Chapter 2
The NeOn Methodology for Ontology
Engineering

Mari Carmen Suarez-Figueroa, Asuncion Gomez-Pérez,
and Mariano Fernandez-Lopez

Abstract In contrast to other approaches that provide methodological guidance for
ontology engineering, the NeOn Methodology does not prescribe a rigid workflow,
but instead it suggests a variety of pathways for developing ontologies. The nine
scenarios proposed in the methodology cover commonly occurring situations, for
example, when available ontologies need to be re-engineered, aligned, modular-
ized, localized to support different languages and cultures, and integrated with
ontology design patterns and non-ontological resources, such as folksonomies or
thesauri. In addition, the NeOn Methodology framework provides (a) a glossary of
processes and activities involved in the development of ontologies, (b) two onto-
logy life cycle models, and (c) a set of methodological guidelines for different
processes and activities, which are described (a) functionally, in terms of goals,
inputs, outputs, and relevant constraints; (b) procedurally, by means of workflow
specifications; and (c) empirically, through a set of illustrative examples.

2.1 Introduction

Given the large increase in the number of ontologies, which are available online,
ontology development is more and more becoming a reuse-centric process (Simperl
2009). In particular, the level of reuse may vary significantly, depending on whether

M.C. Suarez-Figueroa (<) » A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M. Fernandez-Lépez

Escuela Politécnica Superior, Universidad San Pablo CEU, Urbanizacién Monteprincipe sn.,
28668 Boadilla del Monte, Madrid, Spain

e-mail: mfernandez.eps@ceu.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 9
DOI 10.1007/978-3-642-24794-1_2, © Springer-Verlag Berlin Heidelberg 2012

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:mfernandez.eps@ceu.es

10 M.C. Suarez-Figueroa et al.

it concerns (a) other ontologies, such as DOLCE!, SUMO (Pease et al. 2002), and
Kowien?; (b) ontology modules (Cuenca-Grau et al. 2007); (c) ontology statements
and ontology design patterns (Gangemi 2007; Presutti and Gangemi 2008); and
(d) non-ontological resources (Jimeno-Yepes et al. 2009), such as thesauri, lexicons,
DBs, UML diagrams, and classification schemas (e.g., NAICS? and SOC4).

Thus, in this context ontology development can be then characterized as the
construction of a network of ontologies, where the different resources may be
managed by different people, possibly in different organizations.

Given this new vision of ontology engineering by reuse, it then becomes
important to provide strong methodological support for the collaborative develop-
ment of ontology networks.

Methodological frameworks are widely accepted in different mature fields
(Fernandez-Lopez 1999), like Software Engineering and Knowledge Engineering.
Such methodological frameworks cover aspects, such as development process, life
cycle models, as well as the methods, techniques, and tools that can be used to
support the development process. Accordingly, a mature methodology for develop-
ing ontologies should also cover these aspects.

This chapter describes the NeOn Methodology for building ontologies and
ontology networks, a scenario-based methodology that supports different aspects
of the ontology development process, as well as the reuse and dynamic evolution of
networked ontologies in distributed environments, where knowledge is introduced
by different people (domain experts, ontology practitioners) at different stages of
the ontology development process.

This methodology includes the following components:

e The NeOn Glossary (Sect. 2.2), which identifies and defines the processes and
activities potentially involved in the ontology network construction.

e A set of nine scenarios for building ontologies and ontology networks, which are
described in Sect. 2.3. Each scenario is decomposed in different processes and
activities taken from those included in the NeOn Glossary.

» Two ontology network life cycle models (Sect. 2.4) that specify how to organize
the processes and activities of the NeOn Glossary into phases’.

e A set of prescriptive methodological guidelines for processes and activities
(Sect. 2.5).

Uhttp://www.loa-cnr.it/DOLCE.html

2Skill Ontology from the University of Essen, which defines concepts representing the
competencies required to describe job position requirements and job applicant skills. Available
at http://www .kowien.uni-essen.de/publikationen/konstruktion.pdf

?North American Industry Classification System, which provides industry-sector definitions for
Canada, Mexico, and the United States to facilitate uniform economic studies across the
boundaries of these countries. Available at http://www.census.gov/epcd/www/naics.html
*Standard Occupational Classification, which classifies workers into occupational categories
(23 major groups, 96 minor groups, and 449 occupations). Available at http://www.bls.gov/soc/
5 A phase is a distinct period or stage in a process of development.

http://www.loa-cnr.it/DOLCE.html
http://www.kowien.uni-essen.de/publikationen/konstruktion.pdf
http://www.census.gov/epcd/www/naics.html
http://www.bls.gov/soc/

2 The NeOn Methodology for Ontology Engineering 11

In addition to applying the NeOn Methodology to the development of the
ontology networks associated with use cases of the NeOn project as shown in
Chaps. 18, 19, and 20. This methodology has been used to build ontology networks
in different domains and areas and by people with diverse background, for example,
and just to name a few, in e-employment (Villazén-Terrazas et al. 2011), in
education (Clemente et al. 2011), in tourism (Lamsfus et al. 2009), and in mobile
environments (Poveda-Villalon et al. 2010).

Finally, it is worth mentioning that the NeOn Methodology can also be used
within the Linked Data initiative (Bizer et al. 2009) since this is based on knowl-
edge resource reused and re-engineering as well as on mapping resources. Publish-
ing Linked Data is a process that involves a high number of activities, design
decisions as well as a wide range of technologies. The main activities are (1) identi-
fication of the data sources, (2) vocabulary modeling, (3) generation of the RDF
data, (4) publication of the RDF data, and (5) linking the RDF data with other
datasets in the cloud. In the vocabulary modeling activity, ontologies to model the
data contained in the selected sources should be developed. The most important
recommendation here is to reuse as much as possible available knowledge
resources that model the knowledge needed. In this regard, the NeOn Methodology
provides precise guidelines to help practitioners to create the vocabularies needed.
One example of the use of the NeOn Methodology in this initiative can be found in
(Vilches-Blazquez et al. 2010).

2.2 The NeOn Glossary

The NeOn Glossary identifies and defines the processes and activities potentially
involved in the ontology network construction. This glossary has been established
by a consensus reaching process among ontology experts and is a first step in
addressing the lack of a standard glossary in Ontology Engineering — in contrast
with the Software Engineering field that can claim the IEEE Standard Glossary of
Software Engineering Terminology (IEEE 1990). The NeOn Glossary of Processes
and Activities (Suarez-Figueroa 2010)° includes 59 processes and activities listed
in Table 2.1.

2.3 Nine Scenarios for Building Ontology Networks

In the NeOn Methodology framework, a set of nine flexible scenarios
for collaboratively building ontologies and ontology networks, placing special
emphasis on reusing and re-engineering knowledge resources (ontological and
non-ontological), has been identified.

S http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

http://dx.doi.org/10.1007/978-3-642-24794-1_18
http://dx.doi.org/10.1007/978-3-642-24794-1_19
http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

12

M.C. Suarez-Figueroa et al.

Table 2.1 NeOn Glossary of processes and activities

Processes

Ontology aligning

Ontology design pattern reuse
Ontology module reuse
Ontology re-engineering
Non-ontological resource re-engineering
Activities

Ontology annotation
Ontology assessment
Ontology comparison
Ontology conceptualization
Ontology configuration management control
Ontology customization
Ontology diagnosis

Ontology documentation
Ontology elicitation

Ontology enrichment
Ontology environment study
Ontology evaluation
Ontology evolution

Ontology extension

Ontology feasibility study
Ontology formalization
Ontology forward engineering
Ontology implementation
Ontology integration
Knowledge acquisition for ontologies
Ontology learning

Ontology localization
Ontology mapping

Ontology matching

Non-ontological resource reuse
Ontological resource reuse
Ontology reuse

Ontology statement reuse
Ontology validation

Ontology merging

Ontology modification

Ontology modularization

Ontology module extraction
Ontology partitioning

Ontology population

Ontology pruning

Ontology quality assurance
Ontology repair

Ontology requirements specification
Non-ontological resource reverse Engineering
Non-ontological resource transformation
Ontology restructuring

Ontology reverse engineering
Scheduling

Ontology search

Ontology selection

Ontology specialization

Ontology summarization

Ontology translation

Ontology update

Ontology upgrade

Ontology verification

Ontology versioning

Figure 2.1 presents the set of the nine most plausible scenarios for building
ontologies and ontology networks. Directed arrows with associated numbered
circles represent the different scenarios. Each scenario is decomposed into different
processes or activities. Processes and activities are represented with colored circles
or with rounded boxes and are defined in the NeOn Glossary of Processes and
Activities presented in Sect. 2.2. Figure 2.1 also shows (as dotted boxes) the
existing knowledge resources to be reused, and the possible outputs that result
from the execution of some of the presented scenarios.

This section includes, as independent subsections, the most common scenarios
that may unfold during the ontology network development. However, the reader
should keep in mind that this list is not meant to be exhaustive.

» Scenario 1: From specification to implementation. The ontology network is
developed from scratch, that is, without reusing available knowledge resources.

2 The NeOn Methodology for Ontology Engineering 13

KnowledgeResources

©@©©

1

I

1

1

I

1

1

1

! .

! Ontological Resource
! Reuse
1

1

]

Non Ontological Resources

I
1
1
1
[|
| |
1 - 1
I I Glossaries| |Dictionaries| |Lexicons |
| |
H '
| |
|
[

Classification Flogic
L i RDF(S
:

Non Ontological Resource
Reengineering

Alignments

A

—0——0 O O @— |roro

io. Specification Scheduling O. Conceptualization O. Formalization O. Implementation }

. @ Ontology Restructuring

H . Leellbatm (Pruning, Extension,
, . Specialization, Modularization) &

1,2,3,4,5,6,7,8,9
— Ontology Support Activities: Knowledge Acquisition (Elicitation); Documentation;

Configuration Management; Evaluation (V&V); Assessment

5

s

Fig. 2.1 Scenarios for building ontologies and ontology networks

e Scenario 2: Reusing and re-engineering non-ontological resources. This scenario
covers the case where ontology developers need to analyze non-ontological
resources and decide, according to the requirements the ontology should fulfill
which non-ontological resources can be reused to build the ontology network. The
scenario also covers the task of re-engineering the selected resources into
ontologies.

» Scenario 3: Reusing ontological resources. Here, ontology developers reuse
ontological resources (ontologies as a whole, ontology modules, and/or ontology
statements).

e Scenario 4: Reusing and re-engineering ontological resources. Here, ontology
developers both reuse and re-engineer ontological resources.

e Scenario 5: Reusing and merging ontological resources. This scenario unfolds
only in those cases where several ontological resources in the same domain are
selected for reuse and when ontology developers wish to create a new ontologi-
cal resource from two or more ontological resources.

» Scenario 6: Reusing, merging, and re-engineering ontological resources. This
scenario is similar to Scenario 5; however, here developers decide not to use the
set of merged resources as it is, but to re-engineer it.

e Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers
access ODPs repositories to reuse them.

14 M.C. Suarez-Figueroa et al.

e Scenario 8: Restructuring ontological resources. Ontology developers restruc-
ture (modularizing, pruning, extending, and/or specializing) ontological
resources to be integrated in the ontology network being built.

e Scenario 9: Localizing ontological resources. Ontology developers adapt an
ontology to other languages and culture communities, thus producing a multi-
lingual ontology.

Knowledge acquisition, documentation, configuration management, evaluation,
and assessment should be carried out during the whole ontology network develop-
ment, that is, in any scenario used for developing the ontology network. The
intensity of such support activities depends on the concrete phase of the develop-
ment progress.

It is worth mentioning that these scenarios can be combined in different
and flexible ways, and that any combination of scenarios should include Scenario 1
because this scenario is made up of the core activities that have to be performed in
any ontology development. Indeed, as Fig. 2.1 shows, the results of any other
scenario should be integrated in the corresponding activity of Scenario 1.

The following subsections present the various scenarios identified; each subsec-
tion includes (a) motivation for the scenario; (b) sequence of processes, activities,
and tasks to be carried out, where the processes and activities included are taken
from the NeOn Glossary of Processes and Activities (Sect. 2.2); and (c) outcomes
for the scenario.

2.3.1 Scenario 1: From Specification to Implementation

This scenario refers to the development of ontologies from scratch. The scenario is
made up of the core activities that have to be performed in any ontology develop-
ment and should be combined with the rest of scenarios.

In this scenario, ontology developers’ should specify first the requirements that
the ontology should fulfill, by means of the ontology requirements specification
activity. The objective of this activity is to output the ontology requirements speci-
fication document (ORSD) that includes the purpose, the scope, and the implemen-
tation language of the ontology network, the target group, and the intended uses of
the ontology network, as well as the set of requirements that the ontology network
should fulfill, mainly in the form of competency questions (CQs)® and a pre-glossary
of terms. Prescriptive methodological guidelines for this activity are provided
in Chap. 5.

"In this book, ontology developers refer to software developers and ontology practitioners
involved in the development of ontologies.

8 An example of CQ can be “where is located the device Z? The device Z is at coordinates X, Y.

http://dx.doi.org/10.1007/978-3-642-24794-1_5

2 The NeOn Methodology for Ontology Engineering 15

After the ontology requirements specification activity, it is recommended to
carry out a look for candidate knowledge resources (ontologies, non-ontological
resources, and ontology design patterns) to be reused in the development, using as
input terms included in the ORSD. These candidate resources provide clues for the
identification of the scenarios to be followed during the ontology development.
Then, the scheduling activity must be carried out, using the ORSD and the results of
such a look for resources. During the scheduling activity, the team establishes the
ontology network life cycle and the human resources needed for the ontology
project. Chapter 14 presents guidelines and a tool for performing the scheduling
of ontology development projects.

Then, the ontology developers assigned to the ontology project should carry out
(1) the ontology conceptualization activity, in which knowledge is organized and
structured into meaningful models at the knowledge level; (2) the ontology
formalization activity, in which the conceptual model is transformed into a semi-
computable model; and (3) the ontology implementation activity, in which a
computable model (implemented in an ontology language) is generated.

The principal output is a network of ontologies that represents the expected
domain implemented in an ontology language (OWL’, F-Logic, etc.). In addition, a
broad range of documents, such as the ontology requirements specification docu-
ment, the ontology description document, and the ontology evaluation document,
will be generated as output by the different activities.

2.3.2 Scenario 2: Reusing and Re-engineering Non-Ontological
Resources

Currently, ontology developers are realizing the benefits of “not reinventing the
wheel” at each ontology development. They are starting to reuse as much as
possible non-ontological resources, such as classification schemes, thesauri,
lexicons, and folksonomies, built by others that already have reached some degree
of consensus, with the aim of speeding up the ontology development process
(Villazon-Terrazas et al. 2010). The reuse of such resources involves necessarily
their re-engineering into ontologies. Therefore, this scenario unfolds in those cases
in which ontology developers wish to reuse the non-ontological resources at their
disposal.

As Fig. 2.1 shows (by arrows with the number 2), ontology developers should
accomplish first the non-ontological resource reuse process and then choose the
most suitable non-ontological resources (thesauri, glossaries, databases, etc.) to be
used for building the ontology network. Such non-ontological resources cover to
some extent the domain of the ontology network being built. If ontology developers

° http://www.w3.org/TR/owl-ref/

http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://www.w3.org/TR/owl-ref/

16 M.C. Suarez-Figueroa et al.

decide that one or more resources are useful for the ontology network development,
then the non-ontological resource re-engineering process should be carried out to
transform the selected non-ontological resources into ontologies. After this process,
ontology developers should use the resultant ontologies as input of some of the
activities included in Scenario 1 (explained in Sect. 2.3.1), as shown in Fig. 2.1.

The activities for carrying out the non-ontological resource reuse process are
briefly explained below; prescriptive methodological guidelines for this activity are
described in Chap. 6:

1. Activity 1. Search non-ontological resources. The goal of the activity is to find
non-ontological resources in highly reliable websites, domain-related sites, and
resources within organizations. The input for this activity is the ontology
requirements specification document (ORSD).

2. Activity 2. Assess the set of candidate non-ontological resources. The goal of
this activity is to assess the set of candidate non-ontological resources obtained
in Activity 1. To carry out this activity, the following criteria should be used:
coverage, precision, and consensus about the knowledge and terminology used
in the resource, which is a subjective criterion.

3. Activity 3. Select the most appropriate non-ontological resources. The goal of
this activity is to select the most appropriate non-ontological resources from
those candidates obtained in Activity 2.

As mentioned before, the goal of the non-ontological resource re-engineering
process is to transform a non-ontological resource into an ontology. This process
can be divided into the following activities, and prescriptive methodological
guidelines for performing them are included in Chap. 6:

1. Activity 1. Non-ontological resource reverse engineering. The goal of this
activity is to analyze a non-ontological resource in order to identify its underly-
ing components and create representations of the resource at the different levels
of abstraction (design, requirements, and conceptual).

2. Activity 2. Non-ontological resource transformation. The goal of this activity is
to generate a conceptual model from the non-ontological resource.

3. Activity 3. Ontology forward engineering. The goal of this activity is to output a
new implementation of the ontology on the basis of the new conceptual model
identified in Activity 2.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Furthermore, a broad
range of documents containing the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities. Additionally, the non-ontological resources selected to be reused have
been “ontologized” by means of the non-ontological resource re-engineering
activity.

http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_6

2 The NeOn Methodology for Ontology Engineering 17
2.3.3 Scenario 3: Reusing Ontological Resources

As more ontological resources are available in ontology repositories and on the
Internet'’, ontology developers are starting to reuse them not only with the idea of
“not reinventing the wheel”, but also with the aim of taking advantage of them.
Thus, this scenario unfolds in those cases in which ontology developers have at
their disposal ontological resources useful for their problem and that can be reused
in the ontology development.

As Fig. 2.1 shows (by arrows with the number 3), ontology developers should
perform the ontological resource reuse process, which is composed of the follow-
ing activities:

1. Activity 1. Ontology search. Ontology developers search for candidate onto-
logical resources that satisfy the requirements in repositories and registries
like Swoogle1 l, Watsonlz, and Sindice'?. These ontological resources could be
implemented in different languages or could be available in different ontology
tools.

2. Activity 2. Ontology assessment. Ontology developers must inspect the content
and granularity of the ontological resources obtained in Activity 1. The goal of
this activity is to find out if such resources satisfy the needs identified in the
ORSD.

3. Activity 3. Ontology comparison. Ontology developers should compare the
ontological resources assessed in Activity 2, taking into account a set of criteria
identified by developers (e.g., reuse economic cost, code clarity, and content
quality).

4. Activity 4. Ontology selection. Ontology developers should select the set of
ontological resources that are the most appropriate for their ontology network
requirements, based on the comparisons obtained in Activity 3.

After selecting the most appropriate ontological resources, ontology
developers should define the reuse mode; that is, ontology developers need to
decide how they will reuse the selected ontological resources. There are three
possible modes:

» The ontological resources selected will be reused as they are.

» The ontology re-engineering activity should be carried out with the onto-
logical resources selected.

» Some ontological resources will be merged to obtain a new ontological
resource.

19See, for example, a list of novel ontology search engines described at: http://esw.w3.org/topic/
TaskForces/CommunityProjects/LinkingOpenData/Semantic WebSearchEngines

1 http://swoogle.umbc.edu/
12 hitp://watson.kmi.open.ac.uk/WatsonWUI/
'3 http://sindice.com/

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://sindice.com/

18 M.C. Suarez-Figueroa et al.

Before reusing the selected ontological resources by means of any reuse
mode, it is also convenient to evaluate these resources through the ontology
evaluation activity.

5. Activity 5. Ontology integration. Ontology developers should include, as they
are, the ontological resources selected (the code) in Activity 4 into the ontology
network being built following the activities of Scenario 1 (Sect. 2.3.1).

Prescriptive methodological guidelines to reuse general ontologies are provided
in Chap. 7.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad
range of documents including the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities.

2.3.4 Scenario 4: Reusing and Re-engineering Ontological
Resources

This scenario unfolds in those cases in which ontology developers have at their
disposal ontological resources useful for their problem, which can be reused in the
ontology network development. However, such resources are not exactly useful as
they are, so they should be modified (i.e., re-engineered) to serve to the intended
purpose or problem.

As Fig. 2.1 shows (by arrows with the number 4), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources to be used for building the ontology network. Then, they
should carry out the ontological resource re-engineering process to modify the
selected ontological resources. Finally, they should use the resultant ontological
resources as input to some of the activities included in Scenario 1 (explained in
Sect. 2.3.1), as shown in Fig. 2.1.

Specifically, ontology developers should carry out some activities as part of the
ontological resource reuse process; such activities are the following: ontology
search, ontology assessment, ontology comparison, and ontology selection as
already explained in Scenario 3 (Sect. 2.3.3).

After the ontology selection activity, ontology developers should decide how
they will reuse the ontological resources. They should also decide whether to
perform the ontological resource re-engineering process with the selected ontolog-
ical resources because these resources may not absolutely correct for the concrete
use case as they are and they need to be transformed in some way.

The ontological resource re-engineering process proposed here has been created
taking as inspiration the software re-engineering process (Byrne 1992). It is com-
posed of the following activities: ontological resource reverse engineering, onto-
logical resource restructuring, and ontological resource forward engineering.

http://dx.doi.org/10.1007/978-3-642-24794-1_7

The NeOn Methodology for Ontology Engineering 19

Specification

Conceptualization

Formalization

Implementation

Fig. 2.2 Levels of abstraction for the ontological resource re-engineering process

Additionally, this process is related to the levels of abstraction shown in Fig. 2.2

that are based on (Byrne 1992) and are described below.

Specification is the highest level of abstraction. In this level, requirements,
purpose, and scope, among other components of the specification, are described.
In the conceptualization level, ontology characteristics such as structure and
components are described. The knowledge that the ontology represents is
organized following a set of knowledge representation primitives (concepts,
relations, etc.). In this level, the knowledge is structured in meaningful models
at the knowledge level (Newell 1982). To organize the knowledge, intermediate
representations based on tabular and graphical notations (Gomez-Pérez et al.
2003), which can be understood by ontology practitioners, can be used.

In the formalization level, the formal or semi-computable model that was used to
transform the conceptual model is described.

The implementation level is the lowest abstraction level. Here, the ontology
description focuses on implementation characteristics and is represented in an
ontology language understandable by computers and usable by automatic reasoners.

Figure 2.3 presents the ontological resource re-engineering model. This model

suggests different paths to re-engineer an ontological resource, taking into account
the levels of abstraction presented in Fig. 2.2. Examples of these paths are:

At implementation level: from ontological resource 1 code to ontological
resource 2 code

At formalization level: reverse engineering (from code 1 to formalization 1),
restructuring formalization 1 to obtain formalization 2, and forward engineering
to obtain code of resource 2

At conceptualization level: reverse engineering (from code 1 to conceptualiza-
tion 1), restructuring conceptualization 1 to obtain conceptualization 2, and
forward engineering to obtain formalization or implementation 2

20 M.C. Suarez-Figueroa et al.

Ontological Resource Restructuring

(alteration)

Ontological Resource [e Ontological Resource
Reverse Engineering & Forward Engineering
(a bmac“on}% Re-Specification <\\treﬂ nement)

e B L o \\

Vol 9, N\

i i ,

/// Re-Conceptualization \\'\

/! p== == mmmmeeem——ao e ——
---------------- == . “
Conceptualization Conceptualization b
e N
Re-Fommalization Q
Formalization R it ikt L s Formalization \\
Re-Implementation
Implementation L e 1o Implementation
Ontological Resource 1 Ontological Resource 2

Fig. 2.3 Ontological resource re-engineering model

» At specification level: reverse engineering (from code 1 to specification 1),
restructuring specification 1 to obtain specification 2, and forward engineering
to obtain conceptualization, formalization, or implementation 2

The choice of a concrete path depends on the ontological resource characteristics
that have to be changed. Thus, in Fig. 2.3 the following types of changes can be
distinguished:

» Re-specification. If the ontology developer restructures the requirements speci-
fication, she changes requirements, purpose and scope, among other elements of
the requirements specification. For example, changes in requirements, addition
or deletion of requirements, etc.

» Re-conceptualization. If she restructures the conceptualization, changes might
refer to modification of ontology structure, modification of granularity and
richness of the knowledge, removal or addition of axioms, restructuration of
ontology architecture (modularization), inclusion of new concepts, use of ontol-
ogy design patterns, etc.

» Re-formalization. If she restructures the formalization level, the changes refer to
formalization characteristics (such as changing the ontology paradigm from
description logic to frames).

» Re-implementation. If she restructures the implementation level, the changes are
focused on implementation characteristics that are tightly related to the ontology
implementation language (e.g., translation from RDF(S) to OWL). Other
changes could be conforming to coding standards, improving code readability,
renaming code items, etc.

Ontology developers should decide at which level they need to carry out the
ontological resource re-engineering process. Once ontology developers have
decided the level, they should carry out the ontological resource re-engineering
process, and then they should integrate the result of such a process (code,

2 The NeOn Methodology for Ontology Engineering 21

formalization, conceptualization, or specification) into the corresponding activity of
Scenario 1 (Sect. 2.3.1).

The principal outcome is an ontology network that represents the expected
domain implemented in an ontology language (OWL, F-Logic, etc.). Additionally,
a broad range of documents including requirements specification, ontology docu-
mentation, ontology evaluation, etc. will be generated as output of different
activities. Furthermore, new ontological resources from those selected for their
reuse are generated through the ontological resource re-engineering process. Such
new resources can be considered as new versions of the ontological resources after
the re-engineering process.

2.3.5 Scenario 5: Reusing and Merging Ontological Resources

This scenario unfolds in those cases where several ontological resources in the same
domain can be selected for reuse and when the ontology developer wishes to create
a new ontological resource from two or more, possibly overlapping, ontological
resources. It could also occur that the ontology developer wishes only to establish
alignments among the ontological resources selected in order to create the ontology
network.

As Fig. 2.1 shows (by arrows with the number 5), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources that will be used for building the ontology network. Con-
cretely, ontology developers should carry out the activities presented in Scenario 3
(Sect. 2.3.3) as part of the ontological resource reuse process. After the ontology
selection activity, ontology developers should decide how they will reuse the
ontological resources selected. In this scenario, ontology developers decide to
perform the following activities because the selected resources are valid as they
are, but not in a complete way, if they were reused in a separate fashion. The
activities to be performed are the following:

1. Activity 1. Ontology aligning. Ontology developers carry out this activity with
the aim of obtaining a set of alignments among the selected ontological
resources. Prescriptive methodological guidelines for this activity are described
in Chap. 12.

2. Activity 2. Ontology merging. Ontology developers can merge the selected
ontological resources using the alignments (output of Activity 1) to obtain a
new ontological resource from the overlapping selected ones.

Ontology developers have here two different possibilities: (1) to establish the
mappings among such selected resources and (2) to establish the mappings and also
to merge the selected resources.

After this activity, ontology developers should use the resultant merged onto-
logical resource as input of some of the activities included in Scenario 1 (explained
in Sect. 2.3.1), as shown in Fig. 2.1.

22 M.C. Suarez-Figueroa et al.

The principal outputs are (a) a set of alignments among the selected ontological
resources and (b) a set of new ontological resources to be integrated as they are in
the ontology network.

2.3.6 Scenario 6: Reusing, Merging, and Re-engineering
Ontological Resources

This scenario unfolds in those cases in which several ontological resources in the
same domain can be selected to build the ontology network. Ontology developers
decide to create a new ontological resource merging two or more, possibly
overlapping, ontological resources. Such a merged ontological resource is not
useful as it is, so it should be modified (i.e., re-engineered) to serve to the intended
purpose.

As Fig. 2.1 shows (see arrows with number 6), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources for building the ontology network (as explained in Scenario 3
(Sect. 2.3.3)). Then, they should decide how they will reuse the selected ontological
resources. It is in this scenario where ontology developers decide to perform the
ontology aligning and ontology merging activities because the selected resources
are valid but not in a complete way for the concrete case if they are considered
separately, as explained in Scenario 5 (Sect. 2.3.5). After merging the selected
resources, they should carry out the ontological resource re-engineering process as
described in Scenario 4 (Sect. 2.3.4). After that, they should use the resultant
ontological resource as input of some of the activities included in Scenario 1
(explained in Sect. 2.3.1), as shown in Fig. 2.1.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad
range of documents including the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities.

Furthermore, a merged ontological resource, taken from those selected for reuse,
and a re-engineered merged ontological resource are generated. Alignments bet-
ween the ontological resources selected are also outputs of this scenario.

2.3.7 Scenario 7: Reusing Ontology Design Patterns

Recently, within the Ontology Engineering field, ontology design patterns (ODPs)
have emerged as (1) a way of helping ontology developers to model OWL
ontologies (Gangemi 2005; Pan et al. 2007) and (2) a new mode of encoding best
practices, based on experiences and knowledge of “good” solutions. As any other

2 The NeOn Methodology for Ontology Engineering 23

type of patterns, ODPs are perceived as having three kinds of benefits (Blomqvist
et al. 2009): (1) reuse benefits, (2) guidance benefits, and (3) communication
benefits. ODPs can be found in online libraries that include both the description
and the OWL code associated to the patterns as, for example, “the Ontology Design
Pattern Wiki”'*, or they can be obtained from the “Semantic Web Best Practices
and Deployment”'” working group. Thus, this scenario unfolds in those cases where
best practices can be applied to the development of ontology networks.

Ontology developers work on the development of an ontology network and very
often encounter problems regarding the way in which certain knowledge should be
modeled. This may happen during the ontology conceptualization activity, the
ontology formalization activity, or during the ontology implementation activity.
In these situations, ontology developers can access on-line libraries in order to find
modeling solutions.

Ontology developers should perform the ontology design pattern reuse process
to select the most suitable ODPs for building the ontology network. The principal
output of this reuse process is a set of ontology design patterns integrated into the
ontology network being developed. Guidelines to perform this reuse are provided in
Chap. 3.

2.3.8 Scenario 8: Restructuring Ontological Resources

This scenario unfolds in those cases where the knowledge contained in the concep-
tual model of the ontology network should be corrected and reorganized to obtain
the network that covers the ontology requirements.

Ontology developers should perform the ontology restructuring activity to
modify the ontology network being built, after the ontology conceptualization
activity. The ontology restructuring activity can be performed by executing any
of the following sub-activities, combining them in any manner and order:

e Ontology modularization activity. Ontology developers create different ontology
modules in the ontology network, which facilitates the reuse of the knowledge
included in the network. Prescriptive methodological guidelines to carry out this
activity are presented in Chap. 10.

* Ontology pruning activity. Ontology developers prune those branches of the
taxonomies included in the ontology network that are considered not necessary
to cover the ontology requirements.

* Ontology enrichment activity. This activity can be carried out by performing any
of the two sub-activities that follow:

14 http://ontologydesignpatterns.org/
' http://www.w3.0rg/2001/sw/BestPractices/

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://ontologydesignpatterns.org/
http://www.w3.org/2001/sw/BestPractices/

24 M.C. Suarez-Figueroa et al.

— Ontology extension activity. Ontology developers extend the ontology net-
work, including (in width) new concepts and relations.

— Ontology specialization activity. Ontology developers specialize those
branches of the ontology network that require more granularity and include
more specialized concepts and relations.

Note that this activity (ontology restructuring) can be performed (1) in an
independent way as explained in this scenario or (2) as part of the ontological
resource re-engineering process, as described in Scenario 4 in Sect. 2.3.4.

The principal output is a conceptual model of the ontology network that
represents the expected domain.

2.3.9 Scenario 9: Localizing Ontological Resources

Although access to top-quality ontologies (e.g., Galen, CYC, or AKT) is, in many
cases, free and unlimited for users all around the world, most of these ontologies are
available only in English. Due to the language barrier, non-English users therefore
often encounter problems when trying to access ontological knowledge in their own
languages. Moreover, more and more ontology-based systems are being built for
multilingual applications (e.g., multilingual machine translation or multilingual
information retrieval). For these reasons, the need for multilingual ontologies has
increased. Thus, this scenario unfolds in those cases in which the ontology network
to be developed should be written in different natural languages.

Ontology developers should perform the ontology localization activity once the
ontology has been conceptualized and restructured. This activity requires the
translation of all the ontology terms into another natural language (Spanish, French,
German, etc.) different from the language used in the conceptualization, using
multilingual thesauri and electronic dictionaries (e.g., EuroWordNeth). This ontol-
ogy localization activity is composed of the following tasks (Espinoza et al. 2009):

1. Task 1. Selecting the most appropriate linguistic assets. The goal of this task is to
select the most appropriate linguistic assets that help to reduce the cost, to
improve the quality of the localization, and to increase the consistency of the
localization activity.

2. Task 2. Selecting ontology label(s) to be localized. The goal of this task is to
select the ontology label(s) to be localized.

3. Task 3. Obtaining ontology label translation(s). The goal of this task is to obtain
the most appropriate translation in the target language for each ontology label.

4. Task 4. Evaluating label translation(s). The goal of this task is to evaluate the
label translations in the target language.

'® http://www.illc.uva.nl/EuroWordNet/

http://www.illc.uva.nl/EuroWordNet/

2 The NeOn Methodology for Ontology Engineering 25

5. Task 5. Updating the ontology. The goal of this task is to update the ontology
with the label translations obtained for each localized label. The task output is an
ontology enriched with labels in the target language associated to each localized
term.

Prescriptive methodological guidelines for localizing ontologies are presented in
Chap. 8.

After this localization activity, the resulting conceptual model should be
integrated in the conceptualization activity of Scenario 1 (Sect. 2.3.1).

The principal outcome is a conceptual model of the ontology network in
different natural languages (i.e., a multilingual conceptual model) that represents
the expected domain.

2.4 Two Ontology Network Life Cycle Models

Ontologies are artifacts designed for the purpose of satisfying certain requirements
and needs that are emerging in the real world.

Thus, the ontology network development process is defined as the process by
which user’s needs are translated into an ontology network. This means that the
ontology network development process can be seen as a specific case of the
software development process.

An ontology network life cycle model is defined as a model to describe how to
develop (and maintain) an ontology network project; in other words, how to
organize the processes and activities of the NeOn Glossary into phases or stages.

This section includes the two ontology network life cycle models, which include
the waterfall model (Sect. 2.4.1) and the iterative-incremental model (Sect. 2.4.2).
Additionally, it is worth mentioning that these two models are intrinsically related
to the set of nine flexible scenarios for collaboratively building ontologies and
ontology networks, presented in Sect. 2.3. Such a relation is due to the creation of
both models and scenarios, taking into account the importance of reusing and re-
engineering knowledge resources and merging resources.

2.4.1 Waterfall Ontology Network Life Cycle Models

The main characteristic of the waterfall life cycle model family proposed for the
ontology network development is the representation of the stages of an ontology
network as sequential phases. This model represents the stages as a waterfall. In this
model, a concrete stage must be completed before the following stage begins, and
no backtracking is permitted except in the case of the maintenance phase.

The main assumption for using the waterfall ontology network life cycle model
proposed is that the requirements are completely known, without ambiguities, and
unchangeable at the beginning of the ontology network development.

http://dx.doi.org/10.1007/978-3-642-24794-1_8

26 M.C. Suarez-Figueroa et al.

This model could be used in the following situations:

» In ontology projects with a short duration (e.g., 2 months)

¢ In ontology projects in which the goal is to develop an existing ontology in
a different formalism or language

* In ontology projects in which the requirements are closed, for instance, to
implement an ontology based on an ISO standard, or based on resources with
previous consensus in the included knowledge

« In ontology projects when ontologies cover a small, well-understood domain

Taking into account the characteristics of the ontology development scenario,
this model includes a set of support activities that should be performed in all of the
phases. This set of support activities includes the acquisition of knowledge in the
domain in which the ontology network is being developed, the evaluation (from
a content-oriented perspective) and the assessment (from user and need perspec-
tives) of the different phase outputs, project and configuration management, and
documentation.

Because of the importance of reusing and re-engineering knowledge resources
and merging ontological resources, the following five significantly different
versions of the waterfall ontology network life cycle model have been defined.
These versions have been created incrementally (i.e., the four-phase is the basis for
the five-phase, the five-phase is the basis for the six-phase, etc.).

Before detailing the different versions, they can be summarized in the following
way:

¢ The four-phase waterfall model. It represents the stages of an ontology network,
starting with the initiation phase and going through the design phase and the
implementation phase to the maintenance phase.

¢ The five-phase waterfall model. It extends the four-phase model with the reuse
of ontological resources as they are.

» The five-phase + merging phase waterfall model. It is a special case of the five-
phase model. It includes the merging phase to obtain a new ontological resource
from two or more ontological resources previously selected in the reuse phase.

¢ The six-phase waterfall model. It extends the five-phase model with re-engineering
phase. It allows the re-engineering of knowledge resources (ontological and non-
ontological). It could happen that several knowledge resources are transformed
into ontologies in the re-engineering phase.

» The six-phase + merging phase waterfall model. It extends the six-phase model
by including the merging phase after the reuse phase.

2.4.1.1 The Four-Phase Waterfall Ontology Network Life Cycle Model

This model represents the stages of an ontology network, starting with the initiation
phase and going through the design phase, the implementation phase to the mainte-
nance phase.

2 The NeOn Methodology for Ontology Engineering 27

Initiation Phase
———| Design Phase

—»[Implementation Phase]

—»[Maintenance Phase]—

Fig. 2.4 The four-phase waterfall ontology network life cycle model

The model proposed is shown in Fig. 2.4, and the main purposes and outcomes

for each phase in the model are the following:

Initiation phase. In this phase, it is necessary to produce an ontology require-
ment specification document (ORSD) (explained in Chap. 5), including the
requirements that the ontology network should satisfy and taking into account
knowledge about the concrete domain. Also in this phase, the approval or
rejection of the ontology network development should be obtained. This phase
has also as requisite to identify the development team and to establish the
resources, responsibilities, and timing (i.e., the scheduling for the ontology
project).

Design phase. The output of this phase should be both an informal model and
a formal one that satisfy the requirements obtained in the previous phase. The
formal model cannot be used by computers, but it can be reused in other
ontology networks.

Implementation phase. In this phase, the formal model is implemented in an
ontology language. The output of this phase is an ontology implemented in
RDF(S), OWL, or other language that can be used by semantic applications or by
other ontology networks.

It is worth mentioning that the last two phases (design and implementation

ones) are normally performed together when ontology development tools (such
as NeOn Toolkit, Protégé, etc.) are used.
Maintenance phase. If, during the use of the ontology network, errors or missing
knowledge are detected, then the ontology development team should go back to
the design phase. Additionally, in this phase the generation of new versions for
the ontology network should also be carried out.

2.4.1.2 The Five-Phase Waterfall Ontology Network Life Cycle Model

This model extends the four-phase model with a new phase in which the reuse of
already implemented ontological resources is considered. The main purpose in the
reuse phase is to obtain one or more ontological resources to be reused in the

http://dx.doi.org/10.1007/978-3-642-24794-1_5

28 M.C. Suarez-Figueroa et al.

ontology network being developed. The output of this reuse phase could be either an
informal model or a formal one to be used in the design phase, or an implemented
model (in an ontology language) to be used in the implementation phase.

For the other phases, the purposes and outcomes are the same as those presented
in the four-phase model.

2.4.1.3 The Five-Phase + Merging Phase Waterfall Ontology Network
Life Cycle Model

This model is a special case of the five-phase model. Now, a new phase (the
merging phase) is added after the reuse one. This merging phase has as a main
purpose to obtain a new ontological resource from two or more ontological
resources selected in the reuse phase.

For the other phases, the purposes and outcomes are the same as those presented
in the five-phase model.

2.4.1.4 The Six-Phase Waterfall Ontology Network Life Cycle Model

In this model, the five-phase model is taken as general basis, and a new phase
(re-engineering phase) is included after the reuse one. This model allows the reuse
of knowledge resources (ontological and non-ontological) and their later re-
engineering. In this model, the reuse phase has as output one or more knowledge
resources to be reused in the ontology network that is being developed. After this
phase, the non-ontological resources are transformed into ontologies in the re-
engineering phase; the ontological resources, on the other hand, can or cannot be
re-engineered, a decision that should be taken by the ontology development team.

For the other phases, the purposes and outcomes are the same as those presented
in the six-phase model.

2.4.1.5 The Six-Phase + Merging Phase Waterfall Ontology Network
Life Cycle Model

This model, extended from the six-phase model, includes the merging phase after
the reuse phase. For the other phases, the purposes and outcomes are the same as
those presented in the six-phase model.

2.4.2 Iterative-Incremental Ontology Network Life Cycle Model

The main feature of this model is the development of ontology networks
organized in a set of iterations (or short mini-projects with a fixed duration).
Each individual iteration is similar to an ontology network project that uses any

2 The NeOn Methodology for Ontology Engineering 29

lteration 1
Initiation
o ()
| (Ciartenance Prese)
Iteration n
(CosimPrme]
~{imolemereation Phese |
< biskvommce Prese)

Fig. 2.5 Schematic vision of the iterative-incremental model

type of waterfall model from those presented in Sect. 2.4.1, as shown schematically
in Fig. 2.5.
This model could be used in the following situations:

« In ontology projects with large groups of developers having different profiles
and roles

* In ontology projects in which the development involves several different
domains that are not well understood

» In ontology projects in which requirements are not completely known or can
change during the ontology development

Ontology requirements specified in the ORSD can be divided in different
subsets. The result of any iteration is a functional and partial ontology network
that meets a subset of the ontology network requirements. Such a partial ontology
network can be used, evaluated, and integrated in any other ontology network.

This model is based on the continuous improvement and extension of the
ontology network resulted from performing multiple iterations with cyclic feedback
and adaptation. In this way, the ontology network grows incrementally along the
development. Generally, in each iteration new requirements are taken into account,
but, occasionally, in a particular iteration, the partial ontology network could be
only enhanced.

This model focuses on a set of basic requirements; from these requirements,
a subset is chosen and considered in the development of the ontology network. The
partial result is reviewed, the risk of continuation with the next iteration is analyzed
and the initial set of requirements is increased and/or modified in the next iteration
until the complete ontology network is developed.

30 M.C. Suarez-Figueroa et al.

The main benefit of this model is to identify and alleviate the possible risks as
soon as possible. Other benefits are:

¢ The development team is motivated by rapidly producing an adequate ontology.

* Some priorities can be established in the set of requirements.

* The development can be possibly adapted to changes in the requirements.

e The scheduling of each iteration can be adapted based on the experience of
previous iterations.

It is worth mentioning that at the beginning of the ontology network project, the
number of iterations during the ontology project is influenced by:

¢ The decision of performing a more complete and detailed ontology requirements
specification. In this case, the number of iterations will be lower.

¢ The decision of carrying out a simpler and less complete requirements specifi-
cation, in which case more number of iterations and more revisions will be
needed.

Figure 2.5 shows the schematic vision of the iterative-incremental model. The
first initiation phase shown in the figure has as main outcomes the ontology network
requirements and the general and global plan for the whole ontology network
development. Regarding the different iterations, as mentioned before, each iteration
in the iterative-incremental model can follow a different version of the waterfall
model from those presented in Sect. 2.4.1. However, any version of the waterfall
model to be used in the iterative-incremental model should be modified in the
following way:

* No backtracking is allowed between phases in a particular iteration, because the
refinement should be performed in the next iterations.

¢ Revising the ontology network requirements and the global plan should be
carried out in the initiation phase of each iteration. Additionally, a detailed
plan for the particular iteration should be performed.

2.4.3 Relation Between Scenarios and Life Cycle Models

The set of nine flexible scenarios for building ontologies and ontology networks
presented in Sect. 2.3 and the two proposed ontology network life cycle models
presented in this section are intrinsically related because both scenarios and life
cycle models have been created (1) taking into account the importance of reusing
and re-engineering knowledge resources (ontological and non-ontological) and
merging ontological resources and (2) assuming a controlled setting for ontology
engineering in which approaches such as mining ontologies from tags are not
considered.

Table 2.2 summarizes the relationships between scenarios for building ontology
networks and ontology network life cycle models. These relationships have been
established based on the following:

2 The NeOn Methodology for Ontology Engineering 31

Table 2.2 Relation between scenarios and life cycle models

Four- Five- Five- Six- Six-phase + merging
phase phase phase + merging phase phase model
model model phase model model

Scenario 1 X

Scenario 2 X

Scenario 3 X

Scenario 4 X

Scenario 5 X

Scenario 6 X

Scenario 7 X

Scenario 8 X

Scenario 9 X

* Scenario 1 (as stated in Sect. 2.3.1) is for building ontology networks from
scratch. The scenario mainly includes core activities such as specification,
conceptualization, and implementation. This way of building ontologies fits
with the stages represented in the four-phase waterfall model (initiation phase,
design phase, implementation phase, and maintenance phase).

» Scenario 2 (as stated in Sect. 2.3.2) is for building ontology networks by reusing
and re-engineering non-ontological resources, which is represented in the
six-phase waterfall model.

* Scenario 3 (as stated in Sect. 2.3.3) is for building ontology networks by reusing
ontological resources. This way of building ontologies is represented by the
five-phase waterfall model.

* Scenario 4 (as stated in Sect. 2.3.4) refers to the development of ontology
networks by reusing and re-engineering ontological resources. This way of
building ontologies is represented by the six-phase waterfall model.

» Scenario 5 (as stated in Sect. 2.3.5) is for building ontology networks by reusing
and merging ontological resources, which is represented by the five-phase +
merging phase waterfall model.

e Scenario 6 (as stated in Sect. 2.3.6) refers to the development of ontology
networks by reusing, merging, and re-engineering ontological resources. This
way of building ontology networks is represented by the six-phase + merging
phase waterfall model.

» Scenario 7 (as stated in Sect. 2.3.7) is for building ontology networks by reusing
ontology design patterns, which is represented by the five-phase waterfall model.

e Scenario 8 (as stated in Sect. 2.3.8) is for building ontology networks by
restructuring ontological resources. This is mainly related to the core activities
already mentioned in Scenario 1. Thus, this Scenario 8 is also represented by the
four-phase waterfall model.

* Scenario 9 (as stated in Sect. 2.3.9) refers to the development of ontology
networks by localizing ontologies. This way of building ontologies is mainly
related to Scenario 1 and thus represented by the four-phase waterfall model.

32 M.C. Suarez-Figueroa et al.

As explained in Sect. 2.4.2, the iterative-incremental model is basically formed
by a set of iterations that can follow any version of waterfall ontology network life
cycle model. Thus, the relation between scenarios and the iterative-incremental
model depends on the different versions of waterfall model used in the iterative-
incremental one, and for this reason, the relations presented in Table 2.2 are also
valid for this model.

2.5 Methodological Guidelines for Processes and Activities

In the second part of this book (called Ontology Engineering Activities), methodo-
logical guidelines for a subset of the processes and activities included in the NeOn
Glossary are provided. To describe each of the processes and activities included in
the NeOn Methodology presented in this book, the following content is provided for
most of the cases:

* A general introduction to the process or activity, where the value of the process
or activity is discussed.

e The detailed guidelines proposed for carrying out the process or the activity,
including the following fields: (a) definition, which is taken from the NeOn
Glossary of Processes and Activities and included in Sect. 2.2; (b) goal, which
explains the main objective intended to be achieved by the process or the
activity; (c) input, which includes the resources needed for carrying out the
process or the activity; (d) output, which includes the results obtained after
carrying out the process or the activity; (e) who, which identifies the people or
teams involved in the process or the activity; and (f) when, which explains in
which stage of the development the process or the activity should be carried out.

All the aforementioned information is provided in the so-called filling cards.
These filling cards explain the information of each process and activity of the
NeOn Methodology in a practical and easy way. Each card is filled according to
the filling card template shown in Table 2.3.

e A graphical workflow that shows how the process or the activity should be
carried out is also included. This workflow contains the inputs, outputs, actors
involved, and details for carrying out a process or activity in a prescriptive
manner. Additionally, methods, techniques, and tools supporting the process or
activity are proposed.

« Examples explaining the guidelines proposed are also given.

It should be noted that in the framework of the NeOn Methodology, there are
a wide range of prescriptive methodological guidelines for carrying out different
processes and activities. Along this book, the reader can find guidelines for Scenario 1,
particularly for ontology requirements specification (Chap. 5) and scheduling
(Chap. 14), Scenario 2 (Chap. 6), Scenario 3 (Chap. 7), Scenario 5 (Chap. 12),
Scenario 7 (Chap. 3), Scenario 8, for ontology modularization (Chap. 10), and
Scenario 9 (Chap. 8). In addition, there are also guidelines for ontology evaluation
(Chap. 9) and for ontology evolution (Chap. 11).

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_8
http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_11

2 The NeOn Methodology for Ontology Engineering 33

Table 2.3 Template for the process and activity filling card

Process or Activity Name

Definition

Goal

Input Output

Who

When

References

Bizer C, Heath T, Berners-Lee T (2009) Linked data — the story so far. Int J Semant Web Inf Syst 5
(3):1-22

Blomgqvist E, Gangemi A, Presutti V (2009) Experiments on pattern-based ontology design. In:
Proceedings of the Sth international conference on Knowledge Capture (K-CAP 2009),
Redondo Beach, CA, USA, 14 Sept 2009. ISBN: 978-1-60558-658-8

Byrne EJ (1992) A conceptual foundation for software re-engineering. In: Proceedings of the
international conference on software maintenance and reengineering. IEEE Computer Society
Press, Orlando, pp 226-235

Clemente J, Ramirez A, de Antonio A (2011) A proposal for student modeling based on ontologies
and diagnosis rules. Expert Syst Appl 38(7):8066-8078

Cuenca-Grau B, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting
modules from ontologies. In: Proceedings of the 16th international conference on world
wide web, Banff, Alberta, Canada, pp 717-726. ISBN: 978-1-59593-654-7

Espinoza M, Montiel-Ponsoda E, Gomez-Pérez A (2009) Ontology Iocalization. In: Proceedings
of the fifth international conference on Knowledge Capture (KCAP 2009), Redondo Beach,
CA, USA, pp 33-40. ISBN: 978-1-60558-658-8

Fernandez-Lépez M (1999) Overview of methodologies for building ontologies. In: Proceedings
of the IJCAI-99 workshop on ontologies and problem-solving methods: lessons learned and
future trend, Stockholm, Sweden, August 1999. http://oa.upm.es/5480/

Gangemi A (2005) Ontology design patterns for semantic web content. In: Musen M et al (eds)
Proceedings of the fourth international semantic web conference, Galway, Ireland. Springer,
Berlin

Gangemi A (2007) Design patterns for legal ontology construction. In: Casanovas P, Noriega P,
Bourcier D, Galindo F (eds) Trends in legal knowledge: the semantic web and the regulation of
electronic social systems. European Press Academic Publishing, Florence

http://oa.upm.es/5480/

34 M.C. Suarez-Figueroa et al.

Gomez-Pérez A, Fernandez-Lopez M, Corcho O (2003) Ontological engineering. Advanced
information and knowledge processing series. Springer, Heidelberg, ISBN 1-85233-551-3
IEEE Standard Glossary of Software Engineering Terminology (1990) IEEE Std. 610.12—-1990

(Revision and redesignation of IEEE Std. 792—-1983)

Jimeno-Yepes A, Jimenez-Ruiz E, Berlanga-Llavori R, Rebholz-Schuhmann D (2009) Reuse of
terminological resources for efficient ontological engineering in life sciences. BMC Bioinfor-
matics 10:S4. ISSN: 1471-2105

Lamsfus C, Alzua-Sorzabal A, Martin D, Salvador Z, Usandizaga A (2009) Human-centric
ontology-based context modelling in tourism. In: Proceedings of KEOD 2009 Proceedings
of the International Conference on Knowledge Engineering and Ontology Development, Funchal -
Madeira, Portugal, October 6-8, 2009. INSTICC Press 2009, ISBN 978-989-674-012-2,
pp 424434

Newell A (1982) The knowledge level. Artif Intell 18(1):87-127

Pan JZ, Lancieri L, Maynard D, Gandon F, Cuel R, Leger A (2007) Knowledge web deliverable
D1.4.2.v2. Success stories and best practices. Available at http://knowledgeweb.semanticweb.
org/semanticportal/deliverables/D1.4.2v2.pdf

Pease RA, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the
semantic web and its applications. In: Workshop on ontologies and the semantic web at the
AAAI 2002, Edmonton

Poveda-Villalon M, Suarez-Figueroa MC, Garcia-Castro R, Gomez-Pérez A (2010) A context
ontology for mobile environments. In: Workshop on Context, Information and Ontologies
(CIAO 2010) co-located with EKAW 2010, Lisbon

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for
web ontologies. In: Proceedings of the 27th international conference on conceptual modeling
(ER2008), Barcelona, Spain

Simperl E (2009) Reusing ontologies on the Semantic Web: A feasibility study. Data Knowledge
Engineering 68(10):905-925

Sudrez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,
scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, Espafia. Available at
http://oa.upm.es/3879/

Vilches-Blazquez LM, Villazon-Terrazas B, Saquicela V, de Leon A, Corcho O, Gémez-Pérez A
(2010) GeoLinked data and INSPIRE through an application case. In: 18th ACM
SIGSPATIAL international conference on Advances in Geographic Information Systems
(ACM SIGSPATIAL GIS 2010), San Jose, CA, 2-5 Nov 2010

Villazén-Terrazas B, Suarez-Figueroa MC, Gomez-Pérez A (2010) A pattern-based method
for re-engineering non-ontological resources into ontologies. Int J Semant Web Inf Syst
6(4):27-63

Villazon-Terrazas B, Ramirez J, Suarez-Figueroa MC, Goémez-Pérez A (2011) A network
of ontology networks for building e-employment advanced systems. Expert Syst Appl
38(11):13612-13624

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://oa.upm.es/3879/

2 Springer
http://www.springer.com/978-3-642-24793-4

Ontology Engineering in a Networked World
Suarez-Figueroa, M.C.; Gomez-Perez, A.; Motta, E.;
Gangemi, A, (Eds.)

2012, XlI, 444 p., Hardcowver

ISBN: 978-3-642-24793-4

	Chapter 2: The NeOn Methodology for Ontology Engineering
	2.1 Introduction
	2.2 The NeOn Glossary
	2.3 Nine Scenarios for Building Ontology Networks
	2.3.1 Scenario 1: From Specification to Implementation
	2.3.2 Scenario 2: Reusing and Re-engineering Non-Ontological Resources
	2.3.3 Scenario 3: Reusing Ontological Resources
	2.3.4 Scenario 4: Reusing and Re-engineering Ontological Resources
	2.3.5 Scenario 5: Reusing and Merging Ontological Resources
	2.3.6 Scenario 6: Reusing, Merging, and Re-engineering Ontological Resources
	2.3.7 Scenario 7: Reusing Ontology Design Patterns
	2.3.8 Scenario 8: Restructuring Ontological Resources
	2.3.9 Scenario 9: Localizing Ontological Resources

	2.4 Two Ontology Network Life Cycle Models
	2.4.1 Waterfall Ontology Network Life Cycle Models
	2.4.1.1 The Four-Phase Waterfall Ontology Network Life Cycle Model
	2.4.1.2 The Five-Phase Waterfall Ontology Network Life Cycle Model
	2.4.1.3 The Five-Phase+Merging Phase Waterfall Ontology Network Life Cycle Model
	2.4.1.4 The Six-Phase Waterfall Ontology Network Life Cycle Model
	2.4.1.5 The Six-Phase+Merging Phase Waterfall Ontology Network Life Cycle Model

	2.4.2 Iterative-Incremental Ontology Network Life Cycle Model
	2.4.3 Relation Between Scenarios and Life Cycle Models

	2.5 Methodological Guidelines for Processes and Activities
	References

