Chapter 2
Spin Squeezing, Entanglement
and Quantum Metrology

Spin squeezing is a quantum strategy introduced in 1993 by Kitagawa and Ueda [1]
which aims to redistribute the fluctuations of two conjugate spin directions among
each other. In 1994 it was theoretically shown that spin squeezed states are useful
quantum resources to enhance the precision of atom interferometers [2] and in 2001
the connection between spin squeezing and entanglement was pointed out [3].

In this chapter we introduce the spin representation for N two-level atoms.
We review the basic theoretical concepts of spin squeezing and its connection to
entanglement. Different entanglement criteria are discussed and the usefulness of
entanglement as a resource in quantum metrology—focussing on spin squeezed
states—is reviewed.

2.1 Collective Spins

The mathematical concept of a spin algebra with total spin J is a powerful tool to
describe very different physical systems. Any observable within a spin J system can
be expressed by the three spin operators Jr, J), J and the identity operator. The
2J + 1 eigenstates of one of the spin operators make up a basis set of the 2J + 1
dimensional Hilbert space. The choice of the direction is arbitrary since the operators
are connected via unitary transformations.

2.1.1 A Single Spin 1/2 on the Bloch Sphere

One of the simplest nontrivial models in quantum mechanics, a two-level system
[4] with levels |a) and |b) , maps onto a spin J = 1/2 system. This mapping is
done by assigning the state |a) to the eigenstate of f7 with eigenvalue j, = —1/2
(spin down) and state |b) to the eigenstate with eigenvalue j, = +1/2 (spin
up). Two important applications of this model in atomic physics are the two-level
atom and nuclear magnetic resonance experiments. Any pure quantum state
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6 2 Spin Squeezing, Entanglement and Quantum Metrology

Fig.2.1 The Bloch sphere. Schematic representation of the quantum state |6, ¢) of a spin 1/2
system on the Bloch sphere. The definition of the longitudinal angle ¢ and the polar angle 6 are
highlighted and in the following the same notation will be used for the direction of the collective
spin on a generalized Bloch sphere (see Sect.2.2.2)

|60, @) = sin(0/2) |a) + cos(6/ 2)e!? |b) of a two-level system can be conveniently
represented on a Bloch sphere. The coordinate axes are chosen such that the popu-
lation difference (|b)(b| — |a){al)/2 maps to the fz component of the spin and the
coherences (1b)(al + |a)(b])/2 and (|b)(a| — |a)(b|)/2i map to the J, and J, com-
ponents respectively. Figure2.1 shows the quantum state on the Bloch sphere with
the definition of the longitudinal angle ¢ and the polar angle 6. The Hilbert space
for a single spin 1/2 system is two dimensional, such that the representation on the
surface of the Bloch sphere does not require any additional assumptions.

2.1.2 A Large Collective Spin

The discussion above can be generalized for N particle systems where each particle
is restricted to two modes. Each particle is an elementary spin j = 1/2 system,
sometimes called Qubit. .

The collective spin operators 7; can be defined as the sum over all elementary

spin operators (Pauli matrices) 8i(k), where i = (x,y, 2):

N
Ji=> 6" 2.1)
k=1
A basis of the general problem can be obtained as the tensor product of all N bases
of the individual components, each of dimension (2j + 1). The dimension of the
Hilbert space is huge dim(Hs) = (2j + 1)V = 2" and grows exponentially with
the number of Qubits. The length of the collective spin J is smaller or equal than
half the number of Qubits!:

VIT+1) =(JH <N)2 (2.2)

One often assumed simplification is exchange symmetry among all Qubits. This is
physically motivated since in many experiments all operations done on the ensemble

! In this thesis we deal with large spins such that we often approximate /7 (J + 1) ~ 7.
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affect each spin in the same way. One example are nuclear magnetic resonance
experiments in homogeneous fields.

In the symmetric case each elementary Qubit can be prepared for example in the
Jj. = —1/2 state and maximum collective polarization J, = —N /2 can always be
reached. Therefore the total spin length is given by J = N/2 and the dimension
of the Hilbert space dramatically reduces to dim(Hs) = 2Nj + 1) = (N + 1),
linearly dependent on the number of Qubits. One possible choice of a basis are the
symmetric Dicke states |J, m) with —N /2 < m < N /2. Due to their exchange sym-
metry the elementary spins can be effectively described as Bosons, the Schwinger
Bosons [5]. Employing the second quantization formalism the creation and annihila-
tion operators of the two modes at (5*) and a (l;) can be related to the different spin
components [6]:

J.=b'a
J_=ad'b

1.
Je =70+ 70
Jy =y - )
YTt
A
J; =§(b b—a'a)

Each of the Dicke states introduced above corresponds to a perfectly defined particle
number difference between the two modes & and b and since the total number of
particles N is fixed the Dicke states correspond to Fock states in the two modes a
and b.

The experiments presented in this thesis deal with two-mode Bose—Einstein con-
densates. Identical particles in two modes (as the Bosons in the condensate) can
be described by the symmetric spin model and the Schwinger representation given
above is used to relate the creation and annihilation operators of the two modes to
the different spin components.

Even if not formally correct we will use the notation J instead of 7 for all spins
regardless of symmetry and mention explicitly where the symmetry argument is
necessary.

2.2 Fluctuation Engineering

The three different orthogonal spin components are conjugate variables. Their
commutation relation is [J,, J ]] = i€jjk Jk, where ¢; i is the Levi-Civita symbol.
Therefore any pair of spin operators obeys a Heisenberg uncertainty relation which—
for Afzz and Afyz—is given by
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- ) A2, . LA
and AJZZ = (J; ) — (J;) is the variance in J, direction.

2.2.1 Coherent Spin States

Coherent spin states are the most classical-like pure quantum states of a symmetric
ensemble of N elementary j = 1/2 spins or of N two-mode Bosons [6, 7]. They
are constructed by placing all N particles in the same single particle state in any
superposition of the two modes

10, @) = [sin(0/2)a" + cos(0/2)e?b 1V |vac) (2.4)

1
VNI
where |vac) is the vacuum state. Especially no quantum correlations between the
particles are present. Therefore a coherent spin state features equal variance in any
direction J| orthogonal to the mean spin direction (8, ¢) which is given by the sum
of the variances of the 2J elementary spin 1/2 particles. The perpendicular variances
A&f_ of individual Qubits are by definition isotropic around (0, ¢) since there are no
subsystems that could cause any correlations [1]. The Heisenberg limit (2.2) for a
single elementary spin pointing in o, direction is AazzAay2 = JT . 3—‘ leading to an
isotropic variance of

. . 1 J
AJZ=AJ; =27 153 (2.5)

for the collective coherent spin state, which identifies this quantum state as a minimal
uncertainty state since (fx) = J. We refer to the perpendicular spin fluctuations of
a coherent spin state AJAJZ_ = J/2 = N /4 as the shot noise limit.

We go back to the first quantization formalism in order to obtain the probability
distribution over different sets of basis states—especially the two possible Dicke state
bases in the directions orthogonal to the mean spin direction. In order to develop a
more detailed understanding of the coherent spin state and its fluctuations we start
with the discussion of a special case where each particle is in a 50/50 superposition
of the two modes with O relative phase—each spin points in o, direction and its

quantum state is
1 1 1 1
Y N e L 4— 2 2.
|x) (‘2 2>+‘2,+2>)/«/_ (2.6)

where we have chosen the Dicke states in o, direction as the basis states. The
probability to observe each individual elementary spin in state up or down is equal
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Fig.2.2 A coherent spin state composed of elementary spins. The figure illustrates the addition
of N elementary Qubits with equal mean spin orientation (indicated by the arrows) to a large
collective spin J . The gray shading on the Bloch spheres visualizes the spread of the quantum state
on the sphere using the Q-representation introduced in Sect. 2.2.2. The isotropic angular uncertainty
decreases with the number of Qubits according to the standard quantum limit

|(%, :I:%Ix) |2 = 1/2. The N atom coherent spin state is a collection of these inde-

pendent elementary spins

o111 11 ﬁ@”\’ .
0= (3:-3)+[3:+3)) 2] @7

and therefore the measurement of the J, spin component is equivalent to N mea-
surements on a single spin and the probability distribution over the Dicke states is
binomial. We could have chosen equally the Dicke states in J, direction to describe
the spin state which shows again that the spin fluctuations in the directions perpen-
dicular to J,—the mean spin direction—are isotropic.

A general coherent spin state |6, ¢) described as superposition of Dicke states
|J, m) is given by [8]:

J
10,0) = D cn(®@e T m) (2.8)

m=—J

As argued above the coefficients ¢, (f) follow a binomial distribution peaked
around 6:

27 \'?
em(0) = ( ) cos(6/2)? ™ sin(6/2)’ " (2.9
J+m

Figure 2.2 depicts the composition of a large collective spin from elementary spins
on generalized Bloch spheres.” The illustration of the spins is done using the Q-
representation described in Sect.2.2.2.

The Standard Quantum Limit

Due to the Heisenberg uncertainty principle (2.2) the mean direction (0, ¢) of any
spin state can not be defined with arbitrary precision. For a coherent spin state the

2 Above we give an example for the mean spin in J; direction, however for the purpose of better
illustration we have chosen a different direction in the figure.
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isotropic angular uncertainty Agp = A6, defined by the ratio of the uncertainty of
the perpendicular spin directions AJ to the mean spin length J , is given by:

A AT, 1 1
(p == — = —
Yy V27 N

As argued above this limit arises as the classical statistical limit in a system consisting
of N independent constituents [2, 9]. In Sect. 2.4 we discuss the connection of spin
states and Ramsey interferometry and we show that the angular uncertainty limits the
interferometric precision. In this context the “classical" limit (2.10) for a coherent
spin state is known as the standard quantum limit. Figure2.2 also visualizes the
decreasing angular uncertainty with the number of elementary spins.

(2.10)

2.2.2 Visualizing Spin States: The Husimi Q-Representation

Employing the Q-representation [10], spin states can be conveniently visualized on
a generalized Bloch sphere with radius J . In order to describe the most general spin
state, i.e. pure states and statistical mixtures, the density matrix formalism is used
[6]. The density operator p in coherent spin state basis is given by

ﬁZ/P(&(p)I@,w)(@,(pldQ 2.11)

where the integral covers the full solid angle and d2 = sin(0)dfd¢. The probability
distribution P (8, ¢) is normalized to one. The Q-representation uses the diagonal
elements of the density operator to represent the quantum state:

J+1
4

00.0) = 2L 10.41016. ) @12)

The interpretation of this representation on generalized Bloch spheres differs from
the single spin j = 1/2 Bloch sphere shown in Fig.2.1. In the latter case the dimen-
sion of the Hilbert space is two-dimensional and the quantum state representation on
the surface of a sphere is exact. However for collective spin systems the dimension
of the Hilbert space is 2J + 1 such that an exact mapping to the surface of a sphere
is not possible. The position (6, ¢) on the spin 1/2 Bloch sphere describes the full
quantum state, while the position on the generalized Bloch sphere gives only the
mean spin direction and—within the constraints explained below—its fluctuations.
The Q-representation projects the density matrix on minimal uncertainty states, in
particular coherent spin states. The most obvious consequence is that the minimal
extension of a quantum state in (6, ¢) on the Bloch sphere is given by the uncertain-
ties of the basis states—a single Dicke state features no uncertainty in polar direction
but its Q-representation shows A6 o< 1/+/N.
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Fig.2.3 Spin squeezed states. The figure illustrates an exemplary pure spin squeezed state on
the Bloch sphere. The individual Qubits feature an isotropic variance, but quantum correlations
between them cause an anisotropic variance of the collective spin state. For a Heisenberg limited
spin squeezed state, one of the perpendicular variances AJ| min is smaller than the variance of
a coherent spin state (of the same spin length), while the variance in the second perpendicular
direction AJ] max is increased

2.2.3 Spin Squeezed States

Quantum correlations between the elementary spin 1/2 particles of a collective spin J
can cause anisotropic fluctuations of the spin vector in the directions perpendicular to
the mean spin (Fig. 2.3). Nevertheless the fluctuations of each individual elementary
spin are always isotropic [1]. In Ref. [1] quantum states are considered spin squeezed
if the variance of one spin component is smaller than the shot noise limit J/2 for a
coherent spin state:

2 2 72
%_N = 7AJJ_,min (213)

Definition (2.13) does not take the second perpendicular spin direction into account.
Due to the Heisenberg uncertainty relation (2.2) reduction of the variance in one
direction causes an increase of fluctuations in the other. Real life strategies to obtain
spin squeezing might also involve states that are not minimal uncertainty states.
One example is the “one axis twisting" scheme proposed in [1], which we use in
the experiments described in the last chapter of this thesis. For these states, as for
experimentally very important non-pure quantum states, the variance in some other
direction than the squeezed direction can be much larger than given by the Heisenberg
uncertainty relation. This leads to a reduction of the effective mean spin length .

Metrologic applications, especially Ramsey interferometry for which spin
squeezed states have been considered useful, require a large mean spin length. In
order to measure the usefulness of spin squeezed states for these applications another
definition of the squeezing parameter was introduced in Ref. [2]

Er =~2J % (2.14)
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whose inverse Egl measures the precision gain in a Ramsey interferometric sequence
relative to the standard quantum limit (2.10). For a detailed discussion of interfer-
ometry with spin squeezed states see Sect.2.4

Spin squeezing among N constituents is related to many-body entanglement.
In this context a third spin squeezing criterion was found [3]:

AJ? . AJ2
E2=N f‘;‘“ =N—% (2.15)
d (Jx)

Entanglement is detected by the inequality §§ < 1 as detailed in the following
section. Here we explicitly use the standard assumption throughout this thesis that
the mean spin points in J, direction and the direction of minimal variance—if not
explicitly mentioned—is the J, direction.

&s can be used equivalently to £g to quantify spin squeezing and precision gain
in interferometry and we refer to it as coherent number squeezing or coherent spin
squeezing.

2.3 Spin Squeezing and Entanglement

2.3.1 Definition of Many-Body Entanglement

For N distinguishable particles the definition of a separable state, i.e. non-entangled
state, is that its N-body density matrix p can be written as a direct product of single
particle density matrices p®:

1 2
p=> mo ®@pd ® @ p" (2.16)
k

Pk is a probability distribution to account for incoherent mixtures. Entanglement
in many-body systems (for a general review see [11, 12]) is defined as the non-
separability of the density matrix p meaning the equality in Eq.2.16 does not hold.

In collective spin systems a separable state is composed of independent elemen-
tary spin 1/2 particles. Due to technical limitations the individual elementary spins
can not be addressed in many experiments . However it is important to note that the
elementary spins have to be in principle distinguishable in order to define entangle-
ment among them in a meaningful way [11]. In the scope of this thesis we deal with
N particles in a Bose-Einstein condensate where the distinguishability is not obvi-
ous. However Sgrensen and Mglmer pointed out that by a gedanken local operation
one can pinpoint each particle in space without affecting the spin properties of the
system (Sgrensen AS, Mglmer K private communication). The distinguishability is
now given via the position of each particle. If entanglement is detected in the system,
it must have been present in the system before the localization, since local measure-
ments can not generate entanglement [13]. Given that the atoms in the Bose—Einstein
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condensate are spaced by more than one wavelength of the detection light (which
is usually fulfilled), this gedanken local operation means to overcome the technical
limitations for addressability and detection of the individual Qubits.

The question of entanglement in bosonic pseudo spin systems and its connection
to spin squcezing are extensively discussed in [14].

2.3.2 Entanglement Criteria Based on Collective Spin Variables

Without the possibility to address the individual Qubits entanglement criteria based
on the collective spin variables are necessary to detect entanglement. Furthermore the
observables in most experiments so far are limited to first and second order moments
of the distributions functions in different spin directions due to rather small counting
statistics and technical noise. Based on these, a complete set of inequalities that is ful-
filled for any separable quantum state has been found [15, 16]. Complete in this sense
means that assuming the only information available are first ((fx ), (fy ), (J;)) and
second moments (A J XZ, AJ. yz, Afzz) of the distribution functions. These inequalities
are:

N(N +2)

D+ U+ = —— (2.17)
) ) o N
AJ; + AJ/V +AJ; = > (2.18)
) 0 N )
- . . N(N—2)
(N = DIAT? + AT = () + ———— (2.20)

4

Toth et al. published these inequalities in Refs. [15, 16] and the authors depict the
inequalities by a volume containing all separable states in a three dimensional space
spanned by (AJ}, Afyz AJAZZ).

Throughout this thesis we use the original spin squeezing inequality (2.15) in
order to detect spin squeezing type entanglement experimentally [3]. All separable
states fulfill the inequality §§ > 1, but a subgroup of entangled states violate it.

As pointed out in Ref. [16], this criterion is equivalent to criterion (2.20) in the
limit of large N and the mean spin pointing in J, direction.

None of the entanglement witnesses given in this section requires any symmetry
assumption. They are valid for the general definition of the collective spin given in
Eq.2.1. Entanglement criteria only valid under the symmetric two-mode assumption
are discussed in the next section.
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Entanglement Criteria for Symmetric States

Making the strong assumption of symmetry under particle exchange many entangle-
ment criteria simplify. In this case the detection of spin fluctuations in one direction
below the shot noise limit for N atoms implies entanglement [17-20].

52 4A‘]Jz_,min _ ZAJJZ_,min > 1
N N J -
holds for any separable symmetric state. For clarity the mean spin is assumed to
point in J, direction such that (j 1.min) = 0.3 Equation (2.21) is identical to the
spin squeezing definition of Kitagawa and Ueda (2.13) showing that at least in the
symmetric two-mode case entanglement is necessary to redistribute the fluctuations
of orthogonal spin components. Within this thesis we refer to 512\, asnumber squeezing.

All entanglement witnesses discussed here are based on second moments, there-

2.21)

fore they contain maximally two body correlations (6,((’)8151 )) of the elementary spins
i and J in direction k. The question arises if these criteria detect only bipartite entan-
glement, the non-separability of the average two-body density matrix.

Toth, et al. show in Ref. [16] that in the non-symmetric case the complete set
of separability criteria (Egs.2.17-2.20) can detect entanglement even if there is no
bipartite entanglement in the system—the average two-body density matrix of an non-
symmetric state can be separable even if the N-body density matrix is entangled. The
situation is different in the symmetric case. Here the violation of the number squeez-
ing criterion (2.21) is both necessary and sufficient for bipartite entanglement in the
system. Every bipartite entangled symmetric state features number squeezing [17].

2.3.3 Experimentally Used Quantification of Entanglement

The criteria given above are useful to detect the presence of entanglement, how-
ever they do not quantify entanglement in the system.* Two experimentally used
approaches to quantify entanglement are reviewed here.

Von Neumann Entropy

In a recent experiment entanglement has been reported based on the von Neumann
entropy [21]. However, we clarify in this short section that it is not possible to
characterize entanglement in our experimental system by this measure.

For pure quantum states the von Neumann entropy Sy (64) = —Tr(palog(p4)) of
the reduced density matrix p4 = Trp(0) is a measure for bipartite entanglement [11,
13, 22] between one subsystem p4 and the rest of the system pp = Tra(p). There is

. -
3 The general expression is 4ANJk >1- 4(% [19].

4 Since criterion (2.15) can be related to a gain in interferometric precision (see Sect.2.4), it
measures the “usefulness" of spin squeezed states as a quantum resource in a known experimental
protocol.
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Fig.2.4 Von Neumann entropy and delocalization of the quantum state. Panel a depicts an
entangled spin squeezed state on the Bloch sphere. Quantum correlations cause an increased uncer-
tainty in one spin direction which results in a shortening of the effective spin length. This shortening
is measured by the linearized von Neumann entropy. Panel b shows a non-entangled incoherent
mixture. Loss of coherence results also in a shortening of the mean spin length, making it hard to
use the von Neumann entropy for our experiments where temperature or environmental noise cause
decoherence

no difference on which of the two subsystem Sy is evaluated: Sy (p4) = Sy (0B).
Expanding the von Neumann entropy to first order one obtains the linear entropy:

Sy =1—"Tr(p%) (2.22)

Taking subsystem A to be a single elementary spin 1/2 particle, Sy can be used to
measure entanglement between one Qubit and the rest of the system. The density
matrix p4 can be expressed as a linear combination of Pauli matrices o; [23]. If the
system is additionally in a symmetric state, the linearized von Neumann entropy can
be related to the mean values of the collective spin J [21, 24]:

A

1 4 7\2 2 712
Sy =Sl = <7 ()" + ()" + (J)7)] (2.23)

Figure?2.4 illustrates the linear entropy measure and clarifies its connection to
the spread of the state on the Bloch sphere. Since mixed states always have an
(incoherently) increased spread it is essential to note its applicability to pure states
only. The quantum states realized in our experiments are subject to decoherence
making it impossible to apply the linear entropy measure.

Depth of Entanglement

In the context of spin squeezing the depth of entanglement has been proposed to
quantify entanglement [25] which measures the number of non-separable elementary
Qubits. This criterion is valid for incoherent mixtures as well as for pure states making
it suitable for our experiments. However, we once again emphasize that there is no
clear definition for entanglement among indistinguishable particles. Furthermore,
unique entanglement measures for more than two or three particles are still a very
active field of research [11].

We review the depth of entanglement criterion here and use the label J for the
collective spin of the full system and the label S for subsystems of smaller spin, but
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not necessarily S = 1/2. The basic idea is to find the minimal variance ASZZ for a
given mean spin length (S‘X ). Combining the inequality (3'?) + (S’g) + (S’Zz) < S(S+1)
(which is similar to Eq. 2.17) with the Heisenberg uncertainty limit (2.2) one obtains

2 1

AS? > - [s<s+ 1) — /(S(S+ 1) — ($,)2)% — <§x>2] (2.24)

as an analytical estimation of the limit.

Numerical calculations allow to set the bound even tighter [25] and a comparison
between the numerical results and the analytical formula is shown in Fig.2.5. From
Fig.2.5 it is obvious that large spins S can be more squeezed than small spins.> This
implies that a collective spin J composed of k subsystems with spin S &) can be more
squeezed than the individual spins S &) Tn other words, one perfectly squeezed large
spin J has always lower or equal normalized variance Afzz /J for a given normalized
mean spin length (Jy) /J than the sum of the normalized variances of N independent
but individually perfectly squeezed smaller spins S* for the same normalized mean
spin length. Based on these findings the authors of Ref. [25] derive a lower bound
for the variance of the collective spin AJ

AJ2/NS > Fs((J,)/NS) (2.25)

where Fs(.) is the minimum for spin S shown in Fig.2.5.

The interpretation of this resultin the case of N spin 1/2 particles is: If one measures
the pair AJ; j2 /J and (J,)/J outside the gray shaded area in Fig.2.5, entanglement
has to be present in the system. Depending on which curve m the measured datapoint
falls, the minimal size of the largest non-separable spin has to be S = m - 1/2 and
the number of these non-separable blocks is N /m.

What happens if N/m is not an integer value? In this case there has to be one or
more smaller blocks of entangled (or even non-entangled) particles, causing larger
fluctuations than in the case of exactly N/m particles with spin § = m - 1/2 since
smaller spins cause larger fluctuations. In order to explain the observed data point,
the largest entangled block has to be even greater than m. To summarize, minimally
m entangled Qubits are detected if the measured datapoint falls on the curve for
S=m-1/2.

2.4 Entangled Interferometry

Entanglement in collective spin systems is not only interesting from a conceptual
perspective but it has also been shown to provide a useful quantum resource. In 1994
Wineland et al. [2] pointed out, that in particular spin squeezed states can be used to
overcome the standard quantum limit in metrology.

3> As already mentioned a spin S = 1/2 can not be squeezed at all.
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Fig.2.5 Depth of entanglement. The figure shows the minimal allowed normalized variance AS’?

for a given mean spin length (S, ) depending on the total spin S (different line styles). The black lines
are the numerical result taken from reference [25] (Fig.2.1) while the gray lines show the analytic
approximation (2.24) which we use later in this thesis. The spin length S is written as S =m - 1/2
in order to emphasize the minimal non-separable block size m of the density matrix in the case of
Qubits as elementary spins. The gray area correspond to pairs of (8:) /S and AS',Z /S for which no
entanglement is detected in the system

2.4.1 Precision Limits in Ramsey Interferometry

The term Ramsey interferometry [26, 27] is used most often for atomic interferom-
eters based on internal states. Prominent applications are the definition of the time
standard [28] or high precision magnetometry [29]. However the scheme is more
general and applies also to atom interferometers where the two states are imple-
mented using external degrees of freedom. These interferometers allow for example
for high precision inertia measurements of gravity or rotation [30-32]. The optical
counterpart of Ramsey interferometry is a Mach—Zehnder interferometer and the
analogy is further discussed in Sect.4.7 .

The Ramsey Interferometric Sequence

In order to develop an intuitive understanding for the precision limit in interferometry
we discuss the implementation of a typical Ramsey interferometer and visualize the
protocol schematically on Bloch spheres (Fig.2.6a). A Ramsey atom interferometer
conceptually consists of at least three building blocks, two beamsplitters and an
evolution time in between. The first beamsplitter, which corresponds to a unitary
rotation on the Bloch sphere around an axis in the equatorial plane, is used to generate
a coherent superposition of the two quantum states. Assuming only one input port to
be populated the output is usually a collective spin state with the mean spin pointing
onto the equator. A fixed time t of free evolution follows during which a relative
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(b)

input state after first after evolution after second
/2 pulse time 7 7/2 pulse
- readout -

Fig.2.6 Schematic representation of Ramsey interferometry on the Bloch sphere. Part a shows
the standard Ramsey protocol represented on the Bloch sphere. Beamsplitters correspond to rotations
of the quantum state around an axis in the equatorial plane as indicated by the circular shaped
arrows. The sequence is described in detail in the main text. Panel b shows a similar protocol but
after the first “magic" beamsplitter a spin squeezed state emerges which propagates through the
interferometer resulting in degreased occupation number uncertainty at the readout. Section4.7 of
this thesis describes the concrete implementation of this “magic"—non-linear—beamsplitter

phase ¢ between the two modes accumulates (corresponding to a longitudinal rotation
on the Bloch sphere). Depending on the kind of interferometer this phase is due to
differential energy shifts between the states or due to effective path length differences
to be measured [30]. Since the angle in longitudinal direction on the Bloch sphere ¢ is
usually not directly observable, a second beamsplitter is necessary. This beamsplitter
implements another unitary rotation around an axis in the equatorial plane shifted
by 90° with respect to the first beamsplitter in order to translate the longitudinal
angle to a polar angle 6. The readout of the interferometer is done by detection of
the population difference J; of the two output ports, from which the relative phase ¢
can be deduced. The resulting sinusoidal variation of the population difference (fz)
versus acquired relative phase ¢ is commonly called a Ramsey fringe.

Quantifying Interferometric Precision

Taking finite environmental noise into account, the sensitivity of the interferometer
to small phase shifts
-1

Ap~l = = (2.26)
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Fig.2.7 Precision limit in Ramsey interferometry. We compare schematically the phase estima-
tion precision in Ramsey interferometry using a coherent spin state (gray) and a spin squeezed state
(black). The main figure shows a Ramsey fringe whose visibility ) is maximal for a coherent spin
state (V = 1) but smaller for a spin squeezed state. Nevertheless the phase precision for a squeezed
state outperforms the precision obtained for classical interferometer as shown in the zoom around
the zero crossing. The projection noise is suppressed for the spin squeezed state such that the ratio
of projection noise and slope of the Ramsey fringe is smaller by a factor £ compared to the standard
quantum limit, which explains the gain in interferometric precision

depends on the mean phase (@) and is determined by the projection noise AJAZ
and the slope of the Ramsey fringe B(fz) /d¢. The point of maximum sensitivity
is reached where the mean population difference is zero and the slope is maximal
(8(J2)/0¢)max = VN/2. The visibility V measures the mean spin length (J) =
VN /2. Figure 2.7 illustrates the phase sensitivity of a Ramsey interferometer.

The amount of precision gain (or loss) relative to standard quantum limit is given
by 51;2 or equivalently by (E?) ~! The measure can be expressed in visibility V and
spin noise in J, direction at readout AJ?:

72
o 4N J
ST OVIN

(2.27)

The absolute phase uncertainty—measured as the root mean square deviation is:

1
Ap =&5 7 (2.28)

Spin squeezed states feature reduced noise in one of the spin directions but excess
noise in another direction can be present either due to a non-Heisenberg limited
quantum state or due to an incoherent mixture of several quantum states. The for-
mer might limit precision in standard Ramsey interferometry, but specific correlated
quantum states enable even enhanced interferometric precision in a generalized inter-
ferometer [33]. The latter is easily limiting interferometric precision at a level above
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the standard quantum limit and experimentally it requires a large effort to prevent
decoherence due to technical noise from the environment or due to finite temperature
in the system. Large noise—quantum or classical—even in a spin direction that is not
directly measured has a degrading effect on interferometric precision which arises
due to the curved surface of the Bloch sphere. As soon as the noise amplitude is large
enough such that the area of uncertainty can no longer be approximated by a plane,
the mean spin is effectively shortened and the visibility decreases V < 1.

Ramsey Interferometry with Entangled States

Entanglement can be used as a quantum resource in a Ramsey interferometric
sequence in different ways. In order to increase the phase sensitivity either the slope
of the signal 8(];) /d¢ has to be increased or the projection noise AJAZ2 has to be
decreased.

Slope increase can be reached by Schrodinger cat type entanglement which
involves maximally entangled states that are very fragile to decoherence. Therefore
they have been realized so far with very few particles only [34-36].

Spin squeezing aims to decrease the projection noise. This is possible in gradual
steps meaning that depending on the amount of spin squeezing the precision is grad-
ually increased. Therefore—at least for moderate levels of spin squeezing—these
states are less fragile and they have been realized with a large number of particles but
only with a relatively small squeezing factor [37-46]. Ramsey interferometry with
spin squeezed states is schematically depicted in Fig.2.6b where a “magic" beam-
splitter produces an entangled state. Interferometric sensitivity for a coherent spin
state and a spin squeezed state is compared in Fig. 2.7. For the spin squeezed state the
decreased quantum fluctuations Afz reduce the projection noise while the increased
fluctuations A J. y cause a slight decrease of the mean spin length and therefore of the
visibility of the Ramsey fringe. Nevertheless, the ratio of projection noise and slope
of the Ramsey fringe—and therefore the phase sensitivity—is increased.

2.4.2 Heisenberg Limit in Quantum Metrology

The ultimate limit for metrologic precision is the Heisenberg limit [47], where the
phase estimation error Ag is given by

Ap = — (2.29)

for N resources used in a single measurement. This fundamental limit can—up to a
constant numerical factor in the order of unity—in principle be reached with both
approaches mentioned above—Schrodinger cat type entanglement or spin squeezing.
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Schrodinger Cats and Metrology

In the context of quantum metrology the Schrodinger cat state is frequently called a
NOON state [48]. Its name originates from its form in Fock states basis:

INOON) = (IN, O) + €'V |0, N))/v/2 (2.30)

It is a coherent superposition of all atoms in state @ and zero atoms in state b and
vice versa. In spin representation the NOON state is the superposition of the two
maximal Dicke states:

INOON) = (|J, =J) + &N |J, ) /2 (2.31)

The increase of the signal slope for a NOON state is obvious since the phase acquired
between the two components g = N is N times larger than for a coherent spin state
[9,49, 50]. Experimentally it is important to note that the readout of the interferometer
can not be realized by measuring (J;). The reason is the vanishing mean spin length
(f ) of this state. It has been shown that the parity of the state is a useful experimental
observable to make use of NOON states in interferometry and to reach the Heisenberg
limit [34, 50].

Spin Squeezed States

Spin squeezed states allow to ask for the best achievable interferometry gain demand-
ing a finite mean spin length such that standard interferometric readout can be used.

The optimum & for a given mean spin length was found numerically in Ref. [25]
and for rather small spins itis shown in Fig. 2.5. An experimental protocol to generate
spin squeezed states close to the Heisenberg limit was proposed in Ref. [52].

Other Types of Quantum Correlated States

Recently it has been pointed out that the Fisher information is the most general
criterion to measure phase sensitivity since it saturates the Quantum Cramer-Rao
bound [33, 53]. Calculating the Fisher information for a coherent spin state state
evolving under the non-linear Hamiltonian H = XJ?, where y parametrizes the
nonlinearity, Pezzé and Smerzi recovered Heisenberg limit like scaling for the phase
precision [33]. The quantum state here is neither necessarily a NOON state nor a
coherently spin squeezed state. However standard interferometric readout can not be
used to extract the phase information and a new type of Bayesian readout has to be
employed which was experimentally demonstrated in [53].
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