
An AUTOSAR-compatible microkernel
for systems with safety-relevant components

David Haworth

Elektrobit Automotive GmbH
Am Wolfsmantel 46

91058 Erlangen, Germany
david.haworth@elektrobit.com

Abstract. The integration of safety-relevant software and software de-
veloped to normal quality standards in the same embedded system needs
a protection mechanism to ensure that the safety-relevant software can-
not be adversely affected by failures in the rest the system. The pro-
tection mechanism is usually assumed to be provided by the "system
software", which implies that the system software must be developed
to the same exacting standards as the safety-relevant software. In the
AUTOSAR model that may not be possible in practice.
This article explores ways of isolating the safety-relevant software from
the bulk of the AUTOSAR system software while retaining the core
functionality needed by the system software and the components that
run under it.

1 Introduction

Developing software to the rigorous standards required for safety-relevant sys-
tems is costly and time-consuming. Standards such as ISO26262 [1], as used in
the automotive domain, demand that rigorous procedures be applied to the de-
velopment of all software that could interfere with the safety-relevant functions
of an electronic control unit (ECU). These procedures apply to all phases of de-
velopment, from the definition of requirements through design, implementation,
test, verification and final assessment. In practice, it may not be possible to
develop a full system to these standards within reasonable timescales.

An approach that is commonly used in many fields is to isolate software
components from each other. By means of the isolation, a failing component is
prevented from interfering with the behaviour of other components. Interference
can be detected and appropriate action can be taken. The action taken depends
on the required availability of the systems. The entire system can be switched
into a safe state, or an attempt can be made to restart the failed component
if its operation is a necessary part of the safe state of the system. This ap-
proach is known as providing “freedom from interference” for the safety-relevant
components.

Interference can occur in three domains: the time domain, the communica-
tion domain and the data processing domain.

W.A. Halang (ed.), Herausforderungen durch Echtzeitbetrieb, Informatik aktuell,
DOI 10.1007/978-3-642-24658-6_2, © Springer-Verlag Berlin Heidelberg 2012

12 D. Haworth

Interference in the time domain, such as safety-relevant functions being
blocked by faulty software, can be detected by means of a hardware watchdog,
perhaps with software extensions.

Interference in the communication domain, whether caused by outside inter-
ference or faulty software, can be detected by the use of error-detecting codes
such as cyclic redundancy checks.

Interference in the data processing domain occurs when faulty software inad-
vertently interferes with the processing of safety-relevant functions. Interference
can be caused by modification of data while in storage, by modification of vari-
ables during processing or by directly affecting the flow of processing.

2 The AUTOSAR Standard

AUTOSAR is establishing itself as the standard for an off-the-shelf “core” soft-
ware used for ECUs in the automotive field.

In the AUTOSAR model, the Operating System module (OS [2]), the “Basic
Software” (BSW [3]) and the “Run-Time Environment” (RTE [4]) are combined
to form a standard set of modules that can be configured as required for each
ECU. The OS provides priority control of tasks and interrupt service routines
(ISRs) as well as timing functions using counters, alarms and schedule tables.
The BSW includes device drivers, communications stacks, storage management
etc. The RTE presents a middleware-like port-based communication interface
to “Software Components”

The Software Components are the software modules that perform the re-
quired functionality of the ECU. Some of the Software Components may have
safety-relevant functions. In the layered architecture model [5] defined by the
AUTOSAR standard, the OS, the BSW and the RTE are all assumed to run
with the same trusted privilege level because they need access to hardware pe-
ripheral devices. The Software Components are gathered together into groups
called “OS-Applications”. which can be trusted or non-trusted.

3 Practical Solutions

On many modern microcontrollers it is not necessary to have the highest privilege
level in order to access hardware peripherals. On processors like some of the
Power Architecture derivatives, peripherals can be configured to allow access
from software running in user mode. On others, like Infineon’s Tricore range,
there is an intermediate privilege level that permits peripheral access while still
preventing access to core registers that control the access rights.

On these microcontrollers it is possible to use the AUTOSAR OS module
to isolate the BSW, the RTE and the Software Components from each other.
Ideally all the BSW, RTE and Software Components run as non-trusted applica-
tions. Using this model reduces the amount of software that must be rigorously
developed to just the OS plus those portions of the RTE that run alongside the
safety-relevant software components.

An AUTOSAR-compatible microkernel 13

There remains the problem of the OS module. A complete AUTOSAR OS
module is still uncomfortably large. The standard specifies several types of non-
executable objects as well as executable objects: tasks, ISRs and hook functions.
Each of the executable objects has different characteristics and a traditional de-
sign for an embedded operating system typically implements them all in different
ways for reasons of efficiency.

An analysis was undertaken to determine whether it would be feasible to
implement a smaller module that could be used to isolate the OS from the
software components. In the first phase of the project the failure modes of an
existing AUTOSAR OS module were studied to determine the types of failure
that could be induced in safety-relevant software components if there was an
undetected fault in the OS. A complete failure modes and effects analysis for the
OS would be too large to discuss here, but some of the most significant failure
modes found were:

– Failure to restore a task’s working registers correctly after an interrupt or
preemption. This could result in a task’s temporary variables becoming
corrupted and an incorrect result being computed from correct input data.

– Failure to restore a task’s program counter correctly after an interrupt or pre-
emption. Large errors here would probably be detected, but small changes
would cause a task to omit or repeat a few instructions. The effect could
be the same as an error in the working registers, but could result in a task
omitting safety measures that it should perform.

– Failure to observe task priority rules. Implicit critical sections could be
occupied simultaneously by two or more tasks and stack sharing by tasks
would not be reliable.

– Failure to disable interrupts when requested by a task. Explicit critical
sections could be occupied simultaneously by two or more tasks.

The second phase of the project attempted to identify methods of detecting
the effects of faults in the OS and protecting software components from those
effects. During the analysis several possible solutions to this problem were con-
sidered; these potential solutions are described in detail in the following sections.

3.1 Data integrity based on error-detecting codes

The integrity of safety-relevant data could be verified numerically using methids
that are common in communication protocols. One problem with this approach
is that the overhead of the data verification increases with the volume of data.
The volume of data in a typical communication message is small compared with
the data set for a complex computation. Calculating an error-detecting code
for a large data set before and after each iteration of the computation could be
prohibitive.

Another problem with this approach is that the data-integrity module would
need to be integrated with the software component, thus increasing the com-
plexity of the software component slightly. Such an integration would have to
be done separately for each software component.

14 D. Haworth

A third problem with this approach is that while the computation is in
progress all interruptions and preemptions need to be disabled. This is be-
cause an error in the OS or in another task could cause a variable to change its
value unexpectedly and thus cause the algorithm to produce incorrect results.
Disabling interrupts might mean that higher-priority activities fail to run on
time, which might provoke instabilities elsewhere.

3.2 Data integrity using stand-alone memory protection

The integrity of safety-relevant data could be assured by using a stand-alone
memory protection module. The problems with this approach are the same as
the approach using error detecting codes, as described above, with the exception
of the overhead of numerical verification.

3.3 Adding high-integrity drivers to a standard OS

High-integrity drivers for the memory protection hardware could be added to
a standard OS. The drivers would prevent the OS (and the other tasks and
ISRs) from being able to modify the stored variables belonging to safety-relevant
components. At first glance this might seem to be a viable solution, but the OS
is still responsible for the safe keeping of the register values of any task that gets
interrupted. Unexpected modification could cause an interrupted algorithm to
produce incorrect results.

All interrupts would have to be disabled to prevent this possibility. Such
a solution would have the overheads of an OS with memory protection, but
would not have the multi-tasking benefits of the OS during the safety-relevant
computations.

3.4 A minimal high-integrity context switch

One very interesting possibility that was considered was the development of
an outer “wrapper” for the OS. This outer wrapper would replace the context
switch in a standard OS with a high-integrity version and would implement the
memory protection drivers. Access to the memory regions belonging to the tasks
(including their stacks and saved register content) would be disabled while the
OS is running. In this model the standard OS is responsible for selecting which
task should run, but the mechanism of switching to the task is controlled by the
high-integrity software.

The cost in CPU time to switch the memory protection mapping for every call
to an OS service and back again when returning to the caller could be prohibitive
on some architectures. Furthermore, AUTOSAR applications typically rely on
the mutual exclusivity of tasks to avoid explicit locking of critical sections. If
correct prioritisation were not guaranteed, explicit locking would be needed,
with the accompanying overhead. Stack sharing among mutually exclusive tasks
would also be unsafe.

To summarise: this approach would provide all the required protection, but
with extra CPU time overhead for every OS call and an increased RAM footprint.

An AUTOSAR-compatible microkernel 15

3.5 A full implementation of the AUTOSAR OS standard

A full implementation of AUTOSAR OS has the memory protection features
common in other operating systems that are often used as means to prevent
interference between software components. The AUTOSAR OS module is clearly
intended to provide the protection mechanisms and would in fact do so. The
only problem is the development time and cost.

A full AUTOSAR-OS implementation includes all the counter, alarm and
schedule table drivers along with global time synchronisation. The software
assocated with this is at least as large as the task and ISR management. In
addition, there is timing protection using execution-time budgets and rate limits
to guarantee schedulability. Unfortunately, the use of this method is not well
understood; simpler deadline-based timing protection appears to be preferred.

3.6 A minimal operating system kernel

It should be possible to specify a subset of the AUTOSAR-OS standard that
provides the essential features within acceptable cost and time budgets. The
subset would have to provide the management of executable objects. Such a
minimal operating system kernel would provide freedom from interference for all
the executable objects under its control, including many features of the standard
OS as well as the BSW, RTE and all the software components configured by the
system designed.

In fact, such an approach looks very similar to the classical microkernel con-
cept. The analysis concluded that this approach would provide a usable product,
the development of which was still achievable within acceptable timescale and
cost limits.

4 Design of the AUTOSAR-compatible Microkernel

From the outset, it was decided that simplicity of design should be paramount to
minimise the size of the microkernel. Reducing the size reduces the development
effort and reduces the possibility that a latent error could affect the safety of
the system. Where strict conformance with the AUTOSAR specification would
add complexity in the form of special cases or extra checks at runtime, the
AUTOSAR requirement should be rejected, or relegated to a set of additional
checks that are present only during development.

It was decided that the microkernel should retain as little state information
as possible. The state of an object is not necessarily stored directly but must
often be inferred from the microkernel’s state variables. This has the advantages
of eliminating multiple state variables and possible conflicts between them. The
cost of computing the state of an object is increased, but is offset by the savings
of not maintaining that state, and the cost only occurs at the place where the
state is requested.

Finally, it was decided that all code, including the microkernel and other code
running in supervisor mode, shall run with memory protection enabled and with

16 D. Haworth

the memory protection boundaries set as tightly as possible. This decision means
that there is no longer a concept of “absolute trust”; the access rights for every
piece of software must be specified explicitly.

4.1 Threads

An AUTOSAR-OS must be able to manage executing instances of tasks subject
to the prioritisation requirements specified by AUTOSAR.

The abstract concept of a “thread” as an active instance of a task was devel-
oped. A thread queue, consisting of a singly-linked list in order of descending
priority, allows the highest priority thread to be determined readily. A thread is
inserted before the first thread whose priority is strictly lower than the thread
being inserted. The correct position is found using a linear search from the queue
head. This insertion algorithm provides the first-in, first-out sequence for tasks
of equal priority, as required by AUTOSAR.

In general, removing a thread from the queue also requires a search, but in
most cases a thread terminates itself and at that time it is at the head of the
queue. A doubly-linked list might be considered for the purpose of eliminating
the search when terminating another thread, but that normally only happens
under error conditions, so the overhead of maintaining the backward links would
probably outweigh the savings.

The microkernel maintains a variable containing a reference to the head of
the thread queue. It also maintains a variable containing a reference to the
current thread. While a thread is executing on the processor the current thread
and the head of the thread queue are the same, but while the microkernel is
executing this condition might no longer hold.

Threads typically run in a low-privilege mode of the processor, so services of
the microkernel must be called by means of a system call trap.

Given a suitable range of priorities, the other executable objects required
by AUTOSAR (ISRs and hook functions) can be implemented using threads
too. Thus we have a simple non-reentrant structure: the processor is executing
either the microkernel or a thread. The transition from thread to microkernel is
by means of a hardware trap. The transition from microkernel to thread is by
means of a return-from-trap instruction.

Each thread has its own interrupt locking level, which is written to the in-
terrupt controller whenever the thread becomes active. The level is related to
the priority. Using the locking level, ISR threads can guarantee correct nesting,
and resources can be shared with ISRs as well as tasks.

A microkernel design that allocated a thread from a pool on demand was
considered but rejected in favour of the static configuration policy of AUTOSAR
under which a thread is assigned to each task at compile time.

AUTOSAR’s concept of multiple activations would result in a task having as
many threads as its activation limit, which would need a lot of memory. Instead,
it was decided to add a job queue in the form of a ring-buffer to each thread,
and to place subsequent activations of a task into the queue. On termination
of a thread, the next job in the queue gets activated. To preserve the correct

An AUTOSAR-compatible microkernel 17

order of execution, if there is a thread with a job queue, all tasks with the same
priority must use that thread.

4.2 Microkernel structure

The transition from thread to microkernel occurs in the following cases:

– A peripheral device interrupts the processor.
– A processor exception occurs, such as a memory protection or unknown

instruction trap.
– A system request is made; this is a special case of a processor exception.

All of these cases are similar, differing only in hardware-specific details.
The flow of control in the kernel is depicted in figure 1.

Fig. 1. Microkernel control flow

The kernel entry routine saves the processor registers then calls the function
responsible for handling the request. To simplify the microkernel code (and
especially the low-level assembly language part) it is assumed that there is always
a thread running, and the microkernel saves the complete processor state at each
entry point. The processor state is stored in a structure in the microkernel’s
space so that the microkernel does not need write access to every thread’s stack
and does not need to check the validity of the stack pointer.

The kernel function performs all internal activities necessary to handle the
request. This may result in changes to the thread queue, but not to the current
thread variable.

The dispatcher selects the most eligible thread and changes the states of the
outgoing and incoming threads.

The kernel exit routine resumes the new current thread from its previously-
saved or newly-initialised state. The same state is saved at every entry point, so
the exit routine does not need to determine how the kernel was entered.

The microkernel is not reentrant. This means that the size of the microker-
nel’s stack can be easily calculated. The disadvantage is that an exception that
occurs in the microkernel cannot be handled completely and the only available
actions are to shutdown or reset the system.

18 D. Haworth

4.3 Interrupts

When an interrupt occurs and is accepted by the microkernel, the microkernel
identifies the interrupt source and calls a configurable function. For AUTOSAR
ISRs, the function is a microkernel function that starts a thread for the ISR.

It is recognised that activating an ISR is a very large overhead, especially
when the ISR does little more than acknowledge the hardware and activate a
task. Therefore it was decided to add the possibility of specifying a user-defined
function to be called in place of the microkernel function that starts the ISR
thread. This function is not permitted to use the AUTOSAR services, but
can call a small set of the microkernel’s internal functions to perform actions
such as activating tasks. These user-defined interrupt handler functions must be
developed to the same standards as those required of the microkernel.

4.4 Resources and interrupt locks

AUTOSAR resources are implemented by raising and lowering the thread’s cur-
rent priority. An interrupt locking level is associated with each resource to permit
ISRs to use resources as well as tasks. Each resource has a nesting counter, per-
mitting the same resource to be acquired multiple times by the same thread, up
to a predefined limit. The resource is finally released when the nesting counter
returns to zero. This extension permits the interrupt locking services to be im-
plemented in terms of resources, thus avoiding the necessity to implement special
functionality. Standard AUTOSAR resources have a nesting limit of 1.

In addition to standard resources, AUTOSAR specifies linked resources and
internal resources. Linked resources are implemented using multiple resources
at the same priority. Internal resources are not present as resources in the
microkernel. They are implemented by raising a thread’s priority to a higher
level when it first gains the processor. The thread’s priority remains at that
level or higher until it terminates, calls Schedule() or waits for an event. Non-
preemptive tasks can be considered to use an internal resource whose priority is
at least as high as the highest-priority task.

4.5 Counters and related services

The AUTOSAR counter, alarm and schedule table objects are implemented
using code from an existing AUTOSAR OS, referred to here as the QM-OS, that
was not developed using safety standards. To prevent faults in the QM-OS from
causing interference the thread abstraction is used. The microkernel provides
system calls that each starts a function from the QM-OS in a configured thread.
The parameters for the QM-OS function are preloaded into the appropriate
registers when activating the thread. The return value of the function is passed
back through the microkernel to the original caller. The QM-OS thread runs at
a higher priority than the calling thread to guarantee that the QM-OS thread
completes before the calling thread continues. To simplify the configuration, two
QM-OS threads are available. One is set at a priority higher than the scheduler

An AUTOSAR-compatible microkernel 19

priority but lower than ISRs, while the second is set at a priority higher than all
the category 2 ISRs.

The configuration of the QM-OS puts pointers to the functions that it pro-
vides in its own “system-call” table. For correct operation the function pointers
must be in the correct places in the table, but from a safety viewpoint the cor-
rectness is not relevant. The microkernel starts a thread with the parameters
that it is given and passes back the results. If the QM-OS function violates
protection boundaries, the fault is handled just like any other AUTOSAR-OS
protection fault. If the QM-OS thread gets terminated the caller is notified.

One problem with the thread mechanism is that some AUTOSAR services
return a status code and place the requested information into a referenced vari-
able. The memory protection prevents this from being possible in the QM-OS
threads – indeed, it prevents the microkernel from using this mechanism as well.
The adopted solution is to return the value in a register. In the first version
the requested data replaces the status code. Future versions will use two and
maybe more registers, along with structure return values and perhaps a little
extra assembler code. The requested data is placed into the referenced variable
in a library function that runs in the thread of the caller and therefore with the
same protection boundaries. There is no need for a software boundary check on
the reference parameters.

4.6 Events

An implementation of the AUTOSAR event mechanism in the QM-OS would
have been possible but it was decided to implement it in the microkernel. One
reason is that the mechanism is used extensively by the RTE, so performance is
important. Another reason is that some microkernel support would be needed
anyway, to awaken a task from the waiting state. The QM-OS part of the
mechanism would be fairly small.

Events can only be used by tasks that are configured for the purpose. A task
that is waiting for an event is detached from its thread, but remains active and
can only be awakened by SetEvent().

4.7 Hook functions

The startup, shutdown, error and protection hook functions, as defined by the
AUTOSAR standard, are started in threads with suitably-chosen priorities. Pa-
rameters are pre-loaded into the thread’s register storage and, in the case of the
protection hook, the return value on termination is retrieved and acted upon.
In the first version of the microkernel, the only action available is to shut down.
A wider range of actions is envisaged for the future.

4.8 The thread/kernel interface

The interface between the code running in threads (the “user” code) and the
microkernel is the system-call mechanism of the processor. A C-compatible in-
terface library is provided by the microkernel. This usually consists of a set of

20 D. Haworth

small assembly-language functions that execute a system-call instruction, leav-
ing the parameters intact in their registers. The kernel entry routine saves all the
processor registers, so the parameters are available inside the system-call han-
dling functions without having to pass them explicitly as function parameters.
On exit from the microkernel the instruction after the system-call is executed;
this is normally a return-from-subroutine instruction. This mechanism assumes
a processor that passes parameters in registers, but this is normally true for
processors used in embedded systems.

Library functions, written in C, are provided where necessary to translate
the microkernel’s register-based return-value mechanism into the standard AU-
TOSAR referenced variable mechanism. In some cases the C library function
need not make a system call at all; for example, GetEvent() can read the pending
events for a task without having to enter the microkernel.

All of these library functions run on the thread’s side of the thread/kernel
interface and are therefore subject to the same memory protection boundaries
as the caller. This means that range checking for reference parameters is unnec-
essary. The library functions are nevertheless developed to the same standards
as the microkernel and can be used from safety-relevant threads.

There are some functions in the QM-OS that are directly called. These
functions are not safe to be called from safety-relevant threads, but the necessity
to do so is not envisaged.

5 Conclusion

A prototype AUTOSAR-compatible microkernel has been developed to the out-
line design described in this paper. The prototype is being used in a real de-
velopment project alongside a standard AUTOSAR core, including the counter-
related features from a standard OS module. Early indications show that the
performance of the microkernel itself is comparable with a standard OS and that
the counter-related features, while slower, still show acceptable performance.

Work is underway to formalise the design and development of the microker-
nel. Estimates based on the size of the prototype indicate that the development
should be achievable by a small team within reasonable time constraints.

References

1. ISO/DIS 26262 Road vehicles – Functional safety 2009 (draft) International Stan-
dards Organization

2. AUTOSAR Specification of Operating System v3.1.1 2009,
http://autosar.org/download/R3.1/AUTOSAR_SWS_OS.pdf

3. AUTOSAR List of BSW Modules v1.3.0 2009,
http://autosar.org/download/R3.1/AUTOSAR_BasicSoftwareModules.pdf

4. AUTOSAR Specification of RTE v2.3.0 2010,
http://autosar.org/download/R3.1/AUTOSAR_SWS_RTE.pdf

5. AUTOSAR Layered Software Architecture v2.2.2 2008, http://autosar.org/
download/R3.1/AUTOSAR_LayeredSoftwareArchitecture.pdf

http://www.springer.com/978-3-642-24657-9

