Chapter 2
Material Models for Numerical Simulations

2.1 General Description

Numerical simulations of high velocity impact events are performed with large
computer codes called hydrocodes, because their early use was for high pressure
problems in which materials were treated as fluids. These codes can handle
impulsive loadings which include shock waves with extremely high pressures
and short rise times, as well as high temperatures and large deformations. Several
review articles about hydrocodes and their use have been published over the past
30 years. As far as terminal ballistics is concerned, the reviews by Anderson (1987)
and by Zukas (1990) are the most comprehensive and informative. The present
chapter highlights some of the important issues concerning these codes for terminal
ballistics studies. We follow Anderson’s statement that “hydrocodes are the best
instrumented experiment”, since they can (and should) be used for sensitivity
studies in terminal ballistics. These studies highlight the role of each parameter
in the investigated process, and the physics behind the process is unveiled. Through
the different issues presented in this book we shall demonstrate the construction
and validation of analytical models with such sensitivity studies. As an example,
consider the difficulty to determine experimentally the dependence of a projectile’s
penetration depth on the strength of the target. Any experimental attempt to vary
only the strength of a target, within a large range of values, will result in some
changes in its other properties as well. On the other hand, a series of simulations
where only the strength of the target is varied systematically is easy to perform and
it can offer the insight for this issue. Another important advantage of hydrocodes
is that they can give information about events which are beyond any laboratory’s
performance. For example, the impact of meteors at velocities of 20—40 km/s,
cannot be studied in the laboratory but it can be easily investigated with these
codes.

Basically, the hydrocode is an efficient and accurate scheme for solving the set
of conservation equations for mass, momentum, and energy under the initial and
boundary conditions which characterize the physical event. In addition to these
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equations and problem constraints, there are two sets of data which have to be
specified for all the materials involved. These are the equation of state of the
material and its constitutive relations, which were discussed briefly in Chap. 1.
The equations to be solved describe the behavior of a continuum, but the code is
solving them by discretization techniques for both space and time, through finite
difference or finite element forms. With the finite difference technique, a grid is
generated to represent material points for the given geometry of the participating
bodies. The continuous spatial derivatives in the equations, like df/dx, are replaced
by difference equations like Af/Ax, where the differences Ax are related to the
cell dimensions in the grid. The same ideas are applied to the differentiation with
respect with time. Values of the parameters at a certain time (t) are calculated by
their values at an earlier time (t — At) and their corresponding time derivatives.
With the finite element technique the actual differential equations are solved in
small interconnected sub-regions (elements). Nodes are assigned to elements and an
interpolation function is used to represent the variation of the variable over the
element. Anderson (1987) discusses the four properties which have to be carefully
considered in order to optimize these calculations, namely: consistency, accuracy,
stability and efficiency.

The grids themselves are either Eulerian or Lagrangian and each type has its own
merits and disadvantages. The Eulerian description has a spatial nature whereby the
grid points and, consequently, the cell boundaries remain spatially fixed with time,
while material can flow through the mesh. The net flow of material into this fixed
cell volume determines its mass content, pressure, velocity etc. On the other hand,
with the Lagrangian scheme, the grid is attached to the material and moves with it.
With this scheme the grid points follow material paths, so it is more appropriate for
cases where the material elements are less distorted. The Eulerian scheme is more
useful for heavily distorted materials. An optimal combination for a situation where
a rigid projectile is penetrating a soft target is obtained by using the Lagrange
scheme for the projectile and the Euler scheme for the target.

One of the more important issues which have to be carefully considered is the
issue of mesh size. Different results are obtained if the number of cells per unit
length is not adequate. For example, it was found that for penetration studies with
eroding long rods, the number of cells on the rod’s radius should be at least eleven.
The same density of cells should be kept in the target, at least for several projectile
radii around its symmetry axis. In order to save computing time, the cell size at
farther zones can be gradually increased according to their distance from the
symmetry axis. The mesh cell size depends on the specific problem. As an example,
a small cell size should be considered in cases where there is a fracture in the
projectile or target. It is recommended that while preparing the code for its final
runs, the numerical convergence with respect to mesh cell size should be checked.
Another important issue, especially when material elements are expected to deform
considerably, is the issue of erosion with Lagrangian codes. At large deformations
the code may run into trouble when treating heavily deformed elements. The use of
the erosion threshold condition is then necessary in order to eliminate elements at
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a predetermined value of the plastic or geometric deformation. The erosion should
be monitored constantly, and when it is too high one should replace the Lagrangian
with an Eulerian code.

2.2 Material Properties

As was stated in Chap. 1, the relevant material properties for terminal ballistics
belong either to their equations of state (EOS), which account for material com-
pression at high pressures and temperatures, or to their constitutive relations, for the
strength and failure characteristics. This chapter describes some of the equations of
state and constitutive relations which are implemented in hydrocodes. These codes
include a large data bank, which is continually updated, for the relevant parameters
of the EOS and the constitutive properties for many materials.

2.2.1 The Equation of State

The equation of state (EOS) is a relation between the density of the material and
the pressure and temperature which characterize its state. Usually it is given as
p = p(p,T) or p = p(p,E), where E is the internal energy of the solid. One of the
more useful EOS is the Mie-Gruneisen equation, given by:

p =pu(p) +Tp(E - Ey) (2.1a)

The index H denotes the values of the parameters on the Hugoniot curve, as
given by (1.4), and I' is the Gruneisen parameter. The Mie-Gruneisen EOS is easy
to apply for materials which have well-established Hugoniot curves in terms of
pu = f(p) and Ey = g(p). This EOS maps the off-Hugoniot states of the solid
which account for its possible states after shock loading. There are several ways to
present the Gruneisen parameter and one of them is through:

OP
=V, (8_E> . (2.1b)

where Vg = 1/p is the specific volume of the solid. It turns out that I' = 2.0 for
many solids at ambient conditions. Moreover, I" is assumed to be independent on
temperature and that I'-p is constant for a given solid within a large range of
pressures. Rosenberg and Partom (1982) demonstrated experimentally that this
assumption holds for Plexiglas, by observing that a somewhat different definition
of I can be used in conjunction with their measurements. This definition is given by:
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This partial derivative is defined along the isentropic compression curve of the
solid. Rosenberg and Partom (1982) performed direct measurements of the temper-
ature rise and the volumetric strains of isentropically compressed Plexiglas, by
using in-situ temperature and strain gauges. The isentropic loading of the specimen
was achieved by a series of low amplitude shock reverberations in the specimen,
and the gauges monitored its temperature and specific volume (strain) at each
reverberation. Their main conclusion was that the product of I'-p for Plexiglas is
indeed constant within the range of their experiments.

Another EOS which is included in the libraries of most hydrocodes, is based on
the Murnaghan equation for the isentropic compression of the solid, rather than on
its Hugoniot, as follows:

p =ps(p) + ymp(E — Es) (2.2)

where v, is the pressure derivative of the solid’s bulk modulus. The Murnaghan
EOS for the isentropic compression of the solid is given by:

K p Ym
=—|(— —1 2.3
pS(p) Tm |:(p0) :| ( )

where K is the bulk modulus of the solid. As was shown by Ruoff (1967), the value
of vy, can be obtained by the relation y,, = 4S — 1, where S is the slope of the
linear relation between the shock and particle velocities in (1.5). Using a typical
value of S = 1.5, the value for vy,, should be about 5.0, which is in accord with
measured pressure derivatives of the bulk moduli for many solids.

2.2.2 The Constitutive Relations

The inclusion of the elastio-plastic behavior of solids into hydrocodes dates back to
the early work of Wilkins (1964). His basic idea was to treat the elements of the
stress tensor (Gj;) as composed of two parts, the hydrostatic part (p) which is derived
by the equation of state, and the deviatoric part (s;;) which represents the geometric
distortion of the material. Thus, according to this convention, the stress components
are written as:

o =p - S+ si (2.4a)
The rate of change in the deviatoric stresses is related to the strain rates through:

§ij = 2Giy (2.4b)
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where G is the shear modulus of the solid. These strain rates are decomposed to
their elastic and plastic parts as follows:

by = &+ &l (2.4¢c)

Instead of working with tensors it is easier to define the equivalent (or effective)
stress and strain measures, Gqq and &4, defined by:

3S,"S,"

O = || —22 (2.52)
2 ‘IH 'i'

smzwigi (2.5b)

with which the constitutive relations are written in the form: 6oy = G (&eq, &, T).

Wilkins (1964) showed that it is easier to work within the stress space where the
axes are along the principal stresses of the problem, denoted by o4, G,, and c3. The
diagonal line in this three dimensional stress space, for which ¢; = 6, = o3,
denotes states on the hydrostatic pressure loading of the material. The equivalent
stress is a measure for the distance of a given point in this space from the diagonal
line. The various yield criteria define the maximum permissible value of this
distance. Thus, in terms of the principal stresses the border between elastic and
plastic states is a cylindrically shaped envelope around the diagonal line which
corresponds to the hydrostatic loading conditions. All the states inside this yield
envelope correspond to the solid’s elastic range, while those on the envelope
correspond to its plastic (yielded) states. By definition, the states which correspond
to points outside this yield envelope are not permissible, and Wilkins (1964)
suggested the procedure by which these states should be brought to the yield
envelope in numerical simulations.

The equation for the yield surface in the principal stress space is given by:

(O’l —0'2)2+(62—0'3)2+(G3—0'1)2:2Y2 (26&)
or, in its deviatoric form:
spHs3+s3=2Y (2.6b)

The various yield criteria are, in fact, imposing a maximum value for this
equivalent stress which has to be specified in the code. For example, the well-
known von-Mises criterion states that the equivalent stress of the material cannot be
higher than its yield strength under simple tension, G.q < Y. In terms of the yield
surface in the stress space, this criterion is represented by the surface of a cylinder
with a radius of Y, which surrounds the main diagonal (6; = o, = G3). The von-
Mises criterion accounts for the yielding behavior of many metals and alloys which
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exhibit elastic-perfectly-plastic characteristics. This is true for high strength
materials, such as armor steels and the strong aluminum alloys. Softer metals
often show an appreciable strain hardening behavior where the strength is a strong
function of the strain. The stainless steel 304L is an example for a significantly
hardening material, since its strength increases by a factor of 5 under plastic strains
of 50%. On the other hand, steels which are referred to as rolled homogenous armor,
show an almost ideal elastic-plastic behavior with no strain-hardening. One should
note that the interaction between a penetrating projectile and a target is always
accompanied by large strains in both materials. Thus, it is the stress at large strains,
the so-called flow stress, which is the important strength property of the material for
terminal ballistics. The relevant strain rates for impacts at ordnance velocities (up to
about 2.0 km/s) are 10°~10* s~'. These are the rates covered by the Kolsky bar
system which is the main reason for its extensive use. One has to consider the fact
that the strength of most solids increases at high confining pressures, while high
temperatures reduce their strength (thermal-softening). Thus, a complete constitu-
tive relation for the strength of the solid should include all the data concerning the
effects discussed here. Some of these constitutive models, which are implemented
in hydrocodes, are described next.

The constitutive equation proposed by Johnson and Cook (1983) is one of the
more popular in the field of terminal ballistics. This equation, which is referred to
as the JC model, includes the effects of plastic strain, strain rate, pressure, and
temperature on the material strength, as follows:

Y= [Ar+ ) [1+asin(ir)] - [1- T3] @.7)

where Ay, Ay, Az, n and m, are material constants. g, is the equivalent plastic strain,
and &," = &,/£, is the normalized plastic strain rate with &, = 1.0 as the reference
rate. The homologous temperature (Ty) is defined by the room and melting
temperatures (T,qom and T,), according to:

T - Tmom
Ty =———7— 2.8
" Tmelt - T/‘oum ( )

Another material model which is frequently used for high pressure impacts is
the rate-independent model of Steinberg (1987). According to this model the
changes in the flow stress (Y), with high pressures and temperatures, are equal to
the corresponding changes in the shear modulus (G) of the material. The relations
for Y(p,T) and G(p,T) are given by the following expressions:

G(p, T n
Y(p,T) = Yo % (1+ B,e) (2.92)

G, G
Gp.T)=Go- |1+-2. L 471

T — 300 2.9b
G G (T =300 2.9b)
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where B, and n are material parameters, € is the effective plastic strainand n = p/py is
the compression ratio of the solid. The primed parameters, with the subscripts
p and T, are the derivatives of G with respect to pressure and temperature,
respectively, at the reference state (T = 300 K, p = 0).

A third family of constitutive equations is due to Zerilli and Armstrong (1987),
shortly termed the ZA model. Unlike the JC model, which is basically an empirical
one, the constitutive equations of the ZA model are based on dislocation dynamics
theory. They treat face centered (FCC) and cubic centered (BCC) metals differ-
ently, since the rate and temperature sensitivities are very different for these two
families of materials. Their constitutive equations are given by:

Oeqg = 00 + kd=03 + Cpe™ exp[—C3T + C4T'Iné]  For FCC materials (2.10a)

Oeqg = 00 + kd=%3 4 Cy exp[~C3T + C4TIn ] 4+ Cse"  For BCC materials
(2.10b)

where C; ... Cs and n are material parameters. The Hall-Petch relation, between
the strength of a metal and its average grain diameter (d), has been taken into
account.

2.2.3 Failure of Ductile Materials

The models described above treat the changes in the material’s effective strength
through its hardening and softening mechanisms. The characterization of these
changes is important for ductile materials which can withstand large plastic strains
before they fail. Ductile materials fail either under tension or by shear when
a certain threshold strain is reached. The failure of a specimen is defined by the
loss of cohesion in its interior, leading to either its complete disintegration or to
some inner damage which is manifested by the appearance of new free surfaces
inside the specimen. Fracture under tension is the end result of the coalescence
of small voids, forming macroscopic free surfaces inside the specimen. The pro-
cesses of void nucleation and growth in ductile materials, under dynamic loading
conditions, have been investigated by many workers and the review article of
Curran (1982) gives a comprehensive account of this field. Fracture under shear
is usually the end result of the appearance of shear bands in the specimen at the
highest shear locations. These bands are very narrow zones in which voids are
eventually developed, leading to failure by their coalescence when the shear
strains in the bands exceed their limiting values. In contrast, brittle materials fail
within their elastic response regime, with negligible straining, and their main mode
of failure involves microcrack nucleation and coalescence, as discussed in the
next section.

Johnson and Cook (1985) proposed a fracture criterion for ductile materials,
which is especially suited for numerical codes. This criterion is based on the
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maximum strain to fracture (¢¢) of an element, which depends on its strain path,
strain-rate, and temperature. It also depends on the stress triaxiality, which is
defined by 6* = 6,,/Ceq, Where Gy, is the local pressure as calculated by the
average of the three principal stresses in each element. This is a very important
parameter, since the propensity of ductile materials to fail is strongly dependent on
the pressure exerted on them. Compressive stresses tend to prevent failure by closing
voids and microcracks, while tensile stresses enhance failure by further opening
them. The influence of stress triaxiality according to various models is based on the
void growth model of Rice and Tracey (1969). Different stress triaxialities are not
easily achieved in well defined experiments, since it is difficult to accurately define
the real state of a specimen, especially under complex loading situations. One of the
more popular techniques for generating different stress triaxialities, was suggested by
Bridgman (1952), and is based on varying the notch radius in the midsection of a
tensile specimen. This is a relatively simple and straightforward technique which is
easy to analyze through numerical simulations.

The dependence of fracture strain on the stress triaxiality for the structural
steel Weldox 460E, as obtained by Hopperstad et al. (2003), is shown Fig. 2.1.
Note that according to this representation, tensile and compressive stresses
correspond to positive and negative triaxialities, respectively, while pure shear
corresponds to zero triaxiality. Obviously, under compressive stresses the fracture
strain increases markedly with stress triaxiality since high pressures oppose the
opening of voids and cracks. In fact, there are some models according to which
these graphs rise asymptotically to infinite fracture strains at a compressive triaxi-
ality of o* = —1/3.
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Fig. 2.1 The dependence of fracture strain on the stress triaxiality for Weldox 460E steel
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The JC failure model defines a continuous degree of damage (Dy), in the element
under consideration, which is given by:

Aeg,
Dy = ZTQ (2.11a)

where Ag.q is the increment of accumulated equivalent plastic strain during an
integration cycle and &; is the equivalent plastic strain at fracture. This value is
reached when the damage function (Dy) reaches the value of 1.0. The failure strain
is given by the following functional form:

¢ = [D1 + Dy exp(D3o™)] - [1 + Dy ln(é;ﬂ [ + DsTy] (2.11b)

where D, ... Ds are constants which have to be calibrated for each material.

The dynamic failure of metals and alloys under impulsive loading conditions is
usually manifested by gross shearing at material interfaces, as a result of large
velocity gradients at those locations. In many cases these large shear strains appear
in very narrow bands which have been termed adiabatic shear bands (ASB). This
failure mechanism, which is due to thermo-mechanical instabilities, is one of the
more common failure modes under dynamic loading at strain rates of about 10° s~
The narrow shear bands often contain material which experienced a structural phase
transformation, in which case they are referred to as transformation bands. The
phenomenon of adiabatic shear banding received a lot of attention because of their
importance for both military and industry applications. Bai and Dodd (1992)
summarize much of the data and the analysis concerning this phenomenon. Impor-
tant articles concerning the nature of ASBs are those of Staker (1981), Rogers
(1983), Timothy and Hutchings (1985), and Giovanola (1988a, 1988b). Although
many aspects of this issue have been highlighted in these studies, its physical
picture is not complete because, in addition to the instabilities involved, the
shear bands often include microcracks which initiate and grow during band growth.
The work of Giovanola (1988a, 1988b) on 4340 steel under pure shear, highlights
the interconnection between the thermo-mechanical shear instability, which acts at
the first stage of the process, and the subsequent coalescence of microvoids which
leads to fracture within the band at the subsequent stage.

The mechanism proposed by Zener and Hollomon (1944) accounts for the
thermo-mechanical instability which initiates the adiabatic shear bands. The analy-
sis starts by writing the differential for the shear stress, T = 1(T,&,¢), which depends
on the temperature, strain, and strain rate in the solid, in the following way:

ot ot ot
— (= T — — ¢ 2.12
o= (5r) 7+ (5) ot (7). e
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from which one obtains:

dt ot dT ot ot dé
de (ar) et (ae)é,ﬁ <a>d (2120

The instability condition is defined by dt/de = 0 which, for a constant strain rate

experiment, occurs when:
ot ot de\ !
) = (=) (= 2.1
<58)T (3T>s (dT> @19

Since these bands form under adiabatic conditions the generated heat cannot
diffuse out of the bands themselves. Thus, one can write the following equation for
the temperature rise in the bands, due to their plastic deformation:

pC,dT = 1de (2.14a)

where p is the density of the specimen and C, is its specific heat. From this relation
one obtains:

de/dT = pC, /1 (2.14b)

In order to predict the critical shear strain for adiabatic shearing from these
equations, one needs to have the constitutive equation for the material. Assuming
a power law dependence of the shear stress on shear strain, such as T = N-€", the
threshold value of the strain (g;) which marks the onset of thermo-mechanical
instability, is given by:

g, = npC, (g—;) . (2.15)

This relation has been shown to account for the experimental results in many
cases, but not for all of them, as discussed by Bai and Dodd (1992). Some confusion
about the true nature of adiabatic shear bands arises from the fact that in many
cases they appear in specimens with sharp corners, where a geometrically forced
stress concentration is responsible for the shear failure. This issue will be further
discussed in Chap. 4, where we discuss the importance of adiabatic shearing for
plate perforation by blunt-nosed projectiles.

A dynamic stress—strain curve for a specimen of the titanium alloy Ti—-6A14V,
which was compressed by the Kolsky bar in our lab, is shown in Fig. 2.2. One can
clearly see that at a compressive strain of about 20% the disc shaped specimen lost
its load capacity. On the other hand, loading a disc of this titanium alloy in a static
Instron machine resulted in its failure at a strain of about 50%. Thus, the adiabatic
nature of the failure in this alloy is clearly manifested by the much lower value for
the failure strain under dynamic loading, as compared to its value under quasi-static
conditions.
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Fig. 2.2 The dynamic 1600
stress—strain curve for the
Ti—6A1-4V alloy
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2.2.4 Failure of Brittle Materials

The dynamic behavior of brittle materials, such as glass and ceramics, is quite
different and more complicated than that of ductile metals and alloys. First, there is
a large difference between the compressive and tensile strengths of a brittle solid,
which can reach a factor of 10 and more. By definition, brittle solids fail within their
elastic range of response, with practically no plastic straining. Their failure behav-
ior is pressure dependent, with relatively very small (if any) strain rate sensitivity.
Also, the damaged zone in a brittle material can spread from the impact point,
through cracks which run in all directions, affecting the properties of a large volume
in the brittle solid. The different constitutive equations which describe the failure
thresholds of brittle materials are based on the classical work of Griffith (1920,
1924) who analyzed the stresses around an open elliptic flaw in a plate under biaxial
stress loading. Griffith followed the analysis of Inglis (1913) who showed that even
when the far end stresses are compressive, the stresses at the tips of the flaw are
tensile. With increasing stress at the plate boundaries, these tensile stresses reach
a critical value (o), which is a material property, leading to uncontrolled crack
growth. Denoting the two far-end stresses which act on the plate as ¢; and o5,
Griffith derived the following relations expressing the critical conditions for the
brittle failure:

gy = 0y if: 36+, >0 (2.16a)
(61— 02) =800 - (61 +02) if: 303+0, <0 (2.16b)

Note that tensile stresses are positive and compressive stresses are negative in
this formulation. These equations give the failure envelope of a brittle solid in the
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Fig. 2.3 The failure envelope for brittle materials, according to Griffith’s theory

(01,0,) plane, as shown in Fig. 2.3. All the states which are described by points
inside the two curves correspond to intact material, while those outside the curves
correspond to failure situations. Hydrostatic compressions, which correspond to the
third quadrant in this figure, enhance the integrity of the brittle solid, as expected.
According to Griffith’s model the critical tensile strength (G() of the solid is smaller
by a factor of 8 than its compressive strength under uniaxial stress loading. Later
works, by McClintock and Walsh (1962) for example, resulted in a factor of 10
between these two strength thresholds. Other refinements of these models, as well
as data for concrete and ceramics, can be found in Paterson (1978).

The Griffith failure criterion which, in effect, defines the strength of a brittle
solid under compression and tension, is very different from the yield criteria for
ductile materials which were discussed above. Thus, the relation between the
Hugoniot elastic limit (HEL) of a brittle solid and its dynamic strength (Y4) should
be different than the corresponding relation, (1.6), for ductile materials which
follow the von-Mises yield criterion. The relation for brittle solids should be
based on the Griffith criterion, 2.15, and Rosenberg (1993) derived the following
relation by considering the Griffith criterion:

2
Y, = (ll—zv)-HEL (2.16)
—V
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Fig. 2.4 The JH-I model for the constitutive equations of brittle materials

where v is Poisson’s ratio of the ceramic. Thus, according to the Griffith criterion,
the dynamic strength of a brittle specimen is smaller by a factor of (1—2v) than the
strength deduced from (1.6) which is based on the von-Mises yield criterion.

The first numerical simulations for terminal ballistics applications involving
ceramic tiles were performed in the late 1960s by M. L. Wilkins and his colleagues,
as described by Wilkins (1978). This work will be described in the third part of
this book, where we review the work on ceramic armor. The failure criterion
in Wilkins’ work was based on a maximum tensile strength, which was set at
6o = 0.3GPa in his simulations. The first implementation of the Griffith model
itself, for ceramic tiles in terminal ballistics simulations, was by Mescall and Tracy
(1986). Johnson and Holmquist (1990, 1993) further developed the Griffith model
and included a damage function at every time step in the simulation. The various
parameters in the first version of their model (JH-1) are shown in Fig. 2.4, for the
strength and the damage functions of a brittle material. The model distinguishes
between the tensile and compressive strengths which are denoted by T and S,
respectively, in the figure. The compressive strength is linearly dependent on
pressure at the low pressure range, and it reaches an asymptotic value which
depends on the strain rate. The damage function is calculated continuously at
each time step in the simulation, and it lowers the strength of the material to values
which are determined by the curves denoting the strength of the fractured material.
This model will be further discussed in Chap. 6 where we deal with ceramics for
armor applications.

2.2.5 The Spall Failure

It was noted earlier that spalling is a unique failure phenomenon, which takes place
under dynamic conditions when shock waves which are reflecting from free
surfaces as release waves, induce high tensions in the solid. If the amplitude of
these tensile waves is high enough, the material fails and a spall is created near its
free surface. The relevance of this mode of failure for terminal ballistics can be seen
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Fig. 2.5 Spall failure in an
aluminum plate impacted
by a glass sphere

in sectioned targets, which have been impacted by relatively blunt projectiles at
high impact velocities. For example, the spall in an annealed 1100 aluminum plate
impacted by a glass sphere, from the work of Horz et al. (1994), is clearly seen
Fig. 2.5. The diameter of the sphere (3.18 mm) was about a quarter of the plate
thickness, and its impact velocity was 6.0 km/s.

The study of spall failure in solids has been the focus of a large amount of
research for over 50 years. The early models assigned a threshold tensile strength to
the specimen, which was calibrated by one-dimensional shock wave experiments,
as discussed in Chap. 1. Subsequent developments showed that even under these
simple conditions the spall process is more complicated, and that its time depen-
dence should be taken into account, as was noted by Tuler and Butcher (1968).
Many models were developed in order to account for this type of failure and the
article of Curran (1982) describes those which are based on the nucleation of
defects and their growth (the so called NAG models). The time dependence of
the spall process leads to scaling effects which were the focus of an intense research
by Russian researchers, as summarized by Ogorodnikov et al. (1999). The depen-
dence of the spall failure on the tensile impulse, rather than on a threshold stress,
has been highlighted by the work of Gray et al. (2007). They showed that a square
shaped tensile pulse and a triangular shaped pulse can cause the same amount of
incipient spall if they induce a similar stress-time impulse at the spall plane in the
specimen. Thus, according to Gray et al. (2007), the tensile impulse is the important
factor for the spall phenomenon, rather than the amplitude of the tensile wave.

Grady (1988) proposed energy balance considerations to establish the loading
conditions at which spall occurs. This approach accounts for the transition between
brittle and ductile spall failures, which has been observed for several materials
when the loading conditions are changed. As an example, consider the sectioned
6061-T6 aluminum targets from the plate-impact experiments of Christman et al.
(1971), as shown in Fig. 2.6. A marked difference in the void shape is clearly seen in
these plates, which were subject to tensile stresses of different durations and rates.
The round shaped voids, in the specimen at the left side, suggest a ductile spall
mechanism for the shorter pulse duration (higher rate). On the other hand, a brittle
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Fig. 2.6 Different void shapes in aluminum alloy plates subjected to tensile pulses of different
durations

spall is evident in the cross section of the specimen on the right hand side, which
was subjected to a tensile pulse of a longer duration (and lower rate). The different
loading rates in the two experiments resulted in from the different thicknesses of the
impactor and the target in these experiments. Note that in both cases the specimens
are only partially spalled, a phenomenon which is termed “incipient spall”. A full
spall process is characterized by the complete coalescent of the voids, leading to a
clear opening inside the specimen, as shown in Fig. 2.5.

The analysis of Grady (1988) is based on macroscopic material properties, such
as the fracture toughness and the flow stress of the material, resulting in a predictive
tool for the occurrence of spall under given loading conditions. This analysis leads
to the following relations between the spall strengths for both ductile and brittle
materials, and their relevant properties and loading conditions:

Poan = (3p Cok28)'”> For brittle spall (2.17a)

Popar = (2p CoYey)'”> For ductile spall (2.17b)

where p and C, are the specimen’s density and sound speed, respectively, Y is its
flow stress and K. is its fracture toughness. The strain rate () in the experiment is
important for the brittle fracture, while the strain to failure (gf) plays an important
role for the ductile failure mode.

Rosenberg (1993) analyzed the spall failure in brittle materials through the
Griffith failure model and derived the following relation between the spall strength
and the HEL:

(1 —2v)?

FEDR HEL (2.18)

Ospall =

where v is the Poisson ratio of the solid. This expression results in a factors of 15-25
between the HEL and the spall strength of brittle materials with Poisson’s ratios in
the range of v = 0.15-0.25. Such factors are often measured for strong ceramics
having spall strengths of 0.3—0.6GPa and HEL values in the range of 6.0-15.0 GPa.
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A rather simple model for the spall strength of ductile materials was proposed by
Rosenberg (1987). This model is based on the cavity expansion analysis of Bishop
et al. (1945) for the minimal pressure which has to be applied on the walls of a small
cavity, inside an elasto-plastic solid, in order to expand its volume. The cavity
expansion process and its relevance to penetration mechanics will be discussed in
Chap. 3. Assuming that spall is initiated by a process which is similar to the cavity
expansion process, Rosenberg (1987) derived the following expression for the spall
strength of ductile solids:

2Y E
Ospall = 3 |:2 +1In (m)] (2.19)

where E and Y are the Young modulus and strength of the solid, respectively. The
predicted spall strengths of various materials, as calculated by this expression, were
found to be close to their corresponding experimental results. For example, this
expression results in: o,y = 1.7, 3.6 and 4.6 GPa, for an aluminum alloy with
strength of Y = 0.4 GPa, steel with Y = 0.8 GPa and the titanium alloy Ti/6Al/4V
with strength of Y = 1.2 GPa, respectively. These values are very close to the
experimentally derived spall strengths of these materials.
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