Chapter 2
Spherical Harmonics

This chapter presents a theory of spherical harmonics from the viewpoint
of invariant linear function spaces on the sphere. It is shown that the
system of spherical harmonics is the only system of invariant function
spaces that is both complete and closed, and cannot be reduced further.
In this chapter, the dimension d > 2. Spherical harmonics are introduced
in Sect.2.1 as the restriction to the unit sphere of harmonic homogeneous
polynomials. Two very important properties of the spherical harmonics are
the addition theorem and the Funk—Hecke formula, and these are discussed in
Sects. 2.2 and 2.5, respectively. A projection operator into spherical harmonic
function subspaces is introduced in Sect. 2.3; this operator is useful in proving
various properties of the spherical harmonics. Since several polynomial spaces
are used, it is convenient to include a discussion on relations of these
spaces and this is done in Sect. 2.4. Legendre polynomials play an essential
role in the study of the spherical harmonics. Representation formulas for
Legendre polynomials are given in Sect. 2.6, whereas numerous properties
of the polynomials are discussed in Sect.2.7. Completeness of the spherical
harmonics in C(S?~1) and L2(S?™!) is the topic of Sect. 2.8, and this refers to
the property that linear combinations of the spherical harmonics are dense in
C(S* 1) and in L2(S*™!). As an extension of the Legendre polynomials, the
Gegenbauer polynomials are introduced in Sect.2.9. The last two sections
of the chapter, Sects.2.10 and 2.11, are devoted to a discussion of the
associated Legendre functions and their role in generating orthonormal bases
for spherical harmonic function spaces.

2.1 Spherical Harmonics Through Primitive Spaces

We start with more notation. We use Q% for the set of all real orthogonal
matrices of order d. Recall that A € RY*? is orthogonal if ATA = I,
or alternatively, AAT = I, I = I; being the identity matrix of order d.
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The product of two orthogonal matrices is again orthogonal. In algebra
terminology, 0%is a group; but in this book, we will avoid using this term. It
is easy to see that det(A) = +1 for any A € Q% The subset of those matrices
in O with the determinant equal to 1 is denoted as SO?. For any non-zero
vector n € RY,

0d(n) = {A ce0?: An = 77}

is the subset of orthogonal matrices that leave the one-dimensional subspace
span{n} := {an : @ € R} unchanged.

For a function f : RY — C and a matrix A € R¥, we define f4 : R? = C
by the formula

fa(x) = f(Az) Vxe RY.
We will use this definition mainly for A € 0? and for study of symmetry

properties of functions.

Proposition 2.1. If fo = f for any A € Q% then f(x) depends on
through |x|, so that f is constant on a sphere of an arbitrary radius.

Proof. For any two vectors @,y € R with |&| = |y|, we can find a matrix
A € 0% such that Az = y. Thus, f(x) = fa(x) = f(y) and the proof is
completed. a

Consider the subset Q%(eg). It is easy to show that any A € 0%(ey) is of
the form

A= (ATlO), A € 0%, (2.1)
0° 1
Similar to Proposition 2.1, if f4 = f for any A € Q%(ey), then f(z) depends
on x through |z ;_1)| and z4.
We will introduce spherical harmonic spaces of different orders as primitive
subspaces of C' (Sd_l). Consider a general subspace V of functions defined in
R< or over a subset of R%.

Definition 2.2. V is said to be invariant if f € Vand A € O% imply f4 € V.
Assume V is an invariant subspace of an inner product function space with
the inner product (-,-). Then V is said to be reducible if V.= V; + V5 with
Vi # (0, Vo # (), both invariant, and V; L Vs. V is drreducible if it is not
reducible. V is said to be primitive if it is both invariant and irreducible.

We note that Vi L Vs refers to the property that (f,g) = 0V f € Vq,
Vge Vs,
Definition 2.3. Given f : R? — C, define span {fA A€ @d}, the space of

functions constructed through f and 0%, to be the space of all the convergent
combinations of the form } .-, ¢;fa; with A; € 0% and ¢; € C.
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For the above definition, it is easy to see span { fa:Ac @d} is a function

subspace. Moreover, if V is a finite dimensional primitive space, then

V:span{fA:Ae@d} VO£ feV.

2.1.1 Spaces of Homogeneous Polynomzials

We start with H‘i, the space of all homogeneous polynomials of degree n in
d dimensions. The space H¢ consists of all the functions of the form

Z aaT®, aq € C.

|a|=n
As some concrete examples,

2 2 2
H; = {alxl + asr172 + 375 1 a; € (C} ,
3 2 2 2
Hj = {a12] + asw122 + asw173 + 4423 + aszaxs + agas : a; € C},

2 2 2
H3 = {alx:{’ + agxiTe + azriTs + a4xg taj € (C} .

It is easy to see that HZ is a finite dimensional invariant space. To
determine the dimension dim HZ, we need to count the number of monomials
of degree n: *® with o; > 0 and a3 + -+ + ag = n. We consider a set of
n+d— 1 numbers: 1, 2, ..., n+d — 1. Let us remove from the set d — 1
numbers, say 81 < -+ < B4—1. Denote 5y = 0 and 84 = n + d. Then define

o =i —Bi-1—1, 1<i<d,

i.e., define «; to be the number of integers between (5;_; and f;, exclusive.
Note that Y. | a; = d. This establishes a one-to-one correspondence between
the set of non-negative integers asq, ..., aq with a sum n and the set of d — 1
distinct positive integers 1 < --- < 84—1 between 1 and n 4+ d — 1. Since the
number of ways of selecting d — 1 different numbers from a set of n +d — 1

numbers is
n+d-—1
d—1 ’

dimHZ_<n;dI1>_<n+d_1>. (2.2)
— n

we have
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In particular, for d = 2 and 3, we have
1
dimH2 =n +1, dimHizg(n+1) (n +2). (2.3)

We give in passing a compact formula for the generating function of the

sequence {dimH},,>o,
o0

Z (dim HZ) 2"

n=0

Recall the Taylor expansion (e.g., deduced from [9, (1.1.7)])

(1+x)s:i(2)xn7 2] <1, (Z) ::8(8—1)..7.1!(3_n+1)_

n=0

Replacing x by (—z) and choosing s = —d, we obtain

(1—x)_d:i (”5_1);5", ] < 1. (2.4)

n=0

Thus,

i (dimHi) 2" = ﬁ 2| < 1. (2.5)

n=0

For n > 2,
[Py o= {2 Hamo(@) : Hoo € L, |

is a proper invariant subspace of HZ. Hence Hilgd—l, the restriction of Hfll to
S?71, is reducible. Let us identify the subspace of ]HIZ that does not contain
the factor |x|%.

Any H, € H? can be written in the form

H,(x)= Z aax®, aq € C.

lee|=n

For this polynomial H,,, define

Given any two polynomials in HZ,

Hyi(@)= Y aaiz®,  Hop(@) = Y asz®,

la|=n |a|=n
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it is straightforward to show

H,1(V Z o 1Taz = Hyo(V)H, 1(z).
|ox|=
Thus,
(Hmlv Hnﬂ)Hg = Hn,l(V)Hn,2(w) (26)

defines an inner product in the subspace HZ.
Recall that a function f is harmonic if Af(x) = 0. Being harmonic is an
invariant property for functions.

Lemma 2.4. If Af =0, then Afs =0V A e Q.
Proof. Denote y = Ax. Then V, = AV,,. Since A € 0%, we have

ANp=Vou Vo=V, -V, =A,

So the stated property holds. a
We now introduce an important subspace of H‘i.

Definition 2.5. The space of the homogeneous harmonics of degree n in d
dimensions, Y, (Rd), consists of all homogeneous polynomials of degree n in
R? that are also harmonic.

We comment that non-trivial functions in Y,, (Rd) do not contain the factor
|z|?. This is shown as follows. Suppose Y, (z) = |z|?Y,_2(x) is harmonic,
where Y,,_o(x) is a homogeneous polynomial of degree (n — 2). Then

(Ynayn)Hn’d = n—2(V)AYn($) =0.

Hence, Y,,(z) = 0.
Ezample 2.6. Obviously, Y, (R%) = H? if n =0 or 1.

Ford =1, Y, (R) = for n > 2.

For d = 2, Y2(R?) consists of all polynomials of the form a (23 — 23) +
bz, a,b € C. Polynomials of the form (z; + 4 x2)" belong to Y, (R?).
0

For d = 3, any polynomial of the form (z3 + iz cosf +ixzysinfd)”, 6 € R
being fixed, belongs to Y, (R?). O
Let us determine the dimension N,, 4 := dim Yn(R ). The number N, 4

will appear at various places in this text. Any polynomial H,, € Hn can be
written in the form

H,(z1, -,z Z Ta) hn—j(z1, - ,Ta-1), hn_j € HZ:;. (2.7)
7=0
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Apply the Laplacian operator to this polynomial,

n—2

Ay Hnlz @) = Y (1)’ [Aa-nhn—j(@(a-1)
§j=0

+(+2) (G + 1) hnoj2(®a-1))] -
Thus, if H, € Y, (R?) so that Ay Hp(x(q)) = 0, then

1

m A(d—l)hnfj; 0 S j S n— 2. (28)

hn7j72 = -
Consequently, a homogeneous harmonic H,, € Y,,(R?) is uniquely determined
by h, € HY" and h,_; € HY"! in the expansion (2.7). From this, we get
the following relation on the polynomial space dimensions:

Npg = dimH! 4+ dim HIZ]. (2.9)

Using the formula (2.2) for dimH% ™' and dimH?~}, we have, for d > 2,

n—1»

@2n+d—2) (n+d—3)!

Nn = )
4 nl(d—2)!

n e N. (2.10)

In particular, with n € N, for d =2, N, 2 =2, and for d =3, N, 3 =2n+ 1.
It can be verified directly that No q =1 for any d > 1, and

N071 = N111 = 1, le =0Vn Z 2. (211)
Note the asymptotic behavior
Nna=0(m*?%) for n sufficiently large. (2.12)

For the generating function of the sequence {N,, 4}n, we apply the relation
(2.9) for n > 1,

> Npaz" =1+ Npaz"
n=0 n=1
1+ (dimH;lfl) Y (dime;ll) o
n=1 n=1
(dim Hzfl) 2"+ z Z (dimHZ71> z"
0 n=0

= (1+2) i (aim B =) 2m.

n=0

M

n
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Thus, using the formula (2.5), we get a compact formula for the generating
function of the sequence {Ny, 4}n:

= " 1+2

We can use (2.13) to derive a recursion formula for N,, 4 with respect to
the dimension parameter d. Write

142 1+ 2 o
T = T T (Zde 12 )(Z)
k=0

We have

1 —|— z
— Nm
i g (£ )
Comparing this formula with (2.13), we obtain

Npa= Y Nma-1. (2.14)
m=0

2.1.2 Legendre Harmonic and Legendre Polynomial

We now introduce a special homogeneous harmonic, the Legendre harmonic
of degree n in d dimensions, L,, 4 : R? - R, by the following three conditions:

L. € Y, (RY), (2.15)
Lna(Az) = L, g(z) VAecQ%ey), Yo € RY, (2.16)
Lmd(ed) =1. (2.17)

The condition (2.16) expresses the isotropical symmetry of L,, 4 with respect
to the x4-axis, whereas the condition (2.17) is a normalizing condition. Write
Ly, q in the form (2.7) and A € 0%(ey) in the form (2.1). Then the condition
(2.16) implies

hn—j(AlfB(d—l)) = hn_j(:v(d,l)) VA € @dil, T(g-1) € Rdil, 0<j5<n.
From Proposition 2.1, h,,_; depends on x(4_1) through [z _1)|. Since h,,_;

is a homogeneous polynomial, this is possible only if (n — j) is even and
we have
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ckleg_)* if n—j =2k,

h"ﬂ'(“’“‘”)_{o itn—j=ok+1, *FEK
Hence,
[n/2]
Lna(x) = cxl@—n| (@),
k=0

where [n/2] denotes the integer part of n/2. To determine the coefficients
{ck}ggnz/g], we apply the relation (2.8) to obtain
(n—2k+2)(n—2k+1)

= — _ < < .
o hk+d—g v lsksb/

The normalization condition (2.17) implies ¢g = 1. Then

n!T(42)

7
4Kl (n — 2k)1 T (k + 451)°

C = (—l)k

0<k<[n/2.

Therefore, we have derived the following formula for the Legendre harmonic

[n/2] 2k n—2k
d—1 |:B(d,1)| (;vd)
L, =nll'| — § —1)k . 2.18

Using the polar coordinates
xa)=r€w, &a=teat+(1—t)¢u 1),
we define the Legendre polynomial of degree n in d dimensions, P, 4(t) :=

Ly,d(&(4)), as the restriction of the Legendre harmonic on the unit sphere.
Then from the formula (2.18), we have

i-1\ & (1 — 12)kgn—2k
Py alt) = ”’F<T) kg 0 CEE = M

Corresponding to (2.17), we have
P, a(1) =1. (2.20)

This property can be deduced straightforward from the formula (2.19). Note
the relation

Ln)d(.’lt) = Ln)d(’rﬁ(d)) = ’I“"Pmd(t). (2.21)
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The polynomial P, 3(¢) is the standard Legendre polynomial of degree n.
Following [85], we also call P, 4(t) of (2.19) Legendre polynomial.

Detailed discussion of the Legendre polynomials P, 4(t) is given in
Sects. 2.6 and 2.7.

2.1.3 Spherical Harmonics

We are now ready to introduce spherical harmonics.

Definition 2.7. Y¢ := ¥, (R%)|ga—1 is called the spherical harmonic space
of order n in d dimensions. Any function in Y‘i is called a spherical harmonic
of order n in d dimensions.

By the definition, we see that any spherical harmonic Y,, € YZ is related
to a homogeneous harmonic H,, € Y, (Rd) as follows:

Hy, (r§) = r" Y, (€).
Thus the dimension of Y is the same as that of Y, (R%):
dimY? = N, 4

and N, 4 is given by (2.10).

Take the case of d = 2 as an example. The complex-valued function (x; +
i22)™ is a homogeneous harmonic of degree n, and so are the real part and the
imaginary part of the function. In polar coordinates (r,6), & = (cos#,sin )7
and the restriction of the function (z1 + i x2)™ on the unit circle is

(cosf + i sinf)™ = e = cos(nb) + i sin(nd).

Thus,
Yn1(&) = cos(nh), yn 2(€) = sin(nd) (2.22)

are elements of the space Y2,
Let € € S%! be fixed. A function f : $*~! — C is said to be invariant
with respect to Q% (&) if

f(An) = f(n) VYAe0'€),vnesi™

We have the following result, which will be useful later on several occasions.

Theorem 2.8. LetY, € Yi and € € S7L. Then'Y,, is invariant with respect
to Q(&) if and only if
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V() = Yu(€) Pra(ém) ¥Ymes (2.23)

Proof. (=) Since £ is a unit vector, we can find an 4; € O such that
£ = Ajeqy. Consider the function

Yn(’rl) = Yn(Al’r])u ne Sd_l'

Then Y, is invariant with respect to O%(eq). From the definition of the
Legendre harmonic L, q(x), we know that the homogeneous harmonic
™Y, (n) is a multiple of L,, 4(r"n),

Y, (n) = c1Lna(r™n), r>0, nesi?

with some constant ¢;. Thus,

Yo(n) =ciLna(m), mesi

Choosing n = eq, we find

Cc1 = Yn(ed).
Hence,
Yn(n) = Yn(ed) Ln,d(n) = Y/n(ed) Pn,d(n'ed)v ne Sd_l'

Then,

i.e., the formula (2.23) holds.
(«<=) The function Y, (n) satisfying (2.23) is obviously invariant with
respect to Q%(). O

Consequently, the subspaces of isotropically invariant functions from Yi
are one-dimensional.
2.2 Addition Theorem and Its Consequences

One important property regarding the spherical harmonics is the addition
theorem.
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Theorem 2.9 (Addition Theorem). Let {Y,;:1<j<N,a} be an

orthonormal basis of Yn,

Yo i (MY k(M) dS* (n) = 655, 1 <4,k < Npa.

§d—1
Then
Nn d N
Y0,i(€)Yn,j(m) = ] 1| wa(€m) VEmesTh (2.24)
=1

Proof. For any A e 0% and 1 < k < Ny, Yo (A€) € Yi and we can write

Y,k (A€) = ch] wi(€), cny e C. (2.25)

From

[, Vs A0V G as O = [ Yo Vonlm st n) = o
gd—1 gd—1

we have
N'n.,d Nn,d
5jk - § CjlCkm (Yn,l; Yn,m) = § lec_kl-
I,m=1 =1

In matrix form, CCH = I. Here C¥ is the conjugate transpose of C. Thus,
the matrix C' := (¢;;) is unitary and so CHC =1, i.e.,

Nn,d
Z cjicjk = o1k, 1 <1,k < Ny q. (2.26)

Now consider the sum

Np.,a
Vo i (€)Yn (M), &mest

j=1

For any A € 0%, use the expansion (2.25),

Nn d N'n.,d
Y(AE, An) = Z Yo i (A€)Yn, Y,.,5(An) = Z kTt Y,k (§)Yn,1 (1),
j=1 Gk l=1

and then use the property (2.26),
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Y (A€, An) = ZYM (n) =Y (&)

So for fixed &, Y(£,-) € Y¢ and is invariant with respect to Q%(€). By
Theorem 2.8,

Y(&,m) =Y(§§) Pualén).

Similarly, we have the equality

Y(&n) =Y (n,n) Pna§n).

Thus, Y(£,€) = Y(n,n) and is a constant on S*"'. To determine this
constant, we integrate the equality

over S9! to obtain

V(£ €) S‘“I—Z/ (6)2ds*" = N, .

Therefore,
Nn,d
Y(£,€) = R
and the equality (2.24) holds. O
The equality (2.24) is, for d = 3,
2n-+1
— 2n+1
Z Yn,j (S)Ynd (,’7) = A Pn,3(£,’7) V{, n e S27 (227)
and for d = 2,
2
1
S Vo (€)Vai(m) = — Paz(ém) VEmes” (2:28)
j=1

For the case d = 2, we write £ = (cos 6, sinf)” and n = (cos, siny)T. Then,
€1 = cos(f — 1b). As an orthonormal basis for Y2, take (cf. (2.22))

Yn,l(g) =

os(nf), Y,2(€) = sin(nf).

Si-
Si-
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By (2.28),
P, 2(cos(0 — 1)) = cos(nf) cos(ny) + sin(nh) sin(ny) = cos(n (0 — 1)) .

Thus,
P, 2(t) = cos(n arccost), [t| <1, (2.29)

i.e., P, is the ordinary Chebyshev polynomial of degree n.
We note that for d = 2,

n
k=0

is the Dirichlet kernel, whereas for d = 3,

1 sin((n+1/2)¢) Y
Peal(€ ﬂw, cos ¢ := €1,

|-

n 2k+1

n+1
D2 Ves(@Ves(n) = = — PM(Em) YEmest  (230)
k=0 j=1

Here P{M?) (t) is the Jacobi polynomial of degree n on [—1,1], based on the
weight function w(t) = 1 — ¢; and as a normalization, Pfll’o)(l) =n+1
This identity is noted in [50]. See Sect. 4.3.1 for an introduction of the Jacobi
polynomials.

We now discuss several applications of the addition theorem.

The addition theorem can be used to find a compact expression of the
reproducing kernel of Y‘i. Any Y, € Yfll can be written in the form

Ny.a
Yn,YnJ Sd— 1Yn3(£) (2.31)
j=1
Applying (2.24),
Nn,a
Yn(S)_ i Yn(n) Yn,](S)Y ( ) Sd 1( )
j=1
Ml [ Py a€n) Ya(n) ds® )
[S* Jga—1
Hence,
Ny,
Kna(§,m) = R 1| a(&m) (2.32)

is the reproducing kernel of YZ, ie.,

Y, (€) = (Yo, Kna(€, ))sa-1 VY, € YI €S (2.33)
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Define .
¥, = DY
n=0

to be the space of all the spherical harmonics of order less than or equal to
m. Then by (2.33),

1

KO:m,d(Sv,r]) = |Sd 1|

Z Np.aPr.a(€m) (2.34)

n=0
is the reproducing kernel of Yg:m in the sense that
Y (€)= (Y, Koom.a(€,))ge—r VY € Y&,  &€eSih

We now derive some bounds for any spherical harmonic and for the
Legendre polynomial, see (2.38) and (2.39) below, respectively.
Since P, (1) =1, we get from (2.24) that

Nn,d
Yo (O = 2+ VéEes™ (2.35)

J=1

This provides an upper bound for the maximum value of any member of an
orthonormal basis in Yi:

- . N, g\ 2
max{|Yn,j(£)| gesth1<j< Nn,d} < (|Sd7?|) . (2.36)

Consider an arbitrary Y;, € Y¢. From (2.31), we find

Np,a
/Sd,l Yo (€)PdS (&) = > (Yo, Vi j)gan [*. (2.37)
j=1

By (2.31) again,

Nn,d Nn,d
2 < Z |Yn,j(€)|2 Z |(Yn7Yn,j)Sd*1|2-
j=1 j=1

Then using (2.35) and (2.37),

Y@ <

< gty Walfaenry
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Thus we have the inequality

N 1/2
||Yn||oos<m> Wallegosy WY € Y4, (2.38)

which extends the bound (2.36).
By (2.24) and (2.35), we have

., N, . V2 N 2 1/2 N
B 1| |Paa(&m)] Zj &)l ; Yasml| =gt
Therefore,
|Poa(t)| <1=Poa(l) YneN,d>2 te[-1,1]. (2.39)

We have an integral formula

s

[, \Puatempas-in) =S (2.40)
gd—1 n,d

This formula is proved as follows. First we use (2.24) to get

Nn,d

[ Pustempastm)
d—1 2 _
= (%) ‘/S Z Yn,j(S)Yn,j(n)
n, i |
d— 1
(&5

Then we apply the identity (2.35).
As one more application of the addition theorem, we have the following
result.

2
s~ (n)

Theorem 2.10. For any n € Ny and any d € N, the spherical harmonic
space Yi is irreducible.

Proof. We argue by contradiction. Suppose YZ is reducible so that it is
possible to write Yi =V1 + Vs with Vi # 0, Vo # 0, and V; L V5. Choose
an orthonormal basis of Yi in such a way that the first IV; functions span V;
and the remaining Ny = N,, 4— N7 functions span Vs. For both V; and Vs, we
can apply the addition theorem with the corresponding Legendre functions
Pn,d,l and Pnydﬁg. Since Vl L VQ,
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/ Pra1(€m)Pyaa(én)dSTi(n) =0 veEesTh (2.41)
§d—1

For an arbitrary but fixed & € S%7!, consider the function 1 — P, 4.1(&).
For any A € @d(é), we have AT A =T and A€ = £, implying AT¢ = €. Then

Pn,d,l({'A,r]) = Pn,d,l(ATS'n) = Pn,d,l({"r])u

i.e., the function 1 +— P, 4(&n) is invariant with respect to Q%(¢). By
Theorem 2.8,

Pn,d,l(&'n) - Pn,d,l(&'&) Pnd(gn) - Pn,d(gn)
Similarly,
Pn,d,2(£',’7) = Pn,d(gn)

But then the integral in (2.41) equals |S*"!|/N,.q by (2.40) and we reach a
contradiction. O

2.3 A Projection Operator
Consider the problem of finding the best approximation in Yi of a function
fe (s

inf {||f —Yollpageo) : Y € Y‘i} . (2.42)

In terms of an orthonormal basis {Y;, ; : 1 < j < N,, 4} of Y%, the solution of
the problem (2.42) is

2

n,d

(Praf)(&) = > (f,Ynj)si-1Yn (&) (2.43)

Jj=1

This is the projection of any f into Y¢ and it is defined for f € L(S?™!). The
disadvantage of using this formula is the requirement of explicit knowledge of
an orthonormal basis. We can circumvent this weakness by applying (2.24)
to rewrite the right side of (2.43).

Definition 2.11. The projection of f € Ll(Sd_l) into YZ is

Nn,d
|Sd_1| g1

(Pn.af)(&) := Ppa(&mn) f(n)dS* (n), &es™™  (244)
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The operator P,, 4 is obviously linear. Let us derive some bounds for the
operator Py, 4. First, we obtain from (2.39) that

|(Poaf)(€)] < LN fllreer), €€

ISd 1

Then, for all f € L'(S*1),

Np.a
[Pr.afllcss-1) < & PR, (2.45)

|
1Pr,afllcise-1y) < Noall fllziga-1y- (2.46)

Next, assume f € L2(S?1). For any € € 771,

|(Puaf) I < (|gd”?|) /Sdiﬁpn’d(é_n”md,l(m

[, rPast ),

Use (2.40),
(Pua Q) < oy

Hence, for all f € L2(S?1),

1Pasafll 21y < Ny/2lfllpaga-y, (2.47)
N 1/2
1Poaf o < <W> T (2.48)

We remark that (2.47) can be improved to
[Pn,afllLz@i-1) < 1 fllp2a-1);
see (2.134) later. Furthermore, if f € C(S%!), a similar argument leads to

1Pn.afloga-1y < Npl2ll flloe- (2.49)

Proposition 2.12. The projection operator P q and orthogonal transfor-
mations commaute:

Pr.afa = (Pnaf)a YAecO%
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Proof. We start with the left side of the equality,

(Puafa)€) = i [ Pralgom) £(am) a5 )
Nn,d d—1
= —T P a(A€-C) £(€) dST(C),
|S | Jsa—1
which is (Pp,af)4(€) by definition. O

A useful consequence of Proposition 2.12 is the following result.

Corollary 2.13. IfV is an invariant space, then Py gV = {Pp.af : f € V}
is an invariant subspace of Yi.

Since YZ is irreducible, by Theorem 2.10, Corollary 2.13 implies that if
V is an invariant space, then either V is orthogonal to YZ or P, 4V = YZ.
Moreover, we have the next result.

Theorem 2.14. IfV is a primitive subspace of C(S*™Y), then either V 1 Y?
or Pnp,a 15 a bijection from V to Y’i. In the latter case, V = Y’i.

Proof. We only need to prove that if P, g : V — Yi is a bijection, then
V= Y‘i. The two spaces are finite dimensional and have the same dimension
Npa = dim(YZ). Let {V; : 1 < j < N, q} be an orthonormal basis of V.
Since V is primitive, for any A € O¢, we can write

Np.,a

Vi(A€) = Y cinVi(€), e €C,

k=1

and the matrix (c;i) is unitary as in the proof of Theorem 2.9. Consider the

function
Np.,a

V(Em) =) Vi(§)V;(n).

j=1

Then again as in the proof of Theorem 2.9, we have
V(AE, An) =V (€,n) VAeQ?
Given &,m € S?1, we can find an A € O such that
At =ey, Anp=tes+ (1 —t*)2e4 1 with t = &,

Then
V() =V(estes+ (1—1)%eq 1)
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is a function of ¢ = &m. Denote this function by P4(t). For fixed &, the
mapping n — Py(£€m) is a function in V, whereas for fixed ¢, the mapping
N+ P,.4(¢m) is a function in Y¢. Consider the function

060 = | € Pualcn)as’ )
We have the property

$(AE, AC) = $(€,¢) VA0

o ¢(&,¢) depends on &-¢ only. This function belongs to both V and YZ.
Thus, either V = YZ or ¢ = 0. In the latter case, we have

N,
Z J (VJaYnk)Lz(Sd 1)—0 VE CGSd 1
k=1

where {Y, 1 : 1 <k < N, 4} is an orthonormal basis of YZ. Since each of the
sets {V; : 1 < j < Npq}and {Y,; : 1 < j < N, 4} consists of linearly
independent elements, we obtain from the above identity that

(VjaYn,k)Lz(Sd—l) = 07 1 < jak < Nn,d-

This implies V L Y¢. 0
We let V = YZ“ m # n, in Theorem 2.14 to obtain the following result

concerning orthogonality of spherical harmonics of different order.
Corollary 2.15. Form #n, Y¢ 1 Y2,

This result can be proved directly as follows. Let Y;, € Yzl and Y, € Y‘i
be the restrictions on S*~ ! of H,, € Y,,,(R?) and H, € Y,(R?), respectively.
Since AH,,(x) = AH,(x) =0, we have

/ (H, AH, — HyAH,,) dz = 0.
[l <1

Apply Green’s formula,

OH, OHpm\ a1
/Sd 1 <Hm 5~ Hy W) dsi=! = 0. (2.50)

Since H,, is a homogeneous polynomial of degree m,

OH,(x)

e =mY,,(€), &es¥h

w=¢
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Similarly,
0H, (x)

or

=nY,(§), &€ s* L.
z=£

Thus, from (2.50),

[, = mYa@ v s e) o

Hence, since m # n,

Yin(€) Y (€) dS*71(€) = 0.

§d—1

2.4 Relations Among Polynomial Spaces

We have introduced several polynomial spaces in the previous sections. Here
we discuss some relations among these polynomial spaces.

Proposition 2.16. The Laplacian operator A is surjective from ]HIZ to ]I-]Ifl%2
forn > 2.

Proof. Obviously, the operator A maps He to H? ,. By (2.2) and (2.10), we
have

—_ 1\ _ oy
dimHY — dimy, &%) < 2HA- DY @ntd-2)(ntd-3)

n!(d—1)! n!(d —2)!
_ (n—=24d-1)
C (n—2)1(d—-1)!
= dimH? .
Therefore, A : HY — H?_, is surjective. O

It is possible to give another proof of Proposition 2.16 using the inner
product (2.6). Suppose A : HY — H?_, is not surjective. Then there exists a

non-zero function H,,_o € HZ_2 such that
(AHy, Hyz)ga =0 VH,€H;.

Take H,(z) = |z|*H,—2(x) to get

(Hp, Hn)Hg = H,(V)Hy(x) = Hyo(V)AH, ()
= (Hn_g, AHn)H272 = 0
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Hence, H,(x) = 0 and then H,_o(x) = 0. This contradicts the assumption
that Hn_g 75 0.

Lemma 2.17. For n > 2, H? = Y,(RY) @ | - |PH®_,, with respect to the
inner product (2.6).

Proof. 1t is shown in the proof of Proposition 2.16 that
dimH? = dim Y,,(R?) + dim H?_,.

Thus, it remains to show Y,,(R?) L |- [2?H¢_,. For any Y,, € Y,,(R?) and any
H, 5 € H< there holds

n—2

(Yn’ |- |2H"*2)H§§ = (AYn,anz)HiJ =0

Therefore, the statement is valid. a

The orthogonal decomposition stated in Lemma 2.17 can be applied
repeatedly, leading to the next result.

Theorem 2.18. With respect to the inner product (2.6), we have

Hi = Yo RY) @ |- PYno(RY @ @] P72V, opg(RY). (251

Proof. For any H,, € Hi, by Lemma 2.17, we have
Hy(x) = Yo(®) + |2[* Hyz(2)

with uniquely determined Y,, € Y,, (Rd) and H,,_o € HZ_2. Applying Lemma
2.17to H,—o € H’id, we can uniquely determine a pair of functions Y,,_o €
Y, 2(RY) and H,_4 € H® , such that

H, o(x) =Y, o(x) + |z|*H,_4(x).

Hence,
H,(x) =Y, () + |2]*Yn_o(x) + |2|* Hy_a(z).
Continue this process to obtain the unique decomposition

Hy (@) = Yo(2) + |2 Yoa(@) + - + |22, o9 (2), (2.52)

where Y, 2; € Y,,_2;(R?). Note that the terms on the right side of (2.52)
are mutually orthogonal with respect to the inner product (2.6). O

As consequences of Theorem 2.18, we have the following two results.
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Corollary 2.19.

n

:ZY;?.

§d—1 j=0

=0

So the restriction of any polynomial on S is a sum of some spherical

harmonics and the restriction of the space of the polynomials of d variables
on S s Yo Y4,

Corollary 2.20. A polynomial H,, € Hi is harmonic if and only if
H,(&) Hy2(£)dS 1 (&) =0 VH, »cHl _,. (2.53)
gd—1

Proof. (<) Use (2.52) to obtain

Then by (2.53) and the orthogonality of spherical harmonics of different order
(Corollary 2.15), we obtain

0= - H,,(&) Yi—2;(€) dS*7(€)

= /di1 Yo _0;(€)]2dST71(€), 1<j<[n/2.

So Y,—2; =0for 1 <j<I[n/2] and H,(x) = Y, (x) is harmonic.
(=) Assume H,, € Y,(S%) is harmonic. Recalling (2.52), we write an
arbitrary H, 5 € H? , as

H, s(x) =Y, a2(x) + |:B|2Yn_4(:13) + -+ |£B|2 [(n_Q)/mYn,Q,Q [(n—2)/2] (x).
Then,
(n—2)/2]

Hn(&) Hn72(€) Sd 1 Z mdsdil(g)

gd—1 gd—1
= O,

again using the fact that spherical harmonics of different order are orthogonal.
O

Now we discuss the question of how to determine the harmonic polynomials
Yo, Yao2, ..., Yy_2[n/2) in the decomposition (2.52) for an arbitrary
homogeneous polynomial H,, of degree n. Since H,(x) is homogeneous of
degree n,
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H,(\x)=\"H,(x) YAeR, zecR%.
We differentiate this equality with respect to A and then set A = 1 to obtain

d

inﬁ%(:c) =nH,(x), H,ecH. (2.54)
X

i=1

Consider the function ™ H,, (x) with r = || and m € Ny. Note that

or _ % yoica

)

ox; T
We take derivatives of the function " H, (x) to obtain

0
8:@»

m OHn ()
8:@» ’

(r™Hy(x)) = mr™ 2z, H, () +

82
922 (r"Hy,(x)) = [m (m —2)r™m g2 + mrm_2] H,(x)

OH,(x) m 02 Hp ()
8:1?1' T 8:E12 ’

+2mr™ g,

and hence, using (2.54),
A(r™Hy(x)) =m(d+2n+m —2)r™ 2H,(x) + r™AH,(x)
vV H, € Hj. (2.55)
In particular, if H,(x) =Y, (x) is harmonic, then
AV (x)) =m(d+2n+m—2)r™ 2V, (x) VY, € Y,(RY). (2.56)
For H, € H?, we write (2.52) in a compact form

[n/2]
H,(x) = Z |27, o (). (2.57)
3=0

Apply the Laplacian operator A to both sides of (2.57) and use the formula
(2.56),

/2]
AH,(x) = Y 2j(d+2n—2j —2) |2V Y, ().

j=1



34 2 Spherical Harmonics

In general, for £ > 1 an integer, we have

[n/2]
AYH, (z 223 207 —1)---2(j — (k=1)) (d+2n—2j —2)

(d+2n—2j —4) - (d+2n — 25 — 2k) |2|2IPY, o (x).

Using the notation of double factorial,

[n/2]
d—|—2n—2j—2)” .
ARH,( 2Ry, _o;().
z:: 2] — 2k (s on—2j —ok— 2@ %(®)
(2.58)
By taking k = [n/2], [n/2] — 1, ..., 1, 0 in (2.58), we can obtain in turn
Yo_2[ms2 - Yu(z). In partlcular for n even,
Nd+n—2)!
A2 H, (@) = ZoE TR T (),
Hence,
(d—2)N
Y = " __A"?H,(x). 2.
0@ = an - (@) (2:59)

Ezxample 2.21. Write
z? = Ys(x) + |x|*Yo(z).

K2

We first apply (2.59) to get

We then use (2.58) with n =2 and k = 0 to obtain
2 1,
Ya(w) = a7 — [/
d
Hence, we have the decomposition

1 1
2= (2= JleP) +1oPg 1<isa

The same technique can be applied for higher degree homogeneous
polynomials. O

2.5 The Funk—Hecke Formula

The Funk-Hecke formula is useful in simplifying calculations of certain inte-
grals over Sd_l, cf. Sect. 3.7 for some examples. Introduce a weighted L' space
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L%d_3)/2(—1, 1) := {f measurable on (—1,1) : || f|l . —11) < oo}

(2.60)

(a-3)/2(

with the norm

1
191ty 1y = [ 1FO10= )

Note that for d > 2, C[-1,1] C L%dfg)/Q(—l, 1). In the rest of the section,
we assume d > 2.

Recall the projection operator P, defined in (2.44). Given f €
Ly 5 5(=1,1) and & € §"7', define fe(n) = f(&n) for n € ST, Then

(Prn.afe)a = Pn,afe for any A € @d(ﬁ). Since Py afe € Yi, by Theorem 2.8,
it is a multiple of P, 4(&-):

(Prafe)0n) = M Pra(&m)

This is rewritten as, following the definition (2.44),
MPuslen) = [ PaCn) fEQaSTHO. o

We determine the constant \,, by setting n = &€ in (2.61):

Ao = / P a(€:€) F(€:€)dST1(C).
Sdfl

The integral does not depend on & and we may take & = e4. Then using
(1.16),

= |s% 2|/ Poa(t) f(£) (1 = 2)"=" at. (2.62)

Let Y, € YZ be arbitrary yet fixed. Multiply (2.61) by Y,, and integrate
over S9! with respect to n:

A / Py a(€m)Ya () dS ()
§d—1

= f(&¢Q) Pra(¢m)Yn(n)dST () ) dSTH(C). (2.63)
L€ ([ )

Applying the addition theorem, Theorem 2.9, we see that

Nn.,a

Z (Yo Yo i)ga s Yo i (<),

j=1

|Sd '

L, Pratn 0¥t asti¢
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i.e., -
[ Pamomamas=m=5"tv.0. oy
d—1 n,d
Hence, from (2.63),
[, Femim st m) =AY (6) (265)

We summarize the result in the form of a theorem.

Theorem 2.22 (Funk—Hecke Formula). Let f € L%d_g)/z(_l,l), § €
S and Y, € Y®. Then the Funk-Hecke formula (2.65) holds with the
constant A, given by (2.62).

From (2.65), we can deduce the following statement using the formula
(2.24). Assume f € L%dfg)/Q(—l7 1). Then

[, FEQ PO dS™ Q) = MuPolgm) VEmeS' ! n e,

(2.66)
where ), is given by the formula (2.62).
Letting f = P, 4 in (2.65) and comparing it with (2.64), we deduce the
formula

/1 Paa(®) (1 - 2)'F at = 1S (2.67)

1 Nn7d|Sd72| ’
which is equivalent to (2.40).

2.6 Legendre Polynomials: Representation Formulas

Further studies of spherical harmonics require a deeper knowledge of the
Legendre polynomials. In this section, we present compact formulas for
the Legendre polynomial P, 4 defined in (2.19): one differential formula
(Rodrigues representation formula) and some integral representation for-
mulas. These formulas are used in proving properties of the Legendre
polynomials in Sect. 2.7.

2.6.1 Rodrigues Representation Formula

By Corollary 2.15,

/S  Pal0) Paa(6:€)dSTH(€) =0 form £ n.
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By the formula (1.17), the left side integral equals

/Sdi2 </_11 Pra(t) Py a(t) (1 _ﬁ)% dt) g2

st 2|/ Proa(t) Paa(t) (1— ) dr.
So

/1 Pra(t) Poa(t) (1—13)7 dt =0 form #n. (2.68)

-1

Consequently, denoting P, a polynomial of degree less than or equal to m,
we have the orthogonality

/1 Po(t) P, ()(1—152)5 dt =0, m<n. (2.69)

-1

The Legendre polynomials are determined by the orthogonality relation
(2.68) and the normalization condition P, 4(1) = 1.

Theorem 2.23 (Rodrigues representation formula).

Poa(t) = (~1)" Ry a(1 — £2)" (i

dt) 1) 2 ford>2, (2.70)

where the Rodrigues constant

=2/ (2.71)

Proof. The function

palt) = (1 — 12)%5 <a)" (1= 2yt

is easily seen to be a polynomial of degree n. Let us show that these polyno-

d—3
mials are orthogonal with respect to the weight (1 — t2) . For n > m,

/11 Pa(®) pn(t) (1= 12) 7 dt = /11 Pm(t) (%y (=) ar

Performing integration by parts n times shows that the integral is zero.
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The value p,(1) is calculated as follows:

pa(l) = (1) (iy (L2 (1= 2

dt

t=1

t=1

where the formula (1.12) for Pochhammer’s symbol ((d —1)/2), is used.
Hence,

Ppa(t) = (=1)"Rn,apn(t),
which is the stated formula. O

In the case d = 3, we recover the Rodrigues representation formula for the
standard Legendre polynomials:

1 [d\"
Pnﬁg(t) = W <E) (t2 — 1)", n e NO.

In the case d = 2, we use the relation

o+ - he().

derived from a repeated application of (1.6), and obtain

2"n/!
2n)!

[N

Poa(t) = (=1)" (1-1%)

d\" 1
(E) (1 — t2)n_§, n e NO.

—~

This formula is not convenient to use. A more familiar form is given by the
Chebyshev polynomial:

P, 2(t) = cos(narccost), te[-1,1].

This result is verified by showing cos(n arccost) is a polynomial of degree
n, has a value 1 at ¢ = 1, and these polynomials satisfy the orthogonality
condition (2.68) with d = 2. See also the derivation leading to (2.29).

In the case d = 4, we can similarly verify the formula

Un(t), tel[-1,1],
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where
1
] Py 2(t)

is the nth degree Chebyshev polynomial of the second kind. For —1 < ¢ < 1,
we have the formula

U,(t) =

sin((n 4 1) arccost)
sin(arccost)

U,(t) =

We note that the Legendre polynomial P, 4(t) is proportional to the Jacobi
polynomial P (t) with o = (d — 3)/2. The Jacobi polynomials P (t)
are introduced in Sect.4.3.1.

2.6.2 Integral Representation Formulas

In addition to the Rodrigues representation formula (2.70), there are integral
representation formulas for the Legendre polynomials which are useful in
showing certain properties of the Legendre polynomials.

Let d > 3. For a fixed € Sd_Q, the function & +— (x4 +ixg_1)n)" is
a homogeneous harmonic polynomial of degree n. Consider its average with
respect to n € sé=2,

1

S Jou (B ¥ 1By )" AT )

Ln(w) =

This function is a homogeneous harmonic of degree n. For A € 0%(e,), we
recall (2.1) and write

Ax = (Alm(d_1)> , A el

Zd
Note that here we view x4_1) as a vector in S%2. Then

1 . n _
L"(Aw)zm s (za +im(a1)Afn)" dS?2(n).

With a change of variable ¢ = AT, we have

1

LulAz) =t |,

(iUd +ifv(d71)'4)n ds?=2(¢),

which coincides with L, (x). Moreover, L,(eq) = 1. Thus, L,(z) is the
Legendre harmonic of degree n in dimension d. By the relation (2.21), we
see that
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1
|Sd_2| qd—2

Pn,d(t) [t +1 (1 - t2>1/2€(d71)'n:| " deiQ(Tl)v te [_17 1]

In this formula, §,_q) € S?72 is arbitrary. In particular, choosing €a-1) =
0,---,0,1)7 in S?2 and applying (1.17), we obtain the first integral
representation formula for the Legendre polynomials.

Theorem 2.24. Forn € Ny and d > 3,

S . 2n1/2 1" 2y d=4
Pmd(t):W 3 [t+z(1—t) s| (1—s3)ds, te[-1,1]. (2.72)

An easy consequence of the representation formula (2.72) is that P, q(t)
has the same parity as the integer n, i.e.,

Pra(=t) = (=1)"Pna(t), —-1<t<1. (2.73)

There is another useful integral representation formula that can be derived
from (2.72). Recall definitions of hyper-trigonometric functions:

xT —X T —T
. et —e e’ +e
sinhz := T’ coshz := T,

sinh x et —e”
tanh z := =
cosh x er +e "

x

and differentiation formulas

(sinhz)’ = coshx, (coshz)' =sinhz, (tanhz) = .
cosh” z

Use the change of variable
s=tanhu, ue€R. (2.74)

We have s — 1— as u — 00, s = —14 as u — —o0o, and

1

cosh? u

1

ds = -
cosh” u

du, 1—s*= (2.75)

Since P, q(—t) = (=1)"P,.q(t) by (2.73), it is sufficient to consider the case
t € (0,1] for the second integral representation formula. Write

t4i(1 -3 =¢?
for a uniquely determined 6 € [0,7/2). Then ¢ = cos @ and

t+i(1—t3)2s = cosf + i tanhusin .
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The hyper-trigonometric functions are defined for complex variables and it
can be verified that

cosh(u + i0)

cosf +itanhusinf =
coshu

Thus,

1 L) n .
t+1 1—t2 1/25 1—52 d24d5:/ Cos—du
/_1 [ ( ) ( ) _ oo cosh™td72y

The integrand is a meromorphic function of w with poles at v = im (k +1/2),
k € Z. We then apply the Cauchy integral theorem in complex analysis [2]
to obtain

/°° cosh” (u + i0) 4 /OO cosh™ u 4
—_— 2 du = U.
—eo cosh™ 472y oo cosh" T2 (y — if)

Return back to the variable s, using the relation
cosh(u — i0) = coshu [t —i(1 — )12
together with (2.74) and (2.75),

S (1-s2)7

ST =i (1 e2)1/28)" TR

P,.q(t)

Note that changing s to —s for the integrand leads to another integral
representation formula for P, 4(¢). In summary, the following result holds.

Theorem 2.25. Forn € Ny and d > 3,

_ s (157
IS472 St [t i (1 — e2) /2]

Pya(t) ds, te(0,1]. (2.76)

2.7 Legendre Polynomials: Properties

In this section, we explore properties of the Legendre polynomials by using
the compact presentation formulas given in Sect. 2.6.
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2.7.1 Integrals, Orthogonality

The following result is useful in computing integrals involving the Legendre
polynomials.

Proposition 2.26. If f € C"([-1,1]), then

[ 0 0= = [ g0 - a0
—1 -1

where the constant Ry, q is given in (2.71).

Proof. By the Rodrigues representation formula (2.70), the left side of
(2.77) is

D rea [ 50 (L) -2
R [ 10 () -8 ar

Performing integration by parts n times on this integral leads to (2.77). O

Recall the formula (2.40) or (2.67),

/1 |Sd71|
[Paa(®)]? (1—1%) e AT (2.78)

—1 n,d |Sd 2|
Combining (2.68) and (2.78), we have the orthogonality relation

S
Ny 4|82

/ Pra(t) Poa(t) (1 —t7) = S (2.79)

Using (1.18), we can rewrite (2.78) as

[ Pt (=) = YR,

In particular, for d = 3, N,, 3 = 2n+ 1 and

For d =2, N,,» = 2 and
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We can verify this result easily by a direct calculation using the formula

P, 2(t) = cos(narccost).

2.7.2 Dafferential Equation and Distribution of
Roots

First we derive a differential equation satisfied by the Legendre polynomial
P, 4(t). Introduce a second-order differential operator Ly defined by

3—d d—1

Lag(t) == (1 -3 % {(1 _ ) %g(t) . geC?-1,1].

Also introduce a weighted inner product

d—3

1
()= [ f090 (1-2)F
-1
Then through integration by parts, we have

(Laf,9)a = (f, Lag)a ¥ f.g € C*[-1,1]. (2.80)
Thus, the operator L, is self-adjoint with respect to the weighted inner

product (-, )q4.
Consider the function LyP, 4(t). Since

Lag(t) = (1 =) g"(t) — (d— 1)t g'(t),

we see that if p,(t) is a polynomial of degree n, then so is Lgp,(t). Let
0 <m < n — 1. By the weighted orthogonality relation (2.69), we have

(Pn,d,LaPpm,a)a = 0.
Then by (2.80),
(PpmasLaPna)a=0, 0<m<n-—1.
Thus, the polynomial L;P, 4(t) must be a multiple of P, 4(t). Writing

Ppa(t) = a) 4t" +Ld.t. (2.81)
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Here 1.d.t. stands for the lower degree terms. We have
LqPpg(t) = —n(n+d—2)a) 4t" + Ld.t.

Hence,
LdPn)d(t) +n(n+d-2) Pn)d(t) =0.

So P, g4 is an eigenfunction for the differential operator — L4 corresponding to
the eigenvalue n (n + d — 2). In other words, the Legendre polynomial P, 4(t)
satisfies the differential equation

(1—t2)¥ 4 (1—t2)% d

p d(t)| Fn(n+d—2)P,a(t) =0, (2.82)

which can also be written as
(L=t) P} 4(t) = (d = 1)t P, 4(t) +n(n+d—2) Py a(t) =0. (2.83)

Next, we present a result regarding distributions of the roots of the
Legendre polynomials. This result plays an important role in the theory of
Gaussian quadratures. From the differential equation (2.83), we deduce that
Py a(t) and P ;(t) cannot both vanish at any point in (-1, 1); in other words,
P, 4(t) has no multiple roots in (—1,1). Assume P, 4(t) has k distinct roots
t1, -+, tg in the interval (—1,1), and k < n. Then

pre(t) = (t—t1) - (t —tx)

is a polynomial of degree k, px(1) > 0, and P, 4(t) = ¢n—(t) pr(t) with
a polynomial g,y of degree n — k. Since the polynomial ¢, (t) does not
change sign in (—1,1) and is positive at 1, it is positive in (—1,1). So

! a—3 1 d—3
/ Poa@)pr(t) (1—17) = dt = / Gn—k() pe(t)? (1 =1%) "7 dt > 0.

-1 -1

However, since k < n, the integral on the left side is zero and this leads to
contradiction. We summarize the result in the form of a proposition.

Proposition 2.27. The Legendre polynomial P, 4(t) has exactly n distinct
roots in (—1,1).

For n even, P, 4(t) is an even function so that its roots can be written
as £y, ..., £ty 0 with 0 < ¢y < --- < t,/5 < 1. For n odd, P, 4(t) is an
odd function so that its roots can be written as 0, &t1, ..., £t(,_1)/2 with
0<ty < -+ <tp-1y2 <L

In the particular case d = 2, it is easy to find the n roots of the equation

P, 2(t) = cos(narccost) =0
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to be
27 +1
tjzcosM, 0<j3<n—-1.
2n
For n = 2k even, noting that to,_1_; = —t;, we can list the roots as
27 +1
tto, &by, -, Etp_; with ¢ :cos%, 0<j<k—1.

For n = 2k 4 1 odd, noting that ¢, = 0 and tor,—; = —t;, we can list the
roots as

2j+1)m

0, £tg, £t1, - -+, £tp—1 where t; = cosm

2.7.83 Recursion Formulas

Recursion formulas are useful in computing values of the Legendre polyno-
mials, especially those of a higher degree.

Let us first determine the leading coefficient a” , of P, 4(t) (see (2.81)).
We start with the equality 7

/ P (1-3)7 dt=al, / 11 Py a(t) (1—12) 7 dt,  (2.84)

—1 —

obtained by an application of the orthogonality property (2.69). By (2.78),
the left side of (2.84) equals

S
Nn,d |Sd72| :

Applying Proposition 2.26, we see that the right side of (2.84) equals

1 a3
00 4R g / (1— )" ar.
-1

To compute the integral, we let s = ¢

! n+@ ! 1 d—1
/ (1—)"" 7% at= / s2 11 —s)" e s

-1 0
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Hence,
st D(HT(n+ &L
| d|—2 :(Zg an,dn!—(2) (n a 2 )
Nn,d |S | ’ F(n + 5)

Therefore, the leading coefficient of the Legendre polynomial P, 4(t) is

o 2"7I0(d — 1) T(n + 452)
" I(4)r(n+d-2)

(2.85)

As an application of the formula (2.85), we note that

ang  2mtd—4
aoil’d  n+d-3"

n

So
(n+d—3)Pua(t) — 2n+d—4)t Po_1.4(t)

is a polynomial of degree < n — 1 and is orthogonal to Py 4(t) with respect
to the weighted inner product (-,-)q for 0 < k < n — 3. Thus, when this
polynomial is expressed as a linear combination of Pj4(t), 0 < j < n —1,
only the two terms involving P,,_2 4(t) and P,,_1 4(¢) remain. In other words,
for two suitable constants ¢; and ca,

(n + d - 3) Pnﬁd(t) - (271 + d - 4)tPn,17d(t) = Clpnflyd(t) + C2Pn72,d(t)-

The constants ¢; and c¢e can be found from the above equality at ¢ = +1,
since Py 4(1) =1 and Py 4(—1) = (=1)* (cf. (2.73)):

ci+co=1—n,

cp—co=n—1.

The solution of this system is ¢; = 0, ca = 1 — n. Thus, the Legendre
polynomials satisfy the recursion relation

2n+d—4 n—1
Poat) =" tP, 1 4(t) - ————Py 54(t), n>2, d>2.
alt) = ————= La(t) = g Pa2a(t),
(2.86)
The initial conditions for the recursion formula (2.86) are
Poa(t)=1, Pi4(t)=t. (2.87)

It is convenient to use the recursion formula (2.86) to derive expressions of
the Legendre polynomials. The following are some examples. Note that in any
dimension d, the first two Legendre polynomials are the same, given by (2.87).
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For d = 2,
Pyso(t) =21 —1,
Pyo(t) = 4t° — 3¢,
Pyo(t) =811 — 812 +1,
Pso(t) =16t° — 201> + 5.
For d = 3,
1 2
P2,3(t):§(3t -1),
1 3
P3,3(t)=§(5t —3t),
1
Pig(t) = 5 (35t = 30¢° +3),
1
Ps3(t) = 5(63155 70t° +15¢).
For d =4,
1 2
Py y(t) = §(4t —1),
Pya(t) =2t —t,
1
Pya(t) = g(16t4 126+ 1),
1
Psa(t) = 5 (167 — 1647 +3¢).
For d =5,
1 2
Pys(t) = Z(51t -1),
1 3
Ps5(t) = Z(7t - 31),
1
Pys(t) = §(21t4 1412 + 1),
1
Ps5(t) = 5 (337 = 3047 4 5¢) .

Graphs of these Legendre polynomials are found in Figs.2.1-2.4.

47
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As another application of the formula (2.85), we derive a formula for
derivatives of the Legendre polynomials in terms of the polynomials
themselves. Note that

a%,d n+d-2
U1 aso d—1 "~
So
(d=1)P; 4(t) —n(n+d—2)Py_1442(t) (2.88)

is a polynomial of degree <mn — 2. For k <n — 2,

1
/ P’r/L,d(t)Pk,d+2()(1_t2) R dt

-1

:_/ P, ();i{Pde()(l—tz)dQl dt

/ Poa(t) [(1 = t2) Plysa(t) = (d— 1)t Pyaya(t)] (1—12) 7 dt.
Since

(1= %) Piaga(t) = (d = 1)t Prasa(t)

is a polynomial of degree < n — 1,

1
/ P y(t) Pray2(t) (1 — %) s dt=0, 0<k<n-2.

n)
—1

Thus, the polynomial (2.88) is of degree < n — 2 and is orthogonal to all the
polynomials of degree < n — 2 with respect to the weighted inner product
(,-)dt+2- Then the polynomial (2.88) must be zero. Summarizing, we have
shown the following relation

-2
a(t) = % Py_1a2(t), n>1,d>2. (2.89)

Applying (2.89) recursively, we see that

PUN(t) = cnajPujds;(t)
where the constant ¢, g ; is

nn-1-(n-(G-1) (n+d=2)(n+d=1)-(n+j+d-3)
(d—1)(d+ 1) (d+2j—3) '
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The denominator of the above fraction can be rewritten as

o (d—l) _ 2T+ 45
J

2 NG

where (1.12) is applied. Thus,

nl(n+j+d—3)IT(45!

@) 4y — )
) = S T T+ d =31 + 1)

Pn ],d+2](t) nZ.?a d22

_ (2.90)
Note that for n < j, Péjc)l(t) =0.
The formula (2.90) pfovides one way to compute the Legendre polynomials
in higher dimensions d > 4 through differentiating the Legendre polynomials
for d = 3 and d = 2. This is done as follows. First, rewrite (2.90) as

alt) (n+ ) (n+d—3) T (L2 —j) =2

(t). (2.91)

For d = 2k even, take j = k — 1. Then from (2.91),

251l (n + k — 2)IT(k —
(n+k—1)(n+2k—3)T

PHED ().

)
l) n+k—1,2
2

1
Pn,2k:(t) = ?

Applying (1.10), we have

(2k — 2)!'n! Pl
2k—1(n+k—1)(k—1)! (n+ 2k — 3)! ~ ntk-12

Pn,2k (t) = (t)

For d = 2k + 1 odd, take j = k — 1. Then from (2.91),

ok—1pn (k ! (TL + k- 1) (k—1)

_ 1!

Pzt () = S T 2k — )t ekt
D!
!

(t)

2k71 ( |

_ (k-1)
= mPnJrk 1a(0):

Let us derive some recursion formulas for the computation of the derivative
P}, 4(t). First, we differentiate (2.76) to obtain

(1= %) P, a(t) = —(n+d = 2) [Puy1,a(t) =t Poa(t)]. (2.92)

Since (2.76) is valid for d > 3 and ¢ € (0, 1], the relation (2.92) is proved for
d>3andte(0,1). For d =2, P, 2(t) = cos(nf) with § = arccosd, and it is
easy to verify that both sides of (2.92) are equal to n sin f sin(nf). Then the
relation (2.92) is valid for d > 2 and t € (0, 1). Since P, 4(—t) = (—=1)" P, q(t),
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we know that (2.92) holds for ¢ € (—1,0) as well. Finally, since both sides of
(2.92) are polynomials, we conclude that the relation remains true for ¢t = +1
and 0, i.e.,

(1 —=t*) Py 4(t) = —(n+d = 2) [Par1,a(t) —t Poa()]
neNy, d>2, tel[-1,1]. (2.93)

Then, from (2.86), we have

t Pn,d(t) [(n +d— 2) Pn-l—l,d(t) +n Pn—l,d(t)] .

T o+ d—2

Using this equality in (2.93) we obtain another relation

nn+d—2
(1—*) P, 4(t) = ﬁ [Pr—1,a(t) = Pa1,a(t)]
neN, d>2, tel-1,1] (2.94)

Finally, we differentiate the integral representation formula (2.72),

d-3) 1
_ s

n—1
; 2\1/2
=5 _1n[t+z(1—t )1/2s|

Py 4(t)
: [1 —it(1 _t2)—1/2s] (1— %) ds.
Then we find out

(L= 1) P, 4(t) = n[Paora(t) =t Poa(t)]-

This equality is proved for d > 3. For d = 2, P, 5(t) = cos(n arccost) and one
can verify directly the equality. So we have the relation

(1—=t) Py 4(t) =n[Py_14(t) =t Pog(t)], n>1,d>2, te[-1,1].
(2.95)

2.7.4 Generating Function

Consider the following generating function of the Legendre polynomials

/n+d-3
¢(T)—Z< ;_3 )Pnyd(t)r", It <1, |r| < 1. (2.96)

n=0

Let us first derive a compact formula for ¢(r).



2.7 Legendre Polynomials: Properties 53

Since | Py, q(t)] < 1 for any n, d and ¢, it is easy to verify that the series
converges absolutely for any r with |r| < 1. We differentiate (2.96) with
respect to r to find

¢/(r) = ; n (n ;f ; 3) Pra(t)r" (2.97)
= n+d-—2 n
= ;(” +1) ( d—3 >Pn+1,d(t) . (2.98)

Using (2.97) and (2.98), we can write

1+ =2rt)¢/(r) =D (n+1) (n ;il ; 2) Poyra(t)r”
n=0

i <n +d— 3> Poat) !

—2t2n<nz;il;3)Pnyd(t) . (2.99)

In the first sum of (2.99), for n > 1, use the following relation from (2.86):

2n+d—2 n

Praalt) = Sy tPnall) =S

n+d—2 Po1,a(t)-

Then after some straightforward algebraic manipulations, we obtain from
(2.99) that

(L+r*=2rt) ¢/ (r) = (d—2) (t—r) p(r). (2.100)
The unique solution of the differential equation (2.100) with the initial
condition

#(0) = Ppqa(0) =1
is
_d=2
o(r)=(1+r*—-2rt) 2
Therefore, we have the following compact formula for the generating function
of the Legendre polynomials:

> d—3 a2
S ("5 Pt = (e - 2e) T <1 <1

o d—3
(2.101)
In particular, we have, for P, (t) := P, 3(t),
1
ZT”P t <1, |r| <1. (2.102)

(1+ 72 —2rt)1/2°
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The Legendre polynomials P, 3(t) were originally introduced as coefficients
of the expansion (2.102).
For d > 3, we differentiate (2.101) with respect to r for |r| < 1:

Z (n—i— d— 3) Poa(t) ! = d=2)¢=r) (2.103)
— (14+r2—=2r¢)2
Note that
1 2r (t — 1—r?
L2t !

4
2

N\Q.

(1—1—7“2—27%‘)% (1472 —2rt) (1+r2—2rt)

Multiply both sides by (d—2) and apply (2.101) and (2.103). Then we obtain

= n+d—3 e (d—2)(1—1r?)
712_()(2n+d—2)( d—3 )Pmd(t)r m

This identity can be rewritten as

> " 1—72
Z Nn,dr Pn,d(t) = T o 4
e (L+72—=2rt)2

and has been proved for d > 3. It can be verified that the identity holds also
for d = 2. Therefore, we have the next result.

Proposition 2.28. (Poisson identity) For d > 2,

> n 1—7r2
> Npar" P alt) = PR Ir| <1, te[-1,1].  (2.104)

Consider the special case d = 2. Then P, 2(t) = cos(narccost). With
t = cos 6, the Poisson identity (2.104) is

1—72

1+2 9 -
+ Zr cos(nf) = 1+172—2rcos@

n=1

Ir|<1,0<6<m  (2.105)

With d = 3, the Poisson identity (2.104) is

> 1—7r?
2(277,"' 1) ’I”nPnﬁg(t) = m, |7"| < 1, te [—1, 1]
n=0 -

This Poisson identity provides the expansion of the Henyey—Greenstein phase
function (1.2) with respect to the Legendre polynomials.
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We now use (2.101) to derive a few more recursive relations involving the
first order derivative of the Legendre polynomials. Differentiate (2.101) with
respect to ¢,

2 (”55;3) O = (d—2)r (1+1%—2rt)

n=0

Differentiate (2.101) with respect to r,

2

Z <n—|—d 3>Pn1d(t)rnl =(d-2)(t—r) (1—|—T2 —2rt) 2.

Combining these two equalities we have

D A EFURES S (A PR

n=1 n=1

-3

n=2

(n+d 4) L

Thus, for n > 2,

T LV G RV L I

which can be simplified to
(n+d=3)tP, ;(t) —nP, 4 4(t) =n(n+d—3)Pa(t). (2.106)
Differentiate (2.86) with respect to ¢,
(n+d—2) P,y 4(t) = 2n+d—2) [t P, 4(t) + Pra(t)] —nPp_y 4(t).
Add (2.106) and (2.107) to obtain :

(n+d—2)Ppy 4(t) — (n+1)tP, 4(t) = [n® + (d— 1) n+d—2] P, a(t).

—~
[\]
—_
o
oo

S~—
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We can use either (2.106) or (2.108) to express a Legendre polynomial in
terms of derivatives of Legendre polynomials:

/ 1 /

1
Pra(t) = —tF, 4(t) — T d—3 Py 1.4(t), (2.109)
and
n+d—2
P, .q(t) = P! t
1
nt tP) (). (2.110)

24 (d-1)n+d-2
Replace n by (n — 1) in (2.108),
(n+d—3)P, 4(t) —ntP,_, 4(t) =n(n+d—3)P,_14(t).
Then subtract from this relation the identity obtained from (2.106) multiplied

by t,
(1= t*) Py 4(t) = n[Pa-r,a(t) =t Poa(t)].

This is the formula (2.95).
From (2.86),

2n+d—2 n+d—2
Pp_14(t) = ————t Py a(t) — ————Pat1.4(l).

n n

We can use this relation in (2.95) to recover (2.93).

2.7.5 Values and Bounds

First, we recall the parity property (2.73),
Poa(—t) = (—1)"Poa(t), —1<t<1. (2.111)
We know from (2.20) that
Poa(l) =1.
Using the property (2.111), we further have

Ppa(—1) = (-1)™. (2.112)
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This result also follows from the value

" (n d—1
pn(_l) = %;1)2),

computed with a similar technique used in evaluating p, (1) in the proof of
Theorem 2.23.
We use (2.72) to compute P, 4(0) for d > 3.

|Sd_3| ' n N 2\ 452
Pn’d(O):W _12 s"(1—s%)"7 ds.

For n odd, n = 2k + 1, k € Ny, obviously,

Psi+1,4(0) = 0. (2.113)
For n even, n = 2k, k € Ny,
k |Sd73| ' 2k 2y 42
Poy,a(0) = (—1) W 2 [ s*(1—s%)"7 ds.
0

Use the change of variable t = 52,

d—
RS [T
|Sd_2| o

Par,a(0) = (=1) th=12(1 — )T dt.

Therefore,

Pyy.a(0) = (-1 2 2.114
2k,d( ) ( ) |Sd,2| F(k—l—%) ( )
As an example,
(2k — 1!
Poy3(0) = (—1)kW
Alternatively, we may use the generating function formula (2.101) to
compute the values. For example, take x = —1 in (2.101):

— (n+d—3 iy —(d-2)
S ("5 Pt = e,

n=0

Apply (2.4) to expand the right side to obtain

3 ("5 Rt - (V5 Y o e

n=0 n=0
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Hence,
P, a(=1)=(-1)".

We may also apply (2.90) to find derivative values at particular points.
For instance, since

P_ja2i(1) =1,
P jao;(—=1) = (=1)",

we have for n > j and d > 2,

() nl(n+j+d—3)I0(%H)
Pra(l) = 2i(n — j)(n+d— 3)'P(j2"' o)
pO)(_qy = D"+ +d = D)
md\ T T i — )+ d—3)T( + &)

In particular, for d = 3,

(j)( ) = (n+j)!
T A = )
from which,
/ 1 /! 1
Pla)=gnm+1),  Pla()=g@-Dn(n+1)(n+2).

Next we provide some bounds for the Legendre polynomials and their
derivatives. We use (2.72) to bound P, 4(t). For s,t € [-1,1],

ti(l— tz)l/zs’ =[2+a-2)2]) P <@+1-»)Y2 =1 (2.115)

So for d > 3,

|Sd_3| 1

|Pa(t)] < (1-s))Tds=1, tel-1,1].

|Sd_2 1

This bound is valid also for d = 2. Thus,
|Pna(t) <1, meNy, d>2,te[-1,1]. (2.116)
Instead of (2.115), we can use the bound

t+i(l— t2)1/2s‘ =[1-(1—-)(1 -] V2 o =117 (1=s%)/2
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for s,t € [-1,1]. Then,

S Cn(1-1%) (1-s)/2 2y d-4
|Pra(t)] < 77 (1—s*)7 ds
|Sd73| 1 2 2 d—4
= 2@ €_n (l_t )(1_5 )/2(1 — 82)?(18
0

Let ¢t € (—1,1). Use the change of variable s = 1 — u and the relation u <
1 — 5% < 2u for s € [0,1],

7|Sd | n(1—#2) u/2
|P.a(t)] <272 577 Jo e uT du.

For the integral, we apply the formula (1.4),

d—2
0 n(l _t2) 2

Then,

This inequality is valid also for d = 2. Therefore,

| Pra(t)] <

r'(42) [ 4
VT [n(1—-12)

From (2.90), we have bounds for derivatives of P, 4(t) of any order:

.
2
} . neNg, d>2, te(—1,1). (2117)

nl(n+j+d — 3)IT(%52)
2i(n —j)i(n+d—3)T( + 4G)

PUYH)| < PUY(1) =

In particular,

max
te[—1,1]

PUYD)| = o). (2.118)
As an application of (2.118), we observe that for any ¢, s € [-1, 1],

Proa(t) = Pna(s) = Py (1) (t = 3)
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for some 7 between t and s. Applying (2.118) with j = 1, we have
|Poa(t) — Poa(s)| < en?lt —s| Vit se€[-1,1]. (2.119)
Hence,

Pra(€€) = Pra(nQ)| <cn?lg—m| VEn, (eSS (2.120)

2.8 Completeness

In this section, we show in a constructive way that the spherical harmonics
are complete in C(S?™1) and in L?(S*™!), ie., linear combinations of the
spherical harmonics are dense in C(S*™*) and in L2(S*™1).

2.8.1 Completeness in C(S*™)
Let f € C(SY™1). Formally,

f€) = [ o0 —gm fmyastim). e’

using a Dirac delta function §(¢) whose value is 0 at ¢ # 0, 400 at ¢t = 0, and
which satisfies formally

/ S(1—¢m)dSin)=1 vees
gd—1

The idea to demonstrate the completeness of the spherical harmonics in
C(S* 1) is to construct a sequence of kernel functions {k,(t)} such that
kn(&m) approaches 6(1 — &m) and is such that for each n € N, the function
Jsa—1 kn(€m) f(n) S~ (n) is a linear combination of spherical harmonics of
order less than or equal to n. One possibility is to choose k, (t) proportional
to (1 +¢)™/2™. Thus, we let

1T+t\"
kn(t) - En,d (T) 5

where F), 4 is a scaling constant so that

/ kn(€m)dSit(n) =1 Veesth (2.121)
§d—1
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To satisfy the condition (2.121), we have

— 2!
Fpg— —ntd 2)(}71 . (2.122)

This formula is derived as follows. First,

. n 1 n us
/Sdil (1 +2£ 77) de_l(n) _ |Sd72|/71 (%) (1 _t2)Tdt_

Use the change of variable s = (1 +1)/2,

n 1
[ (FE) astm =22 [ o -9 as
gd—1 2 0

By (1.19),

|Sd_2|7 27T%
L4
Moreover,
1 d d
nt4=3 1— ﬂd - B d—1 d—-1 :F(n+T)F(T)
/OS 2 (1—s) 2 ds n—|—2,2 Tntd—1)
Thus

1+£n n B B %I’(n-i-u)
/§,d1< 2 ) ds*!(m) = (4m) F(n—f—dil)'

Hence, (2.122) holds.
Now we introduce an operator 11, 4 by the following formula

(Tn.af)(€) = Bn /S (1 +&

1) g dsti ). fe oE ),

(2.123)
Let us express (II,, 4f)(€) as a linear combination of spherical harmonics of
order less than or equal to n. For this purpose, we write

141t
En,d( > Zunkd|gd T Py a(t). (2.124)

To determine the coefficients { i k,a}7_o, multiply both sides by the function

P a(t)(1— t2) , 0 <1 < n, integrate from ¢ = —1 to ¢ = 1 and use the
orthogonality relatlon (2.79) to obtain
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1 n
1+1¢ _
pnt.a = ST En g / (%) Pa(t) (1 = %) dt.
-1

Applying Proposition 2.26, we have

1 1 n
d\' /1+t By
““»lvd:|Sd_2|En,de,d/ (E) < ;L ) (1) at
—1

1
_ |@d—2 n! n—l 1 ,2\l4+453
S el IR C

-1
To compute the integral, we let t =2 s — 1. Then
! n—l j4d=3 I+d 1 d—3 14 d=3
/ A+8)"" (1 =)= dt = 2ntit —2/ " (1 —s) 2 ds
—1 0

_ 2n+l+d72F(” + %) I+ %)
'n+l+d-1)

Hence, using the formulas (1.19), (2.71), and (2.122), we have

B nl(n+d—2)!
Fndd = o M+ 1+ d—2)

It is easy to see that p,1,4 < fn+1,1,d and pp.q — 1 as n — oo. From the
expansion (2.124), we get, by making use of the projection operator P, 4
defined in Definition 2.11,

(I af)(€) = fina(Pr.af)(€)- (2.125)
k=0

In other words, 1I,, 4 f is a linear combination of spherical harmonics of order
less than or equal to n.
To prove the completeness, we note the following property.

Lemma 2.29. Ift € [-1,1), then

lim En,d (ﬁ> =0.

n—00 2

Proof. By Stirling’s formula (1.11),

D(z) ~ V2r 2" Y27 for z — oco.
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Then,
ns
En,d ~ —
(4m) =
and the statement holds. a
Now we state and prove a completeness result.

Theorem 2.30.

lm |[af — flloge-1y =0 YfeCS*h). (2.126)

n—oo

Proof. Use the modulus of continuity
w(f;0) =sup{|f(&) — f(m)] : &meST  [€—n[ <3}, 6>0,
and recall that since f € C(S%™1),
w(f;6) =0 asd—0.

Denote
M = sup{| f(&) = f(n)] : &,m €577} < o0,

Let £ € S*™! be arbitrary but fixed. Using (2.121), we have

Tnaf)&) = F8) = B /Sdfl (1 +2€-n) [F(m) = £(£)]dS*™ (m)
=1(&) +12(8),
where
= Lt &) _ d—1
11(6)—En,d/{nesd1:£_n|§6}< 5 > [f(n) — £(€)]dS* (),

I(€) = En,d/

{nesd=1:|g—n|>5}

We bound each term as follows:

L@ w0 B [ (LET) ast i) = wlsio)

S

2 n
L) <M Bl (1-5)
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In bounding I5(£), we used the relation
2

€—nl>6 = &n<l-+

for &, € S*1. Thus, for any ¢ € (0,1), applying Lemma 2.29, we have
limsup [[IL, af — fllose-1) < w(f;0).
n—oo

Note that w(f;d) — 0 as & — 0. So the stated result holds. O
Using the formula (2.125), we can restate Theorem 2.30 as follows.

Theorem 2.31. For any f € C(S%71),
IRT . . d—1
1€ = nlgréokz_o“"”“d@’“df)@) uniformly in & € S“7-.

If Ppaf =0 for all n € Ny, then f =0.

Theorem 2.31 combined with Theorem 2.14 implies that {YZ :n €Ny} is
the only system of primitive spaces in C' (Sd_l) since any primitive space not
identical with one of Y‘i, n € Ny, is orthogonal to all and is therefore trivial.

2.8.2 Completeness in C(S*') via the Poisson
Identity

We now use the Poisson identity (2.104) to give another constructive proof
of the completeness of the spherical harmonics. First we introduce a lemma.

Lemma 2.32. The function

|Sd_2| 1— 72
Ga(r,t) == —— —, rl<1, te[-1,1] (2.127)
S 7] (1472 —2rt)2
1s positive and has the properties:
1 d—3
/ Ga(ryt) (1 —t*) =2 dt =1, (2.128)
-1

lim Gg(r,t) = 0 uniformly for ¢ € [—1, o]

r—1—

with any fixed tg € (—1,1). (2.129)
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Proof. For (2.128),

1 a-s Sd 2|
/_1Gd(7°,t) (1—t2) 2 dt = Sd T / ZNndT‘ Pnd( )(1—t2) dt

|Sd_2| ! 2y 4538
=2 1 a-&)7d
|Sd_l| 71( )
=1.
For (2.129), note the bound
1—r? 1—7r? 1—7?
a = T = d
1+7r2=2rt)2 [1—r)2+2r(1—1)]2  [2r(1 —to)]2
which is valid for t € [—1,tg]. O

Define an operator Gy(r) by
(Ga(r) 1)) = s, [ Gt f) a5 )

Note that for |r| < 1,

(Ga)1)E) = gz, 3 ZNn i [ Puaten) fn) a5 ),
(Ga(r))(&) = > r"(Puaf)(&). (2:130)
n=0

Thus, G4(r)f is the limit of a sequence of finite linear combinations of the
spherical harmonics.

Theorem 2.33 (Completeness).
dim [Ga(n)f ~ fllo@en =0 VFECE). (231

Proof. The proof is similar to that of Theorem 2.30. Using (2.128),

(Ga(r)f)(&) — f(§) = Ga(r, &) [f(n) — F(€)dS™ (n)

§d—1

=L(§) + 12(8),
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1(€) = / Galr, &) [f(m) — F(£)]dS™ (n),
[€—n|>6

1o(€) = / Galr, &) [f(m) — F(€)]dS* (n).
[E—n|<d

For any 6 > 0, by (2.129),

[I:(€)| — O uniformly as r — 1 —.

Also,
L2(&)] < w(f;9).
So
1imslup 1Ga(r)f — fllee-1) < w(f;0)
r—1—
and (2.131) follows. O

2.8.3 Convergence of Fourier—Laplace Series

We now consider convergence in average and uniform convergence of the
Fourier—Laplace series. For a given function f, the series

Z Pr.af
k=0

is called the Fourier-Laplace series of the function f. Recall Definition 2.11
for the projection Py 4f.
First, we present a result for convergence in average.

Theorem 2.34. We have the convergence in average of the Fourier—Laplace
series:

= L2(S4 1. 2.132
ey 0 VfelL (S") (2.132)

n—oo

tim £ =3 Praf]
k=0
Proof. Note that the operator Py q is self-adjoint:

(f, Prag) = (Peaf,g) ¥ f.geL*S").

Also, (Pk,q)? = Pg,q. Therefore,

(fs Praf) = (f; (Pra)*f) = (Pr.afs Praf) = |Prafl72a-1
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and
(Pr,af, Pr,af) = OknlProaf 72 (gary-

Apply the above two equalities to obtain

7= Prar]
k=0

Hence,

2 2 - 2
poiory = F 1oty = o IPraf ey (2133)
k=0

Z ||7Dk,df||%2(sd71) < ”fHQL?(Sd*l) Vn € No.
k=0

Then,
i 1Prafl7a@a-1y < IflTa@ary VLS. (2.134)
k=0
First we assume f € C(S%™!). From the formula (2.130),
19 ity = 3 M Peaf ey (2135)
k=0

By Theorem 2.33, Gq(r)f converges uniformly to f on S*~! as r — 1—. Take
the limit » — 1— in (2.135) to obtain

”fHQL?(Sd*l) = Z ||7>k,df||%2(sd71)- (2.136)
k=0

Then by (2.133) we obtain (2.132) for f € C(S*™1).

Extension of the result from a C(S?~!) function to an L?(S*~!) function is
achieved by using the density of C'(S*™1) in L2(S?"!), by noticing that since
spherical harmonics of different order are orthogonal,

n 2 n
_ 2
|2 Pea] sy = 1P ey
k=0 k=0
and by applying the bound (2.134). O

Then we turn to a study of uniform convergence of the Fourier—Laplace
series.

Define S,, : C(S*™1) = C(S*™!) to be the linear operator given by the
partial sum of the spherical harmonic expansion
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(Praf)(&), feC(S™). (2.137)

NE

Snf(§) =

>
Il

0

Denote by ||Sy|| the norm of the operator. To answer the question when do
the partial sums {S,,f} converge uniformly to f, an important tool is the
following result, due to Lebesgue.

Theorem 2.35. For f € C(S*™1),

”f - Snf”C(Sd*l) < (1 + HSHH)EH,OO(f)v (2138)

where
Bnoo(f) i= nf {IIf = pulloery : pn € Vi, } (2.139)

and

vi, = DY
j=0

Proof. Note that
Snpn =pn Vpn € an
Thus,
[=8nf=(f—pn) =Sulf —pn) Vpn€ Yg:n'

Apply the C’(Sd_l)—norm,
If = SnflloEe—1y) < (L +[Sull) If = pullosa—1)-

Then take the infimum with respect to p, over the subspace ng to get
(2.138). O

The operator norm [|S,| is called the “Lebesgue constant”. In [94], it is
shown that

Sull = O(nl42/2) | a > 3.

Based on this bound, the next result regarding the uniform convergence of
the Fourier—Laplace series can be proved.

Theorem 2.36. Let d > 3 and [ € C’“O‘(Sd_l) for some k > 0 and « €
(0,1]. Assume k+a > d/2—1. Then S, f converges uniformly to f over S¢—1.

The spaces C* (Sd_l) and Ok (Sd_l) can be defined in a variety of ways,
some of which are discussed in Sects. 4.2.1 and 4.2.2. We say f € CF® (Sd_l) if
all of its k*"-order derivatives are Holder continuous with exponent a € (0, 1].
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This theorem is proven in [94], based on results from [93] and [54]. Results
from these papers are discussed in greater detail in Sect. 4.2 for the special
case of S2.

In the case d = 2, the Fourier-Laplace series reduces to the ordinary
Fourier series. The Lebesgue constant is [123, Chap. 2, p. 67]

4
ISnll = = Inn + O(1).

The following uniform convergence result on the Fourier series holds (see,
e.g., [13, Sect. 3.7]).

Theorem 2.37. Let f : R — R be a periodic function, with 2w being an
integer multiple of its period. If f € C*%(R) with k € Ng and o € (0, 1], then
for the nt" order partial sum S, f of the Fourier series of the function f,

In(n + 2)
Hf _SanC[O,27r] < CW

In particular, this implies the uniform convergence of the Fourier series of
the function f.

2.8.4 Completeness in L?(S*)

Theorem 2.34 implies the completeness of spherical harmonics in L2(Sd71),
i.e., the subspace of linear combinations of spherical harmonics is dense in

L2(S%7h).

An alternative way to show the completeness of spherical harmonics in
L2(S*71) is through using the operator II, 4 defined in (2.123). First, we
show the operator II,, 4 is bounded as a mapping from L2(S?™!) to L2(S?71):

1T af 2y < [ fllzaesy ¥ F € L2, (2.140)

This is proved as follows:

R T >nf(n) dsd—%n)rdsd-l(s)
L.

L[ ()

/SH (1+2$77> |f()[?dS*(n )] dst1(g).
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Apply (2.121),

ML aflI7 2 g1y < /Sd,1 Ena [/Sdl (1 +2£-77> |f(77)|2d5d1(77)] dS4=1()

= [ [ [ (FER) ast )] as

Apply (2.121) again to obtain

M, afl1Z2ga-1) < IFll72@a-1),
i.e., (2.140) holds.

Let f € L?(S%™!). For any € > 0, by the density of C(S*™!) in L*(S*™1),
we can find a function f. € C(S*™!) such that

I f = fellL2ga-1y <

Wl M

Choose n sufficiently large so that, following Theorem 2.30,

Wl M

”Hn,dfa - faHL?(Sd*l) <
Then,

”Hn,df - f||L2(Sd*1) < ”Hn,d(f - fs)”L?(Sd*l) + ||Hn,dfs - fs||L2(Sd*1)
+If = fellpasa-1y
<2 ”f - fs”L?(Sd*l) + ”Hn,dfs - szL?(Sd*l)

<e.

Thus, the spherical harmonics are dense in L2(S*™1).
Since spherical harmonics of different orders are orthogonal, we can also
deduce the next result.

Theorem 2.38. We have the orthogonal decomposition
Sd 1 @Yd

Thus, any function f € L2(S?™!) can be uniquely represented as

an in L2(S*7Y), f. e Y%, n>o0. (2.141)



2.9 The Gegenbauer Polynomials 71

We call f, € YZ the m-spherical harmonic component of f and have the
following formula

fal€) = / f(0) Paa(€m)dS1(m), n>0.  (2.142)

ISd T

This formula is derived from (2.141) as follows. Replace € by n in (2.141), mul-
tiply both sides by P, 4(¢-n) and integrate with respect to n € S** to obtain

) Proaln) a5 = | 1_ij Poal€n) ds™ (n)

gd—1

—Z/ £5(1) Pral€m) dS* ().

By the orthogonality of spherical harmonics of different orders,

[ i) Paa(§m)dST i m) =0 Vj#n.

Moreover, by (2.33),

d—1
[ natm Pustemasto = S 1.0
Hence, .
-1
Fm) Poamdstm) = B L5 ()

§d—1 Nn,d
and the formula (2.142) is proved. Notice that f,,(&) = (Ppn.af)(€) with the
projection operator P, 4 defined in (2.44).

As a consequence of (2.141), we have the Parseval equality on L2(S*™!):

117201y = Z I fallZ2ga-ny V€ L8, (2.143)

where f,, is given by (2.142). This equality extends (2.136) from C(S*™1)
functions to L?(S?!) functions.

2.9 The Gegenbauer Polynomials

The Gegenbauer polynomials are useful in generalizing the expansion
(2.102). Recall the integral representation formula (2.72) for the Legendre
polynomials.
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Definition 2.39. For v > 0, n € Ny,

Chu(t) = <n+ ZV - 1>I:/(TZ—IJ‘F(V%))/11 [t+i(1 —2)126]" (1 = 2y lds
(2.144)

is called the Gegenbauer polynomial of degree n with index v.

Note that for an arbitrary number a, the binomial coefficient

(a) afa—1)--(a—(n—1))

n = o , neN.

Why C,, . (t) is a polynomial of degree n? First,
[t—i—i(l - t?)l/%} = (’,‘)tnﬂ‘u — )i (is).
— \J
7=0
For j = 2k + 1 odd, the integral of the corresponding term is
1
/ s (1 — %)Y~ lds = 0.
-1

So C,,,,(t) is real valued and

(n+2v-1 F(V+%)[n/2] N\ ook vkeq 20k
= (T NBHE g)emero-e

1

/ S2k(1 _ S2)v71d8

-1

is a polynomial of degree < n. The coeflicient of t" in C), ,(t) is

[n/2] 1
n+2v—-1N\T+3) n ok np—1
—_— 1—s%)"""d 0.
( n )ﬁF(u) kzzo 2k /,1‘9 (A=) ds >
Hence, C), ,(t) is a polynomial of degree n.

Observe that, recalling the formula (2.72),

C @(t)z

n,2

(n—i—d—?)

n

)Pmd(t), d>3. (2.145)

Proposition 2.40. (Gegenbauer identity)

= 1
Lo () J . — 1, te[-1,1]. 2.146
ngor ) () (1+T2 —2Tt)y |T| < e[ ] ( )
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Proof. First we calculate Cy, ,,(1):

(1) = <n + ZV - 1> I\‘/(_Z—I-i-(f)) /_11(1 _ 2y ds,

Let t = s2. Then,

Cn(1) = (” 2= 1) Lw+s) /01 51— )t

n VrT(v)
Since L (l)I‘( )
/0 1575(1 t)”f dt = (V+ %) ,
we have
Cho(1) = (” N i” - 1) . (2.147)

From the power series (2.4),

i nt2w-1\ ,_ 1 L <1
n (1 —2)2’ '

n=0

For |r| <1 and |t| <1,

e N B (v + %) 1 (1- Sz)u—l
D r"Chu(t) = NYO) /71 [1—rt—ir(1—t2)1/25]2vd5' (2.148)

n=0

Write .
1—rt—ir(1—t)Y2 = (1 4% —2rt)1 /27

for some o € [O, %) Use the substitution (2.74), recall the relations (2.75),
and note that
L—rt—ir(1—t)Y2%s = (1 +1% — 2rt)"/? (cosa — i tanh u sin )

(1402 — )2 cosh(u — i) -
coshu

So from (2.148), we have

o T+ 1 * !
Do) = ) Gy | e

n=0

Since the poles of the function (coshu)™2" are u = i (k + 1/2), k € Z, and
since 0 < « < 7/2, we can apply the Cauchy integral theorem in complex
analysis to get
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> 1 ° 1
/ — du = / — du,
—oo cosh™ (u — iq) oo cosh™ u

which is a constant. Thus, for some constant c,

> c
"Cov(t) = ——m8m————.
ngor w(#) (L+ 72 =2rt)”

Let ¢t = 1 and use the value (2.147):

n=0

So the constant ¢ = 1. O

Obviously, (2.102) is a special case of (2.146) by taking v = 1/2.

2.10 The Associated Legendre Functions

We have seen that the Legendre polynomials play an important role in the
study of spherical harmonics. In an increasing order of complexity, we next
introduce associated Legendre functions which are useful in constructing
spherical harmonics from those in a lower dimension.

2.10.1 Definition and Representation Formulas

Recall the first integral representation formula (2.72) for the Legendre
polynomials. We then introduce the following definition.

Definition 2.41. For d > 3 and n,j € Ny,

|Sd_3| [ : an1/2 1" 9\ d=4
Pn,d,j(t):Wz 3/ [t—i—z(l—t) s| Pja-1(s)(1—s%)= ds,

-1

te[-1,1]. (2.149)

is called the associated Legendre function of degree m with order j in
dimension d.

When j = 0, P,.a0(t) = Pna(t) is the Legendre polynomial of degree
n in d-dimensions. The factor i/ is included in (2.149) to make P, 4 ;(t)
real-valued. To see this, note that
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[t+i(1 2)1/2 } i( )t" F(1— t2)k/2ik gk,

k=0

Thus,

_ ST . i 1 ds
P, q;(t) |Sd 7 Z tnk( )k/zzk J B skPj)d_l(s) (1—s%) "2 ds.

By the parity property (2.111) for the Legendre polynomials, when |k — j| is
odd, s*P; 4_1(s) is an odd function and then

1
/ sFPja_1(s) (1 — 82)#(18 =0.

-1

Consequently, P, 4 ;(t) is real-valued.

The associated Legendre functions can be used to generate orthonormal
systems of spherical harmonics on Sd_l; see Sect. 2.11.

Applying Proposition 2.26, we have

Sl (
IS*2| (n — j)!

1 n—j L d—
/ [t+z‘(1—t2)1/2s J(1—s2)ﬂ+%ds,

-1

P.a.; (t) =Rja-1 1-— tz)%

where by (2.71),
r

Rig
P SIT(

oL~

Since

/1 {t—i— (1 - 12)1/? nd (1 2)j+ﬂd T () + ) p (1)
i(l1— s —s Tds=———2"P,_jatoj
-1 I(j+ 44 ra

by an application of the integral representation formula (2.72), we have thus
shown the following result.

Proposition 2.42. Ford>3 and 0 < j <mn,

Pra;(t) = (1-1t%)% n—jdi2i(t), te[-1,1].

In some references, the associated Legendre functions are also called the
associated Legendre polynomials. From Proposition 2.42; it is evident that
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the associated Legendre function P, g ;(t) is a polynomial in ¢ if and only if
j is even.
Combining Theorem 2.23 and Proposition 2.42, we obtain the formula

n— JTL d_ G—dej n—j .
Poa;(t) = G () (1—t)"= <£> (1—)"t=

3= T ) at

ford > 3,0 < j <nandt € [-1,1]. For the particular case d = 3, with
0<j<nandtel[-1,1],

P i(t) = %(1—#)—% (%) . (1— 2", (2.150)

Furthermore, by the formula (2.90), we obtain the next result.

Proposition 2.43. Ford >3 and 0 < j <n,

(n+d—3)!

LT -2 PY ), tel-1,1].
(n+j+d—3)!( )*Pral®), tel-1.1]

Ppa;t) =

Thus, the associated Legendre functions can be computed through differ-
entiating the Legendre polynomials.
Combining Theorem 2.23 and Proposition 2.43, we obtain the formula

(-1)"(n+d— 3)‘1“(‘“)
2(n+j+d—3)T(n

O

ford >3, 0<j<nandte [-1,1]. For d = 3, with 0 < j < n and
1

Pp.a;(t) =

[SIo8

Poas(t) = U g2y

27 (n 4+ 4)!

<%>n+j (1 —t3)". (2.151)

From (2.150) and (2.151), we obtain an identity

n+j n N| n—j
-y () a-er = et (L) aser osisn

For d = 2, we use the formulas given in Proposition 2.42 or Proposition 2.43
to define P, 2 ;(t) for 0 < j <mn.
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2.10.2 Properties

First we present an addition theorem for the associated Legendre functions.
n

The function [t +i(l— t2)1/2s] is a polynomial of degree n in the variable s.

Consider the expansion

n

{t—l—i(l 1/2} ch Pjaq-1(s)

j=0

and let us determine ¢;(t). By Definition 2.41, for 0 < k < n,
|Sd73| —k - ! 2) 42
Poar(t) = i "> ei(t) | Pra-1(s) Pa—1(s) (1 —5*) 7 ds.

Using (2.79), we have

1

Pranl®) =5y

Ck (t)
So

cr(t) = i"Ny.g 1 Pna(t)
and then we can write the expansion as

n

t+i(1— t2)1/2s} =3 N a1 Paa () Praa(s). (2.152)
=0

Temporarily assume m > n > 0. We use the identity (2.152) to obtain

|Sd73| ) 21/2 m-+n gy d=4
Pm-i—n,d(t):W 1[t+z(1—t) s} (1—s%)72 ds
|Sd73| 1 m " )
= ez [t +i(1— t2)1/25} Zz‘JNj,d,anyd,j(t)
_ =

- Pja_1(s) (1 - 82)%;4(18

|Sd_3| ' ; 2\1/2
|Sd 2|Zzde 1Pn,a,5(t) 1[t+z(1—t) s

- Pja_1(s) (1 - 82)%;4ds

= (=1 Nja-1Pm,aj(t)Paa;(b),
§=0
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recalling the defining relation (2.149). Thus,
min{m,n} ‘
Prinat) =Y (=1Nja-1Ppna;({t)Poa;(t), mneNp. (2.153)
§=0
This is an addition theorem for the associated Legendre functions.
For the case d = 2, P, 2(t) = cos(narccost). With the new variable § =

arccost, we have P, 3(cos) = cos(nf). Also, in this case, N, 1 is given by
(2.11). By Proposition 2.43,

Phoj(t) = % (1— t2)% <%) cos(n arccost). (2.154)

In particular, with j = 1, we obtain from (2.154) that
P, 21(t) = sin(n arccost).
The addition theorem formula (2.153) with d = 2

min{m,n}
Prinat) = > (1) Nj1Pama;(t)Pa2;(t)
j=0
takes the following familiar form, with 6 = arccost,

cos((m + n)0) = cos(mb) cos(nd) — sin(m@) sin(nd), m,n € Np.

Next, we derive a differential equation for P, 4 ;(t). Differentiate (2.83) j
times,

(%) [(1-1¢%) P t) = (d=1)t P 4(t) +n(n+d—2)P,4t)] =0.

Since

<%>j [(1= ) Py()] = (1= ) PYIP (6) = 25 PV (1)
—j (G =PI,

d\’ ; G
() [Pt = 20+ 20
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we get
(1= ) PYT () = (2 +d - 1)t PITV (1)
+ln(n+d—2)—j(j+d—2)]PY)t) =0. (2.155)
By Proposition 2.43,

(n+j+d—23)!

Prat) = coll =) 4 Poag(t), e = = =iy

Then,

PO (1) = co(1 —12) 21 [(1 = 2) PY y ; (1) + 2t P, 4 (1)

+7(G+2)1 =) = (j+1)) Paa(t)].

Substitute these expressions in (2.155) and rearrange the terms to get the
differential equation

(L=t) P} () = (d=1)t P} 4,(t)

iG+d=3)

+n(n+d-2)— TP

Poa;(t) =0. (2.156)

Taking j = 0 in (2.156), we recover the differential equation (2.83) for the
Legendre polynomials P, 4(t) = Py, a,0(t)-

We now use the differential equation (2.156) to prove the following
orthogonality property.

Proposition 2.44.

1
/ Prai(t) Poa;(t) (1=t dt =0, m#n. (2.157)

-1

Proof. We rewrite (2.156) in the form

(- g |- 2P G )]
+ [n (n+d—2)—7 (j1+_dt2_ 3)} Poay(t)=0
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From this equation, we deduce that

d 241 d d
Pm,d,] (t) E |:(1 -1 ) Epn,du (t)] - Pn,d,] (t) E
[O—%%%E%Bmw@ﬂ+On—nﬂm+n+d—2

d—
P j(t) Pna,;(t) (1 — L‘2)T3 —0.

Integrate this equation for t € [—1,1] to get
1 d—3
(m—=n)(m+n+d- 2)/ Pra () Pajaj(t) (1 —%)72 dt = 0.
—1

Thus, (2.157) holds. O

Various recursion formulas for the associated Legendre functions exist;
see [49, Sect. 3.12] in the case d = 3. The recursion formulas are useful for
pointwise evaluation of the functions.

2.10.3 Normalized Associated Legendre Functions

In explicit calculations involving the associated Legendre functions, usually
it is more convenient to use the normalized ones. From the formula given in
Proposition 2.42,

—1

1 n. -1
/ [Pn,d,ju)f(l—tz)w“[' i 2-1@

Use (2.79) for the integral,

1 Culs |Sd+2jfl|
[P juare; () (1 — 275 dt = —
/—1 e Npjas2;ST572
Then

1 ) ) % B 2d—2(n!)2r(%)2
EKJRMAU]“‘t> = ot d—2) -+ drj—3)
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Thus, we define normalized associated Legendre functions

N

Pyt = 204 2>2(Zz—n1!'>r!((;;)d +J—3)]

and»j(t)v
te[-1,1]. (2.158)

We can also write, with the help of Proposition 2.43,

- n+d—3) [2n+d—2)(n—j!* G
Fras ) = (nE(%)) [éd—2+(n+ d)+(j - éﬂ (1= BERL0)
tel-1,1] (2.159)

These functions are normalized:

/1 [Pn,d,j(t)r 1—)%dt = 1.

Moreover, note that P, 4 ,(t) is proportional to P, 4 ;(t). Hence, these func-
tions are orthonormal:

1
/ Py (8) Py (1) (1 — £2) 52t = 5. (2.160)

-1

In the case d = 3,

n7

n+3)(n—j)! 5 i (i
Fras (0 :{%(g)'jw (1= 1%)2P5(0). (2.161)

In the case j = 0, Ij’nydﬁo(t) is proportional to the Legendre polynomial P, 4(t),

1 [@n+d—2)(n+d—3)3%
:F(%) [( u 2d22(n!+ )] Pn,d(t)'

P, q.0(t)

2.11 Generating Orthonormalized Bases for
Spherical Harmonic Spaces

We now discuss a procedure to generate an orthonormal basis in YZ from
orthonormal bases in (d — 1) dimensions, by making use of the associated
Legendre functions introduced in Sect. 2.10.



82 2 Spherical Harmonics

Let d > 3. Consider a vector ¢ = (4 € C? of the form Cay =€d +

i(nT,O)T with n € S%2. A simple calculation shows ¢ - ¢ = 0 and
hence Agz(¢-x)" = 0. So the function & — ({-x)" = (zq + iz@_1)N)" is
homogeneous and harmonic. Then

i _ . B
)= g [ (st iy n) Y () 4" )

is a homogeneous harmonic polynomial of degree n, i.e., it is an element of
Y, (RY). Use the polar coordinates (1.15),

x=|x|¢, E=tea+V1—12&u 1), |t<1, £y eSS,

noting that §_;) denotes a d-dimensional vector ({i,--- ,€4-1,0)T. The
restriction of the function f(z) to S ! is

1©) = gy [, (i (=) ) Vi sl a5

Applying the Funk-Hecke formula (Theorem 2.22), we have

0= kY ) 452 ) = XY ()

where

J

1
)\:|Sd’3|/ Praca(s) (t+i (10— 2)ks) (1) a,
—1

Thus,
f(&) = Pra;(t)Yja-1(§@a-1))

is a spherical harmonic of order n in dimension d. So we have shown the
following result.

Proposition 2.45. If Y41 € Y?il, then Py a,;(1)Yja-1(§q-1)) € Y4 in
polar coordinates (1.15).

This result allows us to construct a basis for Y% in d dimensions in terms
of bases in Y3 ',..., Y% in (d — 1) dimensions. In the following we use the
normalized associated functions P, 4.; since most formulas will then have a
simpler form.

Definition 2.46. For d > 3 and m < n, define an operator

d—1 d
Prm Y, — Y]
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by the formula

(ﬁn,mym,dfl)(é) - Pn,d,m(t)ym,dfl(g(dfl)); Ym,dfl S Y;in_l-

Then define Yfllﬁm = 75n7m(Y’fn_1), called the associated space of order
m in YZ.

The spherical harmonic space YZ can be decomposed as an orthogonal

sum of the associated spaces Yz)m, 0<m<n.

Theorem 2.47. Ford >3 andn > 0,

Yi=Yi, @ --®Y!,. (2.162)

Proof. First we show that the subspaces on the right side of (2.162) are
pairwise orthogonal. Let 0 < k,m < n with k # m. For any Y, 41 € Yz_l

and any Y, -1 € anfl,

('ﬁn,kyk,d—laﬁn,mym,d—l)LHSd*l)
= (Yid—1, Ym,d—1)£2(s4-2) /_11 Pran(t) Pogm(t) (1 — t2)F dt
=0
using the orthogonality (2.160). Thus, Yfllﬁk L Yfllﬁm for k # m.
For each m, 0 <m <mn, Yz)m is a subspace of YZ and so

YooY @YD, (2.163)
Since the mapping ’ﬁn,m : Yfl,:l — Yflhm is a bijection,
dimY? = dim Y& " = Nygo1.
Hence, recalling the identity (2.14),

zn: dimYY ,, = Zn: Npd—1= Ny g=dimY?
m=0

m=0

In other words, the two sides of equality (2.162) are finite-dimensional spaces
of equal dimension. Then the equality (2.162) holds in view of the relation
(2.163). O

From Theorem 2.47 and its proof, we see that if

{Yina-1;:1<j < Npypa-1}
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is an orthonormal basis for Yzl_l, 0 <m < n, then
{Poam®Yma-15€a-1) i 1<) < Npar, 0Sm<n}  (2164)

is an orthonormal basis for YZ.

Ezxample 2.48. An orthonormal basis for Yi is presented in Sect. 2.2. Let us
apply the above result and use the orthonormal basis for Yi to construct an
orthonormal basis for Y2. We use the relation

Ea =tes+ V1t <£E)2>> :

where ¢ = cos@ for 0 < 0 < 7, §5) = (cos ¢,sin )T for 0 < ¢ < 2. In the
notation of the above discussion,

{Ym,2,1<s<2)> - % cos(m@), Ym22(E(z)) = % sin<m¢>}

is an orthonormal basis for Y2 . Recall the formula (2.161),

; [<n+%><n—m>l .

Paam(®) = | =25 | (=2 ERR0).

Here P,%) (t) denotes the m!" derivative of the function P, 3(t). Then, an

orthonormal basis for Yi is given by the functions

[SIEY

2n+1) (n —m)!
| ]

; m p(m)
2 T (n + m)l (SlIl 9) Pn,B (COS 9) COS(mgf)), 0 S m S n,

[N

(sin0)" P\ (cos ) sin(mg), 1<m <n.

[@n+1ﬂn—mﬂ]

27 (n+m)!

The basis is usually also written as

-l 2n+1n—m!%. m p(m im
(—1)mt] |>/2[( M(n)i'm")! |)] (sin 0)" P\ (cos ) €2,

—n<m<n.

This latter form is more convenient to use in some calculations. O
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We now use the orthonormal system (2.164) to express the addition
theorem. Set

Ey=tea+ (1—1)2¢, ), —1<t<1,
N =sea+ (1 52)%77(01—1), -1<s<1.

Then the identity (2.24)

is rewritten as

Nn,d

] Poa(st+(1—s*)2(1—1%)2 S(d—l)'n(d—l))

ndl

= Z Pn,d,m( ~n d, m Z Ym k: (d—1) Ym,k:(’r](d—l))
m=0

n

Nm,dfl =

= = Proan(8) Paaomn () Prna—1(€ a1y Ma—1y)»
m=0

where in the last step, the identity (2.24) is applied again. Denote u =
€(4—1)M(4—1)- Then for d > 3 and s,t,u € [-1,1],

Z Nm,dflpn,d,m(S)pn,d,m(t)Pm,dfl(u)

m=0

Nn Sd_2 1 1
= ﬁpnd(swu_s )2 (1 — t2)7u). (2.165)

Another identity can be derived from (2.165) as follows. Multiply both
sides of (2.165) by Py g—1(u) (1 —u ) , 0 < k < n, integrate with respect

to u from —1 to 1, and use the orthogonahty relation (2.79) for the Legendre
polynomials,

Sd 1|/ P,a(st+(1—s )%(1—t2)% )Pog—1(u )(1—u)d2;4du

|Sd g Pr,a.1(8) P ai(t),
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i.e.,

1
/ Poa(st+u(l—s2)2(1—2)%)Pea_r(u) (1 —u?) = du
-1

2 - -

(d—2)N, dPn>d7k(5)Pn,d,k(t)- (2.166)

In particular, taking ¥ = 0 in (2.166) and noting that
a2\ ?
~ Ny ST
Prao(t) = (ﬁ) P, q(t),

we arrive at an identity for the Legendre polynomials,

/_ 11 Paalst+ (1 )} (1 - 2) k)1 — ) T du = 5P, y(5)Palt)

(2.167)
for d > 3.
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