
Chapter 2

Material Models for Numerical Simulations

2.1 General Description

Numerical simulations of high velocity impact events are performed with large

computer codes called hydrocodes, because their early use was for high pressure

problems in which materials were treated as fluids. These codes can handle

impulsive loadings which include shock waves with extremely high pressures

and short rise times, as well as high temperatures and large deformations. Several

review articles about hydrocodes and their use have been published over the past

30 years. As far as terminal ballistics is concerned, the reviews by Anderson (1987)

and by Zukas (1990) are the most comprehensive and informative. The present

chapter highlights some of the important issues concerning these codes for terminal

ballistics studies. We follow Anderson’s statement that “hydrocodes are the best

instrumented experiment”, since they can (and should) be used for sensitivity

studies in terminal ballistics. These studies highlight the role of each parameter

in the investigated process, and the physics behind the process is unveiled. Through

the different issues presented in this book we shall demonstrate the construction

and validation of analytical models with such sensitivity studies. As an example,

consider the difficulty to determine experimentally the dependence of a projectile’s

penetration depth on the strength of the target. Any experimental attempt to vary

only the strength of a target, within a large range of values, will result in some

changes in its other properties as well. On the other hand, a series of simulations

where only the strength of the target is varied systematically is easy to perform and

it can offer the insight for this issue. Another important advantage of hydrocodes

is that they can give information about events which are beyond any laboratory’s

performance. For example, the impact of meteors at velocities of 20–40 km/s,

cannot be studied in the laboratory but it can be easily investigated with these

codes.

Basically, the hydrocode is an efficient and accurate scheme for solving the set

of conservation equations for mass, momentum, and energy under the initial and

boundary conditions which characterize the physical event. In addition to these
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equations and problem constraints, there are two sets of data which have to be

specified for all the materials involved. These are the equation of state of the

material and its constitutive relations, which were discussed briefly in Chap. 1.

The equations to be solved describe the behavior of a continuum, but the code is

solving them by discretization techniques for both space and time, through finite

difference or finite element forms. With the finite difference technique, a grid is

generated to represent material points for the given geometry of the participating

bodies. The continuous spatial derivatives in the equations, like df/dx, are replaced

by difference equations like Df/Dx, where the differences Dx are related to the

cell dimensions in the grid. The same ideas are applied to the differentiation with

respect with time. Values of the parameters at a certain time (t) are calculated by

their values at an earlier time (t � Dt) and their corresponding time derivatives.

With the finite element technique the actual differential equations are solved in

small interconnected sub-regions (elements). Nodes are assigned to elements and an

interpolation function is used to represent the variation of the variable over the

element. Anderson (1987) discusses the four properties which have to be carefully

considered in order to optimize these calculations, namely: consistency, accuracy,

stability and efficiency.

The grids themselves are either Eulerian or Lagrangian and each type has its own

merits and disadvantages. The Eulerian description has a spatial nature whereby the

grid points and, consequently, the cell boundaries remain spatially fixed with time,

while material can flow through the mesh. The net flow of material into this fixed

cell volume determines its mass content, pressure, velocity etc. On the other hand,

with the Lagrangian scheme, the grid is attached to the material and moves with it.

With this scheme the grid points follow material paths, so it is more appropriate for

cases where the material elements are less distorted. The Eulerian scheme is more

useful for heavily distorted materials. An optimal combination for a situation where

a rigid projectile is penetrating a soft target is obtained by using the Lagrange

scheme for the projectile and the Euler scheme for the target.

One of the more important issues which have to be carefully considered is the

issue of mesh size. Different results are obtained if the number of cells per unit

length is not adequate. For example, it was found that for penetration studies with

eroding long rods, the number of cells on the rod’s radius should be at least eleven.

The same density of cells should be kept in the target, at least for several projectile

radii around its symmetry axis. In order to save computing time, the cell size at

farther zones can be gradually increased according to their distance from the

symmetry axis. The mesh cell size depends on the specific problem. As an example,

a small cell size should be considered in cases where there is a fracture in the

projectile or target. It is recommended that while preparing the code for its final

runs, the numerical convergence with respect to mesh cell size should be checked.

Another important issue, especially when material elements are expected to deform

considerably, is the issue of erosion with Lagrangian codes. At large deformations

the code may run into trouble when treating heavily deformed elements. The use of

the erosion threshold condition is then necessary in order to eliminate elements at
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a predetermined value of the plastic or geometric deformation. The erosion should

be monitored constantly, and when it is too high one should replace the Lagrangian

with an Eulerian code.

2.2 Material Properties

As was stated in Chap. 1, the relevant material properties for terminal ballistics

belong either to their equations of state (EOS), which account for material com-

pression at high pressures and temperatures, or to their constitutive relations, for the

strength and failure characteristics. This chapter describes some of the equations of

state and constitutive relations which are implemented in hydrocodes. These codes

include a large data bank, which is continually updated, for the relevant parameters

of the EOS and the constitutive properties for many materials.

2.2.1 The Equation of State

The equation of state (EOS) is a relation between the density of the material and

the pressure and temperature which characterize its state. Usually it is given as

p ¼ p(r,T) or p ¼ p(r,E), where E is the internal energy of the solid. One of the

more useful EOS is the Mie-Gruneisen equation, given by:

p ¼ pHðrÞ þ Gr E� EHð Þ (2.1a)

The index H denotes the values of the parameters on the Hugoniot curve, as

given by (1.4), and G is the Gruneisen parameter. The Mie-Gruneisen EOS is easy

to apply for materials which have well-established Hugoniot curves in terms of

pH ¼ f(r) and EH ¼ g(r). This EOS maps the off-Hugoniot states of the solid

which account for its possible states after shock loading. There are several ways to

present the Gruneisen parameter and one of them is through:

G ¼ Vs
@P

@E

� �
Vs

(2.1b)

where Vs ¼ 1/r is the specific volume of the solid. It turns out that G ¼ 2.0 for

many solids at ambient conditions. Moreover, G is assumed to be independent on

temperature and that G∙r is constant for a given solid within a large range of

pressures. Rosenberg and Partom (1982) demonstrated experimentally that this

assumption holds for Plexiglas, by observing that a somewhat different definition

of G can be used in conjunction with their measurements. This definition is given by:
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G ¼ � @lnT

@lnVs

� �
S

(2.1c)

This partial derivative is defined along the isentropic compression curve of the

solid. Rosenberg and Partom (1982) performed direct measurements of the temper-

ature rise and the volumetric strains of isentropically compressed Plexiglas, by

using in-situ temperature and strain gauges. The isentropic loading of the specimen

was achieved by a series of low amplitude shock reverberations in the specimen,

and the gauges monitored its temperature and specific volume (strain) at each

reverberation. Their main conclusion was that the product of G∙r for Plexiglas is

indeed constant within the range of their experiments.

Another EOS which is included in the libraries of most hydrocodes, is based on

the Murnaghan equation for the isentropic compression of the solid, rather than on

its Hugoniot, as follows:

p ¼ pSðrÞ þ gmr E� ESð Þ (2.2)

where gm is the pressure derivative of the solid’s bulk modulus. The Murnaghan

EOS for the isentropic compression of the solid is given by:

pSðrÞ ¼ K

gm

r
r0

� �gm
� 1

� �
(2.3)

where K is the bulk modulus of the solid. As was shown by Ruoff (1967), the value

of gm can be obtained by the relation gm ¼ 4S � 1, where S is the slope of the

linear relation between the shock and particle velocities in (1.5). Using a typical

value of S ¼ 1.5, the value for gm should be about 5.0, which is in accord with

measured pressure derivatives of the bulk moduli for many solids.

2.2.2 The Constitutive Relations

The inclusion of the elastio-plastic behavior of solids into hydrocodes dates back to

the early work of Wilkins (1964). His basic idea was to treat the elements of the

stress tensor (sij) as composed of two parts, the hydrostatic part (p) which is derived

by the equation of state, and the deviatoric part (sij) which represents the geometric

distortion of the material. Thus, according to this convention, the stress components

are written as:

sij ¼ p � dij þ sij (2.4a)

The rate of change in the deviatoric stresses is related to the strain rates through:

_sij ¼ 2G_eij (2.4b)
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where G is the shear modulus of the solid. These strain rates are decomposed to

their elastic and plastic parts as follows:

_eij ¼ _eeij þ _e pij (2.4c)

Instead of working with tensors it is easier to define the equivalent (or effective)

stress and strain measures, seq and eeq, defined by:

seq ¼
ffiffiffiffiffiffiffiffiffiffiffi
3sijsij
2

r
(2.5a)

eeq ¼
ffiffiffiffiffiffiffiffiffiffiffi
2eijeij
3

r
(2.5b)

with which the constitutive relations are written in the form: seq ¼ s (eeq; _e;T).
Wilkins (1964) showed that it is easier to work within the stress space where the

axes are along the principal stresses of the problem, denoted by s1, s2, and s3. The

diagonal line in this three dimensional stress space, for which s1 ¼ s2 ¼ s3,

denotes states on the hydrostatic pressure loading of the material. The equivalent

stress is a measure for the distance of a given point in this space from the diagonal

line. The various yield criteria define the maximum permissible value of this

distance. Thus, in terms of the principal stresses the border between elastic and

plastic states is a cylindrically shaped envelope around the diagonal line which

corresponds to the hydrostatic loading conditions. All the states inside this yield

envelope correspond to the solid’s elastic range, while those on the envelope

correspond to its plastic (yielded) states. By definition, the states which correspond

to points outside this yield envelope are not permissible, and Wilkins (1964)

suggested the procedure by which these states should be brought to the yield

envelope in numerical simulations.

The equation for the yield surface in the principal stress space is given by:

s1 � s2ð Þ2 þ s2 � s3ð Þ2 þ s3 � s1ð Þ2 ¼ 2Y2 (2.6a)

or, in its deviatoric form:

s21 þ s22 þ s23 ¼ 2
3
Y2 (2.6b)

The various yield criteria are, in fact, imposing a maximum value for this

equivalent stress which has to be specified in the code. For example, the well-

known von-Mises criterion states that the equivalent stress of the material cannot be

higher than its yield strength under simple tension, seq � Y0. In terms of the yield

surface in the stress space, this criterion is represented by the surface of a cylinder

with a radius of Y0, which surrounds the main diagonal (s1 ¼ s2 ¼ s3). The von-

Mises criterion accounts for the yielding behavior of many metals and alloys which
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exhibit elastic-perfectly-plastic characteristics. This is true for high strength

materials, such as armor steels and the strong aluminum alloys. Softer metals

often show an appreciable strain hardening behavior where the strength is a strong

function of the strain. The stainless steel 304L is an example for a significantly

hardening material, since its strength increases by a factor of 5 under plastic strains

of 50%. On the other hand, steels which are referred to as rolled homogenous armor,

show an almost ideal elastic-plastic behavior with no strain-hardening. One should

note that the interaction between a penetrating projectile and a target is always

accompanied by large strains in both materials. Thus, it is the stress at large strains,

the so-called flow stress, which is the important strength property of the material for

terminal ballistics. The relevant strain rates for impacts at ordnance velocities (up to

about 2.0 km/s) are 103–104 s�1. These are the rates covered by the Kolsky bar

system which is the main reason for its extensive use. One has to consider the fact

that the strength of most solids increases at high confining pressures, while high

temperatures reduce their strength (thermal-softening). Thus, a complete constitu-

tive relation for the strength of the solid should include all the data concerning the

effects discussed here. Some of these constitutive models, which are implemented

in hydrocodes, are described next.

The constitutive equation proposed by Johnson and Cook (1983) is one of the

more popular in the field of terminal ballistics. This equation, which is referred to

as the JC model, includes the effects of plastic strain, strain rate, pressure, and

temperature on the material strength, as follows:

Y ¼ A1 þ A2enp
h i

� 1þ A3 ln _e�p
� �h i

� 1� Tm
H

	 

(2.7)

where A1, A2, A3, n and m, are material constants. ep is the equivalent plastic strain,
and _ep� ¼ _ep=_e0, is the normalized plastic strain rate with _e0 ¼ 1:0 as the reference

rate. The homologous temperature (TH) is defined by the room and melting

temperatures (Troom and Tm), according to:

TH ¼ T � Troom
Tmelt � Troom

(2.8)

Another material model which is frequently used for high pressure impacts is

the rate-independent model of Steinberg (1987). According to this model the

changes in the flow stress (Y), with high pressures and temperatures, are equal to

the corresponding changes in the shear modulus (G) of the material. The relations

for Y(p,T) and G(p,T) are given by the following expressions:

Yðp; TÞ ¼ Y0 � G p; Tð Þ
G0

1þ bpe
� �n

(2.9a)

Gðp; TÞ ¼ G0 � 1þ G
0
p

G0

� p

�1 3=
þ G

0
T

G0

T � 300ð Þ
" #

(2.9b)
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where bp and n arematerial parameters, e is the effective plastic strain andZ ¼ r/r0 is
the compression ratio of the solid. The primed parameters, with the subscripts

p and T, are the derivatives of G with respect to pressure and temperature,

respectively, at the reference state (T ¼ 300 K, p ¼ 0).

A third family of constitutive equations is due to Zerilli and Armstrong (1987),

shortly termed the ZA model. Unlike the JC model, which is basically an empirical

one, the constitutive equations of the ZA model are based on dislocation dynamics

theory. They treat face centered (FCC) and cubic centered (BCC) metals differ-

ently, since the rate and temperature sensitivities are very different for these two

families of materials. Their constitutive equations are given by:

seq ¼ s0 þ kd�0:5 þ C2e0:5 exp �C3T þ C4T ln _e½ � For FCC materials (2.10a)

seq ¼ s0 þ kd�0:5 þ C1 exp �C3T þ C4T ln _e½ � þ C5en For BCC materials

(2.10b)

where C1 . . . C5 and n are material parameters. The Hall-Petch relation, between

the strength of a metal and its average grain diameter (d), has been taken into

account.

2.2.3 Failure of Ductile Materials

The models described above treat the changes in the material’s effective strength

through its hardening and softening mechanisms. The characterization of these

changes is important for ductile materials which can withstand large plastic strains

before they fail. Ductile materials fail either under tension or by shear when

a certain threshold strain is reached. The failure of a specimen is defined by the

loss of cohesion in its interior, leading to either its complete disintegration or to

some inner damage which is manifested by the appearance of new free surfaces

inside the specimen. Fracture under tension is the end result of the coalescence

of small voids, forming macroscopic free surfaces inside the specimen. The pro-

cesses of void nucleation and growth in ductile materials, under dynamic loading

conditions, have been investigated by many workers and the review article of

Curran (1982) gives a comprehensive account of this field. Fracture under shear

is usually the end result of the appearance of shear bands in the specimen at the

highest shear locations. These bands are very narrow zones in which voids are

eventually developed, leading to failure by their coalescence when the shear

strains in the bands exceed their limiting values. In contrast, brittle materials fail

within their elastic response regime, with negligible straining, and their main mode

of failure involves microcrack nucleation and coalescence, as discussed in the

next section.

Johnson and Cook (1985) proposed a fracture criterion for ductile materials,

which is especially suited for numerical codes. This criterion is based on the
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maximum strain to fracture (ef) of an element, which depends on its strain path,

strain-rate, and temperature. It also depends on the stress triaxiality, which is

defined by s* ¼ sm/seq, where sm is the local pressure as calculated by the

average of the three principal stresses in each element. This is a very important

parameter, since the propensity of ductile materials to fail is strongly dependent on

the pressure exerted on them. Compressive stresses tend to prevent failure by closing

voids and microcracks, while tensile stresses enhance failure by further opening

them. The influence of stress triaxiality according to various models is based on the

void growth model of Rice and Tracey (1969). Different stress triaxialities are not

easily achieved in well defined experiments, since it is difficult to accurately define

the real state of a specimen, especially under complex loading situations. One of the

more popular techniques for generating different stress triaxialities, was suggested by

Bridgman (1952), and is based on varying the notch radius in the midsection of a

tensile specimen. This is a relatively simple and straightforward technique which is

easy to analyze through numerical simulations.

The dependence of fracture strain on the stress triaxiality for the structural

steel Weldox 460E, as obtained by Hopperstad et al. (2003), is shown Fig. 2.1.

Note that according to this representation, tensile and compressive stresses

correspond to positive and negative triaxialities, respectively, while pure shear

corresponds to zero triaxiality. Obviously, under compressive stresses the fracture

strain increases markedly with stress triaxiality since high pressures oppose the

opening of voids and cracks. In fact, there are some models according to which

these graphs rise asymptotically to infinite fracture strains at a compressive triaxi-

ality of s* ¼ �1/3.
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Fig. 2.1 The dependence of fracture strain on the stress triaxiality for Weldox 460E steel
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The JC failure model defines a continuous degree of damage (Df), in the element

under consideration, which is given by:

Df ¼
XDeeq

ef
(2.11a)

where Deeq is the increment of accumulated equivalent plastic strain during an

integration cycle and ef is the equivalent plastic strain at fracture. This value is

reached when the damage function (Df) reaches the value of 1.0. The failure strain

is given by the following functional form:

ef ¼ D1 þ D2 expðD3s�Þ½ � � 1þ D4 ln _e�p
� �h i

� 1þ D5TH½ � (2.11b)

where D1 . . . D5 are constants which have to be calibrated for each material.

The dynamic failure of metals and alloys under impulsive loading conditions is

usually manifested by gross shearing at material interfaces, as a result of large

velocity gradients at those locations. In many cases these large shear strains appear

in very narrow bands which have been termed adiabatic shear bands (ASB). This

failure mechanism, which is due to thermo-mechanical instabilities, is one of the

more common failure modes under dynamic loading at strain rates of about 103 s�1.

The narrow shear bands often contain material which experienced a structural phase

transformation, in which case they are referred to as transformation bands. The

phenomenon of adiabatic shear banding received a lot of attention because of their

importance for both military and industry applications. Bai and Dodd (1992)

summarize much of the data and the analysis concerning this phenomenon. Impor-

tant articles concerning the nature of ASBs are those of Staker (1981), Rogers

(1983), Timothy and Hutchings (1985), and Giovanola (1988a, 1988b). Although

many aspects of this issue have been highlighted in these studies, its physical

picture is not complete because, in addition to the instabilities involved, the

shear bands often include microcracks which initiate and grow during band growth.

The work of Giovanola (1988a, 1988b) on 4340 steel under pure shear, highlights

the interconnection between the thermo-mechanical shear instability, which acts at

the first stage of the process, and the subsequent coalescence of microvoids which

leads to fracture within the band at the subsequent stage.

The mechanism proposed by Zener and Hollomon (1944) accounts for the

thermo-mechanical instability which initiates the adiabatic shear bands. The analy-

sis starts by writing the differential for the shear stress, t ¼ t(T,e,_e), which depends
on the temperature, strain, and strain rate in the solid, in the following way:

dt ¼ @t
@T

� �
e;_e
dT þ @t

@e

� �
_e;T
deþ @t

@ _e

� �
e;T
d _e (2.12a)
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from which one obtains:

dt
de

¼ @t
@T

� �
e;_e

dT

de
þ @t

@e

� �
_e;T

þ @t
@ _e

� �
e;T

d _e
de

(2.12b)

The instability condition is defined by dt/de ¼ 0 which, for a constant strain rate

experiment, occurs when:

@t
@e

� �
T

¼ � @t
@T

� �
e

de
dT

� ��1

(2.13)

Since these bands form under adiabatic conditions the generated heat cannot

diffuse out of the bands themselves. Thus, one can write the following equation for

the temperature rise in the bands, due to their plastic deformation:

rCvdT ¼ tde (2.14a)

where r is the density of the specimen and Cv is its specific heat. From this relation

one obtains:

de=dT ¼ rCv=t (2.14b)

In order to predict the critical shear strain for adiabatic shearing from these

equations, one needs to have the constitutive equation for the material. Assuming

a power law dependence of the shear stress on shear strain, such as t ¼ N∙en, the
threshold value of the strain (ei) which marks the onset of thermo-mechanical

instability, is given by:

e
i
¼ nrCv

@t
@T

� �
e;_e

(2.15)

This relation has been shown to account for the experimental results in many

cases, but not for all of them, as discussed by Bai and Dodd (1992). Some confusion

about the true nature of adiabatic shear bands arises from the fact that in many

cases they appear in specimens with sharp corners, where a geometrically forced

stress concentration is responsible for the shear failure. This issue will be further

discussed in Chap. 4, where we discuss the importance of adiabatic shearing for

plate perforation by blunt-nosed projectiles.

A dynamic stress–strain curve for a specimen of the titanium alloy Ti–6Al–4V,

which was compressed by the Kolsky bar in our lab, is shown in Fig. 2.2. One can

clearly see that at a compressive strain of about 20% the disc shaped specimen lost

its load capacity. On the other hand, loading a disc of this titanium alloy in a static

Instron machine resulted in its failure at a strain of about 50%. Thus, the adiabatic

nature of the failure in this alloy is clearly manifested by the much lower value for

the failure strain under dynamic loading, as compared to its value under quasi-static

conditions.
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2.2.4 Failure of Brittle Materials

The dynamic behavior of brittle materials, such as glass and ceramics, is quite

different and more complicated than that of ductile metals and alloys. First, there is

a large difference between the compressive and tensile strengths of a brittle solid,

which can reach a factor of 10 and more. By definition, brittle solids fail within their

elastic range of response, with practically no plastic straining. Their failure behav-

ior is pressure dependent, with relatively very small (if any) strain rate sensitivity.

Also, the damaged zone in a brittle material can spread from the impact point,

through cracks which run in all directions, affecting the properties of a large volume

in the brittle solid. The different constitutive equations which describe the failure

thresholds of brittle materials are based on the classical work of Griffith (1920,

1924) who analyzed the stresses around an open elliptic flaw in a plate under biaxial

stress loading. Griffith followed the analysis of Inglis (1913) who showed that even

when the far end stresses are compressive, the stresses at the tips of the flaw are

tensile. With increasing stress at the plate boundaries, these tensile stresses reach

a critical value (s0), which is a material property, leading to uncontrolled crack

growth. Denoting the two far-end stresses which act on the plate as s1 and s2,

Griffith derived the following relations expressing the critical conditions for the

brittle failure:

s2 ¼ s0 if: 3s2 þ s1 > 0 (2.16a)

s1 � s2ð Þ2 ¼ 8s0 � s1 þ s2ð Þ if: 3s2 þ s1 < 0 (2.16b)

Note that tensile stresses are positive and compressive stresses are negative in

this formulation. These equations give the failure envelope of a brittle solid in the
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Fig. 2.2 The dynamic

stress–strain curve for the

Ti–6Al–4V alloy
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(s1,s2) plane, as shown in Fig. 2.3. All the states which are described by points

inside the two curves correspond to intact material, while those outside the curves

correspond to failure situations. Hydrostatic compressions, which correspond to the

third quadrant in this figure, enhance the integrity of the brittle solid, as expected.

According to Griffith’s model the critical tensile strength (s0) of the solid is smaller

by a factor of 8 than its compressive strength under uniaxial stress loading. Later

works, by McClintock and Walsh (1962) for example, resulted in a factor of 10

between these two strength thresholds. Other refinements of these models, as well

as data for concrete and ceramics, can be found in Paterson (1978).

The Griffith failure criterion which, in effect, defines the strength of a brittle

solid under compression and tension, is very different from the yield criteria for

ductile materials which were discussed above. Thus, the relation between the

Hugoniot elastic limit (HEL) of a brittle solid and its dynamic strength (Yd) should

be different than the corresponding relation, (1.6), for ductile materials which

follow the von-Mises yield criterion. The relation for brittle solids should be

based on the Griffith criterion, 2.15, and Rosenberg (1993) derived the following

relation by considering the Griffith criterion:

Yd ¼ 1� 2nð Þ2
1� n

� HEL (2.16)

Fig. 2.3 The failure envelope for brittle materials, according to Griffith’s theory
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where n is Poisson’s ratio of the ceramic. Thus, according to the Griffith criterion,

the dynamic strength of a brittle specimen is smaller by a factor of (1�2n) than the

strength deduced from (1.6) which is based on the von-Mises yield criterion.

The first numerical simulations for terminal ballistics applications involving

ceramic tiles were performed in the late 1960s by M. L. Wilkins and his colleagues,

as described by Wilkins (1978). This work will be described in the third part of

this book, where we review the work on ceramic armor. The failure criterion

in Wilkins’ work was based on a maximum tensile strength, which was set at

s0 ¼ 0.3GPa in his simulations. The first implementation of the Griffith model

itself, for ceramic tiles in terminal ballistics simulations, was by Mescall and Tracy

(1986). Johnson and Holmquist (1990, 1993) further developed the Griffith model

and included a damage function at every time step in the simulation. The various

parameters in the first version of their model (JH-1) are shown in Fig. 2.4, for the

strength and the damage functions of a brittle material. The model distinguishes

between the tensile and compressive strengths which are denoted by T and S,

respectively, in the figure. The compressive strength is linearly dependent on

pressure at the low pressure range, and it reaches an asymptotic value which

depends on the strain rate. The damage function is calculated continuously at

each time step in the simulation, and it lowers the strength of the material to values

which are determined by the curves denoting the strength of the fractured material.

This model will be further discussed in Chap. 6 where we deal with ceramics for

armor applications.

2.2.5 The Spall Failure

It was noted earlier that spalling is a unique failure phenomenon, which takes place

under dynamic conditions when shock waves which are reflecting from free

surfaces as release waves, induce high tensions in the solid. If the amplitude of

these tensile waves is high enough, the material fails and a spall is created near its

free surface. The relevance of this mode of failure for terminal ballistics can be seen

Fig. 2.4 The JH-I model for the constitutive equations of brittle materials
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in sectioned targets, which have been impacted by relatively blunt projectiles at

high impact velocities. For example, the spall in an annealed 1100 aluminum plate

impacted by a glass sphere, from the work of Horz et al. (1994), is clearly seen

Fig. 2.5. The diameter of the sphere (3.18 mm) was about a quarter of the plate

thickness, and its impact velocity was 6.0 km/s.

The study of spall failure in solids has been the focus of a large amount of

research for over 50 years. The early models assigned a threshold tensile strength to

the specimen, which was calibrated by one-dimensional shock wave experiments,

as discussed in Chap. 1. Subsequent developments showed that even under these

simple conditions the spall process is more complicated, and that its time depen-

dence should be taken into account, as was noted by Tuler and Butcher (1968).

Many models were developed in order to account for this type of failure and the

article of Curran (1982) describes those which are based on the nucleation of

defects and their growth (the so called NAG models). The time dependence of

the spall process leads to scaling effects which were the focus of an intense research

by Russian researchers, as summarized by Ogorodnikov et al. (1999). The depen-

dence of the spall failure on the tensile impulse, rather than on a threshold stress,

has been highlighted by the work of Gray et al. (2007). They showed that a square

shaped tensile pulse and a triangular shaped pulse can cause the same amount of

incipient spall if they induce a similar stress-time impulse at the spall plane in the

specimen. Thus, according to Gray et al. (2007), the tensile impulse is the important

factor for the spall phenomenon, rather than the amplitude of the tensile wave.

Grady (1988) proposed energy balance considerations to establish the loading

conditions at which spall occurs. This approach accounts for the transition between

brittle and ductile spall failures, which has been observed for several materials

when the loading conditions are changed. As an example, consider the sectioned

6061-T6 aluminum targets from the plate-impact experiments of Christman et al.

(1971), as shown in Fig. 2.6. A marked difference in the void shape is clearly seen in

these plates, which were subject to tensile stresses of different durations and rates.

The round shaped voids, in the specimen at the left side, suggest a ductile spall

mechanism for the shorter pulse duration (higher rate). On the other hand, a brittle

Fig. 2.5 Spall failure in an

aluminum plate impacted

by a glass sphere
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spall is evident in the cross section of the specimen on the right hand side, which

was subjected to a tensile pulse of a longer duration (and lower rate). The different

loading rates in the two experiments resulted in from the different thicknesses of the

impactor and the target in these experiments. Note that in both cases the specimens

are only partially spalled, a phenomenon which is termed “incipient spall”. A full

spall process is characterized by the complete coalescent of the voids, leading to a

clear opening inside the specimen, as shown in Fig. 2.5.

The analysis of Grady (1988) is based on macroscopic material properties, such

as the fracture toughness and the flow stress of the material, resulting in a predictive

tool for the occurrence of spall under given loading conditions. This analysis leads

to the following relations between the spall strengths for both ductile and brittle

materials, and their relevant properties and loading conditions:

Pspall ¼ 3r C0K
2
c _e

� �1 3=
For brittle spall (2.17a)

Pspall ¼ 2r C0Yef
� �1 2=

For ductile spall (2.17b)

where r and C0 are the specimen’s density and sound speed, respectively, Y is its

flow stress and Kc is its fracture toughness. The strain rate (_e) in the experiment is

important for the brittle fracture, while the strain to failure (ef) plays an important

role for the ductile failure mode.

Rosenberg (1993) analyzed the spall failure in brittle materials through the

Griffith failure model and derived the following relation between the spall strength

and the HEL:

sspall ¼ 1� 2uð Þ2
8 1� uð Þ � HEL (2.18)

where n is the Poisson ratio of the solid. This expression results in a factors of 15–25
between the HEL and the spall strength of brittle materials with Poisson’s ratios in

the range of n ¼ 0.15–0.25. Such factors are often measured for strong ceramics

having spall strengths of 0.3–0.6GPa and HEL values in the range of 6.0–15.0 GPa.

Impactor - 1.55 mm
Target - 3.02 mm

V0=232 m/sec

Impactor - 0.25 mm
Target - 0.48 mm
V0 = 345 m/sec

Fig. 2.6 Different void shapes in aluminum alloy plates subjected to tensile pulses of different

durations
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A rather simple model for the spall strength of ductile materials was proposed by

Rosenberg (1987). This model is based on the cavity expansion analysis of Bishop

et al. (1945) for the minimal pressure which has to be applied on the walls of a small

cavity, inside an elasto-plastic solid, in order to expand its volume. The cavity

expansion process and its relevance to penetration mechanics will be discussed in

Chap. 3. Assuming that spall is initiated by a process which is similar to the cavity

expansion process, Rosenberg (1987) derived the following expression for the spall

strength of ductile solids:

sspall ¼ 2Y

3
2þ ln

E

3 1� uð ÞY
� �� �

(2.19)

where E and Y are the Young modulus and strength of the solid, respectively. The

predicted spall strengths of various materials, as calculated by this expression, were

found to be close to their corresponding experimental results. For example, this

expression results in: sspall ¼ 1.7, 3.6 and 4.6 GPa, for an aluminum alloy with

strength of Y ¼ 0.4 GPa, steel with Y ¼ 0.8 GPa and the titanium alloy Ti/6Al/4V

with strength of Y ¼ 1.2 GPa, respectively. These values are very close to the

experimentally derived spall strengths of these materials.
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