Chapter 2
Statistical Analysis in Solution Space

“ “You see,” he exclaimed, ‘I consider that a man’s brain originally is like a little empty attic,
and you have to stock it with such furniture as you choose ... It is a mistake to think that
that little room has elastic walls and can distend to any extent. Depend upon it, there comes
a time when for every addition of knowledge you forget something that you knew before.
It is of the highest importance, therefore, not to have useless facts elbowing out the useful
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ones.

Sherlock Holmes [Arthur Conan Doyle, A Study in Scarlet]

In the solution of optimization problems, many factors act in concert to achieve
the cumulative effect that we measure using a single cost function. We are dealing
with finding a particular microscopic arrangement of many constituent parts — called
a microstate —in order to attain a desired macroscopic result — called the macrostate.

Suppose that you are in a room. This room has many molecules of air that move
around in the room. The knowledge of the positions and momenta of all these
molecules is the microstate of the room. The macrostate is comprised of a few pa-
rameters of interest to you, such as the temperature and pressure of the air. If you
were to move a single molecule from one side of the room to the other, would the
temperature in the room change perceptibly? No. This observation means that (1)
even though a particular microstate leads to a particular macrostate, (2) any one
macrostate can potentially be achieved by more than one microstate. The relation-
ship between microstate and macrostate is thus not a one-to-one relationship. By
analogy to maps we have one altitude for a specified location but possibly several
locations for one specified altitude; as such the location is the microstate and the
altitude the macrostate.

The same observation holds true for optimization problems: A particular value
for the cost function is usually achieved with many settings of the process param-
eters. The optimum state is an exception and is often achieved using only one pa-
rameter setting just as the altitude of 8850 meters is achieved only in one location,
namely Mount Everest. In the analysis of the relationship between microstates and
macrostates, the analogy to the molecules in the room applies.
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As this problem was first investigated by physicists in the context of thermody-
namics, the language of the theory uses vocabulary that is reminiscent of thermody-
namic processes. This should not be misunderstood as the suggestion that optimiza-
tion problems are thermodynamic. They are not. The theory that governs thermody-
namic processes is, however, so general that it can easily encompass our situation
of optimization problems.

The relevant field of physics is called statistical mechanics. It derives its name
from the fact that the macrostate is essentially a statistical summary of the microstate
just as the mean, or average, is a statistical summary of a set of numbers.

In this chapter, we will treat the relationship between microstate and macrostate
as developed in statistical mechanics. The vocabulary of thermodynamics will be
retained but the ideas will be made sufficiently general that it will become clear
how they apply to our situation. For the purposes of this chapter, please suspend any
ideas of optimizing. First, we must become clear about how the state of the problem
relates to the cost function or, in other words, we must first understand the problem
that we are faced with and the answer we desire. Only when this relationship is
clear, are we permitted to ask what the state of the problem is that corresponds to a
minimum in the cost function.

2.1 Basic Vocabulary of Statistical Mechanics

The energy of a physical system is essentially the same as the cost function in op-
timization in that nature seeks the configuration of least energy. To understand this
from the physical perspective, we quote a description of the concept of energy here:

“Consider a volume of water stationary in a pool at the head of a waterfall. It has what we
may call ‘privilege of position,” in that once it has dropped over the fall we must do work to
return it to its original position. As the water passes over the fall its ‘privilege of position’
vanishes, but at the same time it acquires vis viva, the ‘living force’ of motion. By passing
the water through a turbodynamo, we strip it of its vis viva and simultaneously acquire
electric power which, vanishing when the dynamo is shorted through a resistance, there
gives rise to an evolution of heat. If the water drops directly to the bottom of the fall, without
passing through the turbine, vis viva disappears without the production of electric power; but
at the bottom of the fall the water has a temperature slightly higher than that with which it
left the top of the fall — just as though it had received the heat from the above-noted resistor.
Now a priori there is no reason to suppose that ‘privilege of motion,’” vis viva, electric
power, and heat — qualitatively apparently utterly different — stand in an relation whatever
to each other. Experience, however, teaches us to regard them all as diverse manifestations
of a single fundamental potency: energy (Gr. energos, active; from en, in + ergon, work).”
[98]

Let us consider a particular instance of an optimization problem. For definiteness,
consider a particular instance of the traveling salesman problem. The number of
cities and the distances between each city pair is known.

A microstate is a complete detailed description of any arrangement of the most
basic elements of the problem such that no boundary conditions are violated. Any
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microstate is thus a solution of the problem instance. In the context of the traveling
salesman, any ordering of the cities, without repetition, is a microstate and thus
a solution in the sense that all such orderings are legal traveling salesman tours.
Remember that we are not optimizing yet, we are just describing the problem. If
you had an ordering of the cities in which a particular city featured more than once
or a city was missing, then this would violate a boundary condition of the problem
and thus not be a microstate or solution. In terms of mathematics, a microstate can
be expressed as a vector.

A macrostate is a global description of a microstate in terms of all the func-
tions that we will later use to optimize the solution. In most optimization contexts
the macrostate is the value of the cost function and thus a single number. For the
traveling salesman, the macrostate is the total length of the tour.

A system is the instance of the problem viewed as an evolutionary entity that
changes in time. Mathematically speaking, a system is a series of microstates or-
dered in time. In the context of thermodynamics, the microstate of the molecules in
aroom will change from moment to moment in accordance with the laws of physics.
In the context of optimization, the microstate of the traveling salesman problem will
change from one step of the optimization procedure to the next. In both cases, there
is a mechanism of evolution (physical laws or an optimization algorithm) that causes
a time-ordered sequence of different microstates. Accumulated from some start time
to some end time, this is referred to as a system.

When we have a system, we can take an average of the macrostates over time.
That is from the start time to the end time of the system, we select a certain number
of macrostates evenly spaced in time and perform an average. The result is called
the time-average of the system.

Consider again a particular instance of a problem. Imagine now having many
copies of this instance. Each copy is put into a random microstate; many will be
different from each other but some may be the same. We shall have something to
say about the meaning of the word ‘random’ but will delay it a little. To get a mental
picture of this, imagine that the problem consists of a room full of molecules. Now
imagine that you have a great many rooms. All the rooms are identical to each other
in every aspect except that their microstates — the positions and momenta of the
molecules — may be different; as a logical consequence their macrostates may also
be different. Each of these copies now evolves over time and thus we have a set of
systems. This set of systems is called an ensemble. The concept of an ensemble is
very important in the treatment of statistical mechanics and thus in our views on
the relationship between microstates and macrostates. Please note that we are never
going to actually construct an ensemble as this would require too many resources
and thus be a practical impossibility. We are just going to consider the existence of
an ensemble as a thought-experiment.

At any instant in time, we may record the macrostate of each copy in an ensemble
and perform an average over these values. This is called the ensemble-average. We
can take an ensemble-average at any moment in time including the start time and the
end time of the systems in the ensemble. If the value of the ensemble-average does
not change with the time at which the average is taken (with the possible exception
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of some initial time period), the ensemble is called stationary. Physically, this is
usually called equilibrium. Note that if an ensemble is stationary, the many possible
ensemble-averages differing due to their start and end times all take the same value
and thus there is in fact only one ensemble-average value. Stationarity is thus a
crucial concept for us to speak of the ensemble-average as opposed an ensemble-
average.

Having discussed two averaging procedures, the time and ensemble averages, it
is interesting to look at how they differ. In both averages, we list the macrostates of
a large number of microstates and perform an average. If the number of microstates
is sufficiently large, then the averaging process itself should be stable and the re-
sults represent truly underlying differences. In the time case, the microstates are
connected by the evolutionary laws of the process (physics or an optimization algo-
rithm). In the ensemble case, the microstates are connected by their initial selection
and then their evolution according to the same laws. If an ensemble is stationary
and the ensemble-average is equal to the time-average, then the ensemble is called
ergodic.

To be clear, ergodicity is a good thing. We like ergodic ensembles. Situations
where ergodicity is not valid are generally very hairy indeed. The reason for er-
godicity being desirable is that if an ensemble is ergodic, we can replace the time-
average by the ensemble-average in any mathematics that we will want to do. This
is an elemental difference due to the fact that computing a time-average would re-
quire the solution of the time-dependent partial differential equations that govern the
evolutionary laws of the process. We do not like doing this. Respectively, in many
situation we cannot do this. Computing the ensemble-average is relatively easy due
to the fact that the individual copies are randomly assigned a microstate and the evo-
lution in time does not play a role (the ensemble is stationary). To perform such an
average, we merely need to generate a lot of random microstates, take our average
and the deed is done. Computationally speaking, we actually create these many mi-
crostates in the computer. Doing this, including the ensuing taking of the average, is
a simple presentation of a collection of techniques commonly called Monte-Carlo
computation. As before, we delay the definition of the word ‘random.’

In keeping with the language of statistical mechanics, we are going to use the
word energy as a synonym for the objective or cost function of the optimization.
Physics is effectively one big optimization problem as physics postulates that nature
always evolves in order to minimize its energy. Recalling our above definitions,
energy is effectively the number representing the macrostate. As every microstate
has one corresponding macrostate, we can associate an energy with each microstate.

At this point in the discussion, we are going to create our first basic assumption,
namely: The number of possible microstates is finite. Please note that in general
the number of microstates is very very large but we demand that it not be infinite.
This is important because we want to start counting how many microstates belong
to any given macrostate and we want these numbers to be finite so that we can do
arithmetic with them. As the number of microstates is finite, we can label them with
an integer. The order does not matter for this purpose. We will denote the energy of
microstate i by E;.
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The only thing left in the presentation is to be clear about the term ‘random.” We
will make our second basic assumption: The probability of the system being in any
one microstate is equal to that of any other microstate. If there are N microstates
in total, then the probability of the system being in microstate i is P/ = 1/N. It
is now easy to create an ensemble. We simply select microstates from the set of
all microstates each with probability 1/N. Due to this procedure, we will get an
ensemble, we will be able to compute an ensemble average and, if the ensemble is
ergodic, this will be equal to the time average and thus give us something interesting.

The probability of the microstate was thus settled by assumption. But what is the
probability of the associated macrostate? Well it is simply the number of microstates
associated with this macrostate divided by the total number of microstates, P, =
N;/N. While this is an easy formula, it is far from easy to work it out as we, in
general, will be hard pressed to compute »;. Thus, we must find a formulation that
is easier to compute.

To discover this, we first talk about temperature. Going back to the physical case
of the room full of molecules, we note that this room does not actually exist in iso-
lation but rather it is part of the world and exchanges energy with the world. After
some time, so our experience tells us, the temperature in the room will equal the
temperature of the world. In statistical mechanics, the world is therefore referred to
as a heat bath. The concept of temperature enters our discussion here as a crucial
parameter that is supplied by the external forces that act upon our system; see sec-
tion 2.4 for this concept. Also, we will assume that we know what the temperature is
because we can measure it in the heat bath. We will find that the concept of temper-
ature will play a major role in our later optimization efforts. It should be understood
however again that while we are using vocabulary from statistical mechanics, the
concepts are much more general and can be applied to non-physical systems. Tem-
perature, for example, is just a macroscopic parameter of the system supplied by the
external heat bath forces that govern the system evolution.

Now that we know what temperature is, in statistical mechanics, it is possible to
derive what P, is actually equal to. We will not follow the derivation here as we are
concerned only with the interpretation of these results. We have what is called the
Maxwell-Boltzmann distribution,
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where T is the temperature, k a constant known as the Boltzmann constant and
gi 18 the occupation number of the energy E;, i.e. the number of microstates having
energy E;. The denominator of the distribution is referred to as the partition function
and serves several important uses in statistical mechanics to the extent that complete
knowledge of the partition function essentially means complete knowledge about the
system — at least with regard to all the things that physics is usually interested in, i.e.
the macroscopic description of the system. The partition function cannot practically
be evaluated as defined because it is a sum over all microstates and the number of
microstates is very large indeed. Supposing that we could write the partition function
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in a way to be able to directly evaluate it, we could perform ensemble-averages and
thus time-averages.
With the partition function

7 = Zgjeij/kT
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we may find a number of other crucial thermodynamic concepts such as the energy
E, the entropy S or the Helmholtz free energy A,
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where 8 = 1/(kT) and the subscript v indicates that the derivative is to be taken at
constant volume. Thus, our knowledge of thermodynamic properties of a particular
system is limited by our ability to compute its partition function!

Note that if two microstates have the same energy, their contributions to the sum
in the partition function are the same. This is a desirable property as two microstates
of the same energy would belong to the same macrostate and should therefore be,
macroscopically speaking, indistinguishable. Therefore, it is good that their micro-
scopic contributions are the same.

While the Maxwell-Boltzmann distribution works very well for certain systems
in the physical world, it is not necessarily true for all physical systems or indeed for
non-physical systems. An abstract optimization problem can be profitably analyzed
using the language of statistical mechanics but we must remember which conclu-
sions of statistical mechanics are of a generic nature and which apply particularly to
specific elements of physical nature.

2.2 Postulates of the Theory

It is possible to build up statistical mechanics as a formal theory based on axioms.
This fact is important beyond making the theory formally clean because it shows the
fact that the theory is very generic and applies to many situations that have nothing
whatsoever to do with thermodynamics. The postulates are these six [78]:

1. The constituents of the system obey certain laws of motion that themselves do
not change. In the thermodynamic context, these are classical or quantum laws
of physics. In the industrial context it will usually be classical physics only.

2. An observation is a simultaneous and instantaneous measurement of a set of
indicators, which each take the value zero or one only. The instants at which
these observations may be made are discrete and equally spaced.
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3. Observations cause no visible disturbances in the macrostate of the system under
observation!.

4. The successive observational states as given by the indicator values form a
Markov chain.

5. Any microstate may be the initial state.

6. A system with finite energy has finitely many microstates available to it.

All of these postulates are quite clear and simple for a problem that is well de-
fined. The interesting postulate is the fourth concerning the Markov chain. Effec-
tively this means that the system has no memory of its previous states as a Markov
chain is defined by a transition probability matrix in which the probability of the fu-
ture state depends only upon the identity of the current state and not the past states.
A Markov process is thus a probabilitistic (stochastic) process without memory.

It is clear that this assumption is not strictly true about every system in nature
but it is close enough to being true that the theory leads to interesting results about
nature. As we are concerned with optimization in this book, however, we need to ask
ourselves whether the optimization method will respect this and the other postulates.
If it does, then the following theory will apply to the analysis of its results. In general
the methods that are used for optimization do respect the Markov postulate and we
may thus proceed.

Through this postulate, we effectively take the probability of a certain observa-
tional state to be an intrinsic characteristic and we implicitly assume that this is
measurable for example by repeating an experiment several times>. The probabil-
ity of an observational state thus takes on an ontological value similar to that of an
object’s mass in classical physics.

While the microstates obey physical laws and are thus deterministic®, the ob-
servational state, i.e. the macrostate given by the indicators, does not change deter-
ministically. We want a reliable statistical description of its evolution — that is the
purpose of the theory.

Why is that? Note that it is very complex to observe the microstate at all times
and to model it deterministically. It is far more expedient to model the macrostate
because it has few parameters and we are interested in it. Due to the fact that it does
not change deterministically, all we can expect to receive therefore is a statistical
description of the macrostate. In order words, while we can say that a certain mi-
crostate will definitely transit into another specific microstate, we can only say this
with a certain probability in the context of a macrostate.

From these postulates, it is possible to derive all other statements in statistical
mechanics including the famous four laws of thermodynamics, which are the fol-
lowing.

! From quantum theory we know that this fundamentally wrong but we are dealing with systems
far larger than quantum systems and we may thus reasonably assume this. Please do note that
there is a large debate about the role of the observer on a physical system and that this point is an
assumption and not a statement of fact.

2 The concept of probability will be further discussed in chapter 5.

3 We will not concern ourselves with the nature of determinism in quantum mechanics as we are
not dealing with the application of this theory to physical situations.
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0 If systems A and B are each in equilibrium with system C, then A and B are also
in equilibrium with each other.

1 The energy of an isolated system is conserved.

2 The entropy of an isolated system may not decrease.

3 A system cannot be brought to zero absolute temperature.

The concept of energy was already explained. In the following, we will explain
entropy and temperature in more detail.

2.3 Entropy

Having covered some basic concepts, we will turn to one of the most central con-
cepts of statistical mechanics, the entropy of a system.

“The first principle of thermodynamics poses the concept of ‘energy’; the second princi-
ple, the concept ‘entropy.” Feeling that we know what energy is, we demand to know what
entropy is. But now, in point of fact, do we really know what energy is? The classical di-
chotomy is matter vs. energy, and energy may then be defined as whatever produces heat.
But in the early 20th century this dichotomy was undermined by recognition of the inter-
convertibility of mass and energy, and to the question ‘What is energy?’ we can now give
only the unsatisfactory reply ‘It is everything.” Yet however great may be our uncertainty
about the intrinsic nature of energy, the thermodynamic significance of that concept remains
wholly unimpaired. ... Indeed we don’t need to know what energy is, but we do find it satis-
fying and instructive to use the kinetic-molecular theory to interpret internal energy in terms
of the kinetic and potential energies of atoms and molecules. Neither need we know what
entropy is, but we find it satisfying and instructive to use the kinetic-molecular hypothe-
sis to interpret entropy in terms of the ‘randomness’ with which atoms and molecules are
distributed in space and in energy states. A simple illustration of the subtle concept of ran-
domness is found in the ... example of a bullet abruptly stopped by a sheet of armor plate.
The bullet’s gross kinetic energy disappears, and in its place appears thermal energy that
manifests itself in a rise of temperature. Before the impact, all the lead atoms comprising
the bullet traveled together, as a unit, because all had a single directed component of motion
superposed on their uncoordinated thermal motions. After the impact, this directed compo-
nent is randomized: when the bullet’s gross motion vanishes, the constituent atoms acquire
an increased energy of random thermal motion, which is reflected in the temperature rise.
Observe that this molecular picture renders easily intelligible the striking disparity of the
following two cases: (i) a moving bullet, when stopped, becomes hotter; and (ii) a stopped
bullet, when heated, is not thereby set in motion. This otherwise puzzling asymmetry or
unidirectionality grows out of a statistical situation amply familiar in everyday experience.
Consider for example that a new deck of cards, factory-packed in a regular arrangement of
suits and denominations, is soon randomized by shuffling; but we think it highly improb-
able that, by further shuffling, we will soon return the pack to its original highly-ordered
arrangement.” [98]

Consider a closed plastic bottle of water. If you squeeze it, the level of the water
will rise in the bottle. If you let go, the level will sink back down to its former
position. The squeezing is therefore what is called a reversible process. Smashing a
glass onto the floor and seeing it break into pieces is called a non-reversible process.
The difference between them lies in the energy that you have to put into reversing
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the process. Clearly you can mend a broken glass — but only with effort. Restoring
the squeezed bottle to its former state does not require exchange of energy between
the system (bottle) and the external world (your hand).

In the real physical world, no action is truly reversible as there is always fric-
tion. For instance, when squeezing the bottle, you are actually transferring a small
amount of energy to the water which manifests in a rise in temperature. In practical
terms, this does not matter because the temperature increase is small but it is there
nonetheless and so the process is not quite reversible. However, it is clear that the
breaking of the glass is a lot less reversible than the squeezing of the bottle.

Thus, we ask ourselves for a measure of reversibility. This measure will be called
entropy.

Suppose that the letter A labels a particular macrostate and Q(A) denotes the
number of microstates giving rise to that macrostate. Then we define the Boltzmann
entropy to be S(A) = kInQ(A) where k is a universal constant known as the Boltz-
mann constant the numerical value of which must be determined by experiments.
This definition gives rise to the desirable fact that the entropy is additive. This means
that if we make a larger system C by combining two systems A and B, then we have
S(C) = S(A) + S(B). While this is not a fundamental requirement of the universe,
it is desirable because it makes life easier when computing and also simply makes
sense that a system property would add when systems are added. Please note how-
ever that this is a definition and not the result of any argument!

The same definition leads to the fact that if macrostate A transits to a different
macrostate A’, then there could be a change in the entropy of AS = S(A") —S(A) =
kIn(2(A’")/Q(A)). Note that, by the laws of logarithms, this change in the entropy
can be both negative, zero or positive.

The second law of thermodynamics states that entropy must not decrease. How-
ever, this statement applies to an isolated system and not to a system that has ener-
getic contact with other systems. In the physical world, true isolation is not possible
but we can get very close in carefully constructed circumstances.

Let us consider the meaning of changes in entropy for a moment. If the entropy
increases, this means that the number of microstates for the observed macrostate has
also increased. Macrostates that have a larger number of microstates are more likely
to be observed by the fundamental postulate (and please note that this is a postulate)
that all microstates are equally likely to occur. Thus entropy increasing means that
the system moves to a more likely state. We have a special term for the macrostate
that has the highest probability of being observed, we call it the equilibrium of the
system.

By contrast, if the entropy decreases, the system moves to less likely states. While
this is of course allowed, it is by definition unlikely to happen. In colloquial terms,
the effort that must be expended to get a system into a less likely state must come
from outside the system and will incur an energetic cost in the outside that will
lead to an increase in the entropy there. For example, the glass that broke when we
dropped it can be fixed by effort expended by us on the system thereby increasing
our body’s entropy.
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Practically, if we could plot the entropy over time of a real system, we would thus
see small ups and downs everywhere from natural fluctuations but we should see a
global trend upwards towards equilibrium. If this cannot be seen, then something
happened: An external action was made that influenced the system towards a less
likely state. A state of particularly low likelihood is the ground state of the system.
This is the state of least energy in the physical world or the least cost function
value in the computational world. Generally speaking, the ground state has very
few microstates associated with it and often only a single one. Thus this state is
very unlikely to be observed naturally. Yet, this is the state we wish to find when
doing optimization calculations. In the context of optimization, the algorithm is the
external world influencing the system and thus it is the algorithm that constitutes the
heat bath.

Therefore, when plotting the entropy over time of a search for the ground state,
we should see it decrease. It will generally not do so uniformly but rather have
distinct local peaks and even discontinuities associated with it. These discontinuities
are very distinctive and interesting features of the evolution because they are the
telltale signs of so called phase transitions. In the physical world, a phase transition
is the change from water to vapor or water to ice and vice versa where the phases are
generally solid, liquid, gas and plasma. The ground state will generally be a solid
state but we may have to begin searching for it with a system in the gaseous state and
thus undergo two phase transitions (to liquid and then to solid). To make things more
interesting, there are phase transitions of a more subtle nature, called second-order
phase transitions, which are not visible in the entropy itself but rather in its first
derivative. Formally speaking, a phase transition is a discontinuity in the entropy
over time and a second order phase transition is a discontinuity in the derivative of
entropy with respect to time.

To be clear, if we want to bring a physical system from a gaseous state to a
solid state, we must cross two phase transitions. In cooling the system, we must be
very careful at these points because local freezing may set in that will later make it
impossible to reach the ground state without re-heating the system. Thus, we must
cool very slowly at these points and hence there is a necessity to know where the
phase transitions occur.

It is widely documented that phase transitions are observed in computational
systems as well as natural ones. These are important events that must be negoti-
ated carefully by the optimization algorithm “cooling” the system because systemic
damages can occur during the change of phase. To illustrate this point, consider the
freezing of a glass of water. Typically, the boundary will freeze first and slowly the
freezing process will permeate to the center of the bit of water. If this occurs in the
context of a fragile substance, such as a crystal, the parts that are on the boundary
between the frozen and liquid portions experience a stress that may cause local dam-
ages in the crystal structure. These damages then freeze and so there is not enough
energy anymore to repair the damages by natural fluctuations. This is the so called
freezing in of local structures. Once this has been done, finding the true ground state
is impossible without first heating the system up again and thus allowing the defect
to be repaired. The same effect has been observed many times in combinatorial tasks
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and so we must beware of phase transitions that will block the path to optimality if
they are not negotiated carefully.

So what does negotiating carefully mean? It means two things. First, we must
allow the system to cool (i.e. loose energy to the outside world) as slowly as possible
so that local stresses are small and damages unlikely. Second, we must apply the
cooling as uniformly across the spatial extent of the system as possible so that the
the glass of water might freeze as a unit and not from the outside inwards. While
being very difficult in physical terms, the second can be achieved more easily in a
computational environment.

2.4 Temperature

The concept of temperature is fundamental to statistical mechanics as it is a major
macroscopic state variable and closely related to the concept of equilibrium between
two systems. The definition of equilibrium is*: Two systems in the thermodynamic
context are in equilibrium with each other if and only if they share the same temper-
ature. It makes little sense to speak of the temperature of a system that is far away
from equilibrium as it would then be impractical to determine its temperature. Note
that a physical temperature is measured by a thermometer (one system) being put
into a substance (another system) and these two systems must be allowed to come
to an equilibrium before it is sensible to take a reading of the temperature.

When we speak of something being hot, we mean the subjective impression that
the object is transferring a lot of thermal energy to us and that we are experiencing
a change in our state of being as a result. When you touch a hot stove plate, you
burn your finger — a lot of energy has been transferred causing an increase in your
body’s entropy. This indicates a high temperature. When you touch an ice cube,
some energy is removed from you and lowers your body’s entropy as you move to
a less probably state. This indicates a low temperature.

In terms of nature, temperature is thus a measure of the molecular agitation of
some substance. If the molecules are more agitated, then the temperature is higher.
Generally this also means that the pressure increases and thus the body will expand
if it is allowed to do so leading to the well observed fact that objects get larger as
they get hotter.

The Temperature, denoted by T, is defined by the derivative of the energy with
respect to the entropy, T = dE /dS. Note that temperature is thus a defined concept
in terms of the two basic concepts of statistical mechanics: energy and entropy.

We may ask how much heat (or energy) we must supply to a substance in order to
increase its temperature by one unit. This is called the heat capacity of the substance.
The heat capacity per unit of mass is the specific heat capacity or simply specific

4 This is the definition of equilibrium berween two systems. What concerns the equilibrium of a
system, we have already encountered it: Equilibrium is the macrostate corresponding to the most
microstates, i.e. the most likely macrostate.
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heat of that substance. It is an important concept because it effectively translates
between the concepts of energy and temperature.

The specific heat is a characteristic of a particular substance but it is not a con-
stant. In fact, it depends upon temperature, volume and pressure. As the temperature
gets large, the specific heat is approximately constant. The specific heat is particu-
larly interesting as we approach absolute zero temperature or the ground state of the
system. In nature, it follows Debye’s law from quantum theory. Here, we have
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where N is the volume (effectively a value needed for the physical value of ¢, which
we may ignore for the purposes of optimization), k is Boltzmann’s constant (also
a constant that may be ignored for optimization purposes) and 7p is the Debye
temperature. The Debye temperature is a material property. For the purposes of
optimization theory it may be estimated as that temperature where the specific heat
(in the direction of lowering the temperature starting from a high temperature) is
first observed to decrease significantly below an initially approximately constant
value. In figure 2.1, we display the typical evolution of the specific heat according
to the Debye model as compared to the related Einstein model. This is what we
would expect to see in the evolution of an optimization problem and we may use
this to interpret our progress.
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Fig. 2.1 The evolution of specific heat according to the Debye model as compared to the related
Einstein model. We use this model to gauge our optimization progress while measuring the specific
heat of our currently proposed problem solution.
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The reason for studying specific heat in an optimization context is that it allows
us to track our progress towards the ground state of the system to be optimized.

We may define two kinds of specific heat. The specific heat at constant volume
¢y and the specific heat at constant pressure c, are defined to be
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where the differential in both cases is made subject to the requirement that either
the volume or the pressure respectively must remain constant.

2.5 Ergodicity

One of the most intriguing concepts in statistical mechanics is that of ergodicity.
It is related, as discussed earlier, to the relationship between time-averages and
ensemble-averages.

In statistical mechanics, we are primarily interested in the equilibrium state for
a particular macrostate. We will thus want to know the value of some interesting
quantity G(a), a function of the microstate @, in the equilibrium state and denote
its value here by G,,. As the system always tends to the equilibrium state, this value
is equal to the time average of G for a long time, i.e.
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The limit in time poses a practical problem. We cannot measure or compute such a
limit in practice and so must look for an alternative means by which to obtain this
result.

There is a related concept, which takes an average over local phase space (phase
space is the set of all microstates), i.e. over microstates with a similar energy. We
thus get

. f(o(E) G(Ot)dOt
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where @(E) is that region of phase space, i.e. the set of microstates with energies in
[E — AE,E]. This phase space average is thus an ensemble average. This is some-
thing that we can compute and measure.
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We have restricted ourselves to a neighborhood in energy and energy is always
an invariant of the motion®. If the energy, and functions of the energy, is the only in-
variant of the motion, the phase space is called ergodic. If there are other invariants,
then the above phase space integral must be restricted to neighborhoods of these
other invariants around the value of the current macrostate also.

The ergodicity theorem now states that if phase space is ergodic, then Gy = Gp.

This theorem allows us to replace something that we want to know but cannot
measure or compute with something else that we can measure and compute. Thus
it is very important to know whether phase space is ergodic or not in any particular
case.

Let us analyze the situation by focusing on the concept of a Markov chain, which
governs the evolution of the system according to our set of postulates. Recall that
a Markov chain is a series of microstates where each microstate is arrived at from
its predecessor in such a way that the probability to obtain any given microstate
depends only upon the present microstate and not upon the history of previous mi-
crostates. Such a chain therefore has no memory and is thus particularly easy to
model.

An observational state in our Markov chain is called transient if there is another
state that the system can reach from this one but the system cannot return®. A state
that is not transient is called persistent’. The persistent states can now be grouped
such that two persistent states will belong to the same group if and only if they
can be reached from each other. These groups are called ergodic sets. Essentially
ergodic sets imply that we may more or less freely move between states within the
same ergodic set but are effectively forbidden from going to another ergodic set.

Above, we spoke about the energy being an invariant of the motion and we thus
having to restrict attention on states within an energy neighborhood. This is another
way of saying that we must focus on one ergodic set of states. If we have more than
one ergodic set, we must focus on one of them in order to perform our phase space
integral and have it equal the time average of whatever value we are interested in.

So far, things are clean. However there can be a problem. We have differentiated
transient and persistent states by the property of being able to return to them. As
such the definition is precise. In practice, what also matters is how many transitions
(i.e. how much time) are necessary for an eventual return. Sometimes it is quick to
return and sometimes a return is possible only after a great many transitions. States

5 The phrase “invariant of the motion” means that the value does not change over time. In the case
of energy, this will not change as we have a law stating that energy is conserved.

6 An example of a transient state is a hot cup of coffee at room temperature. This will naturally
tend to cool down and so it can reach this cooler state. However, it will not be able to return to its
hot state — unless it is acted upon by an external system such as a microwave oven.

7 An example of a persistent state is that of a cup of coffee at the same temperature as the room in
which it is located. This state may occasionally transit to other states but can and will return to this
state of equilibrium.
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that are persistent in principle but only after a time that is longer than our typical
observational time period are called pseudo-persistent®.

These will cause the splitting of an ergodic set into several subsets that are each
an ergodic set for the realistic time-scale defined by our observational period. The
existence of this effect is known as ergodicity breaking and represents a major com-
putational problem. The problem has several features: (1) It is hard to know what
states are pseudo-persistent in advance, (2) it is hard to diagnose ergodicity breaking
when it happens and (3) the inherently long times necessary for a tour around the
ergodic set increases the time needed for a reliable computation. During the use of
an optimization algorithm, we start somewhere and then move from microstate to
microstate until we believe to have found the optimum. This moving process could
get stuck in one these pseudo-persistent areas and thus practically prevent our al-
gorithm from exploring other areas. If the true optimum is in that other area, we
are unlikely to find it. In the language of optimization, these points are called local
minima (of sufficient depth and width to limit our evolution from going away for
the observational duration).

Particularly for optimization purposes it is troublesome if we spend a very long
time in a restricted section of the ergodic set without exploring the rest of it as it
could be that the optimum we are looking for is in that rest. To have reasonable con-
fidence that we will find the optimum, we must therefore increase the observational
period. However, the effect of ergodicity breaking can occur on several time-scales
and so the period may have to be increased by an impractical amount. Moreover, we
cannot know how much we need to increase it by unless we can detect what is go-
ing on. In short, ergodicity breaking is a major stumbling block to efficient optimum
finding and a response to it needs to be found.

What are appropriate responses? A very general strategy is called restarting in
which we execute the optimization algorithm several times from different randomly
selected starting points in the hope to get into all the pseudo-ergodic sets at least
once. In fact, this is the response of choice in the field for a variety of optimization
algorithms. Uniformly over the entire space of possible solutions, we select N of
them and start a full optimization from these points. To save time, these N opti-
mizations can be run in parallel as they do not interfere at all. We then take the best
answer. It is observed that the answer quality improves approximately logarithmi-
cally. There is thus a law of diminishing returns as we crank up the effort put into
a problem’s solution. It is also observed that, for relatively low N, the gain is of the
order of a few percentage points and so, in general, substantial enough to be worth
the effort. We highly recommend augmenting any optimization algorithm with this
simple method.

8 A pseudo-persistent state is any state that takes so long to change that we are in danger of not
seeing the change in our observational period. An example is the heating of water. If we supply
heat to a large quantity of water, it takes a long time (respectively a lot of heat) to create even a
small rise in temperature. Another example is a lake at high altitude. The water should flow down
to reach a lower energy state but it is limited by the mountain. Eventually erosion will bring the
mountain and thus the lake down but this takes a very long time.
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