
Chapter 1
Introduction

The classical problem of Plateau, although by far not the oldest problem in the
Calculus of Variations, is certainly one of the best known. The mathematical formu-
lation of the problem of finding a least area surface of the topological type of the
disk spanning a closed contour goes back to Weierstrass. In particular, Weierstrass
formulated the existence of the solution of the least area problem as a solution to a
system of non-linear partial differential equations:

Set

B := {w ∈C : |w| < 1}
and

C := {w ∈C : |w| = 1} = ∂B.

A closed Jordan curve Γ in R is a subset of R3 which is homeomorphic to ∂B .
Given a closed Jordan curve Γ in R

3 we say that X : B → R
3 is a solution of

Plateau’s problem for the boundary contour Γ (or: a minimal surface spanned in Γ )
if it fulfils the following three conditions:

(i) X ∈ C0(B,R3) ∩ C2(B,R3);
(ii) The surface X satisfies in B the equations

�X = 0 (1.1)

|Xu|2 = |Xv|2, 〈Xu,Xv〉 = 0; (1.2)

(iii) The restriction X|C of X to the boundary C of the parameter domain B is a
homeomorphism of C onto Γ .

From the classical point of view, one of the difficulties in minimizing the area
functional

AB(X) =
∫

B

|Xu ∧ Xv| du dv

is that among all those surfaces X satisfying (iii) A is invariant under the action
of the infinite dimensional diffeomorphism group of B . By replacing area by en-
ergy one reduces the symmetry group to the finite dimensional conformal group of
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the disk. Miraculously, the absolute minima of area and energy are the same. The
Weierstrass equations (1.1) and (1.2) are then the variational equations of Dirichlet’s
energy.

The problem of the existence of a minimum of area spanning Γ remained open
for a half a century until it was solved by Jesse Douglas (1931) and Tibor Radó
(1930). For all his work on the Plateau problem, Douglas was awarded one of the
first two Fields Medals of Mathematics (shared with Lars Ahlfors) at the Interna-
tional Congress of Mathematicians in Oslo in 1936.

Jesse Douglas (1897–1965)

Given the fact that the absolute minima of area and energy are the same, we can
formulate the classical problem of Plateau as follows:

Given a closed Jordan curve Γ in R
3, a mapping X : B → R

3 is said to be of class
C(Γ ) if X ∈ H 1

2 (B,R3), and if its trace X|C can be represented by a weakly mono-
tonic, continuous mapping ϕ : C → Γ of C onto Γ (i.e., every L2(C)-representative
of X|C coincides with ϕ except for a subset of zero 1-dimensional Hausdorff mea-
sure).

Let

D(X) = DB(X) := 1

2

∫
B

(|Xu|2 + |Xv|2) du dv (1.3)

be the Dirichlet integral of a mapping X ∈ H 1
2 (B,R3). Then we define the vari-

ational problem P(Γ ) associated with Plateau’s problem for the curve Γ as the
following task:

Minimize Dirichlet’s integral D(X), defined by (1.3), in the class C(Γ ).
In other words, setting

e(Γ ) := inf{D(X) : X ∈ C(Γ )}, (1.4)

we are to find a surface X ∈ C(Γ ) such that

D(X) = e(Γ ) (1.5)

is satisfied.
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In his solution, Douglas minimized an energy essentially equivalent to Dirichlet’s
energy, which later proved to be a very powerful method for dealing with minimal
surfaces of arbitrary topological type and connectivity.

Almost from the beginning, the question arose as to whether the absolute mini-
mizers were immersed or not. A point p where X is not immersed, i.e.

Xu(p) = Xv(p) = 0

is called a branch point. It follows easily that interior branch points are isolated.
In 1932 Douglas [1] and in 1942 Courant [1] thought that they had found absolute
minizers which had branch points. We should note here that from the early 1930s
until his death in 1972 Courant worked on and popularized the field of minimal
surfaces.

The example of Douglas was refuted in 1933 by Radó while Courant’s exam-
ple survived until the pioneering work of Robert Osserman in 1970, and then of
Gulliver–Osserman and Royden in 1973.

In his now classic paper, Osserman constructed a discontinuous parameter trans-
formation allowing a reparametrization of a minimal surface in a vicinity of an inte-
rior branch point, such that the area of the surface can be reduced. He had to distin-
guish between true and false branch points (the latter are those which have a neigh-
bourhood whose image is still an embedded surface), but in his proof he overlooked
some difficulties appearing for false branch points. In 1973, both H.W. Alt [1] and
R. Gulliver [2] independently extended Osserman’s line of argument to surfaces
which are absolute minimizers of prescribed mean curvature with least energy and
also treated the case of false branch points. The joint work of Gulliver, Osserman
and Royden [1] in 1973 proved that all minimal surfaces bounded by rectifiable Jor-
dan curves do not have any false branch points, even if they do not minimize the
Dirichlet energy.

This difficult work has remained open mostly to experts in the field. For more
historical comments, see the Scholia (Chap. 9).

In this book we give proof of the fact that in R3 any solution of Plateau’s prob-
lem which is a relative minimizer of Dirichlet’s integral D or, equivalently, the area
functional A, is an immersion in the sense that it has no interior or (with mild as-
sumptions) boundary branch points. This fact can easily be proved for planar bound-
aries (Dierkes, Hildebrandt and Sauvigny [1]), while the corresponding result in R

n

is false for n ≥ 4 according to a famous example of Federer. Therefore it remains to
prove the assertion for a nonplanar boundary curve Γ in R

3. The proof given here
is based on the observation that one can compute any higher derivative of Dirichlet’s
integral in the direction of so-called (interior) forced Jacobi fields, using methods
of complex analysis such as power series expansions and Cauchy’s integral theorem
as well as the residue theorem. These Jacobi fields lie in the kernel of the second
variation of D; they also play a fundamental role in the index theory and the Morse
theory of minimal surfaces. So, in a very strong sense, this book is about energy
and the fact that it can be reduced in the presence of an interior or boundary branch
point. This is in the spirit of Douglas’ original approach to the Plateau problem.
Since area is less than or equal to energy, reducing energy means that you can also
reduce area. In this connection we must mention the work of Beeson [1].
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Although the computations in this book are sometimes tedious, they are simple
in principle. The main analytical idea is to find, using function theory, paths so that
the calculation of higher order derivatives of Dirichlet’s energy, through the use of
Cauchy’s integral theorem, along these paths reduces to a few manageable terms. In
a sense, we are doing calculus on infinite dimensional manifolds. In order to convey
to the reader a feeling for the methods to be applied, we begin by calculating the
first five derivatives of Dirichlet’s integral in the direction of special types of forced
Jacobi fields, thereby establishing that a relative D-minimizing solution of Plateau’s
problem cannot have certain kinds of interior branch points. These introductory cal-
culations will be carried out in Chap. 2 as a warm up for the general case, together
with an outline of the variational procedure to be used in the sequel. These calcula-
tions are made transparent by shifting the branch point that is studied into the origin,
and by bringing the minimal surface into a normal form with respect to the branch
point w = 0 with an order n. Then also the index m of this branch point can be de-
fined, with m > n. Furthermore, w = 0 is called an exceptional branch point if there
is an integer κ > 1 such that m + 1 = κ(n + 1). This notion is related to that of the
false branch point, but it is a weaker notion. It will turn out that it is particularly dif-
ficult to exclude that a relative minimizer of D can have an exceptional branch point
at w = 0. In fact, we are only able to exclude exceptional branch points for weak
relative minimizers of A in C(Γ ). However, we do present conditions under which
a minimal surface with an exceptional branch point cannot be a relative minimizer
of D. In the non-exceptional case, one can “always” reduce energy (and area), and
surprisingly the monotonicity of a minimal surface on the boundary plays no role in
being able to do so.

In Chap. 2 it is described how the variations Ẑ(t) of a minimal surface X̂ are
constructed by using interior forced Jacobi fields. This leads to the (rather weak)
notion of a weak minimizer of D. Any absolute or weak relative minimizer of D

in C(Γ ) will be a weak D-minimizer, and the aim is to investigate whether such
minimizers can have w = 0 as an interior branch point. This possibility is excluded
if one can find an integer L ≥ 3 and a variation Ẑ(t) of X̂, |t | 	 1, such that E(t) :=
D(Ẑ(t)) satisfies

E(j)(0) = 0 for 1 ≤ j ≤ L − 1, E(L)(0) < 0.

It will turn out that the existence of such an L depends on the order n and the index
m of the branch point w = 0.

In our first chapter, this idea is studied by investigating the third, fourth and
fifth derivatives of E(t) at t = 0. Here one meets fairly simple cases for testing the
technique demonstrating its efficacy. Furthermore, the difficulties are exhibited that
will come up generally.

The first case of a general nature is treated in Chap. 3. Assuming that n+1 is even
and m + 1 is odd (whence w = 0 is non-exceptional) it will be seen that E(m+1)(0)

can be made negative while E(j)(0) = 0 for 1 ≤ j ≤ m, and so X̂ cannot be a weak
minimizer of D.

The general situation is studied in Chaps. 4 to 7. In Chap. 4 is shown that w = 0
cannot be a non-exceptional branch point of a weak relative minimizer of D. We
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derive simple formulae for the first non-vanishing derivatives of Dirichlet’s energy
and show that they can be made negative. Such a result is no longer true for an
exceptional branch point w = 0, apart from some special cases. In Chaps. 5, 6 and
7 it is proved that a weak relative minimizer of A in C(Γ ) cannot have exceptional
interior branch points if Γ is a smooth closed Jordan curve in R

3.
In Chap. 8 we study boundary branch points of a minimal surface X̂ with a

smooth boundary contour. In particular we first show that X̂ cannot be a weak rel-
ative minimizer of D if it has a boundary branch point whose order n and index m

satisfy the condition 2m − 2 < 3n (Wienholtz’s theorem).
We then will show that if the torsion and curvature of Γ are both non-zero, then

a priori 2m + 2 ≤ 6(n + 1). As a consequence it follows that X̂ is not a minimizer
in the non-exceptional cases; i.e. m + 1 �= k(n + 1), k = 2 or 3. This is a partial
resolution to boundary regularity for smooth contours. Considering only the Taylor
expansion about a branch point, we then argue that the question of whether a min-
imal surface with an exceptional boundary branch point is or is not a minimum is
not decidable.

In conclusion, if the boundary contour is C∞ or more simply if a minimal surface
X̂ is C∞ with a non-exceptional interior or boundary branch point, we can find a C∞
surface Y which is C∞ close to X̂ having less energy and area. This is much stronger
than what was previously known and indicates the power of using derivatives as
opposed to cut and paste constructions.

In the Scholia (Chap. 9) we describe some of the history of the main results
of this book. Finally, we note that some of the introductory material also appears
in Dierkes, Hildebrandt and Tromba [1], but we include it for completeness. The
author wishes to thank Stefan Hildebrandt for reworking the manuscript and for his
encouragement, the Max Planck Institute in Leipzig for their support, Frau Birgit
Dunkel for her excellent typing of the manuscript and finally my wife Inga without
whose love and support this book could not have been written.
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