP-L are instantiated through <project plan>
objects. A <project_plan> is described through <imports>, <objects>, and

<plan_object_relations> clauses. The imports clause lists all models that are used

to specify the process, product, and resource objects that make up the project plan.

These objects are declared in the <objects> clause. The objects are interconnected

according to their formal interface definition in the<plan_object_relations> clause.

A project plan needs to be interpreted by a process engine (a human or a computer) in

order to enact the contained processes.

122 4 Process Modeling Notations and Tools

Example – Project Plan: Design Project 2

project_plan Design_project_2 is

imports

product_model Requirements_document, Design_document;

process_model Design;

resource_model Design_group;

objects

requiremements_doc: Requirements_document(„complete“);

design_doc: Design_document(„non_existent“);

design: Design(0, 2000);

design_team: Design_group(0);

object_relations

design(req_doc => requirements_doc, des_doc => design_doc,

designers => design_team);

end project_plan Design_project_2

The project plan example consists of four objects: one process “design,” two

products “requirements_doc” and “design_doc,” and one resource “design_team.”

The interconnection of these products and the resource with the process “design” is

performed according to the formal interface specification of the process model

“Design.” In this example, a complete requirements document (“requirements_doc”)

is provided, the design document “design_doc” does not yet exist, and the time that is

available for the performance of the process “design” is restricted to 2000 time

units. Finally, only members of the “Design_group” are allowed to perform the

process “design.”

4.4.4.2 Enactment

The notion of a project state is the basis for the enactment model in MVP-L [2].

A project state is defined as the set of all attribute values (i.e., all attributes of all

objects instantiated within a project plan). Thus, the project state provides valuable

information about the status of the projects at any given time. This is an important

foundation for effective project control. The initial project state is defined in

terms of the initial values of all user-defined attributes and the derived values of

built-in attributes.

The values of attributes of the built-in type “Process_status” depend on the entry

and exit criteria. The only triggers that change the current project state are user

invocations of the kind “start(<object_id>)” and “complete(<object_id>)” to start

and complete processes, or the invocation “set(. . .)” to address external changes of

attributes. In each case, the new values of all user-defined and built-in attributes

4.4 Multi-view Process Modeling Language 123

are computed to determine the new project state. A new project state provides

information about the processes that are in execution (i.e., the value of the process

status is “active”), ready for execution (i.e., the value of the process status

is “enabled”), or not ready for execution (i.e., the value of the process status is

“disabled”). The different states of a process can be represented in a state transition

model (Fig. 4.3). Starting in the disabled state, processes may only get enabled

when the entry criteria are true. An enabled process may get active when it is

triggered by a user with the “start” invocation. As long as the exit criteria are not

fulfilled and the user does not trigger the user invocation “complete,” the process

will remain in the active state. When the exit criteria are fulfilled and the

user invocation “complete” is triggered, then the process gets disabled. Addition-

ally, for each project state, the state of the associated work products is

represented as “non_existent,” “incomplete,” or “complete” with the built-in type

“Product_status.”

Consequently, a state transition model can also be defined for products (Fig. 4.4).

At the beginning, the product does not exist. When the producing process starts,

the product state changes to incomplete. Finally, when the producing process

enabled

User Event start

active

User Event complete AND
Exit Criteria = False

User Event complete AND
Exit Criteria = True

disabled

Entry Criteria = True

Entry Criteria = False

Fig. 4.3 State transition model for processes

non_existent

producing
process starts

incomplete

producing
process

terminates

complete

rework is
needed

Fig. 4.4 State transition model for products

124 4 Process Modeling Notations and Tools

terminates, the product state turns to complete. When rework is needed, several

iterations between the product states complete and incomplete are possible.

In addition to the textual representation of MVP-L, a graphical representation is

defined for MVP-L in order to facilitate understanding and support process model

reviews by process users [4]. Figure 4.5 introduces a graphical representation for

MVP-L’s products, processes, resources, and entry as well as exit criteria. Figure 4.6

displays the product–process relationships.

For illustration purposes, a simple example of an actual project is provided

(Fig. 4.7). This example illustrates the notion of the project state as well as the

capabilities of MVP-L in implementing a constraint-oriented control flow using

entry and exit criteria. The exemplary process consists of three process instances,

namely, requirements specification, design, and coding. In this example, the process is

strictly sequential. There are fourwork products that constitute the product flowwithin

this process. According to Fig. 4.6, an arrow from a product to a process indicates that

a product is consumed by this process. An arrow pointing from a process to a product

indicates that a product is produced by this process. Control of the process flow is

realized implicitly via pre- and postconditions of the process. Since the process is

sequential in our case and every subprocess creates one work product, the entry

consume

produce

consume-produce

Fig. 4.6 Elements of MVP-L product–process relations

Products

Processes

Entry / Exit CriteriaEntry
Exit

Resources

Fig. 4.5 Elements of graphical MVP-L representation

4.4 Multi-view Process Modeling Language 125

condition could be described as follows: The prior work product has to be complete
AND the next work product has to be nonexistent. The exit condition is defined as:

The next work product has been completed. In the right column of Fig. 4.7, entry and

exit criteria are explicitly specified. For example, in order to begin coding, the status of

the design document “dd” has to be “complete” and the status of the code document

“cd” has to be “non_existent.” In order to finish coding and to exit the process,

the status of the code document has to be “complete.”

Finally, on the left of Fig. 4.7, project states are represented that correspond to the

enactment scenario provided in the state table in Fig. 4.8 (adapted from [5]). The state

table provides a sequence of project plan execution states. Starting in project state S-0,

let us assume that the product description “pd” is already “complete” and other

products are “nonexistent.” As the product description is “complete,” the process

instance requirements specification can be enabled. The process instance is initiated

with the invocation “start(req_s)” and state S-1 is reached. In S-1, the requirements

specification process instance is “active” and the requirements specification document

“rs” is being produced and is therefore in the state “incomplete.” Upon completion of

the requirements specification, “complete(req_s)” triggers another project state

change. In state S-2, the requirements specification document is “complete,” and

thus the exit criterion for requirements specification is fulfilled. The requirements

specification process instance gets “disabled.” Now the entry conditions for the design

process are fulfilled, state S-3 can be achieved (“start(design)”), and the design process

instance becomes “active.” The active design process instance creates the design

document and therefore the design document is “incomplete.” All other process

instances are “disabled.” State S-4 is triggered upon completion of the design

document (i.e., its exit criterion is fulfilled and “complete(design)” is triggered).

Now the entry criteria for the coding process are fulfilled and state S-5 can be entered.

States
pd: PD

req_s:
Req_S

rs: RS

dd: DD

cd: CD

design:
Design

coding:
Coding

pd.status = complete AND rs.status = non_existent

reqs.status = complete

rs.status = complete AND dd.status = non_existent

dd.status = complete

dd.status = complete AND cd.status = non_existent

cd.status = complete

Entry
Exit

Products Processes

S-0

S-1

S-2

S-3

S-4

S-5

S-6

Ti
m

el
in

e

Fig. 4.7 Exemplary process in MVP-L graphical representation

126 4 Process Modeling Notations and Tools

In S-5, the code document is under creation (code document: “incomplete”) and the

coding process instance is “active.” When the code document reaches the state

“complete,” the exit criterion for coding is fulfilled and state S-6 is reached through

user invocation “complete(coding).” In S-6, all work products are “complete” and all

process instances are “disabled” (Fig. 4.8, adapted from [5]).

In this section, the basic concepts of MVP-L were introduced. For more infor-

mation, the interested reader may refer to [2] and [4].

4.4.5 Assessment with Respect to the Defined Criteria

Table 4.2 describes the four characteristics of MVP-L as well as the satisfaction of

the eight requirements R1–R8, based on a subjective assessment. In this context,

(+) represents full, (O) partial, and (�) no fulfillment of the respective requirement.

4.5 Software Process Engineering Metamodel

4.5.1 Overview

The first version of the SPEM standard was introduced by the Object Management

Group (OMG) in 2002 and was built upon UML 1.4. It was revised in 2005 and

again in 2007, when major changes led to version SPEM 2.0, which is compliant

with UML 2. Due to UML compliance, standard UML diagrams such as activity

diagrams or state chart diagrams can be used for visualizing processes models.

State table S-0 S-1 S-2 S-3 S-4 S-5 S-6
P

ro
du

ct

pd
rs n-existent incomplete

dd n-existent n-existent n-existent incomplete

cd n-existent n-existent n-existent n-existent n-existent incomplete complete

complete complete complete complete complete complete

complete
completecompletecomplete

completecompletecompletecomplete
complete

P
ro

ce
ss req_s enabled active disabled disabled disabled disabled disabled

design disabled disabled enabled active disabled disabled disabled

coding disabled disabled disabled disabled enabled active disabled

start(req_s)

com
plete(req_s)

start(design)

com
plete(design)

start(coding)

com
plete(coding)

Fig. 4.8 Example of a state table

4.5 Software Process Engineering Metamodel 127

The development of SPEM was motivated by the abundance of different

concepts for process modeling and software process improvement. These different

concepts are usually described in different formats using different notations. Since

achieving consistency between different approaches became increasingly difficult,

the need for standardization arose. The SPEM standard for modeling software

development processes has the following characteristics:

“The Software and Systems Process Engineering Meta-Model (SPEM) is a process engi-

neering metamodel as well as conceptual framework, which can provide the necessary

concepts for modeling, documenting, presenting, managing, interchanging, and enacting

development methods and processes.” [6]

4.5.2 Concepts

In the following sections, the basic SPEM concepts will be introduced. The

conceptual framework of SPEM will be discussed, as will the basic notation

constructs and the structure of the SPEM standard.

4.5.2.1 Conceptual SPEM Framework

The conceptual framework of SPEM mainly summarizes the aims of the standard.

These are, on the one hand, to provide an approach for creating libraries of reusable

method content and, on the other hand, to provide concepts for the development and

management of processes. The combination of these two basic goals is seen as a

solution that enables the configuration of more elaborate process frameworks and

finally their enactment in real development projects (Fig. 4.9, based on [6]).

Table 4.2 MVP-L characteristics and requirements

Characterization: MVP-L

Improvement Proscriptive

Guidance Multiperson

Requirements satisfaction: MVP-L

R1—Natural representation +

R2—Support of measurement +

R3—Tailorability of models O

R4—Formality O

R5—Understandability O

R6—Executability +

R7—Flexibility +

R8—Traceability O

128 4 Process Modeling Notations and Tools

As depicted in Fig. 4.9, the conceptual SPEM framework consists of four main

elements: method content, processes, configuration, and enactment.

Libraries of method content address the need to create a knowledge base

containing methods and key practices of software development. Method content

captures key practices and methodologies in a standardized format and stores them

in adequate libraries. This allows creating and managing reusable practices and

methodologies. Such standardized content enables inclusion and integration of

external and internal method content according to the current development

requirements of an organization, and thus provides methodological support

throughout different lifecycle development stages. Furthermore, the standardized

method content elements can be used as a basis for the creation of custom

processes.

The creation of processes can be supported based on the reusable method

content. Processes can be defined as workflows and/or breakdown structures and,

within this definition, the selected method content is supposed to be adapted to the

specific project context. SPEM intends to provide support for the systematic

development and management of development processes as well as for the adapta-

tion of processes to specific project context.

As no two development projects are exactly alike, there is a need for tailoring

specific processes from the organization’s set of standard processes. With the

element of configuration, SPEM aims at addressing concepts for the reuse of

processes, for modeling variability, and for tailoring, thus allowing users to define

their own extensions, omissions, and variability points on reused processes.

In order to support the enactment of processes within development projects,

processes need to be instantiated in a format that is ready for enactment with a

“process enactment system” (e.g., project and resource planning systems, workflow

systems). Although SPEM 2.0 provides process definition structures, which allow

Standardize representation
and manage libraries of

reusable Method Content

Develop and manage
Processes for projects

Configure process
framework customized for a

specific project’s needs

Create project plan for
Enactment of process in the
context of a specific project

Fig. 4.9 SPEM 2.0 conceptual framework

4.5 Software Process Engineering Metamodel 129

process engineers to express how a process shall be enacted within such an

enactment system, support for enactment is generally regarded as weak [7].

4.5.3 Notation Constructs

The central idea of the SPEM is that a software development process is a collabo-

ration between abstract active entities called process roles, which perform

operations called tasks on concrete entities called work products [8].
The associations between role, task, and work product are shown in Fig. 4.10.

Tasks are performed by one or more roles. Furthermore, tasks require one or more

work products as input. They produce one or more work products as output. A role

is responsible for one or more work products.

As described within the conceptual framework, SPEM uses an explicit distinc-

tion between method content and process, and the basic three entities must therefore

be defined for both approaches.

Method content elements can be defined by using work product definitions,

role definitions, and task definitions. Furthermore, Category and Guidance can be

used. Guidance represents supporting resources, such as guidelines, whitepapers,

checklists, examples, or roadmaps, and is defined at the intersection of method

content and process because Guidance can provide support for method content as

well as for specific processes. Table 4.3 gives an overview and description of basic

notation construct elements belonging to Method Content.

Figure 4.11 shows an example representing a tester and all the tasks he performs

(create test case, implement test, perform test) as well as the work products he is

responsible for (test case, test log) within the software development process.

For the description of a Process, activities are mainly used as the major structur-

ing element. Activities can be nested in order to define work breakdown structures

or related to each other in order to define a flow of work. Furthermore, activities

may have references to method content elements. These references refer to explicit

method content by “using” the concepts Task Use, Role Use, and Work Product
Use. Table 4.4 gives an overview and a description of basic notation construct

elements belonging to Process.

The SPEM method content represents a library of descriptions of software

engineering methods and best practices. It defines the “who, what, and how”

of work increments that have to be done.

A SPEM process represents descriptions of coherent process steps, which

enable performance of a certain task. It defines the “when” of work

increments that have to be done.

130 4 Process Modeling Notations and Tools

4.5.4 Assessment with Respect to the Defined Criteria

Table 4.5 describes the four characteristics of SPEM 2.0 as well as the fulfillment

of the eight requirements R1–R8, based on a subjective assessment. In this context,

(+) represents full, (O) partial, and (�) no fulfillment of the respective requirement.

4.6 Tools for Software Process Modeling

Practitioners and process engineers are in need of software support for process

modeling in order to be able to deal efficiently with process model creation and the

administration of changes and modifications. For example, typical process guidelines

Table 4.3 Key elements used for method content

Element Description

Work product definition Defines any artifact produced, consumed, or modified by a task.

Work products can be composed of other work products.

Examples: document, model, source code

Role definition Defines a role and thus related skills, competencies, and

responsibilities of one person or many persons. Is responsible for

one or many work product(s) and performs one or many task(s).

Examples: software architect, project manager, developer

Task definition Defines work being performed by one or many role(s). A task has

input and output work products. Inputs are differentiated into

mandatory and optional inputs. Tasks can be divided into steps that

describe subunits of work needed to perform the task

Category Category is used for structuring other elements

Guidance Can be associated with any SPEM model element to provide more

detailed information about the element. Examples: checklist,

template, example, guideline

*

*

*

**

1

performs

Input/Output

responsible for

Work Product

Task
Role

Fig. 4.10 Core method content concepts of role, task, and work product

4.6 Tools for Software Process Modeling 131

are not only extensive but also cross-referenced, and, consequently, changes in certain

areas lead to changes in other parts. Support is therefore useful for maintaining

consistency. Such supporting software can have different functionalities. In order to

be able to compare different solutions, the introduction of a reference model is useful.

Therefore, in the first part of this section, the ECMA/NIST Reference Model for

Software Engineering Environments will be introduced, which provides a framework

for the discussion of different Software Engineering Environments (SEE). The second

part will give an overview of the Eclipse Process Framework (EPF) and especially of

the EPF Composer, as a specific tool for process modeling.

4.6.1 The ECMA/NIST Reference Model

The ECMA/NIST Reference Model for Frameworks of Software Engineering

Environments was developed jointly by ECMA (European ComputerManufacturers

performs

responsible for

Tester

Define
Test Case

Test Case Test Log

Implement
Test

Perform
Test

Fig. 4.11 Example for the role “Tester” with related elements

Table 4.4 Key elements used for process

Element Description

Work product use Instance of a work product defined within Method Content. Can be used

multiple times within process context

Role use Instance of a role defined within Method Content. Can be used multiple times

within process context

Task use Instance of a task defined within Method Content. Can be used multiple times

within process context. Additionally, definition of task-specific steps can be

performed

Activity Activities can be used to define work breakdown structures or workflows and

thus group tasks within a software development process, which can then be

used multiple times. Activities are used to model software development

processes

Process Can be used for structuring subprocesses by associating activities or tasks to it

Guidance Can be associated with any SPEM model element to provide more detailed

information about the element. Examples: checklist, template, example,

guideline

132 4 Process Modeling Notations and Tools

Association) and NIST (National Institute of Standards and Technology, USA). The

reference model provides a framework for describing and comparing different

Software Engineering Environments (SEE) or Computer Aided Software Engineer-

ing (CASE) Tools [9]. As such, it is not a standard, but should help to identify

emerging standards. In order to promote comparability, different services are

grouped in this framework. These services are Object Management Services, Pro-

cess Management Services, Communication Services, User Interface Services,

Operating System Services, Policy Enforcement Services, and Framework Admin-

istration Services.

Furthermore, tools (respectively tool slots) are provided, which represent soft-

ware that is not part of the SEE platform but uses services of the platform and can

add further services to the platform. Based on [9], Fig. 4.12 displays an overview of

the ECMA/NIST reference model.

In the following, the services that provide the core functionalities that a SEE

should implement in some way are described in more detail (based on [9]):

– Object Management Services: The objective of these services is the definition,

storage, maintenance, management, and access of object entities and of the

relationships they have with other objects.

– Process Management Services: The objective of these services is the definition

and computer-assisted performance of software development activities through-

out the whole software lifecycle. As this service group addresses processes,

the specific services will be described below in more detail. They are:

• Process Development Service (process modeling)

• Process Enactment Service

• Process Visibility Service

• Process Monitoring Service

• Process Transaction Service

• Process Resource Service

– Communication Services: The objective of these services is to provide informa-

tion exchange among the services of an SEE.

– User Interface Services: These services are designed to allow interaction

between the user and the SEE.

Table 4.5 SPEM 2.0 characteristics and requirements

Characterization: SPEM 2.0

Improvement Proscriptive

Guidance Multiperson

Requirements Satisfaction: SPEM 2.0

R1—Natural representation +

R2—Support of measurement O

R3—Tailorability of models +

R4—Formality O

R5—Understandability +

R6—Executability �
R7—Flexibility O

R8—Traceability O

4.6 Tools for Software Process Modeling 133

– Operating System Services: These services provide descriptions for and integra-

tion with operation systems on which the SEE can be realized.

– Policy Enforcement Services: The purpose of these services is to provide

security in an SEE.

– Framework Administration Services: These services provide support for con-

stant adaptation of changes for the SEE.

All these service groups are further refined into specific services within the

reference model, but a detailed discussion of all services is beyond the scope of

this section. After this brief overview of the reference model, a closer examination

of the six services from the Process Management Services group will be provided

below (based on [9]):

The Process Development Service as described by ECMA/NIST shall enable the

modeling of processes within the SEE. Therefore, a form for documenting the

process models should be defined, and operations for the creation, modification, and

deletion of process models should be included. The formalism of the process

description is not restricted, thus allowing informal process description in natural

language as well as the use of formal process modeling notations.

The Process Enactment Service should facilitate control and support for the

enactment of processes defined in the SEE. The operations that are regarded as

appropriate in this context are:

– Instantiation of process definitions

– Linking together of process elements

– Enactment of instantiated process definitions

– Suspension and restart of an enacting process

– Abortion of an enacting process

– Tracing of an enacting process

– Checkpoint and rollback

– (Dynamic) Change of enacting instances of a process definition

Object Management
Services

Tool Slots

Communication
Services

Process
Management

Services

User Interface
Services

Policy Enforcement Services
Framework Administration Services

Fig. 4.12 ECMA/NIST reference model

134 4 Process Modeling Notations and Tools

The Process Visibility Service aims at the definition and maintenance of visibil-

ity information, by defining which information should be visible to other entities

and when and where it should be visible. Operations that are regarded as appropri-

ate for visibility are:

– Establishing access to specified information for an entity

– Hiding information from other entities

– Defining and managing visible areas and communication structures

– Visualizing defined areas and communication structures

– Controlling access rights

The Process Monitoring Service observes the evolving process states, detects the
occurrence of specified process events, and enacts necessary actions based on

observation and detection. In this context, the definition of specific process events

and derived actions should be supported. Relevant operations are:

– Definition, modification, deletion, and querying of event definitions

– Manipulation of the control process definitions

– Attaching/detaching actions to/from events

– Querying of the state of a process

The Process Transaction Service provides support for the definition and enact-

ment of process transactions, which can be understood as process elements com-

posed of a sequence of atomic process steps. Such a transaction should be either

completed entirely or rolled back to the preenactment state. Appropriate operations,

which are described in this context, consist of:

– Creation, initiation, abortion, deletion, modification of transactions

– Commit of transactions

– Checkpoints and rollback of process states

– “Login” and “logout” of long-lived transactions

The Process Resource Service accounts for allocation and management of

resources during enactment of a defined process. The operations defined for the

Process Resource Service are:

– Definition, creation, modification, and deletion of process resource types and

resource entities

– Mapping of project resources to resource model instances

– Mapping of resource model instances to process instances

– Adaptation of mapping

In this section, an overview of the ECMA/NIST Reference Model for Software

Engineering Environments was given, which is useful for describing and comparing

tools for process management and its functionalities. In the following section, one

example of a tool that supports process modeling will be given by introducing

the Eclipse Process Framework and the EPF Composer as well as its main

functionalities.

4.6 Tools for Software Process Modeling 135

4.6.2 The Eclipse Process Framework (EPF) Composer

The Eclipse Process Framework (EPF) is an open-source project within the Eclipse

Foundation and was initiated in January 2006. The EPF project has two main

objectives. The first objective is to provide an extensible framework and exemplary

tools for software process engineering. This includes support for method and

process authoring, library management, configuration, and publishing of processes.

The second objective is to provide exemplary and extensible process content for a

range of software development and management processes, and thereby support a

broad variety of project types and development styles [10].

The EPF Composer has been developed in order to fulfill the first objective.

Its conceptual framework is based on SPEM 2.0, and for this reason, the aforemen-

tioned concepts in the section about SPEM are useful for understanding the func-

tionality of this tool. The EPF Composer is equipped with predefined process

content, which addresses the second objective. The process framework provided

with the EPF Composer is calledOpenUnified Process, and is strongly influenced by

IBM’s Rational Unified Process [10]. As it was not the aim of the project to provide a

process framework, this process content can be understood as a suggestion. In the

meantime, further process content has been provided (e.g., agile practices).

4.6.2.1 Basic Concepts

According to SPEM 2.0, the EPF Composer1 [10] implements the distinction

between Method Content and Process, providing capabilities for creating method

libraries.

Using the authoring capabilities of EPF Composer, method content can be

defined. This definition of method content resembles the creation of method content

libraries according to SPEM 2.0.

Tasks are a main element of method content. For tasks, a description can be

provided that contains general information. It is also possible to provide detailed

information and versioning. Tasks can be refined into the steps that should be

performed during task performance. These steps can be defined, ordered, and

their content can be described in detail. Moreover, the associated roles, work

products, and guidance can be added. Those are defined and described as separate

entities within the method content library and then related to a task during task

definition. This approach represents an implementation of the task concept

provided by SPEM 2.0.

The EPF Composer addresses mainly two audiences. By providing authoring

capabilities, it addresses process authors/engineers and provides them with a

tool for creating and publishing method content and processes. Simultaneously,

it provides functionalities that address process consumers/users by integrating the

1 The content presented here is based on the EPF Composer Version 1.5.0.3.

136 4 Process Modeling Notations and Tools

possibility to publish content in the form of websites that can be browsed. There, the

user can find necessary information concerning processes, methods, and guidance

(checklists, concepts, guidelines, etc.).

In addition to Method Content, EPF Composer provides capabilities for process

definition and adaption. Similar to method content, processes can be authored and

published. Within the authoring view, new processes can be composed by creating a

sequence of tasks that were already defined in method content. In this way, tasks are

integrated that contain associated roles and work products. During process compo-

sition, the predefined tasks can be modified, and it is therefore possible to tailor

specific processes from predefined method content. Furthermore, it is also possible

to tailor previously defined process compositions. The concepts of method content

and process variability will be discussed in more detail in the next section.

4.6.2.2 Method Variability

Method variability provides the capability of tailoring existing method content

without directly modifying the original content. This is an important ability,

as future updates might lead to inconsistencies in the dataset. Variability can be

used, for example, to change the description of a role, to add/change steps to an

existing task, or to add/change guidance.

The concept used is similar to inheritance in object-oriented programming.

Thus, it allows reuse of content with further specialization/modification. For

realizing this concept, the EPF Composer uses “plug-ins.” After such a plug-in

has been created, it can be defined which existing content should be “inherited.”

There are four types of method variability [10]:

– Contribute: The contributing element adds content to the base element. The

resulting published element contains the content of the base element and the

contributing element.

– Replace: The replacing element replaces the base element. The resulting

published element is the replacing element.

– Extend: The extending element inherits the content of the base element, which

can then be specialized. Both the base element and the extending element are

published.

– Extend and Replace: Similar to extend, but the base element is not published.

4.6.2.3 Process Variability

Concepts for process variability are based on activities, which are the elements used

to compose processes. Activity variability is based on the same four types of

variability as method content (see above: contribute, replace, extend, and extend

and replace).

4.6 Tools for Software Process Modeling 137

Additionally, activities may be used to create capability patterns. Capability

patterns can be defined as a special type of process that describes a reusable cluster

of activities for a certain area of application/interest. Processes can be created by

using capability patterns in the following ways [10]:

– Extend: The process inherits the properties of the capability pattern. Updates to

the capability pattern or respective activities are also realized in the respective

process.

– Copy: A process is created based on a copy of the capability pattern. In contrast

to extend, the respective process is not synchronized with the capability pattern

when changes occur.

– Deep Copy: Similar to copy, but is applied recursively to activities of the

respective capability pattern.

References

1. Rombach HD, Verlage M (1995) Directions in software process research. In: Zelkowitz MV

(ed) Advances in computers, vol 41. Academic Press, Boston, MA

2. Br€ockers A, Lott CM, Rombach HD, Verlage M (1995) MVP-L language report version 2,

Technical Report Nr. 265/95, University of Kaiserslautern, Department of Computer Science,

Software Engineering Chair

3. Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun

ACM 15(12):1053–1058

4. Br€ockers A, Differding C, Hoisl B, Kollnischko F, Lott CM, M€unch J, Verlage M, Vorwieger S

(1995) A Graphical Representation Schema for the Software Process Modeling Language

MVP-L, University of Kaiserslautern, Department of Computer Science, Software Engineer-

ing Chair

5. Rombach HD (1991) MVP-L: a language for process modeling in-the-large. University of

Maryland, College Park, MD

6. Object Management Group (2008) Software & systems process engineering meta-model

specification version 2.0. OMG, Needham, USA

7. Bendraou R, Combemale B, Crogut X, Gervais M (2001) Definition of an Executable SPEM

2.0. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference (APSEC’07),

Nagoya, Japan, 5–7 Dec 2007. doi: 10.1109/ASPEC.2007.60

8. Object Management Group (2005) Software process engineering meta-model specification

version 1.1. OMG, Needham, USA

9. ECMA/NIST (1993) Reference model for frameworks of software engineering environments,

Technical Report ECMA TR/55

10. Eclipse Foundation (2009) EPF composer: open UP library. http://www.eclipse.org/epf/

downloads/tool/tool_downloads.php. Accessed 27 Jun 2011

138 4 Process Modeling Notations and Tools

http://www.eclipse.org/epf/downloads/tool/tool_downloads.php
http://www.eclipse.org/epf/downloads/tool/tool_downloads.php

http://www.springer.com/978-3-642-24290-8

	Chapter 4: Process Modeling Notations and Tools
	4.1 Objectives of This Chapter
	4.2 Introduction
	4.3 Criteria for Assessing Process Modeling Notations
	4.3.1 Characteristics of Process Modeling Notations
	4.3.1.1 Process Programming vs. Process Improvement
	4.3.1.2 Hidden vs. Guiding
	4.3.1.3 Prescriptive vs. Proscriptive
	4.3.1.4 Single Person vs. Multiperson

	4.3.2 Requirements for Process Modeling Notations

	4.4 Multi-view Process Modeling Language
	4.4.1 Overview
	4.4.2 Concepts
	4.4.3 Notation Constructs
	4.4.3.1 Product Models
	4.4.3.2 Resource Models
	4.4.3.3 Process Models
	4.4.3.4 Attribute Models

	4.4.4 Instantiation and Enactment
	4.4.4.1 Instantiation
	4.4.4.2 Enactment

	4.4.5 Assessment with Respect to the Defined Criteria

	4.5 Software Process Engineering Metamodel
	4.5.1 Overview
	4.5.2 Concepts
	4.5.2.1 Conceptual SPEM Framework

	4.5.3 Notation Constructs
	4.5.4 Assessment with Respect to the Defined Criteria

	4.6 Tools for Software Process Modeling
	4.6.1 The ECMA/NIST Reference Model
	4.6.2 The Eclipse Process Framework (EPF) Composer
	4.6.2.1 Basic Concepts
	4.6.2.2 Method Variability
	4.6.2.3 Process Variability

	References

