
Chapter 2
Basic Differential Geometry

Abstract This first chapter recapitulates the basic concepts of differential geometry
that are used throughout the book. This encompasses differentiable manifolds, ten-
sor fields, affine connections, metric tensors, pseudo-Riemannian manifolds, Levi–
Civita connections, curvature tensors and Lie derivatives. The dimension of the
manifold and the signature of the metric are kept general so that the results can
be subsequently applied either to the whole spacetime or to some submanifold of it.

2.1 Introduction

The mathematical language of general relativity is mostly differential geometry.
We recall in this chapter basic definitions and results in this field, which we will
use throughout the book. The reader who has some knowledge of general relativity
should be familiar with most of them. We recall them here to make the text fairly self-
contained and also to provide definitions with sufficient generality, not limited to the
dimension 4—the standard spacetime dimension. Indeed we will manipulate mani-
folds whose dimension differs from 4, such as hypersurfaces (the building blocks of
the 3+1 formalism !) or 2-dimensional surfaces. In the same spirit, we do not stick
to Lorentzian metrics (such as the spacetime one) but discuss pseudo-Riemannian
metrics, which encompass both Lorentzian metrics and Riemannian ones. Accord-
ingly, in this chapter, M denotes a generic manifold of any dimension and g a
pseudo-Riemannian metric on M . In the subsequent chapters, the symbol M will
be restricted to the spacetime manifold and the symbol g to a Lorentzian metric
on M .

This chapter is not intended to a be a lecture on differential geometry, but a collec-
tion of basic definitions and useful results. In particular, contrary to the other chapters,
we state many results without proofs, referring the reader to classical textbooks on
the topic [1–6].
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Fig. 2.1 Locally a manifold resembles R
n (n = 2 on the figure), but this is not necessarily the case

at the global level

2.2 Differentiable Manifolds

2.2.1 Notion of Manifold

Given an integer n ≥ 1, a manifold of dimension n is a topological space M
obeying the following properties:

1. M is a separated space (also called Hausdorff space): any two distinct points
of M admit disjoint open neighbourhoods.

2. M has a countable base1: there exists a countable family (Uk)k∈N of open sets
of M such that any open set of M can be written as the union (possibly infinite)
of some members of the above family.

3. Around each point of M , there exists a neighbourhood which is homeomorphic
to an open subset of R

n .

Property 1 excludes manifolds with “forks” and is very reasonable from a physical
point of view: it allows to distinguish between two points even after a small pertur-
bation. Property 2 excludes “too large” manifolds; in particular it permits setting up
the theory of integration on manifolds. It also allows for a differentiable manifold
of dimension n to be embedded smoothly into the Euclidean space R

2n (Whitney
theorem). Property 3 expresses the essence of a manifold: it means that, locally, one
can label the points of M in a continuous way by n real numbers (xα)α∈{0,...,n−1},
which are called coordinates (cf. Fig. 2.1). More precisely, given an open subset
U ⊂ M , a coordinate system or chart on U is a homeomorphism2

Φ : U ⊂ M −→ Φ(U ) ⊂ R
n

p �−→ (x0, . . . , xn−1).
(2.1)

1 In the language of topology, one says that M is a second-countable space.
2 Let us recall that a homeomorphism between two topological spaces (here U and Φ(U )) is a
one-to-one map Φ such that both Φ and Φ−1 are continuous.
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Remark 2.1 In relativity, it is customary to label the n coordinates by an index
ranging from 0 to n − 1. Actually, this convention is mostly used when M is the
spacetime manifold (n = 4 in standard general relativity). The computer-oriented
reader will have noticed the similarity with the index ranging of arrays in the C/C++
or Python programming languages.

Remark 2.2 Strictly speaking the definition given above is that of a topological
manifold. We are saying manifold for short.

Usually, one needs more than one coordinate system to cover M . An atlas on M
is a finite set of couples (Uk, Φk)1≤k≤K , where K is a non-zero integer, Uk an open
set of M and Φk a chart on Uk, such that the union of all Uk covers M :

K⋃

k=1

Uk = M . (2.2)

The above definition of a manifold lies at the topological level (Remark 2.2),
meaning that one has the notion of continuity, but not of differentiability. To provide
the latter, one should rely on the differentiable structure of R

n, via the atlases: a
differentiable manifold is a manifold M equipped with an atlas (Uk, Φk)1≤k≤K

such that for any non-empty intersection Ui ∩ U j , the mapping

Φi ◦ Φ−1
j : Φ j (Ui ∩ U j ) ⊂ R

n −→ Φi (Ui ∩ U j ) ⊂ R
n (2.3)

is differentiable (i.e. C∞). Note that the above mapping is from an open set of R
n to

an open set of R
n, so that the invoked differentiability is nothing but that of R

n . The
atlas (Uk, Φk)1≤k≤K is called a differentiable atlas. In the following, we consider
only differentiable manifolds.

Remark 2.3 We are using the word differentiable for C∞, i.e. smooth.

Given two differentiable manifolds, M and M ′, of respective dimensions n and
n′, we say that a map φ : M → M ′ is differentiable iff in some (and hence all)
coordinate systems of M and M ′ (belonging to the differentiable atlases of M and
M ′), the coordinates of the image φ(p) are differentiable functions R

n → R
n′

of
the coordinates of p. The map φ is said to be a diffeomorphism iff it is one-to-one
and both φ and φ−1 are differentiable. This implies n = n′.

Remark 2.4 Strictly speaking a differentiable manifold is a couple (M ,A ) where
A is a (maximal) differentiable atlas on M . Indeed a given (topological) manifold
M can have non-equivalent differentiable structures, as shown by Milnor (1956)
[7] in the specific case of the unit sphere of dimension 7, S

7: there exist differen-
tiable manifolds, the so-called exotic spheres, that are homeomorphic to S

7 but not
diffeomorphic to S

7. On the other side, for n ≤ 6, there is a unique differentiable
structure for the sphere S

n . Moreover, any manifold of dimension n ≤ 3 admits a
unique differentiable structure. Amazingly, in the case of R

n, there exists a unique
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differentiable structure (the standard one) for any n �= 4, but for n = 4 (the space-
time case !) there exist uncountably many non-equivalent differentiable structures,
the so-called exotic R

4 [8].

2.2.2 Vectors on a Manifold

On a manifold, vectors are defined as tangent vectors to a curve. A curve is a subset
C ⊂ M which is the image of a differentiable function R → M :

P : R −→ M

λ �−→ p = P(λ) ∈ C .
(2.4)

Hence C = {P(λ)|λ ∈ R}. The function P is called a parametrization of C and
the variable λ is called a parameter along C . Given a coordinate system (xα) in a
neighbourhood of a point p ∈ C , the parametrization P is defined by n functions
Xα : R → R such that

xα(P(λ)) = Xα(λ). (2.5)

A scalar field on M is a function f : M → R. In practice, we will always con-
sider differentiable scalar fields. At a point p = P(λ) ∈ C , the vector tangent to C
associated with the parametrization P is the operator v which maps every scalar field
f to the real number

v( f ) = d f

dλ

∣∣∣∣
C

:= lim
ε→0

1

ε
[ f (P(λ + ε)) − f (P(λ))] . (2.6)

Given a coordinate system (xα) around some point p ∈ M , there are n curves
Cα through p associated with (xα) and called the coordinate lines: for each α ∈
{0, . . . , n − 1}, Cα is defined as the curve through p parametrized by λ = xα and
having constant coordinates xβ for all β �= α. The vector tangent to Cα parametrized
by xα is denoted ∂α. Its action on a scalar field f is by definition

∂α( f ) = d f

dxα

∣∣∣∣
Cα

= d f

dxα

∣∣∣∣ xβ=const
β �=α

.

Considering f as a function of the coordinates (x0, . . . , xn−1) (whereas strictly speak-
ing it is a function of the points on M ) we recognize in the last term the partial
derivative of f with respect to xα. Hence

∂α( f ) = ∂ f

∂xα
. (2.7)

Similarly, we may rewrite (2.6) as
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Fig. 2.2 The vectors at two points p and q on the manifold M belong to two different vector spaces:
the tangent spaces Tp(M ) and Tq (M )

v( f ) = lim
ε→0

1

ε

[
f (X0(λ + ε), . . . , Xn−1(λ + ε)) − f (X0(λ), . . . , Xn−1(λ))

]

= ∂ f

∂xα

dXα

dλ
= ∂α( f )

dXα

dλ
.

In the above equation and throughout the all book, we are using Einstein summation
convention: a repeated index implies a summation over all the possible values of this
index (here from α = 0 to α = n − 1). The above identity being valid for any scalar
field f, we conclude that

v = vα∂α , (2.8)

with the n real numbers

vα := dXα

dλ
, 0 ≤ α ≤ n − 1. (2.9)

Since every vector tangent to a curve at p is expressible as (2.8), we conclude
that the set of all vectors tangent to a curve at p is a vector space of dimen-
sion n and that (∂α) constitutes a basis of it. This vector space is called the
tangent vector space to M at p and is denoted Tp(M ). The elements of Tp(M )

are simply called vectors at p. The basis (∂α) is called the natural basis associ-
ated with the coordinates (xα) and the coefficients vα in (2.8) are called the
components of the vector v with respect to the coordinates(xα). The tangent vec-
tor space is represented at two different points in Fig. 2.2.

Contrary to what happens for an affine space, one cannot, in general, define
a vector connecting two points p and q on a manifold, except if p and q are
infinitesimally close to each other. Indeed, in the latter case, we may define the
infinitesimal displacement vector from p to q as the vector d� ∈ Tp(M ) whose
action on a scalar field f is
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d�( f ) = d f |p→q = f (q) − f (p). (2.10)

Since p and q are infinitesimally close, there is a unique (piece of) curve C going
from p to q and one has

d� = vdλ, (2.11)

where λ is a parameter along C , v the associated tangent vector at p and dλ the
parameter increment from p to q: p = P(λ) and q = P(λ+ dλ). The relation (2.11)
follows immediately from the definition (2.6) of v. Given a coordinate system, let
(xα) be the coordinates of p and (xα + dxα) those of q. Then from Eq. (2.10),

d�( f ) = d f = ∂ f

∂xα
dxα = dxα∂α( f ).

The scalar field f being arbitrary, we conclude that

d� = dxα∂α . (2.12)

In other words, the components of the infinitesimal displacement vector with respect
to the coordinates (xα) are nothing but the infinitesimal coordinate increments dxα.

2.2.3 Linear Forms

A fundamental operation on vectors consists in mapping them to real numbers, and
this in a linear way. More precisely, at each point p ∈ M , one defines a linear form
as a mapping3

ω : Tp(M ) −→ R

v �−→ 〈ω, v〉 (2.13)

that is linear: 〈ω, λv + u〉 = λ〈ω, v〉 + 〈ω, u〉 for all u, v ∈ Tp(M ) and λ ∈ R. The
set of all linear forms at p constitutes a n-dimensional vector space, which is called
the dual space of Tp(M ) and denoted by T ∗

p (M ). Given the natural basis (∂α) of
Tp(M ) associated with some coordinates (xα), there is a unique basis of T ∗

p (M ),

denoted by (dxα), such that

〈dxα, ∂β〉 = δα
β , (2.14)

where δα
β is the Kronecker symbol: δα

β = 1 if α = β and 0 otherwise. The basis
(dxα) is called the dual basis of the basis (∂α). The notation (dxα) stems from the

3 We are using the same bra-ket notation as in quantum mechanics to denote the action of a linear
form on a vector.
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fact that if we apply the linear form dxα to the infinitesimal displacement vector
(2.12), we get nothing but the number dxα:

〈dxα, d�〉 = 〈dxα, dxβ∂β〉 = dxβ 〈dxα, ∂β〉
︸ ︷︷ ︸

δα
β

= dxα. (2.15)

Remark 2.5 Do not confuse the linear form dxα with the infinitesimal increment
dxα of the coordinate xα.

The dual basis can be used to expand any linear form ω, thereby defining its
components ωα with respect to the coordinates (xα):

ω = ωαdxα. (2.16)

In terms of components, the action of a linear form on a vector takes then a very
simple form:

〈ω, v〉 = ωαvα . (2.17)

This follows immediately from (2.16), (2.8) and (2.14).
A field of linear forms, i.e. a (smooth) map which associates to each point p ∈ M

a member of Tp(M ) is called a 1-form . Given a smooth scalar field f on M , there
exists a 1-form canonically associated with it, called the gradient of f and denoted
∇ f. At each point p ∈ M ,∇ f is the unique linear form which, once applied to the
infinitesimal displacement vector d� from p to a nearby point q, gives the change in
f between points p and q:

d f := f (q) − f (p) = 〈∇ f, d�〉. (2.18)

Since d f = ∂ f/∂xαdxα, Eq. (2.15) implies that the components of the gradient with
respect to the dual basis are nothing but the partial derivatives of f with respect to the
coordinates (xα):

∇ f = ∂ f

∂xα
dxα . (2.19)

Remark 2.6 In non-relativistic physics, the gradient is very often considered as a
vector field and not as a 1-form. This is so because one associates implicitly a vector−→
ω to any 1-form ω via the Euclidean scalar product of R

3 : ∀−→v ∈ R
3, 〈ω,−→v 〉 =

−→
ω · −→v . Accordingly, formula (2.18) is rewritten as d f = −→∇ f · d�. But we should
keep in mind that, fundamentally, the gradient is a linear form and not a vector.

Remark 2.7 For a fixed value of α, the coordinate xα can be considered as a scalar
field on M . If we apply (2.19) to f = xα, we then get

∇xα = dxα. (2.20)
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Hence the dual basis to the natural basis (∂α) is formed by the gradients of the
coordinates.

Of course the natural bases are not the only possible bases in the vector space
Tp(M ). One may use a basis (eα) that is not related to a coordinate system on M ,

for instance an orthonormal basis with respect to some metric. There exists then a
unique basis (eα) of the dual space T ∗

p (M ) such that4

〈eα, eβ〉 = δα
β . (2.21)

(eα) is called the dual basis to (eα). The relation (2.14) is a special case of (2.21),
for which eα = ∂α and eα = dxα.

2.2.4 Tensors

Tensors are generalizations of both vectors and linear forms. At a point p ∈ M , a
tensor of type (k, �) with (k, �) ∈ N

2, also called tensor k times contravariant and
� times covariant, is a mapping

T : T ∗
p (M ) × · · · × T ∗

p (M )
︸ ︷︷ ︸

k times

×Tp(M ) × · · · × Tp(M )
︸ ︷︷ ︸

� times

−→ R

(ω1, . . . ,ωk, v1, . . . , v�) �−→ T (ω1, . . . ,ωk, v1, . . . , v�)

(2.22)

that is linear with respect to each of its arguments. The integer k +� is called the
tensor valence, or sometimes the tensor rank or order. Let us recall the canonical
duality T ∗∗

p (M ) = Tp(M ), which means that every vector v can be considered as
a linear form on the space T ∗

p (M ), via T ∗
p (M ) → R,ω �→ 〈ω, v〉. Accordingly a

vector is a tensor of type (1, 0). A linear form is a tensor of type (0, 1). A tensor of
type (0, 2) is called a bilinear form. It maps couples of vectors to real numbers, in
a linear way for each vector.

Given a basis (eα) of Tp(M ) and the corresponding dual basis (eα) in T ∗
p (M ),

we can expand any tensor T of type (k, �) as

T = Tα1...αk
β1...β�

eα1 ⊗ . . . ⊗ eαk ⊗ eβ1 ⊗ . . . ⊗ eβ� , (2.23)

where the tensor product eα1 ⊗ . . .⊗ eαk ⊗ eβ1 ⊗ . . .⊗ eβ� is the tensor of type (k, �)

for which the image of (ω1, . . . ,ωk, v1, . . . , v�) as in (2.22) is the real number

k∏

i=1

〈ωi , eαi 〉 ×
�∏

j=1

〈eβ j , v j 〉.

4 Notice that, according to the standard usage, the symbol for the vector eα and that for the linear
form eα differ only by the position of the index α.
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Notice that all the products in the above formula are simply products in R. The nk+�

scalar coefficients T α1...αk
β1...β�

in (2.23) are called the components of the tensor T
with respect to the basis (eα). These components are unique and fully characterize
the tensor T .

Remark 2.8 The notations vα and ωα already introduced for the components of a
vector v [Eq. (2.8)] or a linear form ω [Eq. (2.16)] are of course the particular cases
(k, �) = (1, 0) or (k, �) = (0, 1) of (2.23), with, in addition, eα = ∂α and eα = dxα.

2.2.5 Fields on a Manifold

A tensor field of type (k, �) is a map which associates to each point p ∈ M a tensor
of type (k, �) on Tp(M ). By convention, a scalar field is considered as a tensor field
of type (0, 0). We shall consider only smooth fields.

Given an integer p, a p-form is a tensor field of type (0, p), i.e. a field of p-linear
forms, that is fully antisymmetric whenever p ≥ 2. This definition generalizes that
of a 1-form given in Sect. 2.2.3.

A frame field or moving frame is a n-uplet of vector fields (eα) such that at each
point p ∈ M , (eα(p)) is a basis of the tangent space Tp(M ). If n = 4, a frame
field is also called a tetrad and if n = 3, it is called a triad.

Given a vector field v and a scalar field f, the function M → R, p �→ v|p ( f )

clearly defines a scalar field on M , which we denote naturally by v( f ). We may then
define the commutator of two vector fields u and v as the vector field [u, v] whose
action on a scalar field f is

[u, v]( f ) := u(v( f )) − v(u( f )). (2.24)

With respect to a coordinate system (xα), it is not difficult, via (2.8), to see that the
components of the commutator are

[u, v]α = uμ ∂vα

∂xμ
− vμ ∂uα

∂xμ
. (2.25)

2.3 Pseudo-Riemannian Manifolds

2.3.1 Metric Tensor

A pseudo-Riemannian manifold is a couple (M , g) where M is a differentiable
manifold and g is a metric tensor on M , i.e. a tensor field obeying the following
properties:
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1. g is a tensor field of type (0, 2): at each point p ∈ M , g(p) is a bilinear form
acting on vectors in the tangent space Tp(M ):

g(p) : Tp(M ) × Tp(M ) −→ R

(u, v) �−→ g(u, v).
(2.26)

2. g is symmetric: g(u, v) = g(v, u).

3. g is non-degenerate: at any point p ∈ M , a vector u such that ∀v ∈ Tp(M ),

g(u, v) = 0 is necessarily the null vector.

The properties of being symmetric and non-degenerate are typical of a
scalar product. Accordingly, one says that two vectors u and v are g-orthogonal
(or simply orthogonal if there is no ambiguity) iff g(u, v) = 0. Moreover, when
there is no ambiguity on the metric (usually the spacetime metric), we are using a
dot to denote the scalar product of two vectors taken with g:

∀(u, v) ∈ Tp(M ) × Tp(M ), u · v = g(u, v) . (2.27)

In a given basis (eα) of Tp(M ), the components of g is the matrix (gαβ) defined
by formula (2.23) with (k, �) = (0, 2):

g = gαβ eα ⊗ eβ. (2.28)

For any couple (u, v) of vectors we have then

g(u, v) = gαβuαvβ. (2.29)

In particular, considering the natural basis associated with some coordinate system
(xα), the scalar square of an infinitesimal displacement vector d� [cf. Eq. (2.10)] is

ds2 := g(d�, d�) = gαβdxαdxβ. (2.30)

This formula, which follows from the value (2.12) of the components of d�, is called
the expression of the line element on the pseudo-Riemannian manifold (M , g). It
is often used to define the metric tensor in general relativity texts. Note that contrary
to what the notation may suggest, ds2 is not necessarily a positive quantity.

2.3.2 Signature and Orthonormal Bases

An important feature of the metric tensor is its signature: in all bases of Tp(M )

where the components (gαβ) form a diagonal matrix, there is necessarily the same
number, s say, of negative components and the same number, n − s, of positive
components. The independence of s from the choice of the basis where (gαβ) is
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diagonal is a basic result of linear algebra named Sylvester’s law of inertia. One
writes:

sign g = (−, . . . ,−︸ ︷︷ ︸
s times

,+, . . . ,+︸ ︷︷ ︸
n−s times

). (2.31)

If s = 0, g is called a Riemannian metric and (M , g) a Riemannian manifold.
In this case, g is positive-definite, which means that

∀v ∈ Tp(M ), g(v, v) ≥ 0 (2.32)

and g(v, v) = 0 iff v = 0. A standard example of Riemannian metric is of course
the scalar product of the Euclidean space R

n .

If s = 1, g is called a Lorentzian metric and (M , g) a Lorentzian manifold.
One may then have g(v, v) < 0; vectors for which this occurs are called timelike,
whereas vectors for which g(v, v) > 0 are called spacelike, and those for which
g(v, v) = 0 are called null. The subset of Tp(M ) formed by all null vectors is
termed the null cone of g at p.

A basis (eα) of Tp(M ) is called a g-orthonormal basis (or simply orthonormal
basis if there is no ambiguity on the metric) iff 5

g(eα, eα) = −1 for 0 ≤ α ≤ s − 1
g(eα, eα) = 1 for s ≤ α ≤ n − 1
g(eα, eβ) = 0 for α �= β.

(2.33)

2.3.3 Metric Duality

Since the bilinear form g is non-degenerate, its matrix (gαβ) in any basis (eα) is
invertible and the inverse is denoted by (gαβ):

gαμgμβ = δα
β . (2.34)

The metric g induces an isomorphism between Tp(M ) (vectors) and T ∗
p (M ) (linear

forms) which, in index notation, corresponds to the lowering or raising of the index
by contraction with gαβ or gαβ. In the present book, an index-free symbol will
always denote a tensor with a fixed covariance type (such as a vector, a 1-form, a
bilinear form, etc.). We will therefore use a different symbol to denote its image under
the metric isomorphism. In particular, we denote by an underbar the isomorphism
Tp(M ) → T ∗

p (M ) and by an arrow the reverse isomorphism T ∗
p (M ) → Tp(M ):

1. For any vector u in Tp(M ), u stands for the unique linear form such that

∀v ∈ Tp(M ), 〈u, v〉 = g(u, v). (2.35)

5 No summation on α is implied.



16 2 Basic Differential Geometry

However, we will omit the underbar on the components of u, since the position
of the index allows us to distinguish between vectors and linear forms, following
the standard usage: if the components of u in a given basis (eα) are denoted by
uα, the components of u in the dual basis (eα) are then denoted by uα and are
given by

uα = gαμuμ. (2.36)

2. For any linear form ω in T ∗
p (M ),

−→
ω stands for the unique vector of Tp(M )

such that

∀v ∈ Tp(M ), g(
−→
ω , v) = 〈ω, v〉. (2.37)

As for the underbar, we will omit the arrow on the components of −→
ω by denoting

them ωα; they are given by

ωα = gαμωμ. (2.38)

3. We extend the arrow notation to bilinear forms on Tp(M ) (type-(0, 2) tensor):

for any bilinear form T , we denote by
−→
T the tensor of type (1, 1) such that

∀(u, v) ∈ Tp(M ) × Tp(M ), T (u, v) = −→
T (u, v) = u · −→

T (v), (2.39)

and by
�
T the tensor of type (2, 0) defined by

∀(u, v) ∈ Tp(M ) × Tp(M ), T (u, v) =�
T (u, v). (2.40)

Note that in the second equality of (2.39), we have considered
−→
T as an endomor-

phism Tp(M ) → Tp(M ), which is always possible for a tensor of type (1, 1).

If Tαβ are the components of T in some basis (eα), the components of
−→
T and

�
T

are respectively

(
−→
T )αβ = T α

β = gαμTμβ (2.41)

(
�
T )αβ = T αβ = gαμgβvTμv. (2.42)

Remark 2.9 In mathematical literature, the isomorphism induced by g between
Tp(M ) and T ∗

p (M ) is called the musical isomorphism, because a flat or a sharp
symbol is used instead of, respectively, the underbar and the arrow introduced above:

u� = u and ω
 = −→
ω .
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2.3.4 Levi–Civita Tensor

Let us assume that M is an orientable manifold, i.e. that there exists a n-form6 on
M (n being M ’s dimension) that is continuous on M and nowhere vanishing. Then,
given a metric g on M , one can show that there exist only two n-forms ε such that
for any g-orthonormal basis (eα),

ε(e0, . . . , en−1) = ±1. (2.43)

Picking one of these two n-forms amounts to choosing an orientation for M . The
chosen ε is then called the Levi-Civita tensor associated with the metric g. Bases
for which the right-hand side of (2.43) is +1 are called right-handed, and those
for which it is −1 are called left-handed. More generally, given a (not necessarily
orthonormal) basis (eα) of Tp(M ), one has necessarily ε(e0, . . . , en−1) �= 0 and
one says that the basis is right-handed or left-handed iff ε(e0, . . . , en−1) > 0 or < 0,

respectively.
If (xα) is a coordinate system on M such that the corresponding natural basis

(∂α) is right-handed, then the components of ε with respect to (xα) are given by

εα1 ... αn = √|g| [α1, . . . , αn] , (2.44)

where g stands for the determinant of the matrix of g’s components with respect to
the coordinates (xα):

g := det(gαβ) (2.45)

and the symbol [α1, . . . , αn] takes the value 0 if any two indices (α1, . . . , αn) are
equal and takes the value 1 or −1 if (α1, . . . , αn) is an even or odd permutation,
respectively, of (0, . . . , n − 1).

2.4 Covariant Derivative

2.4.1 Affine Connection on a Manifold

Let us denote by T (M ) the space of smooth vector fields on M .7 Given a vector field
v ∈ T (M ), it is not possible from the manifold structure alone to define its variation
between two neighbouring points p and q. Indeed a formula like dv := v(q)−v(p) is

6 Cf. Sect. 2.2.5 for the definition of a n-form.
7 The experienced reader is warned that T (M ) does not stand for the tangent bundle of M ; it
rather corresponds to the space of smooth cross-sections of that bundle. No confusion should arise
because we shall not use the notion of bundle.
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meaningless because the vectors v(q) and v(p) belong to two different vector spaces,
Tq(M ) and Tp(M ) respectively (cf. Fig. 2.2). Note that for a scalar field, this
problem does not arise [cf. Eq. (2.18)]. The solution is to introduce an extra-structure
on the manifold, called an affine connection because, by defining the variation of a
vector field, it allows one to connect the various tangent spaces on the manifold.

An affine connection on M is a mapping

∇ : T (M ) × T (M ) −→ T (M )

(u, v) �−→ ∇uv
(2.46)

which satisfies the following properties:

1. ∇ is bilinear (considering T (M ) as a vector space over R).
2. For any scalar field f and any pair (u, v) of vector fields:

∇ f uv = f ∇uv. (2.47)

3. For any scalar field f and any pair (u, v) of vector fields, the following Leibniz
rule holds:

∇u( f v) = 〈∇ f, u〉v + f ∇uv, (2.48)

where ∇ f stands for the gradient of f as defined in Sect. 2.2.3.

The vector ∇uv is called the covariant derivative of v along u.

Remark 2.10 Property 2 is not implied by property 1, for f is a scalar field, not a real
number. Actually, property 2 ensures that at a given point p ∈ M , the value of ∇uv
depends only on the vector u(p) ∈ Tp(M ) and not on the behaviour of u around p;
therefore the role of u is only to give the direction of the derivative of v.

Given an affine connection, the variation of a vector field v between two neigh-
bouring points p and q, is defined as

dv := ∇d�v, (2.49)

d� being the infinitesimal displacement vector connecting p and q [cf. Eq. (2.10)]. One
says that v is parallelly transported from p to q with respect to the connection ∇
iff dv = 0.

Given a frame field (eα)onM , the connection coefficients of an affine connection
∇ with respect to (eα) are the scalar fields Γ γ

αβ defined by the expansion, at each
point p ∈ M , of the vector ∇eβ eα(p) onto the basis (eα(p)):

∇eβ eα =: Γ μ
αβ eμ . (2.50)

An affine connection is entirely defined by the connection coefficients. In other
words, there are as many affine connections on a manifold of dimension n as there
are possibilities of choosing n3 scalar fields Γ γ

αβ.
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Given v ∈ T (M ), one defines a tensor field of type (1, 1),∇v, called the
covariant derivative of v with respect to the affine connection ∇, by the follow-
ing action at each point p ∈ M :

∇v(p) : T ∗
p (M ) × Tp(M ) −→ R

(ω, u) �−→ 〈ω,∇ũv(p)〉, (2.51)

where ũ is any vector field which performs some extension of u around p: ũ(p) = u.

As already noted (cf. Remark 2.10), ∇ũv(p) is independent of the choice of ũ, so
that the mapping (2.51) is well defined. By comparing with (2.22), we verify that
∇v(p) is a tensor of type (1, 1).

One can extend the covariant derivative to all tensor fields by (i) demanding that
for a scalar field the action of the affine connection is nothing but the gradient (hence
the same notation ∇ f ) and (ii) using the Leibniz rule. As a result, the covariant
derivative of a tensor field T of type (k, �) is a tensor field ∇T of type (k, � + 1). Its
components with respect a given field frame (eα) are denoted

∇γ T α1...αk
β1...β�

:= (∇T )α1...αk
β1...β�γ (2.52)

and are given by

∇γ T α1...αk
β1...β�

= eγ (T α1...αk
β1...β�

) +
k∑

i=1

Γ αi
σγ T α1...

i↓
σ ...αk

β1...β�

−
�∑

i=1

Γ σ
βi γ T α1...αk

β1... σ↑
i

...β�
, (2.53)

where eγ (T α1...αk
β1...β�

) stands for the action of the vector eγ on the scalar field
T α1...αk

β1...β�
, resulting from the very definition of a vector (cf. Sect. 2.2.2). In par-

ticular, if (eα) is a natural frame associated with some coordinate system (xα), then
eα = ∂α and the above formula becomes [cf. (2.7)]

∇γ T α1...αk
β1...β�

= ∂

∂xγ
T α1...αk

β1...β�
+

k∑

i=1

Γ αi
σγ T α1...

i↓
σ ...αk

β1...β�

−
�∑

i=1

Γ σ
βi γ T α1...αk

β1... σ↑
i

...β�
. (2.54)

Remark 2.11 Notice the position of the index γ in Eq. (2.52): it is the last one on
the right-hand side. According to (2.23), ∇T is then expressed as

∇T = ∇γ T α1...αk
β1...β�

eα1 ⊗ . . . ⊗ eαk ⊗ eβ1 ⊗ . . . ⊗ eβ� ⊗ eγ . (2.55)

Because eγ is the last 1-form of the tensorial product on the right-hand side, the nota-
tion T α1...αk

β1...β�;γ instead of ∇γ T α1...αk
β1...β�

would have been more appropriate.
The index convention (2.55) agrees with that of MTW [9] [cf. their Eq. (10.17)].

http://dx.doi.org/10.1007/978-3-642-24525-1_10
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The covariant derivative of the tensor field T along a vector v is defined by

∇vT := ∇T (., . . . , .︸ ︷︷ ︸
k+� slots

, u). (2.56)

The components of ∇vT are then vμ∇μT α1...αk
β1...β�

. Note that ∇vT is a tensor field
of the same type as T . In the particular case of a scalar field f, we will use the notation
v · ∇ f for ∇v f :

v · ∇ f := ∇v f = 〈∇ f, v〉 = v( f ). (2.57)

The divergence with respect to the affine connection ∇ of a tensor field T of type
(k, �) with k ≥ 1 is the tensor field denoted ∇ · T of type (k − 1, �) and whose
components with respect to any frame field are given by

(∇ · T )α1...αk−1
β1...β�

= ∇μTα1...αk−1μ
β1...β�

. (2.58)

Remark 2.12 For the divergence, the contraction is performed on the last upper index
of T .

2.4.2 Levi–Civita Connection

On a pseudo-Riemannian manifold (M , g) there is a unique affine connection ∇
such that

1. ∇ is torsion-free, i.e. for any scalar field f, ∇∇ f is a field of symmetric bilinear
forms; in components:

∇α∇β f = ∇β∇α f. (2.59)

2. The covariant derivative of the metric tensor vanishes identically:

∇g = 0 . (2.60)

∇ is called the Levi–Civita connection associated with g. In this book, we shall
consider only such connections.

With respect to the Levi–Civita connection, the Levi–Civita tensor ε introduced
in Sect. 2.3.4 shares the same property as g:

∇ε = 0 . (2.61)

Given a coordinate system (xα) on M , the connection coefficients of the Levi–
Civita connection with respect to the natural basis (∂α) are called the Christoffel
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symbols; they can be evaluated from the partial derivatives of the metric components
with respect to the coordinates:

Γ γ
αβ = 1

2
gγμ

(
∂gμβ

∂xα
+ ∂gαμ

∂xβ
− ∂gαβ

∂xμ

)
. (2.62)

Note that the Christoffel symbols are symmetric with respect to the lower two indices.
For the Levi–Civita connection, the expression for the divergence of a vector takes

a rather simple form in a natural basis associated with some coordinates (xα). Indeed,
combining Eqs. (2.58) and (2.54), we get for v ∈ T (M ),

∇ · v = ∇μvμ = ∂vμ

∂xμ
+ Γ μ

σμvσ .

Now, from (2.62), we have

Γ μ
αμ = 1

2
gμv ∂gμv

∂xα
= 1

2

∂

∂xα
ln |g| = 1√|g|

∂

∂xα

√|g|, (2.63)

where g := det(gαβ) [Eq. (2.45)]. The last but one equality follows from the general
law of variation of the determinant of any invertible matrix A:

δ(ln | det A|) = tr(A−1 × δA) , (2.64)

where δ denotes any variation (derivative) that fulfills the Leibniz rule, tr stands for
the trace and × for the matrix product. We conclude that

∇ · v = 1√|g|
∂

∂xμ

(√|g| vμ
)

. (2.65)

Similarly, for an antisymmetric tensor field of type (2, 0),

∇μ Aαμ = ∂ Aαμ

∂xμ
+ Γ α

σμ Aσμ

︸ ︷︷ ︸
0

+Γ μ
σμ Aασ = ∂ Aαμ

∂xμ
+ 1√|g|

∂

∂xσ

√|g| Aασ ,

where we have used the fact that Γ α
σμ is symmetric in (σ, μ), whereas Aσμ is anti-

symmetric. Hence the simple formula for the divergence of an antisymmetric tensor
field of (2, 0):

∇μ Aαμ = 1√|g|
∂

∂xμ

(√|g|Aαμ
)

. (2.66)
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2.4.3 Curvature

2.4.3.1 General Definition

The Riemann curvature tensor of an affine connection ∇ is defined by

Riem : T ∗(M ) × T (M )3 −→ C∞(M , R)

(ω, w, u, v) �−→ 〈
ω,∇u∇vw − ∇v∇uw − ∇[u,v]w

〉
,

(2.67)

where T ∗(M ) stands for the space of 1-forms on M ,T (M ) for the space of vector
fields on M andC∞(M , R) for the space of smooth scalar fields on M . The above
formula does define a tensor field on M , i.e. the value of Riem(ω, w, u, v) at a given
point p ∈ M depends only upon the values of the fields ω, w, u and v at p and not
upon their behaviours away from p, as the gradients in Eq. (2.67) might suggest. We
denote the components of this tensor in a given basis (eα), not by Riemγ

δαβ, but
by Rγ

δαβ. The definition (2.67) leads then to the following expression, named the
Ricci identity:

∀w ∈ T (M ),
(∇α∇β − ∇β∇α

)
wγ = Rγ

μαβwμ. (2.68)

Remark 2.13 In view of this identity, one may say that the Riemann tensor measures
the lack of commutativity of two successive covariant derivatives of a vector field. On
the opposite, for a scalar field and a torsion-free connection, two successive covariant
derivatives always commute [cf. Eq. (2.59)].

In a coordinate basis, the components of the Riemann tensor are given in terms of
the connection coefficients by

Rα
βμv = ∂Γ α

βv

∂xμ
− ∂Γ α

βμ

∂xv
+ Γ α

σμΓ σ
βv − Γ α

σvΓ
σ
βμ . (2.69)

From the definition (2.67), the Riemann tensor is clearly antisymmetric with
respect to its last two arguments (u, v):

Riem(., ., u, v) = −Riem(., ., v, u). (2.70)

In addition, it satisfies the cyclic property

Riem(., u, v, w) + Riem(., w, u, v) + Riem(., v, w, u) = 0. (2.71)

The covariant derivatives of the Riemann tensor obeys the Bianchi identity

∇ρ Rα
βμv + ∇μ Rα

βvρ + ∇v Rα
βρμ = 0 . (2.72)
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2.4.3.2 Case of a Pseudo-Riemannian Manifold

The Riemann tensor of the Levi–Civita connection obeys the additional antisymme-
try:

Riem(ω, w, ., .) = −Riem(w,
−→
ω , ., .). (2.73)

Combined with (2.70) and (2.71), this implies the symmetry property

Riem(ω, w, u, v) = Riem(u, v,−→ω , w). (2.74)

A pseudo-Riemannian manifold (M , g)with a vanishing Riemann tensor is called
a flat manifold; in this case, g is said to be a flat metric. If in addition, it has a
Riemannian signature, g is called an Euclidean metric.

2.4.3.3 Ricci Tensor

The Ricci tensor of the affine connection ∇ is the field of bilinear forms R defined
by

R : T (M ) × T (M ) −→ C∞(M , R)

(u, v) �−→ Riem(eμ, u, eμ, v).
(2.75)

This definition is independent of the choice of the basis (eα) and its dual counterpart
(eα). In terms of components:

Rαβ := Rμ
αμβ . (2.76)

Remark 2.14 Following the standard usage, we denote the components of the
Riemann and Ricci tensors by the same letter R, the number of indices allowing
us to distinguish between the two tensors. On the other hand, we are using different
symbols, Riem and R, when employing the ‘intrinsic’ notation.

For the Levi–Civita connection associated with the metric g, the property (2.74)
implies that the Ricci tensor is symmetric:

R(u, v) = R(v, u). (2.77)

In addition, one defines the Ricci scalar (also called scalar curvature) as the trace
of the Ricci tensor with respect to the metric g:

R := gμv Rμv. (2.78)

The Bianchi identity (2.72) implies the divergence-free property

∇ · −→
G = 0 , (2.79)



24 2 Basic Differential Geometry

where
−→
G in the type-(1, 1) tensor associated by metric duality [cf. (2.39)] to the

Einstein tensor:

G := R − 1

2
R g . (2.80)

Equation (2.79) is called the contracted Bianchi identity.

2.4.4 Weyl Tensor

Let (M , g) be a pseudo-Riemannian manifold of dimension n.
For n = 1, the Riemann tensor vanishes identically, i.e. (M , g) is necessarily

flat. The reader who has in mind a curved line in the Euclidean plane R
2 might be

surprised by the above statement. This is because the Riemann tensor represents the
intrinsic curvature of a manifold. For a line, the curvature that is not vanishing is the
extrinsic curvature, i.e. the curvature resulting from the embedding of the line in R

2.

We shall discuss in more details the concepts of intrinsic and extrinsic curvatures in
Chap. 3.

For n = 2, the Riemann tensor is entirely determined by the knowledge of the
Ricci scalar R, according to the formula:

Rγ
δαβ = R

(
δγ

αgδβ − δγ
βgδα

)
(n = 2). (2.81)

For n = 3, the Riemann tensor is entirely determined by the knowledge of the Ricci
tensor, according to

Rγ
δαβ =Rγ

αgδβ − Rγ
βgδα + δγ

α Rδβ − δγ
β Rδα

+ R

2

(
δγ

βgδα − δγ
αgδβ

)
(n = 3). (2.82)

For n ≥ 4, the Riemann tensor can be split into (i) a “trace-trace” part, rep-
resented by the Ricci scalar R [Eq. (2.78)], (ii) a “trace” part, represented by the
Ricci tensor R [Eq. (2.76)], and (iii) a “traceless” part, which is constituted by the
Weyl conformal curvature tensor, C:

Rγ
δαβ = Cγ

δαβ + 1

n − 2

(
Rγ

α gδβ − Rγ
β gδα + δγ

α Rδβ − δ
γ
β Rδα

)

+ 1

(n − 1)(n − 2)
R

(
δ
γ
β gδα − δγ

α gδβ

)
. (2.83)

The above relation may be taken as the definition of C. It implies that C is traceless:
Cμ

αμβ = 0. The other possible traces are zero thanks to the symmetry properties of
the Riemann tensor.

Remark 2.15 The decomposition (2.83) is also meaningful for n = 3, but it then
implies that the Weyl tensor vanishes identically [compare with (2.82)].

http://dx.doi.org/10.1007/978-3-642-24525-1_3
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2.5 Lie Derivative

As discussed in Sect. 2.4.1, the notion of a derivative of a vector field on a manifold
M requires the introduction of some extra-structure on M . In Sect. 2.4.1, this extra-
structure was an affine connection and in Sect. 2.4.2 a metric g (which provides
naturally an affine connection: the Levi–Civita one). Another possible extra-structure
is a “reference” vector field, with respect to which the derivative is to be defined.
This is the concept of the Lie derivative, which we discuss here.

2.5.1 Lie Derivative of a Vector Field

Consider a vector field u on M , called hereafter the flow. Let v be another vector
field on M , the variation of which is to be studied. We can use the flow u to transport
the vector v from one point p to a neighbouring one q and then define rigorously the
variation of v as the difference between the actual value of v at q and the transported
value via u. More precisely the definition of the Lie derivative of v with respect to
u is as follows (see Fig. 2.3). We first define the image Φε(p) of the point p by the
transport by an infinitesimal “distance” ε along the field lines of u as Φε(p) = q,

where q is the point close to p such that the infinitesimal displacement vector from p
to q is −→pq = εu(p) (cf. Sect. 2.2.2). Besides, if we multiply the vector v(p) by some
infinitesimal parameter λ, it becomes an infinitesimal vector at p. Then there exists a

unique point p′ close to p such that λv(p) = −→
pp′. We may transport the point p′ to a

point q ′ along the field lines of u by the same “distance” ε as that used to transport p

to q: q ′ = Φε(p′) (see Fig. 2.3).
−→
qq ′ is then an infinitesimal vector at q and we define

the transport by the distance ε of the vector v(p) along the field lines of u according
to

Φε(v(p)) := 1

λ

−→
qq ′. (2.84)

Φε(v(p)) is a vector in Tq(M ). We may then subtract it from the actual value of the
field v at q and define the Lie derivative of v along u by

Luv := lim
ε→0

1

ε
[v(q) − Φε(v(p))] . (2.85)

Let us consider a coordinate system (xα) adapted to the field u in the sense that
u = ∂0, where ∂0 is the first vector of the natural basis associated with the coordinates
(xα). We have, from the definitions of points q, p′ and q ′,

xα(q) = xα(p) + εδα
0

xα(p′) = xα(p) + λvα(p)

xα(q ′) = xα(p′) + εδα
0,
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Fig. 2.3 Geometrical
construction of the Lie
derivative of a vector field:
given a small parameter λ,

each extremity of the arrow
λv is dragged by some small
parameter ε along u, to form
the vector denoted by
Φε(λv). The latter is then
compared with the actual
value of λv at the point q, the
difference (divided by λε)
defining the Lie derivative
Luv

so that

(qq ′)α = xα(p′) − xα(p) = λvα(p).

Accordingly, (2.84) and (2.85) result in

(Luv)α = lim
ε→0

1

ε

[
vα(q) − vα(p)

]

= lim
ε→0

1

ε

[
vα(x0 + ε, x1, . . . , xn−1) − vα(x0, x1, . . . , xn−1)

]
.

Hence, in adapted coordinates, the Lie derivative is simply obtained by taking the
partial derivative of the vector components with respect to x0:

Luvα = ∂vα

∂x0 , (2.86)

where we have used the standard notation for the components of a Lie deriv-
ative: Luvα := (Luv)α. Besides, using the fact that the components of u are
uα = (1, 0, . . . , 0) in the adapted coordinate system, we notice that the compo-
nents of the commutator of u and v, as given by (2.25), are

[u, v]α = ∂vα

∂x0 .

This is exactly (2.86): [u, v]α = Luvα. We conclude that the Lie derivative of a
vector with respect to another one is actually nothing but the commutator of these
two vectors:

Luv = [u, v] . (2.87)

Thanks to formula (2.25), we may then express the components of the Lie derivative
in an arbitrary coordinate system:
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Luvα = uμ ∂vα

∂xμ
− vμ ∂uα

∂xμ
. (2.88)

Thanks to the symmetry property of the Christoffel symbols, the partial derivatives
in Eq. (2.88) can be replaced by the Levi–Civita connection ∇ associated with some
metric g, yielding

Luvα = uμ∇μvα − vμ∇μuα. (2.89)

2.5.2 Generalization to Any Tensor Field

The Lie derivative is extended to any tensor field by (i) demanding that for a scalar
field f, Lu f = 〈∇ f, u〉 and (ii) using the Leibniz rule. As a result, the Lie derivative
LuT of a tensor field T of type (k, �) is a tensor field of the same type, the components
of which with respect to a given coordinate system (xα) are

LuT α1...αk
β1...β�

= uμ ∂

∂xμ
T α1...αk

β1...β�
−

k∑

i=1

T α1...

i↓
σ ...αk

β1...β�

∂uαi

∂xσ

+
�∑

i=1

T α1...αk
β1... σ↑

i

...β�

∂uσ

∂xβi
. (2.90)

In particular, for a 1-form,

Luωα = uμ ∂ωα

∂xμ
+ ωμ

∂uμ

∂xα
. (2.91)

As for the vector case [Eq. (2.88)], the partial derivatives in Eq. (2.90) can be replaced
by the covariant derivative ∇ (or any other connection without torsion), yielding

LuT α1...αk
β1...β�

= uμ∇μT α1...αk
β1...β�

−
k∑

i=1

T α1...

i↓
σ ...αk

β1...β�
∇σ uαi

+
�∑

i=1

T α1...αk
β1... σ↑

i

...β�
∇βi u

σ . (2.92)

Remark 2.16 Both the covariant derivative (affine connection) and the Lie derivative
act on any kind of tensor field. For the specific class of tensor fields composed of
p-forms (cf. Sect. 2.2.5), there exists a third type of derivative, which does not require
any extra-structure on M : the exterior derivative d. For a 0-form (scalar field), d
coincides with the gradient, hence the notation dxα used to denote the gradient of
coordinates [cf. (2.20)]. We shall not use the exterior derivative in this book and so
will not discus it further (see the classical textbooks [3, 6, 9] or Ref. [10] for an
elementary introduction).
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