
Chapter 2
Landslide Susceptibility Mapping Using
a Spatial Multi Criteria Evaluation Model
at Haraz Watershed, Iran

H. R. Pourghasemi, Biswajeet Pradhan, Candan Gokceoglu
and K. Deylami Moezzi

Abstract The purpose of this study is to prepare landslide susceptibility map using a
spatialmulti criteria evaluation approach (SMCE) in a landslide-prone area (Haraz) in
Iran. In the first stage, landslide locations were identified in the study area from
interpretation ofaerial photographs, and field surveys. In the second stage, twelve data
layers were used as landslide conditioning factors for susceptibility mapping. These
factors are slope, aspect, altitude, lithology, land use, distance from rivers, distance
from roads, distance from faults, topographic wetness index, stream power index,
stream transport index, and plan curvature. Next, landslide-susceptible areas were
analyzed using the SMCE approach and mapped using landslide conditioning factors.
For verification, the results of the analyses was compared with the field-verified
landslide locations. Additionally, the receiver operating characteristics (ROC) curves
for all landslide susceptibility models were drawn and the area under curve values was
calculated. Landslide locations were used to validate results of the landslide suscep-
tibility map generated using the SMCE approach and the verification results showed a
76.84% accuracy. According to the results of the AUC evaluation, the produced map
has exhibited good performance.
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2.1 Introduction

Undesired effects on human life and economic activity resulting from landslides
are observed throughout the world. During the 1990’s, nearly nine percent of
worldwide natural disasters constitutes of landslides (Gokceoglu et al. 2005).
According to Schuster and Fleming (1986), in many countries, the economic losses
and causalities due to landslides are greater than commonly recognized and gen-
erate a yearly loss of property larger than that from any other natural disaster,
including earthquakes, floods and windstorms.

Over the last decade, it is possible to find many studies on landslide suscep-
tibility assessment. The basic concept was first introduced by Radbruch (1970),
Dobrovolny (1971), and Brabb and Pampeyan (1972) as the spatial distribution of
factors related to the instability processes in order to determine zones of landslide-
prone areas without any temporal implication. Guzzetti et al. (1999) summarized
most of the landslide susceptibility mapping studies. More recently, probabilistic
models have been proposed (Dai and Lee 2001; Gokceoglu et al. 2005; Akgun and
Bulut 2007; Akgun et al. 2008; Lee and Pradhan 2007; Oh and Lee 2009). The
logistic regression model has also been employed for landslide susceptibility
mapping (Nefeslioglu et al. 2008; Pradhan 2010a; Chauhan et al. 2010; Bai et al.
2010; Akgun 2011). Shou and Wang (2003) and Zhou et al. (2003) have used the
geotechnical and factor of safety parameter models to investigate the slope failure
of the studied areas. Data mining using fuzzy logic, artificial neural network and
decision tree models have also been applied in Geographical Information Systems
(GIS) as a new landslide susceptibility assessment approach (e.g. Ercanoglu and
Gokceoglu 2002, 2004; Ermini et al. 2005; Lee et al. 2006; Melchiorre et al. 2006;
Castellanos and VanWesten 2007; Kanungo et al. 2006; Wang 2008; Tangestani
2009; Wan 2009; Saito et al. 2009; Pradhan 2010a, b, c, 2011; Pradhan et al. 2010;
Pradhan and Buchroithner 2010, Pradhan and Lee 2009, 2010a, b, c; Akgun and
Turk 2010; Nefeslioglu et al. 2010; Yeon et al. 2010; Sezer et al. 2011; Akgun
2011), multicriteria decision analysis (MCDA) approach (Ayalew et al. 2005;
Komac 2006; Akgun and Balut 2007; Yalcin 2008; Akgun and Turk 2010; Akgun
2011). In this study, a GIS based spatial multi criteria model was used for landslide
susceptibility mapping at Haraz watershed.

2.2 Study Area

The study area is located in the northern part of Iran, which is one of the most
landslide prone areas in Iran (Pourghasemi 2008). The watershed area centered
between the longitudes of 52� 060 020 E to 52� 180 1300 E, and latitudes of 35� 490

0500 N to 35� 570 3900 N, is mountainous and is located in the Alborz Folded
geological zone (Fig. 2.1). It covers two adjacent 1:50,000 topographic sheets of

24 H. R. Pourghasemi et al.



the Army Geographic Institute of Iran and has an extent of about 114.5 km2. In the
study area, the main river is the Haraz. Based on the data from the Iranian
Meteorological Department, the temperature in the study area varies between
-25�C in winter and 36.5�C in summer. The mean annual rainfall is around
500 mm, while the maximum precipitation falls between November and January
in general. Altitude values in the study area vary between 1200 to 3290 m.asl.

Fig. 2.1 Location of the study area showing Mazandaran province in Iran
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2.3 Methodology

In general, decision analysis uses a set of systematic procedures for analyzing
complex decision problems. The basic strategy is to divide the decision problem
into small, understandable parts, analyze each of them, and integrate these parts in
a logical manner to produce a meaningful solution (Malczewski 1999). To solve
spatial-based problems such as geo-hazards (landslide, erosion, earthquakes) and
site selection, GIS-based spatial multi criteria evaluation (SMCE) have been used.

SMCE is a way of producing policy-relevant information about spatial decision
problems for decision makers. An SMCE problem can be visualized as an eval-
uation table of maps or as a map of evaluation tables, as shown in Fig. 2.2 (Sharifi
and Herwijnen 2003). According to Sharifi and Retsios (2004) if the objective of
the evaluation is a ranking of the alternatives, then the evaluation table of maps has
to be transformed into one final ranking of alternatives. Actually, the function has
to aggregate not only the effects but also the spatial component (Sharifi and
Herwijnen 2003). At times, defining such a function can be highly complicated.
Therefore, it is required to simplify the function by dividing it into at least two
operations. Those operations are: (i) aggregation of the spatial component, and
(ii) aggregation of the criteria. These two operations can be carried out in different
orders as visualized in Fig. 2.3 as Path 1 and Path 2. These two path features
resembles the order of aggregation. If we consider a step wise analysis during the
first path, then the first step is the aggregation across spatial units (spatial analysis
is the principal tool); the second step is the aggregation across criteria (multi
criteria analysis playing the main role). Similarly, in the second path, these steps
are taken in reverse order. In the first case, the effect of one alternative for one
criterion is a map (Sharifi and Retsios 2004; Sharifi and Herwijnen 2003). This
case can be used when evaluating the spatial evaluation problem using the so-
called ‘Path 1’. In the second case, every location has its own zero-dimensional
problem and can best be used when evaluating the spatial problem using the so-
called ‘Path 2’ (Fig. 2.3). For implementing the whole semi-quantitative model the
SMCE module of ILWIS-GIS (integrated land and water information system) was
used (Castellanos, 2008). The SMCE application assists and guides users in doing
multi-criteria evaluation in a spatial manner (ITC 2001). The model is built by
making criteria tree, where the conditioning parameter maps are grouped, stan-
dardized and weighted. The landslide casual parameters are weighted by means of
direct, pair-wise, and rank ordering comparison and the output is a composite
index map (Castellanos and Van Westen 2007). Figure 2.4 presents an overview of
the various components of the landslide susceptibility method.

In this study a pair-wise comparison based weighting was used. This method
assumes that the users comparably evaluate the difference of magnitude among all
unique pairs of factors qualitatively. Pair-wise comparison method was established
by Saaty (1980) in the context of the analytical hierarchy process (AHP). In this
process, the weights are defined by standardizing the eigenvector correlated with
the highest eigenvalue of the ratio matrix. The AHP consists of three main steps;
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1) generating the pair wise comparison matrix, 2) computing the weights of the
criterion, and 3) estimating the consistency ratio (Malczewski 1999). In the
development of comparison matrix, the method employs an underlying scale with
values from 0 to 1 to rate the relative preferences for two criteria which can be
seen in the Table 2.1.

This study used the combination between bivariate statistical analysis and pair-
wise comparison. Firstly, to know the scored value for each class parameter, we
calculated the density of landslides by using some steps in the bivariate statistical
analysis (frequency ratio model). The second process is grouping the conditioning
factors into four induced factors such as geomorphological, geological, hydro-
logical and anthropogenic.

Next, the levels of weight values were used to standardize the input value by
means of pair wise comparison resulting values from 0 to 1. After this process the
steps in spatial multi criteria evaluation were followed again by means of pair-wise
comparison method. The difference of this improved method was located on

Fig. 2.2 Two interpretations of a two-dimensional decision problem (1: table of maps, 2: map of
tables); Source Sharifi and Retsios 2004)

Fig. 2.3 Two paths of spatial multi criteria evaluation (adapted from Herwijnen 1999). The
result of both path 1 and 2 is a ranking of alternatives a1, a2, and a3, with respect to their
performance in terms of the four spatial effects (criteria c1, c2, c3, and c4) for which they are
evaluated (functions f) and the spatial distribution of these effects, which is aggregated in
functions g. (Source Sharifi and Retsios 2004)
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giving the weighting value of each parameter. The weighting value of this method
was given by calculation process of analytical hierarchy process (AHP).
The values were extracted based on the level of influences. Expert opinion which
depends on observed physical characteristic of landslide sites determined the
levels of the influencing factors.

Table 2.1 Scale of relative importance suggested by Saaty (1997)

Inensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to objective
3 Weak importance of one over

another
Experience and judgment slightly favor one

activity over another
5 Essential or strong importance Experience and judgment strongly favor one

activity over another
7 Demonstrated importance An activity is strongly favored and its dominance

demonstrated in practice
9 Absolute importance The evidence favoring one activity over another

is the highest possible order of affirmation
2, 4, 6, 8 Intermediate values between

the two adjacent judgments
When compromise is needed

Main CriteriaLandslide Susceptibility Mapping

Anthropogenic Fac-
tors

Distance to Road Land use

Geomorphology Factors

Slope Aspect Elevation

Geological Factors

Distance to Fault Lithology

Hydrological Factors

CTI SPI STIDistance to River
Curvature

Sub C
riteria

M
ain indicators

Fig. 2.4 The methodological flow chart showing the step wise processes for landslide
susceptibility mapping in Haraz watershed
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2.4 Construction of Spatial Database

2.4.1 Landslide Inventory Map

The existing landslide inventory map is very essential for studying the relationship
between the landslide distribution and the conditioning factors. To produce a
detailed and reliable landslide inventory map, extensive field surveys and obser-
vations were performed in the study area. A total of 78 landslides were identified
and mapped in the study area by evaluating aerial photos at 1:25,000 scale and by
multiple field studies (Fig. 2.5). The modes of failure for the landslides identified
in the study area were determined according to the landslide classification system
proposed by Varnes (1978).

2.4.2 Slope

The most important parameter in the slope stability analysis is the slope angle
(Lee and Min 2001). Because the slope angle is directly related to the landslides
and it is frequently used in preparing landslide susceptibility maps (Clerici et al.
2002; Saha et al. 2005; Cevik and Topal 2003; Ercanoglu and Gokceoglu 2004;
Lee et al. 2004a; Lee 2005; Yalcin 2005). For this reason, the slope map of the

Fig. 2.5 Landslide distribution map of the study area
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study area is prepared from the DEM, and divided into six slope categories
(Fig. 2.6a). The spatial relationship between slope and landslide are presented in
Table 2.2.

2.4.3 Aspect

Aspect is also considered as a landslide conditioning factor, and this parameter has
been considered in several other studies (Van Westen and Bonilla 1990;
Gokceoglu and Aksoy 1996; Saha et al. 2005; Ercanoglu and Gokceoglu 2004;
Lee et al. 2004a, b; Yalcin 2005). Some of the meteorological events such as the
direction of the rainfall, amount of sunshine, the morphologic structure of the area
affect the slope stability (Mohammadi 2008). The hillsides receiving dense rainfall
reach saturation faster, however this is also related to infiltration capacity of the
slope controlled by various parameters such as topographic slope, type of soil,

Fig. 2.6 Topographical parameter maps of the study area; a slope (degree), b aspect, c altitude
(m.asl), d plan curvature
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permeability, porosity, humidity, the organic ingredients, land cover, and the
climatic season. As a result, pore water pressure of the slope-forming material
increases. Consequently, in this study, the aspect map of the study area is produced
to show the relationship between aspect and landslide (Fig. 2.6b).

2.4.4 Altitude

Altitude is also a significant landslide conditioning factor because it is controlled
by several geologic and geomorphological processes (Gritzner et al. 2001; Dai and
Lee 2002; Ayalew et al. 2005; Pourghasemi 2008). To assess altitude as an input
parameter for the landslide susceptibility map, an altitude map is prepared from the
10m� 10mdigital elevation model (Fig. 2.6c).

2.4.5 Plan Curvature

The term curvature is theoretically defined as the rate of change of slope gra-
dient or aspect, usually in a particular direction (Wilson and Gallant 2000). The
curvature value can be evaluated by calculating the reciprocal value of the radius
of curvature of that particular direction. Hence, while the curvature values of
broad curves are small, the tight ones have higher values. Plan curvature is
described as the curvature of a contour line formed by intersecting a horizontal
plane with the surface. The influence of plan curvature on the slope erosion
processes is the convergence or divergence of water during downhill flow. For
this reason, this parameter constitutes one of the conditioning factors controlling
landslide occurrence (Nefeslioglu et al. 2008). The plan curvature map was
produced using the script written by Hengl et al. (2003) and run in ILWIS 3.3
software (Fig. 2.6d).

2.4.6 Lithology

Landslides are greatly controlled by the lithology properties of the land surface. Since
different lithologic units have different landslide susceptibility values, they are very
important in providing data for susceptibility mapping. For this reason, it is essential to
group the lithologic properties properly (Carrara et al. 1991; Anbalagan 1992;
Mejia-Navarro and Wohl 1994; Mejia-Navarro and Garcia 1996; Pachauri et al. 1998;
Luzi and Pergalani 1999; Dai et al. 2001; Yalcin 2005; Duman et al. 2006).

Therefore, a lithology map of the study area is digitized from the existing
geology map (sheet number 6461) at the scale of 1:100,000 from the Geological
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Survey of Iran (GSI). The study area is covered with various types of lithologic
formations. The general geological setting of the area is shown in Fig. 2.7, and the
lithological properties are summarized in Tables 2.2 and 2.3.

2.4.7 Land Use

In this study, a land use map was prepared from the LANDSAT satellite image by
applying a supervised classification scheme and field surveys. There are four types
of landuse are identified in the study area: best range, moderate range, mixed
orchard and agriculture and residential areas (Fig. 2.8). Most of the study area
is covered by moderate range (64.32%). Several researchers (Maharaj 1993;
Fernandez et al. 1999; Jakob 2000; Ocakoglu et al. 2002) emphasized on the
importance of vegetation cover or land use characteristics on the stability of
slopes, and they considered vegetation cover to assess the conditioning factors of
landslides. For the study area, the spatial relationship between land use factor and
landslide occurrence are presented in Table 2.2.

Fig. 2.7 The lithology map of the study area
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2.4.8 Distance from Rivers

An important parameter that controls the stability of a slope is the saturation
degree of the material on the slope. The closeness of the slope to drainage
structures is another important factor in terms of stability. Streams may adversely
affect stability by eroding the slopes or by saturating the lower part of material
until resulting in water level increases (Gokceoglu and Aksoy 1996). Five different
buffer zones are created within the study area to determine the degree to which the
streams affected the slopes (Fig. 2.9).

2.4.9 Distance from Roads

Similar to the effect of the distance to streams, landslides may occur on the road
and on the side of the slopes affected by roads (Pachauri and Pant 1992; Pachauri
et al. 1998; Ayalew and Yamagishi 2005; Yalcin 2005). A road constructed beside
slopes causes a decrease in the load on both the topography and on the toe of slope.

Table 2.3 Geology formation of research area

Code Class Formation Lithology Geological age

Qsc A – Scree Quaternary
Q2

t – Young terraces Quaternary
Q1

t – Old terraces Quaternary
Qag B – Agglomerate Quaternary
Qta – Trachy andesitic lava flows Quaternary
Qtu – Ash tuff, lapilli tuff Quaternary

Qb – Olivine basalt Quaternary

Kk
tv C Karaj Green tuff, basaltic and limestone

with gypsum and conglomerate
Eocene

Ek
gy Karaj Gypsum Eocene

PEz D Ziarat Limestone bearing nummulites
and alveolina, conglomerate

Paleocene

PEf Fajan Conglomerate, agglomerate, some marl
and limestone

Paleocene

K2 E – Biogenic and cherty limestone Late Cretaceous
Kt Tizkuh Orbitoline bearing limestone Late Cretaceous
J1 Lar Massive to well bedded,

cherty limestone
Late Jurassic

Jd Dalichai Well bedded, partly oolitic-detritic
limestone, marly limestone

Late Jurassic

JS Shemshak Dark shale and sandstone with plant
remains, coal

Late Jurassic

TReL Elika Thin bedded limestone Early Triassic
Pd Dorud Cross bedded, quartzitic sandstone Early Permian
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As a result of an increase in stress on the back of the slope, because of changes in
topography and decrease of load on toe, some tension cracks may develop.
Although a slope is balanced before the road construction, some instability may be
observed because of negative effects of excavation. In fact, during the field works,
some landslides were recorded whose origin can be attributed to road construction.
For this reason, five different buffer areas are created on the path of the road to
determine the effect of the road on the stability of slope (Fig. 2.10). The landslide
percentage distribution and its frequency ratio are determined considering the
distance classes to the road achieved by comparing the map of the distance to
the road and the landslide inventory (Table 2.2).

2.4.10 Distance from Faults

The distance from fault is calculated at 100 m intervals using the lithology map
(Fig. 2.11). Faults form a line or zone of weakness characterized by heavily
fractured rocks. Selective erosion and movement of water along fault planes
promote such phenomena. Besides the major thrusts and faults on the geological
maps complementary information regarding possible faults and structural dislo-
cations were recognized as lineaments by means of image enhancement (filtering)
of satellite imagery. The recognition of lineaments as possible faults is performed

Fig. 2.8 The land use map of the study area
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step-by-step form large to smaller scales allowing the generalization of many
neighboring small order lineaments taking into account the spatial scale of the
study. The spatial relationship between distance from faults and landslide are
presented in Table 2.2.

2.4.11 Topographic Wetness Index (TWI)

The topographic wetness index (TWI) has been used extensively to describe the
effect of topography on the location and size of saturated source areas of runoff
generation. Moore et al. (1991) proposed Eq. (2.1) for the calculation of TWI
under the assumption of steady state conditions and uniform soil properties
(i.e. transmisivity is constant throughout the catchment and equal to unity).

TWI ¼ ln AS= tan bð Þ ð2:1Þ

where AS is the specific catchment’s area (m2/m), and b is slope gradient
(in degrees).

According to Wood et al. (1990), the variation in the topographical components
is often far greater than the local variability in soil transmisivity, and Eq. (2.1) can
be used to calculate TWI. The TWI map was produced using the script written by
Hengl et al. (2003) and run in ILWIS 3.3 software (Fig. 2.12a).

Fig. 2.9 The distance from rivers map of the study area
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2.4.12 Stream Power Index (SPI)

The stream power index (SPI) is a measure of the erosive power of water flow
based on the assumption that discharge (q) is proportional to specific catchment
area (As) (Eq. 2.2) (Moore et al. 1991).

SPI ¼ AS � tan b ð2:2Þ

where AS is the specific catchment’s area (m2/m), and b the slope gradient in
degrees. As the specific catchment’s area and gradient increase, the amount of
water contributed by upslope areas and the velocity of water flow increase;
hence, the SPI and slope-erosion risk increase (Moore et al. 1991). Moore et al.
(1993) stated that the SPI controls the potential erosive power of overland flow.
Therefore, these processes can be considered as one of the components of
landslide occurrence (Lee and Min 2001; Gokceoglu et al. 2005; Nefeslioglu
et al. 2008; Yilmaz 2009; Akgun and Turk 2010). The SPI map was produced
using the script written by Hengl et al. (2003) and run in ILWIS 3.3 software
(Fig. 2.12b).

Fig. 2.10 The distance from roads map of the study area

2 Landslide Susceptibility Mapping 39



2.4.13 Stream Transport Index (STI)

Another index often used to reflects the erosive power of the overland flow is the
sediment transport index (Moore et al. 1993). The STI is calculated from the
following formula:

STI ¼ AS

22:13

� �0:6
sin b

0:0896

� �1:3

ð2:3Þ

where AS is the specific catchment’s area (m2/m), and b the slope gradient.
This empirical formula resembles the Universal Soil Loss Equation and can

thus be used to depict locations of potential erosion risk (Moore and Burch 1986).
If a close inspection on Eq. (2.3) is performed, it is revealed that the physical
meaning of this factor is the capability of sediment transportation controlled a
specific catchment area and slope gradient. For that reason, the main causes for
this phenomenon may be the disturbed drainage system and the low slope gradient
trend on landslide bodies. Therefore, this distinct anomaly can be considered as a
good indicator of landslide occurrence (Nefeslioglu et al. 2008). The STI map was
produced using the script written by Hengl et al. (2003) and run in ILWIS 3.3
software (Fig. 2.12c).

Fig. 2.11 The distance from faults map of the study area
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The spatial relationship between TWI, SPI, STI, and landslide occurrence are
presented in Table 2.2.

2.5 Landslide Susceptibility Mapping

In this study, the employed SMCE method was built based on analyzing the weight
value in bivariate statistical analysis (Table 2.2). All comparisons are based on
pair-wise method published by Saaty (1980) in terms of analytical hierarchy
process. In this method, all factors were classified into a few groups. The first
group consists of slope, aspect, altitude and plan curvature parameters; the second
one includes lithology and distance from faults parameters which were extracted

Fig. 2.12 Hydrological based terrain maps of the study area; a TWI, b SPI, c STI
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from geological map. The next groups presenting the hydrological condition
contains of distance from rivers, topographical wetness index (TWI), stream power
index (SPI) and stream transport index (STI) parameters and the last group consists
of land use and distance from roads parameters, because both of these were
induced by human activities. The level of influence for groups and parameters
were determined by the range of weighting and were determined by the range of
weighting values between a spectrum from minimum to maximum. The range
value is between the minimum and maximum weight value. The standardization of
each class parameter is compared to each other in order to determine the level of
influence. Normalized priority value for each class parameter had been extracted
by following Eq. (2.4):

NV ¼ 0:8
Xi � XMin

XMax � XMin

� �
þ 0:1 ð2:4Þ

The final weight values were automatically calculated by means of spatial multi
criteria evaluation in ILWIS software. The final weight value for each class
parameter is produced by multiplying the group weight value, parameter weight
value and normalized priority value of class parameter (Table 2.2). Based on
weighting values in AHP, the levels of the influence of parameters were generated.
The anthropogenic factor has the most influence and the hydrological factor which
has the less influence and was categorized in the lowest level. Pair-wise com-
parison method (Table 2.1) was performed to extract the weight value as presented
in Table 2.4.

Based on total weight value, the susceptibility map for Haraz watershed was
constructed (Fig. 2.13).

2.6 Validation of the Landslide Susceptibility Map

Validation is a fundamental step in the development of a susceptibility and
determination of its prediction ability. The prediction capability of a landslide
susceptibility model is usually estimated by using independent information that is
not available for building the model. An alternative way to the above statistics is
the threshold (cut-off value) calculations, is the receiver operating characteristic
(ROC) value and the area under the ROC curve (AUC) (Zweig and Campbell
1993). This method has been widely used as a measure of performance of a
predictive rule (Yesilnacar and Topal 2005; Van Den Eeckhaut et al. 2006; Baeza
et al. 2010). ROC plots the different accuracy values obtained against the whole
range of possible threshold values of the functions, and the AUC serves as a global
accuracy statistic for the model, regardless of a specific discriminate threshold.
This curve is obtained by plotting all combinations of sensitivities and proportions
of false negatives (1-specificity) which may be obtained by varying the decision
threshold. The range of values of the ROC curve area is 0.5–1 for a good-fit, while
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Table 2.4 The weight value for each group and parameter using pair-wise comparison for
SMCE

Number Groups and parameters The weight value Inconsistency ratio

1 Geomorphologic factor 0.181
Slope 0.325
Aspect 0.067 0.09
Altitude 0.107
Plan curvature 0.501

2 Geological factor 0.267
Lithology 0.833 0.00
Distance to fault 0.167

3 Hydrological factor 0.062
Distance to river 0.132
Topographic wetness index 0.377 0.09
Stream power index 0.422
Stream Transport Index 0.070

4 Human induced 0.490
Land use 0.667 0.00
Distance to road 0.333

Fig. 2.13 Landslide susceptibility map produced by spatial multi criteria evaluation
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values below 0.5 represent a random fit (Hanley and McNeil 1983). Figure 2.14
shows the ROC curve of the spatial multi criteria evaluation model for the training
sample. The AUC value is 0.7684, indicate the good ability of function to correctly
discriminate between failed and unfailed groups in the sample used for building
the model.

2.7 Concluding Remarks

The landslide susceptibility map prepared in the present study is the result of a
combination of various factors responsible for landslide susceptibility, in which
each factor has relative importance to probable landslide activity. A reliable and
accurate susceptibility map depends on the inclusion and proper determination of
the role of these parameters. In this study, twelve landslide-controlling parameters,
namely slope, aspect, altitude, plan curvature, land use, lithology, distance from
rivers, distance from roads, distance from faults, topographic wetness index,
stream power index and stream transport index, were considered. Subsequently,
landslide-susceptible areas were analyzed by the SMCE approach and mapped
using landslide conditioning factors. For the purpose of verification, the learning
set of landslides was randomly sampling choose from a total of 78 landslides
population disregarding the temporal component. The ROC curve of block entry
SMCE was produced based on the test data set, which was randomly collected
from landslide bodies and safe zones. The results showed a 76.84% accuracy with
standard error of 0.0703. According to the results of the AUC evaluation, the
produced map has exhibited promising results.

Fig. 2.14 ROC curve for the
SMCE
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