
Chapter 2
Spherical Harmonics

This chapter presents a theory of spherical harmonics from the viewpoint
of invariant linear function spaces on the sphere. It is shown that the
system of spherical harmonics is the only system of invariant function
spaces that is both complete and closed, and cannot be reduced further.
In this chapter, the dimension d ≥ 2. Spherical harmonics are introduced
in Sect. 2.1 as the restriction to the unit sphere of harmonic homogeneous
polynomials. Two very important properties of the spherical harmonics are
the addition theorem and the Funk–Hecke formula, and these are discussed in
Sects. 2.2 and 2.5, respectively. A projection operator into spherical harmonic
function subspaces is introduced in Sect. 2.3; this operator is useful in proving
various properties of the spherical harmonics. Since several polynomial spaces
are used, it is convenient to include a discussion on relations of these
spaces and this is done in Sect. 2.4. Legendre polynomials play an essential
role in the study of the spherical harmonics. Representation formulas for
Legendre polynomials are given in Sect. 2.6, whereas numerous properties
of the polynomials are discussed in Sect. 2.7. Completeness of the spherical
harmonics in C(Sd−1) and L2(Sd−1) is the topic of Sect. 2.8, and this refers to
the property that linear combinations of the spherical harmonics are dense in
C(Sd−1) and in L2(Sd−1). As an extension of the Legendre polynomials, the
Gegenbauer polynomials are introduced in Sect. 2.9. The last two sections
of the chapter, Sects. 2.10 and 2.11, are devoted to a discussion of the
associated Legendre functions and their role in generating orthonormal bases
for spherical harmonic function spaces.

2.1 Spherical Harmonics Through Primitive Spaces

We start with more notation. We use O
d for the set of all real orthogonal

matrices of order d. Recall that A ∈ R
d×d is orthogonal if ATA = I,

or alternatively, AAT = I, I = Id being the identity matrix of order d.
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12 2 Spherical Harmonics

The product of two orthogonal matrices is again orthogonal. In algebra
terminology, Od is a group; but in this book, we will avoid using this term. It
is easy to see that det(A) = ±1 for any A ∈ O

d. The subset of those matrices
in O

d with the determinant equal to 1 is denoted as SO
d. For any non-zero

vector η ∈ R
d,

O
d(η) :=

{
A ∈ O

d : Aη = η
}

is the subset of orthogonal matrices that leave the one-dimensional subspace
span{η} := {αη : α ∈ R} unchanged.

For a function f : Rd → C and a matrix A ∈ R
d×d, we define fA : Rd → C

by the formula

fA(x) = f(Ax) ∀x ∈ R
d.

We will use this definition mainly for A ∈ O
d and for study of symmetry

properties of functions.

Proposition 2.1. If fA = f for any A ∈ O
d, then f(x) depends on x

through |x|, so that f is constant on a sphere of an arbitrary radius.

Proof. For any two vectors x,y ∈ R
d with |x| = |y|, we can find a matrix

A ∈ O
d such that Ax = y. Thus, f(x) = fA(x) = f(y) and the proof is

completed. ��
Consider the subset Od(ed). It is easy to show that any A ∈ O

d(ed) is of
the form

A =

(
A1 0

0T 1

)
, A1 ∈ O

d−1. (2.1)

Similar to Proposition 2.1, if fA = f for any A ∈ O
d(ed), then f(x) depends

on x through |x(d−1)| and xd.
We will introduce spherical harmonic spaces of different orders as primitive

subspaces of C(Sd−1). Consider a general subspace V of functions defined in
R

d or over a subset of Rd.

Definition 2.2. V is said to be invariant if f ∈ V and A ∈ O
d imply fA ∈ V.

Assume V is an invariant subspace of an inner product function space with
the inner product (·, ·). Then V is said to be reducible if V = V1 + V2 with
V1 �= ∅, V2 �= ∅, both invariant, and V1 ⊥ V2. V is irreducible if it is not
reducible. V is said to be primitive if it is both invariant and irreducible.

We note that V1 ⊥ V2 refers to the property that (f, g) = 0 ∀ f ∈ V1,
∀ g ∈ V2.

Definition 2.3. Given f : Rd → C, define span
{
fA : A ∈ O

d
}
, the space of

functions constructed through f and O
d, to be the space of all the convergent

combinations of the form
∑

j≥1 cjfAj with Aj ∈ O
d and cj ∈ C.
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For the above definition, it is easy to see span
{
fA : A ∈ O

d
}
is a function

subspace. Moreover, if V is a finite dimensional primitive space, then

V = span
{
fA : A ∈ O

d
}

∀ 0 �= f ∈ V.

2.1.1 Spaces of Homogeneous Polynomials

We start with H
d
n, the space of all homogeneous polynomials of degree n in

d dimensions. The space H
d
n consists of all the functions of the form

∑
|α|=n

aαx
α, aα ∈ C.

As some concrete examples,

H
2
2 =

{
a1x

2
1 + a2x1x2 + a3x

2
2 : aj ∈ C

}
,

H
3
2 =

{
a1x

2
1 + a2x1x2 + a3x1x3 + a4x

2
2 + a5x2x3 + a6x

2
3 : aj ∈ C

}
,

H
2
3 =

{
a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 : aj ∈ C

}
.

It is easy to see that H
d
n is a finite dimensional invariant space. To

determine the dimension dimH
d
n, we need to count the number of monomials

of degree n: xα with αi ≥ 0 and α1 + · · · + αd = n. We consider a set of
n + d − 1 numbers: 1, 2, . . . , n + d − 1. Let us remove from the set d − 1
numbers, say β1 < · · · < βd−1. Denote β0 = 0 and βd = n+ d. Then define

αi = βi − βi−1 − 1, 1 ≤ i ≤ d,

i.e., define αi to be the number of integers between βi−1 and βi, exclusive.
Note that

∑n
i=1 αi = d. This establishes a one-to-one correspondence between

the set of non-negative integers α1, . . . , αd with a sum n and the set of d− 1
distinct positive integers β1 < · · · < βd−1 between 1 and n+ d− 1. Since the
number of ways of selecting d − 1 different numbers from a set of n + d − 1
numbers is (

n+ d− 1

d− 1

)
,

we have

dimH
d
n =

(
n+ d− 1

d− 1

)
=

(
n+ d− 1

n

)
. (2.2)
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In particular, for d = 2 and 3, we have

dimH
2
n = n+ 1, dimH

3
n =

1

2
(n+ 1) (n+ 2). (2.3)

We give in passing a compact formula for the generating function of the
sequence {dimH

d
n}n≥0,

∞∑
n=0

(
dimH

d
n

)
zn.

Recall the Taylor expansion (e.g., deduced from [9, (1.1.7)])

(1 + x)s =

∞∑
n=0

(
s

n

)
xn, |x| < 1,

(
s

n

)
:=

s (s− 1) · · · (s− n+ 1)

n!
.

Replacing x by (−x) and choosing s = −d, we obtain

(1− x)−d =

∞∑
n=0

(
n+ d− 1

n

)
xn, |x| < 1. (2.4)

Thus,
∞∑
n=0

(
dimH

d
n

)
zn =

1

(1− z)d
, |z| < 1. (2.5)

For n ≥ 2,

| · |2Hd
n−2 :=

{
|x|2Hn−2(x) : Hn−2 ∈ H

d
n−2

}

is a proper invariant subspace of Hd
n. Hence H

d
n|Sd−1 , the restriction of Hd

n to
S
d−1, is reducible. Let us identify the subspace of Hd

n that does not contain
the factor |x|2.

Any Hn ∈ H
d
n can be written in the form

Hn(x) =
∑

|α|=n

aαx
α, aα ∈ C.

For this polynomial Hn, define

Hn(∇) =
∑

|α|=n

aα∇α.

Given any two polynomials in H
d
n,

Hn,1(x) =
∑

|α|=n

aα,1x
α, Hn,2(x) =

∑
|α|=n

aα,2x
α,
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it is straightforward to show

Hn,1(∇)Hn,2(x) =
∑

|α|=n

α!aα,1aα,2 = Hn,2(∇)Hn,1(x).

Thus,

(Hn,1, Hn,2)Hd
n
:= Hn,1(∇)Hn,2(x) (2.6)

defines an inner product in the subspace H
d
n.

Recall that a function f is harmonic if Δf(x) = 0. Being harmonic is an
invariant property for functions.

Lemma 2.4. If Δf = 0, then ΔfA = 0 ∀A ∈ O
d.

Proof. Denote y = Ax. Then ∇x = A∇y. Since A ∈ O
d, we have

Δx = ∇x ·∇x = ∇y ·∇y = Δy.

So the stated property holds. ��
We now introduce an important subspace of Hd

n.

Definition 2.5. The space of the homogeneous harmonics of degree n in d
dimensions, Yn(R

d), consists of all homogeneous polynomials of degree n in
R

d that are also harmonic.

We comment that non-trivial functions in Yn(R
d) do not contain the factor

|x|2. This is shown as follows. Suppose Yn(x) = |x|2Yn−2(x) is harmonic,
where Yn−2(x) is a homogeneous polynomial of degree (n− 2). Then

(Yn, Yn)Hn,d
= Yn−2(∇)ΔYn(x) = 0.

Hence, Yn(x) ≡ 0.

Example 2.6. Obviously, Yn(R
d) = H

d
n if n = 0 or 1.

For d = 1, Yn(R) = ∅ for n ≥ 2.
For d = 2, Y2(R

2) consists of all polynomials of the form a
(
x21 − x22

)
+

b x1x2, a, b ∈ C. Polynomials of the form (x1 + i x2)
n belong to Yn(R

2).
For d = 3, any polynomial of the form (x3 + i x1 cos θ + i x2 sin θ)

n, θ ∈ R

being fixed, belongs to Yn(R
3). �

Let us determine the dimension Nn,d := dimYn(R
d). The number Nn,d

will appear at various places in this text. Any polynomial Hn ∈ H
d
n can be

written in the form

Hn(x1, · · · , xd) =
n∑

j=0

(xd)
jhn−j(x1, · · · , xd−1), hn−j ∈ H

d−1
n−j . (2.7)
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Apply the Laplacian operator to this polynomial,

Δ(d)Hn(x(d)) =

n−2∑
j=0

(xd)
j
[
Δ(d−1)hn−j(x(d−1))

+ (j + 2) (j + 1)hn−j−2(x(d−1))
]
.

Thus, if Hn ∈ Yn(R
d) so that Δ(d)Hn(x(d)) ≡ 0, then

hn−j−2 = − 1

(j + 2) (j + 1)
Δ(d−1)hn−j, 0 ≤ j ≤ n− 2. (2.8)

Consequently, a homogeneous harmonicHn ∈ Yn(R
d) is uniquely determined

by hn ∈ H
d−1
n and hn−1 ∈ H

d−1
n−1 in the expansion (2.7). From this, we get

the following relation on the polynomial space dimensions:

Nn,d = dimH
d−1
n + dimH

d−1
n−1. (2.9)

Using the formula (2.2) for dimH
d−1
n and dimH

d−1
n−1, we have, for d ≥ 2,

Nn,d =
(2n+ d− 2) (n+ d− 3)!

n!(d− 2)!
, n ∈ N. (2.10)

In particular, with n ∈ N, for d = 2, Nn,2 = 2, and for d = 3, Nn,3 = 2n+ 1.
It can be verified directly that N0,d = 1 for any d ≥ 1, and

N0,1 = N1,1 = 1, Nn,1 = 0 ∀n ≥ 2. (2.11)

Note the asymptotic behavior

Nn,d = O(nd−2) for n sufficiently large. (2.12)

For the generating function of the sequence {Nn,d}n, we apply the relation
(2.9) for n ≥ 1,

∞∑
n=0

Nn,dz
n = 1 +

∞∑
n=1

Nn,dz
n

= 1 +
∞∑
n=1

(
dimH

d−1
n

)
zn +

∞∑
n=1

(
dimH

d−1
n−1

)
zn

=

∞∑
n=0

(
dimH

d−1
n

)
zn + z

∞∑
n=0

(
dimH

d−1
n

)
zn

= (1 + z)

∞∑
n=0

(
dimH

d−1
n

)
zn.
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Thus, using the formula (2.5), we get a compact formula for the generating
function of the sequence {Nn,d}n:

∞∑
n=0

Nn,dz
n =

1 + z

(1− z)d−1
, |z| < 1. (2.13)

We can use (2.13) to derive a recursion formula for Nn,d with respect to
the dimension parameter d. Write

1 + z

(1− z)d−1
=

1 + z

(1− z)d−2
· 1

1− z
=

( ∞∑
m=0

Nm,d−1z
m

)( ∞∑
k=0

zk

)
.

We have

1 + z

(1 − z)d−1
=

∞∑
n=0

(
n∑

m=0

Nm,d−1

)
zn.

Comparing this formula with (2.13), we obtain

Nn,d =

n∑
m=0

Nm,d−1. (2.14)

2.1.2 Legendre Harmonic and Legendre Polynomial

We now introduce a special homogeneous harmonic, the Legendre harmonic
of degree n in d dimensions, Ln,d : Rd → R, by the following three conditions:

Ln,d ∈ Yn(R
d), (2.15)

Ln,d(Ax) = Ln,d(x) ∀A ∈ O
d(ed), ∀x ∈ R

d, (2.16)

Ln,d(ed) = 1. (2.17)

The condition (2.16) expresses the isotropical symmetry of Ln,d with respect
to the xd-axis, whereas the condition (2.17) is a normalizing condition. Write
Ln,d in the form (2.7) and A ∈ O

d(ed) in the form (2.1). Then the condition
(2.16) implies

hn−j(A1x(d−1)) = hn−j(x(d−1)) ∀A1 ∈ O
d−1, x(d−1) ∈ R

d−1, 0 ≤ j ≤ n.

From Proposition 2.1, hn−j depends on x(d−1) through |x(d−1)|. Since hn−j

is a homogeneous polynomial, this is possible only if (n − j) is even and
we have
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hn−j(x(d−1)) =

{
ck|x(d−1)|2k if n− j = 2k,

0 if n− j = 2k + 1,
ck ∈ R.

Hence,

Ln,d(x) =

[n/2]∑
k=0

ck|x(d−1)|2k(xd)n−2k,

where [n/2] denotes the integer part of n/2. To determine the coefficients

{ck}[n/2]k=0 , we apply the relation (2.8) to obtain

ck = − (n− 2k + 2) (n− 2k + 1)

2k (2k + d− 3)
ck−1, 1 ≤ k ≤ [n/2].

The normalization condition (2.17) implies c0 = 1. Then

ck = (−1)k
n! Γ(d−1

2 )

4kk! (n− 2k)! Γ(k + d−1
2 )

, 0 ≤ k ≤ [n/2].

Therefore, we have derived the following formula for the Legendre harmonic

Ln,d(x) = n! Γ

(
d− 1

2

) [n/2]∑
k=0

(−1)k
|x(d−1)|2k(xd)n−2k

4kk! (n− 2k)! Γ(k + d−1
2 )

. (2.18)

Using the polar coordinates

x(d) = rξ(d), ξ(d) = t ed + (1− t2)1/2ξ(d−1),

we define the Legendre polynomial of degree n in d dimensions, Pn,d(t) :=
Ln,d(ξ(d)), as the restriction of the Legendre harmonic on the unit sphere.
Then from the formula (2.18), we have

Pn,d(t) = n! Γ

(
d− 1

2

) [n/2]∑
k=0

(−1)k
(1− t2)ktn−2k

4kk! (n− 2k)! Γ(k + d−1
2 )

. (2.19)

Corresponding to (2.17), we have

Pn,d(1) = 1. (2.20)

This property can be deduced straightforward from the formula (2.19). Note
the relation

Ln,d(x) = Ln,d(rξ(d)) = rnPn,d(t). (2.21)
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The polynomial Pn,3(t) is the standard Legendre polynomial of degree n.
Following [85], we also call Pn,d(t) of (2.19) Legendre polynomial.

Detailed discussion of the Legendre polynomials Pn,d(t) is given in
Sects. 2.6 and 2.7.

2.1.3 Spherical Harmonics

We are now ready to introduce spherical harmonics.

Definition 2.7. Y
d
n := Yn(R

d)|Sd−1 is called the spherical harmonic space
of order n in d dimensions. Any function in Y

d
n is called a spherical harmonic

of order n in d dimensions.

By the definition, we see that any spherical harmonic Yn ∈ Y
d
n is related

to a homogeneous harmonic Hn ∈ Yn(R
d) as follows:

Hn(rξ) = rnYn(ξ).

Thus the dimension of Yd
n is the same as that of Yn(R

d):

dimY
d
n = Nn,d

and Nn,d is given by (2.10).
Take the case of d = 2 as an example. The complex-valued function (x1 +

i x2)
n is a homogeneous harmonic of degree n, and so are the real part and the

imaginary part of the function. In polar coordinates (r, θ), ξ = (cos θ, sin θ)T

and the restriction of the function (x1 + i x2)
n on the unit circle is

(cos θ + i sin θ)n = einθ = cos(nθ) + i sin(nθ).

Thus,
yn,1(ξ) = cos(nθ), yn,2(ξ) = sin(nθ) (2.22)

are elements of the space Y
2
n.

Let ξ ∈ S
d−1 be fixed. A function f : Sd−1 → C is said to be invariant

with respect to O
d(ξ) if

f(Aη) = f(η) ∀A ∈ O
d(ξ), ∀η ∈ S

d−1.

We have the following result, which will be useful later on several occasions.

Theorem 2.8. Let Yn ∈ Y
d
n and ξ ∈ S

d−1. Then Yn is invariant with respect
to O

d(ξ) if and only if



20 2 Spherical Harmonics

Yn(η) = Yn(ξ)Pn,d(ξ·η) ∀η ∈ S
d−1. (2.23)

Proof. (=⇒) Since ξ is a unit vector, we can find an A1 ∈ O
d such that

ξ = A1ed. Consider the function

Ỹn(η) := Yn(A1η), η ∈ S
d−1.

Then Ỹn is invariant with respect to O
d(ed). From the definition of the

Legendre harmonic Ln,d(x), we know that the homogeneous harmonic

rnỸn(η) is a multiple of Ln,d(r
nη),

rnỸn(η) = c1Ln,d(r
nη), r ≥ 0, η ∈ S

d−1

with some constant c1. Thus,

Ỹn(η) = c1Ln,d(η), η ∈ S
d−1.

Choosing η = ed, we find
c1 = Ỹn(ed).

Hence,

Ỹn(η) = Ỹn(ed)Ln,d(η) = Ỹn(ed)Pn,d(η·ed), η ∈ S
d−1.

Then,

Yn(η) = Ỹn(A
T
1 η)

= Yn(A1ed)Pn,d(A
T
1 η·ed)

= Yn(A1ed)Pn,d(η·A1ed)

= Yn(ξ)Pn,d(η·ξ),

i.e., the formula (2.23) holds.
(⇐=) The function Yn(η) satisfying (2.23) is obviously invariant with

respect to O
d(ξ). ��

Consequently, the subspaces of isotropically invariant functions from Y
d
n

are one-dimensional.

2.2 Addition Theorem and Its Consequences

One important property regarding the spherical harmonics is the addition
theorem.
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Theorem 2.9 (Addition Theorem). Let {Yn,j : 1 ≤ j ≤ Nn,d} be an

orthonormal basis of Yd
n, i.e.,

∫

Sd−1

Yn,j(η)Yn,k(η) dS
d−1(η) = δjk, 1 ≤ j, k ≤ Nn,d.

Then

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) =
Nn,d

|Sd−1| Pn,d(ξ·η) ∀ ξ,η ∈ S
d−1. (2.24)

Proof. For any A ∈ O
d and 1 ≤ k ≤ Nn,d, Yn,k(Aξ) ∈ Y

d
n and we can write

Yn,k(Aξ) =

Nn,d∑
j=1

ckjYn,j(ξ), ckj ∈ C. (2.25)

From

∫

Sd−1

Yn,j(Aξ)Yn,k(Aξ) dS
d−1(ξ) =

∫

Sd−1

Yn,j(η)Yn,k(η) dS
d−1(η) = δjk,

we have

δjk =

Nn,d∑
l,m=1

cjlckm (Yn,l, Yn,m) =

Nn,d∑
l=1

cjlckl.

In matrix form, CCH = I. Here CH is the conjugate transpose of C. Thus,
the matrix C := (cjl) is unitary and so CHC = I, i.e.,

Nn,d∑
j=1

cjlcjk = δlk, 1 ≤ l, k ≤ Nn,d. (2.26)

Now consider the sum

Y (ξ,η) :=

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η), ξ,η ∈ S
d−1.

For any A ∈ O
d, use the expansion (2.25),

Y (Aξ, Aη) =

Nn,d∑
j=1

Yn,j(Aξ)Yn,j(Aη) =

Nn,d∑
j,k,l=1

cjkcjlYn,k(ξ)Yn,l(η),

and then use the property (2.26),



22 2 Spherical Harmonics

Y (Aξ, Aη) =

Nn,d∑
k=1

Yn,k(ξ)Yn,k(η) = Y (ξ,η).

So for fixed ξ, Y (ξ, ·) ∈ Y
d
n and is invariant with respect to O

d(ξ). By
Theorem 2.8,

Y (ξ,η) = Y (ξ, ξ)Pn,d(ξ·η).
Similarly, we have the equality

Y (ξ,η) = Y (η,η)Pn,d(ξ·η).

Thus, Y (ξ, ξ) = Y (η,η) and is a constant on S
d−1. To determine this

constant, we integrate the equality

Y (ξ, ξ) =

Nn,d∑
j=1

|Yn,j(ξ)|2

over Sd−1 to obtain

Y (ξ, ξ) |Sd−1| =
Nn,d∑
j=1

∫

Sd−1

|Yj(ξ)|2dSd−1 = Nn,d.

Therefore,

Y (ξ, ξ) =
Nn,d

|Sd−1|
and the equality (2.24) holds. ��

The equality (2.24) is, for d = 3,

2n+1∑
j=1

Yn,j(ξ)Yn,j(η) =
2n+ 1

4 π
Pn,3(ξ·η) ∀ ξ,η ∈ S

2, (2.27)

and for d = 2,

2∑
j=1

Yn,j(ξ)Yn,j(η) =
1

π
Pn,2(ξ·η) ∀ ξ,η ∈ S

1. (2.28)

For the case d = 2, we write ξ = (cos θ, sin θ)T and η = (cosψ, sinψ)T . Then,
ξ·η = cos(θ − ψ). As an orthonormal basis for Y2

n, take (cf. (2.22))

Yn,1(ξ) =
1√
π

cos(nθ), Yn,2(ξ) =
1√
π

sin(nθ).
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By (2.28),

Pn,2(cos(θ − ψ)) = cos(nθ) cos(nψ) + sin(nθ) sin(nψ) = cos(n (θ − ψ)) .

Thus,
Pn,2(t) = cos(n arccos t) , |t| ≤ 1, (2.29)

i.e., Pn,2 is the ordinary Chebyshev polynomial of degree n.
We note that for d = 2,

n∑
k=0

1

π
Pk,2(ξ·η) = 1

2 π

sin((n+ 1/2)φ)

sin(φ/2)
, cosφ := ξ·η,

is the Dirichlet kernel, whereas for d = 3,

n∑
k=0

2k+1∑
j=1

Yk,j(ξ)Yk,j(η) =
n+ 1

4 π
P (1,0)
n (ξ·η) ∀ ξ,η ∈ S

2. (2.30)

Here P
(1,0)
n (t) is the Jacobi polynomial of degree n on [−1, 1], based on the

weight function w(t) = 1 − t; and as a normalization, P
(1,0)
n (1) = n + 1.

This identity is noted in [50]. See Sect. 4.3.1 for an introduction of the Jacobi
polynomials.

We now discuss several applications of the addition theorem.
The addition theorem can be used to find a compact expression of the

reproducing kernel of Yd
n. Any Yn ∈ Y

d
n can be written in the form

Yn(ξ) =

Nn,d∑
j=1

(Yn, Yn,j)Sd−1Yn,j(ξ). (2.31)

Applying (2.24),

Yn(ξ) =

∫

Sd−1

Yn(η)

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) dS
d−1(η)

=
Nn,d

|Sd−1|

∫

Sd−1

Pn,d(ξ·η)Yn(η) dSd−1(η).

Hence,

Kn,d(ξ,η) :=
Nn,d

|Sd−1|Pn,d(ξ·η) (2.32)

is the reproducing kernel of Yd
n, i.e.,

Yn(ξ) = (Yn,Kn,d(ξ, ·))Sd−1 ∀Yn ∈ Y
d
n, ξ ∈ S

d−1. (2.33)
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Define

Y
d
0:m :=

m⊕
n=0

Y
d
n

to be the space of all the spherical harmonics of order less than or equal to
m. Then by (2.33),

K0:m,d(ξ,η) :=
1

|Sd−1|
m∑

n=0

Nn,dPn,d(ξ·η) (2.34)

is the reproducing kernel of Yd
0:m in the sense that

Y (ξ) = (Y,K0:m,d(ξ, ·))Sd−1 ∀Y ∈ Y
d
0:m, ξ ∈ S

d−1.

We now derive some bounds for any spherical harmonic and for the
Legendre polynomial, see (2.38) and (2.39) below, respectively.

Since Pn,d(1) = 1, we get from (2.24) that

Nn,d∑
j=1

|Yn,j(ξ)|2 =
Nn,d

|Sd−1| ∀ ξ ∈ S
d−1. (2.35)

This provides an upper bound for the maximum value of any member of an
orthonormal basis in Y

d
n:

max
{
|Yn,j(ξ)| : ξ ∈ S

d−1, 1 ≤ j ≤ Nn,d

}
≤
(
Nn,d

|Sd−1|

)1/2

. (2.36)

Consider an arbitrary Yn ∈ Y
d
n. From (2.31), we find

∫

Sd−1

|Yn(ξ)|2dSd−1(ξ) =

Nn,d∑
j=1

|(Yn, Yn,j)Sd−1 |2. (2.37)

By (2.31) again,

|Yn(ξ)|2 ≤
Nn,d∑
j=1

|Yn,j(ξ)|2
Nn,d∑
j=1

|(Yn, Yn,j)Sd−1 |2.

Then using (2.35) and (2.37),

|Yn(ξ)|2 ≤ Nn,d

|Sd−1| ‖Yn‖
2
L2(Sd−1).
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Thus we have the inequality

‖Yn‖∞ ≤
(
Nn,d

|Sd−1|

)1/2

‖Yn‖L2(Sd−1) ∀Yn ∈ Y
d
n, (2.38)

which extends the bound (2.36).
By (2.24) and (2.35), we have

Nn,d

|Sd−1| |Pn,d(ξ·η)| ≤
⎡
⎣
Nn,d∑
j=1

|Yn,j(ξ)|2
⎤
⎦
1/2 ⎡

⎣
Nn,d∑
j=1

|Yn,j(η)|2
⎤
⎦
1/2

=
Nn,d

|Sd−1| .

Therefore,

|Pn,d(t)| ≤ 1 = Pn,d(1) ∀n ∈ N, d ≥ 2, t ∈ [−1, 1]. (2.39)

We have an integral formula

∫

Sd−1

|Pn,d(ξ·η)|2dSd−1(η) =
|Sd−1|
Nn,d

. (2.40)

This formula is proved as follows. First we use (2.24) to get

∫

Sd−1

|Pn,d(ξ·η)|2dSd−1(η)

=

(
|Sd−1|
Nn,d

)2 ∫

Sd−1

∣∣∣∣
Nn,d∑
j=1

Yn,j(ξ)Yn,j(η)

∣∣∣∣
2

dSd−1(η)

=

(
|Sd−1|
Nn,d

)2 Nn,d∑
j=1

|Yn,j(ξ)|2.

Then we apply the identity (2.35).
As one more application of the addition theorem, we have the following

result.

Theorem 2.10. For any n ∈ N0 and any d ∈ N, the spherical harmonic
space Y

d
n is irreducible.

Proof. We argue by contradiction. Suppose Y
d
n is reducible so that it is

possible to write Y
d
n = V1 + V2 with V1 �= ∅, V2 �= ∅, and V1 ⊥ V2. Choose

an orthonormal basis of Yd
n in such a way that the first N1 functions span V1

and the remainingN2 = Nn,d−N1 functions span V2. For both V1 and V2, we
can apply the addition theorem with the corresponding Legendre functions
Pn,d,1 and Pn,d,2. Since V1 ⊥ V2,
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∫

Sd−1

Pn,d,1(ξ·η)Pn,d,2(ξ·η) dSd−1(η) = 0 ∀ ξ ∈ S
d−1. (2.41)

For an arbitrary but fixed ξ ∈ S
d−1, consider the function η �→ Pn,d,1(ξ·η).

For any A ∈ O
d(ξ), we have ATA = I and Aξ = ξ, implying AT ξ = ξ. Then

Pn,d,1(ξ·Aη) = Pn,d,1(A
T ξ·η) = Pn,d,1(ξ·η),

i.e., the function η �→ Pn,d,1(ξ·η) is invariant with respect to O
d(ξ). By

Theorem 2.8,

Pn,d,1(ξ·η) = Pn,d,1(ξ·ξ)Pn,d(ξ·η) = Pn,d(ξ·η).

Similarly,
Pn,d,2(ξ·η) = Pn,d(ξ·η).

But then the integral in (2.41) equals |Sd−1|/Nn,d by (2.40) and we reach a
contradiction. ��

2.3 A Projection Operator

Consider the problem of finding the best approximation in Y
d
n of a function

f ∈ L2(Sd−1):

inf
{
‖f − Yn‖L2(Sd−1) : Yn ∈ Y

d
n

}
. (2.42)

In terms of an orthonormal basis {Yn,j : 1 ≤ j ≤ Nn,d} of Yd
n, the solution of

the problem (2.42) is

(Pn,df)(ξ) =

Nn,d∑
j=1

(f, Yn,j)Sd−1Yn,j(ξ). (2.43)

This is the projection of any f into Y
d
n and it is defined for f ∈ L1(Sd−1). The

disadvantage of using this formula is the requirement of explicit knowledge of
an orthonormal basis. We can circumvent this weakness by applying (2.24)
to rewrite the right side of (2.43).

Definition 2.11. The projection of f ∈ L1(Sd−1) into Y
d
n is

(Pn,df)(ξ) :=
Nn,d

|Sd−1|

∫

Sd−1

Pn,d(ξ·η) f(η) dSd−1(η), ξ ∈ S
d−1. (2.44)
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The operator Pn,d is obviously linear. Let us derive some bounds for the
operator Pn,d. First, we obtain from (2.39) that

|(Pn,df)(ξ)| ≤ Nn,d

|Sd−1| ‖f‖L1(Sd−1), ξ ∈ S
d−1.

Then, for all f ∈ L1(Sd−1),

‖Pn,df‖C(Sd−1) ≤
Nn,d

|Sd−1| ‖f‖L1(Sd−1), (2.45)

‖Pn,df‖L1(Sd−1) ≤ Nn,d‖f‖L1(Sd−1). (2.46)

Next, assume f ∈ L2(Sd−1). For any ξ ∈ S
d−1,

|(Pn,df)(ξ)|2 ≤
(
Nn,d

|Sd−1|

)2 ∫

Sd−1

|Pn,d(ξ · η)|2dSd−1(η)

·
∫

Sd−1

|f(η)|2dSd−1(η).

Use (2.40),

|(Pn,df)(ξ)|2 ≤ Nn,d

|Sd−1| ‖f‖
2
L2(Sd−1).

Hence, for all f ∈ L2(Sd−1),

‖Pn,df‖L2(Sd−1) ≤ N
1/2
n,d ‖f‖L2(Sd−1), (2.47)

‖Pn,df‖C(Sd−1) ≤
(
Nn,d

|Sd−1|

)1/2

‖f‖L2(Sd−1). (2.48)

We remark that (2.47) can be improved to

‖Pn,df‖L2(Sd−1) ≤ ‖f‖L2(Sd−1);

see (2.134) later. Furthermore, if f ∈ C(Sd−1), a similar argument leads to

‖Pn,df‖C(Sd−1) ≤ N
1/2
n,d ‖f‖C(Sd−1). (2.49)

Proposition 2.12. The projection operator Pn,d and orthogonal transfor-
mations commute:

Pn,dfA = (Pn,df)A ∀A ∈ O
d.
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Proof. We start with the left side of the equality,

(Pn,dfA)(ξ) =
Nn,d

|Sd−1|

∫

Sd−1

Pn,d(ξ·η) f(Aη) dSd−1(η)

=
Nn,d

|Sd−1|

∫

Sd−1

Pn,d(Aξ·ζ) f(ζ) dSd−1(ζ),

which is (Pn,df)A(ξ) by definition. ��
A useful consequence of Proposition 2.12 is the following result.

Corollary 2.13. If V is an invariant space, then Pn,dV := {Pn,df : f ∈ V}
is an invariant subspace of Yd

n.

Since Y
d
n is irreducible, by Theorem 2.10, Corollary 2.13 implies that if

V is an invariant space, then either V is orthogonal to Y
d
n or Pn,dV = Y

d
n.

Moreover, we have the next result.

Theorem 2.14. If V is a primitive subspace of C(Sd−1), then either V ⊥ Y
d
n

or Pn,d is a bijection from V to Y
d
n. In the latter case, V = Y

d
n.

Proof. We only need to prove that if Pn,d : V → Y
d
n is a bijection, then

V = Y
d
n. The two spaces are finite dimensional and have the same dimension

Nn,d = dim(Yd
n). Let {Vj : 1 ≤ j ≤ Nn,d} be an orthonormal basis of V.

Since V is primitive, for any A ∈ O
d, we can write

Vj(Aξ) =

Nn,d∑
k=1

cjkVk(ξ), cjk ∈ C,

and the matrix (cjk) is unitary as in the proof of Theorem 2.9. Consider the
function

V (ξ,η) :=

Nn,d∑
j=1

Vj(ξ)Vj(η).

Then again as in the proof of Theorem 2.9, we have

V (Aξ, Aη) = V (ξ,η) ∀A ∈ O
d.

Given ξ,η ∈ S
d−1, we can find an A ∈ O

d such that

Aξ = ed, Aη = t ed + (1− t2)1/2ed−1 with t = ξ·η.

Then
V (ξ,η) = V (ed, t ed + (1− t2)1/2ed−1)
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is a function of t = ξ·η. Denote this function by Pd(t). For fixed ξ, the
mapping η �→ Pd(ξ·η) is a function in V, whereas for fixed ζ, the mapping
η �→ Pn,d(ζ·η) is a function in Y

d
n. Consider the function

φ(ξ, ζ) =

∫

Sd−1

Pd(ξ·η)Pn,d(ζ·η) dSd−1(η).

We have the property

φ(Aξ, Aζ) = φ(ξ, ζ) ∀A ∈ O
d.

So φ(ξ, ζ) depends on ξ·ζ only. This function belongs to both V and Y
d
n.

Thus, either V = Y
d
n or φ ≡ 0. In the latter case, we have

Nn,d∑
j,k=1

Vj(ξ)Yn,k(ζ) (Vj , Yn,k)L2(Sd−1) = 0 ∀ ξ, ζ ∈ S
d−1,

where {Yn,k : 1 ≤ k ≤ Nn,d} is an orthonormal basis of Yd
n. Since each of the

sets {Vj : 1 ≤ j ≤ Nn,d} and {Yn,j : 1 ≤ j ≤ Nn,d} consists of linearly
independent elements, we obtain from the above identity that

(Vj , Yn,k)L2(Sd−1) = 0, 1 ≤ j, k ≤ Nn,d.

This implies V ⊥ Y
d
n. ��

We let V = Y
d
m, m �= n, in Theorem 2.14 to obtain the following result

concerning orthogonality of spherical harmonics of different order.

Corollary 2.15. For m �= n, Yd
m ⊥ Y

d
n.

This result can be proved directly as follows. Let Ym ∈ Y
d
m and Yn ∈ Y

d
n

be the restrictions on S
d−1 of Hm ∈ Ym(Rd) and Hn ∈ Yn(R

d), respectively.
Since ΔHm(x) = ΔHn(x) = 0, we have

∫

‖x‖<1

(HmΔHn −HnΔHm) dx = 0.

Apply Green’s formula,

∫

Sd−1

(
Hm

∂Hn

∂r
−Hn

∂Hm

∂r

)
dSd−1 = 0. (2.50)

Since Hm is a homogeneous polynomial of degree m,

∂Hm(x)

∂r

∣∣∣∣
x=ξ

= mYm(ξ), ξ ∈ S
d−1.
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Similarly,
∂Hn(x)

∂r

∣∣∣∣
x=ξ

= nYn(ξ), ξ ∈ S
d−1.

Thus, from (2.50),

∫

Sd−1

(n−m)Ym(ξ)Yn(ξ) dS
d−1(ξ) = 0.

Hence, since m �= n,

∫

Sd−1

Ym(ξ)Yn(ξ) dS
d−1(ξ) = 0.

2.4 Relations Among Polynomial Spaces

We have introduced several polynomial spaces in the previous sections. Here
we discuss some relations among these polynomial spaces.

Proposition 2.16. The Laplacian operator Δ is surjective from H
d
n to H

d
n−2

for n ≥ 2.

Proof. Obviously, the operator Δ maps Hd
n to H

d
n−2. By (2.2) and (2.10), we

have

dimH
d
n − dimYn(R

d) =
(n+ d− 1)!

n! (d− 1)!
− (2n+ d− 2) (n+ d− 3)!

n! (d− 2)!

=
(n− 2 + d− 1)!

(n− 2)! (d− 1)!

= dimH
d
n−2.

Therefore, Δ : Hd
n → H

d
n−2 is surjective. ��

It is possible to give another proof of Proposition 2.16 using the inner
product (2.6). Suppose Δ : Hd

n → H
d
n−2 is not surjective. Then there exists a

non-zero function Hn−2 ∈ H
d
n−2 such that

(ΔHn, Hn−2)Hd
n−2

= 0 ∀Hn ∈ H
d
n.

Take Hn(x) = |x|2Hn−2(x) to get

(Hn, Hn)Hd
n
= Hn(∇)Hn(x) = Hn−2(∇)ΔHn(x)

= (Hn−2,ΔHn)Hd
n−2

= 0.
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Hence, Hn(x) = 0 and then Hn−2(x) = 0. This contradicts the assumption
that Hn−2 �= 0.

Lemma 2.17. For n ≥ 2, Hd
n = Yn(R

d) ⊕ | · |2Hd
n−2, with respect to the

inner product (2.6).

Proof. It is shown in the proof of Proposition 2.16 that

dimH
d
n = dimYn(R

d) + dimH
d
n−2.

Thus, it remains to show Yn(R
d) ⊥ | · |2Hd

n−2. For any Yn ∈ Yn(R
d) and any

Hn−2 ∈ H
d
n−2, there holds

(
Yn, | · |2Hn−2

)
Hd

n
= (ΔYn, Hn−2)Hd

n−2
= 0.

Therefore, the statement is valid. ��
The orthogonal decomposition stated in Lemma 2.17 can be applied

repeatedly, leading to the next result.

Theorem 2.18. With respect to the inner product (2.6), we have

H
d
n = Yn(R

d)⊕ | · |2Yn−2(R
d)⊕ · · · ⊕ | · |2 [n/2]

Yn−2 [n/2](R
d). (2.51)

Proof. For any Hn ∈ H
d
n, by Lemma 2.17, we have

Hn(x) = Yn(x) + |x|2Hn−2(x)

with uniquely determined Yn ∈ Yn(R
d) and Hn−2 ∈ H

d
n−2. Applying Lemma

2.17 to Hn−2 ∈ H
d
n−2, we can uniquely determine a pair of functions Yn−2 ∈

Yn−2(R
d) and Hn−4 ∈ H

d
n−4 such that

Hn−2(x) = Yn−2(x) + |x|2Hn−4(x).

Hence,

Hn(x) = Yn(x) + |x|2Yn−2(x) + |x|4Hn−4(x).

Continue this process to obtain the unique decomposition

Hn(x) = Yn(x) + |x|2Yn−2(x) + · · ·+ |x|2 [n/2]Yn−2 [n/2](x), (2.52)

where Yn−2j ∈ Yn−2j(R
d). Note that the terms on the right side of (2.52)

are mutually orthogonal with respect to the inner product (2.6). ��
As consequences of Theorem 2.18, we have the following two results.
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Corollary 2.19. ⎛
⎝

n∑
j=0

H
d
j

⎞
⎠
∣∣∣∣
Sd−1

=

n∑
j=0

Y
d
j .

So the restriction of any polynomial on S
d−1 is a sum of some spherical

harmonics and the restriction of the space of the polynomials of d variables
on S

d−1 is
∑∞

j=0 Y
d
j .

Corollary 2.20. A polynomial Hn ∈ H
d
n is harmonic if and only if

∫

Sd−1

Hn(ξ)Hn−2(ξ) dS
d−1(ξ) = 0 ∀Hn−2 ∈ H

d
n−2. (2.53)

Proof. (⇐=) Use (2.52) to obtain

Hn(ξ) = Yn(ξ) + Yn−2(ξ) + · · ·+ Yn−2 [n/2](ξ).

Then by (2.53) and the orthogonality of spherical harmonics of different order
(Corollary 2.15), we obtain

0 =

∫

Sd−1

Hn(ξ)Yn−2j(ξ) dS
d−1(ξ)

=

∫

Sd−1

|Yn−2j(ξ)|2dSd−1(ξ), 1 ≤ j ≤ [n/2].

So Yn−2j ≡ 0 for 1 ≤ j ≤ [n/2] and Hn(x) = Yn(x) is harmonic.

(=⇒) Assume Hn ∈ Yn(S
d) is harmonic. Recalling (2.52), we write an

arbitrary Hn−2 ∈ H
d
n−2 as

Hn−2(x) = Yn−2(x) + |x|2Yn−4(x) + · · ·+ |x|2 [(n−2)/2]Yn−2−2 [(n−2)/2](x).

Then,

∫

Sd−1

Hn(ξ)Hn−2(ξ) dS
d−1(ξ) =

[(n−2)/2]∑
j=0

∫

Sd−1

Hn(ξ)Yn−2−2j(ξ) dS
d−1(ξ)

= 0,

again using the fact that spherical harmonics of different order are orthogonal.
��

Now we discuss the question of how to determine the harmonic polynomials
Yn, Yn−2, . . . , Yn−2 [n/2] in the decomposition (2.52) for an arbitrary
homogeneous polynomial Hn of degree n. Since Hn(x) is homogeneous of
degree n,
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Hn(λx) = λnHn(x) ∀λ ∈ R, x ∈ R
d.

We differentiate this equality with respect to λ and then set λ = 1 to obtain

d∑
i=1

xi
∂Hn(x)

∂xi
= nHn(x), Hn ∈ H

d
n. (2.54)

Consider the function rmHn(x) with r = |x| and m ∈ N0. Note that

∂r

∂xi
=
xi
r
, 1 ≤ i ≤ d.

We take derivatives of the function rmHn(x) to obtain

∂

∂xi
(rmHn(x)) = mrm−2xiHn(x) + rm

∂Hn(x)

∂xi
,

∂2

∂x2i
(rmHn(x)) =

[
m (m− 2) rm−4x2i +mrm−2

]
Hn(x)

+ 2mrm−2xi
∂Hn(x)

∂xi
+ rm

∂2Hn(x)

∂x2i
,

and hence, using (2.54),

Δ (rmHn(x)) = m (d+ 2n+m− 2) rm−2Hn(x) + rmΔHn(x)

∀Hn ∈ H
d
n. (2.55)

In particular, if Hn(x) = Yn(x) is harmonic, then

Δ (rmYn(x)) = m (d+ 2n+m− 2) rm−2Yn(x) ∀Yn ∈ Yn(R
d). (2.56)

For Hn ∈ H
d
n, we write (2.52) in a compact form

Hn(x) =

[n/2]∑
j=0

|x|2jYn−2j(x). (2.57)

Apply the Laplacian operator Δ to both sides of (2.57) and use the formula
(2.56),

ΔHn(x) =

[n/2]∑
j=1

2j (d+ 2n− 2j − 2) |x|2(j−1)Yn−2j(x).
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In general, for k ≥ 1 an integer, we have

ΔkHn(x) =

[n/2]∑
j=k

2j · 2(j − 1) · · · 2(j − (k − 1)) (d+ 2n− 2j − 2)

· (d+ 2n− 2j − 4) · · · (d+ 2n− 2j − 2k) |x|2(j−k)Yn−2j(x).

Using the notation of double factorial,

ΔkHn(x) =

[n/2]∑
j=k

(2j)!! (d+ 2n− 2j − 2)!!

(2j − 2k)!! (d+ 2n− 2j − 2k − 2)!!
|x|2(j−k)Yn−2j(x).

(2.58)
By taking k = [n/2], [n/2] − 1, . . . , 1, 0 in (2.58), we can obtain in turn
Yn−2 [n/2], . . . , Yn(x). In particular, for n even,

Δn/2Hn(x) =
n!! (d+ n− 2)!!

(d− 2)!!
Y0(x).

Hence,

Y0(x) =
(d− 2)!!

n!! (d+ n− 2)!!
Δn/2Hn(x). (2.59)

Example 2.21. Write
x2i = Y2(x) + |x|2Y0(x).

We first apply (2.59) to get

Y0(x) =
1

d
.

We then use (2.58) with n = 2 and k = 0 to obtain

Y2(x) = x2i −
1

d
|x|2.

Hence, we have the decomposition

x2i =

(
x2i −

1

d
|x|2

)
+ |x|2 1

d
, 1 ≤ i ≤ d.

The same technique can be applied for higher degree homogeneous
polynomials. �

2.5 The Funk–Hecke Formula

The Funk–Hecke formula is useful in simplifying calculations of certain inte-
grals over Sd−1, cf. Sect. 3.7 for some examples. Introduce a weighted L1 space
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L1
(d−3)/2(−1, 1) :=

{
f measurable on (−1, 1) : ‖f‖L1

(d−3)/2
(−1,1) <∞

}

(2.60)
with the norm

‖f‖L1
(d−3)/2

(−1,1) :=

∫ 1

−1

|f(t)| (1− t2)(d−3)/2dt.

Note that for d ≥ 2, C[−1, 1] ⊂ L1
(d−3)/2(−1, 1). In the rest of the section,

we assume d ≥ 2.
Recall the projection operator Pn,d defined in (2.44). Given f ∈

L1
(d−3)/2(−1, 1) and ξ ∈ S

d−1, define fξ(η) = f(ξ·η) for η ∈ S
d−1. Then

(Pn,dfξ)A = Pn,dfξ for any A ∈ O
d(ξ). Since Pn,dfξ ∈ Y

d
n, by Theorem 2.8,

it is a multiple of Pn,d(ξ·):

(Pn,dfξ)(η) = λn
Nn,d

|Sd−1| Pn,d(ξ·η).

This is rewritten as, following the definition (2.44),

λnPn,d(ξ·η) =
∫

Sd−1

Pn,d(ζ·η) f(ξ·ζ) dSd−1(ζ). (2.61)

We determine the constant λn by setting η = ξ in (2.61):

λn =

∫

Sd−1

Pn,d(ξ·ζ) f(ξ·ζ) dSd−1(ζ).

The integral does not depend on ξ and we may take ξ = ed. Then using
(1.16),

λn = |Sd−2|
∫ 1

−1

Pn,d(t) f(t) (1 − t2)
d−3
2 dt. (2.62)

Let Yn ∈ Y
d
n be arbitrary yet fixed. Multiply (2.61) by Yn and integrate

over Sd−1 with respect to η:

λn

∫

Sd−1

Pn,d(ξ·η)Yn(η) dSd−1(η)

=

∫

Sd−1

f(ξ·ζ)
(∫

Sd−1

Pn,d(ζ·η)Yn(η) dSd−1(η)

)
dSd−1(ζ). (2.63)

Applying the addition theorem, Theorem 2.9, we see that

∫

Sd−1

Pn,d(η·ζ)Yn(η) dSd−1(η) =
|Sd−1|
Nn,d

Nn,d∑
j=1

(Yn, Yn,j)Sd−1 Yn,j(ζ),
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i.e., ∫

Sd−1

Pn,d(η·ζ)Yn(η) dSd−1(η) =
|Sd−1|
Nn,d

Yn(ζ). (2.64)

Hence, from (2.63),

∫

Sd−1

f(ξ·η)Yn(η) dSd−1(η) = λnYn(ξ). (2.65)

We summarize the result in the form of a theorem.

Theorem 2.22 (Funk–Hecke Formula). Let f ∈ L1
(d−3)/2(−1, 1), ξ ∈

S
d−1 and Yn ∈ Y

d
n. Then the Funk–Hecke formula (2.65) holds with the

constant λn given by (2.62).

From (2.65), we can deduce the following statement using the formula
(2.24). Assume f ∈ L1

(d−3)/2(−1, 1). Then

∫

Sd−1

f(ξ·ζ)Pn,d(η·ζ) dSd−1(ζ) = λnPn,d(ξ·η) ∀ ξ,η ∈ S
d−1, n ∈ N0,

(2.66)
where λn is given by the formula (2.62).

Letting f = Pn,d in (2.65) and comparing it with (2.64), we deduce the
formula ∫ 1

−1

[Pn,d(t)]
2 (

1− t2
) d−3

2 dt =
|Sd−1|

Nn,d|Sd−2| , (2.67)

which is equivalent to (2.40).

2.6 Legendre Polynomials: Representation Formulas

Further studies of spherical harmonics require a deeper knowledge of the
Legendre polynomials. In this section, we present compact formulas for
the Legendre polynomial Pn,d defined in (2.19): one differential formula
(Rodrigues representation formula) and some integral representation for-
mulas. These formulas are used in proving properties of the Legendre
polynomials in Sect. 2.7.

2.6.1 Rodrigues Representation Formula

By Corollary 2.15,

∫

Sd−1

Pm,d(ξ·ζ)Pn,d(ξ·ζ) dSd−1(ξ) = 0 for m �= n.
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By the formula (1.17), the left side integral equals

∫

Sd−2

(∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt

)
dSd−2

= |Sd−2|
∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt.

So
∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt = 0 for m �= n. (2.68)

Consequently, denoting Pm a polynomial of degree less than or equal to m,
we have the orthogonality

∫ 1

−1

Pm(t)Pn,d(t)
(
1− t2

) d−3
2 dt = 0, m < n. (2.69)

The Legendre polynomials are determined by the orthogonality relation
(2.68) and the normalization condition Pn,d(1) = 1.

Theorem 2.23 (Rodrigues representation formula).

Pn,d(t) = (−1)nRn,d(1− t2)
3−d
2

(
d

dt

)n

(1− t2)n+
d−3
2 for d ≥ 2, (2.70)

where the Rodrigues constant

Rn,d =
Γ(d−1

2 )

2nΓ(n+ d−1
2 )

. (2.71)

Proof. The function

pn(t) = (1− t2)
3−d
2

(
d

dt

)n

(1− t2)n+
d−3
2

is easily seen to be a polynomial of degree n. Let us show that these polyno-

mials are orthogonal with respect to the weight
(
1− t2

) d−3
2 . For n > m,

∫ 1

−1

pn(t) pm(t)
(
1− t2

) d−3
2 dt =

∫ 1

−1

pm(t)

(
d

dt

)n (
1− t2

)n+ d−3
2 dt.

Performing integration by parts n times shows that the integral is zero.
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The value pn(1) is calculated as follows:

pn(1) = (1− t2)
3−d
2

(
d

dt

)n [
(1 + t)n+

d−3
2 (1− t)n+

d−3
2

] ∣∣∣∣
t=1

= (1− t2)
3−d
2 (1 + t)n+

d−3
2

(
d

dt

)n

(1 − t)n+
d−3
2

∣∣∣∣
t=1

= (−1)n
(
d− 1

2

)

n

(1 + t)n
∣∣∣∣
t=1

= (−1)n
2nΓ(n+ d−1

2 )

Γ(d−1
2 )

,

where the formula (1.12) for Pochhammer’s symbol ((d− 1)/2)n is used.
Hence,

Pn,d(t) = (−1)nRn,dpn(t),

which is the stated formula. ��
In the case d = 3, we recover the Rodrigues representation formula for the

standard Legendre polynomials:

Pn,3(t) =
1

2nn!

(
d

dt

)n

(t2 − 1)n, n ∈ N0.

In the case d = 2, we use the relation

Γ

(
n+

1

2

)
=

(2n)!

22nn!
Γ

(
1

2

)
,

derived from a repeated application of (1.6), and obtain

Pn,2(t) = (−1)n
2nn!

(2n)!
(1− t2)

1
2

(
d

dt

)n

(1 − t2)n−
1
2 , n ∈ N0.

This formula is not convenient to use. A more familiar form is given by the
Chebyshev polynomial:

Pn,2(t) = cos(n arccos t), t ∈ [−1, 1].

This result is verified by showing cos(n arccos t) is a polynomial of degree
n, has a value 1 at t = 1, and these polynomials satisfy the orthogonality
condition (2.68) with d = 2. See also the derivation leading to (2.29).

In the case d = 4, we can similarly verify the formula

Pn,4(t) =
1

n+ 1
Un(t), t ∈ [−1, 1],
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where

Un(t) =
1

n+ 1
P ′
n+1,2(t)

is the nth degree Chebyshev polynomial of the second kind. For −1 < t < 1,
we have the formula

Un(t) =
sin((n+ 1) arccos t)

sin(arccos t)
.

We note that the Legendre polynomial Pn,d(t) is proportional to the Jacobi

polynomial P
(α,α)
n (t) with α = (d − 3)/2. The Jacobi polynomials P

(α,β)
n (t)

are introduced in Sect. 4.3.1.

2.6.2 Integral Representation Formulas

In addition to the Rodrigues representation formula (2.70), there are integral
representation formulas for the Legendre polynomials which are useful in
showing certain properties of the Legendre polynomials.

Let d ≥ 3. For a fixed η ∈ S
d−2, the function x �→ (xd + ix(d−1)·η)n is

a homogeneous harmonic polynomial of degree n. Consider its average with
respect to η ∈ S

d−2,

Ln(x) =
1

|Sd−2|

∫

Sd−2

(
xd + ix(d−1)·η

)n
dSd−2(η).

This function is a homogeneous harmonic of degree n. For A ∈ O
d(ed), we

recall (2.1) and write

Ax =

(
A1x(d−1)

xd

)
, A1 ∈ O

d−1.

Note that here we view x(d−1) as a vector in S
d−2. Then

Ln(Ax) =
1

|Sd−2|

∫

Sd−2

(
xd + ix(d−1)·AT

1 η
)n
dSd−2(η).

With a change of variable ζ = AT
1 η, we have

Ln(Ax) =
1

|Sd−2|

∫

Sd−2

(
xd + ix(d−1)·ζ

)n
dSd−2(ζ),

which coincides with Ln(x). Moreover, Ln(ed) = 1. Thus, Ln(x) is the
Legendre harmonic of degree n in dimension d. By the relation (2.21), we
see that
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Pn,d(t) =
1

|Sd−2|

∫

Sd−2

[
t+ i (1− t2)1/2ξ(d−1)·η

]n
dSd−2(η), t ∈ [−1, 1].

In this formula, ξ(d−1) ∈ S
d−2 is arbitrary. In particular, choosing ξ(d−1) =

(0, · · · , 0, 1)T in S
d−2 and applying (1.17), we obtain the first integral

representation formula for the Legendre polynomials.

Theorem 2.24. For n ∈ N0 and d ≥ 3,

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1−s2) d−4

2 ds, t ∈ [−1, 1]. (2.72)

An easy consequence of the representation formula (2.72) is that Pn,d(t)
has the same parity as the integer n, i.e.,

Pn,d(−t) = (−1)nPn,d(t), −1 ≤ t ≤ 1. (2.73)

There is another useful integral representation formula that can be derived
from (2.72). Recall definitions of hyper-trigonometric functions:

sinhx :=
ex − e−x

2
, coshx :=

ex + e−x

2
,

tanhx :=
sinhx

coshx
=
ex − e−x

ex + e−x

and differentiation formulas

(sinhx)′ = coshx, (coshx)′ = sinhx, (tanhx)′ =
1

cosh2 x
.

Use the change of variable

s = tanhu, u ∈ R. (2.74)

We have s→ 1− as u→ ∞, s→ −1+ as u→ −∞, and

ds =
1

cosh2 u
du, 1− s2 =

1

cosh2 u
. (2.75)

Since Pn,d(−t) = (−1)nPn,d(t) by (2.73), it is sufficient to consider the case
t ∈ (0, 1] for the second integral representation formula. Write

t+ i (1− t2)1/2 = eiθ

for a uniquely determined θ ∈ [0, π/2). Then t = cos θ and

t+ i (1− t2)1/2s = cos θ + i tanhu sin θ.
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The hyper-trigonometric functions are defined for complex variables and it
can be verified that

cos θ + i tanhu sin θ =
cosh(u+ iθ)

coshu
.

Thus,

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1− s2)

d−4
2 ds =

∫ ∞

−∞

coshn(u+ iθ)

coshn+d−2 u
du.

The integrand is a meromorphic function of u with poles at u = iπ (k+1/2),
k ∈ Z. We then apply the Cauchy integral theorem in complex analysis [2]
to obtain

∫ ∞

−∞

coshn(u+ iθ)

coshn+d−2 u
du =

∫ ∞

−∞

coshn u

coshn+d−2(u − iθ)
du.

Return back to the variable s, using the relation

cosh(u− iθ) = coshu
[
t− i(1− t2)1/2s

]

together with (2.74) and (2.75),

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

(1− s2)
d−4
2

[
t− i (1− t2)1/2s

]n+d−2
ds.

Note that changing s to −s for the integrand leads to another integral
representation formula for Pn,d(t). In summary, the following result holds.

Theorem 2.25. For n ∈ N0 and d ≥ 3,

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

(1 − s2)
d−4
2

[
t± i (1− t2)1/2s

]n+d−2
ds, t ∈ (0, 1]. (2.76)

2.7 Legendre Polynomials: Properties

In this section, we explore properties of the Legendre polynomials by using
the compact presentation formulas given in Sect. 2.6.



42 2 Spherical Harmonics

2.7.1 Integrals, Orthogonality

The following result is useful in computing integrals involving the Legendre
polynomials.

Proposition 2.26. If f ∈ Cn([−1, 1]), then

∫ 1

−1

f(t)Pn,d(t)
(
1− t2

) d−3
2 dt = Rn,d

∫ 1

−1

f (n)(t)
(
1− t2

)n+ d−3
2 dt, (2.77)

where the constant Rn,d is given in (2.71).

Proof. By the Rodrigues representation formula (2.70), the left side of
(2.77) is

(−1)nRn,d

∫ 1

−1

f(t)

(
d

dt

)n (
1− t2

)n+ d−3
2 dt.

Performing integration by parts n times on this integral leads to (2.77). ��
Recall the formula (2.40) or (2.67),

∫ 1

−1

[Pn,d(t)]
2 (

1− t2
) d−3

2 dt =
|Sd−1|

Nn,d |Sd−2| . (2.78)

Combining (2.68) and (2.78), we have the orthogonality relation

∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt =

|Sd−1|
Nn,d |Sd−2| δmn. (2.79)

Using (1.18), we can rewrite (2.78) as

∫ 1

−1

[Pn,d(t)]
2 (1− t2

) d−3
2 dt =

√
π Γ(d−1

2 )

Nn,d Γ(
d
2 )
.

In particular, for d = 3, Nn,3 = 2n+ 1 and

∫ 1

−1

[Pn,3(t)]
2
dt =

2

2n+ 1
.

For d = 2, Nn,2 = 2 and

∫ 1

−1

[Pn,2(t)]
2
(1− t2)−

1
2 dt =

π

2
.



2.7 Legendre Polynomials: Properties 43

We can verify this result easily by a direct calculation using the formula

Pn,2(t) = cos(n arccos t).

2.7.2 Differential Equation and Distribution of
Roots

First we derive a differential equation satisfied by the Legendre polynomial
Pn,d(t). Introduce a second-order differential operator Ld defined by

Ldg(t) :=
(
1− t2

) 3−d
2

d

dt

[(
1− t2

) d−1
2

d

dt
g(t)

]
, g ∈ C2[−1, 1].

Also introduce a weighted inner product

(f, g)d :=

∫ 1

−1

f(t) g(t)
(
1− t2

) d−3
2 dt.

Then through integration by parts, we have

(Ldf, g)d = (f, Ldg)d ∀ f, g ∈ C2[−1, 1]. (2.80)

Thus, the operator Ld is self-adjoint with respect to the weighted inner
product (·, ·)d.

Consider the function LdPn,d(t). Since

Ldg(t) = (1 − t2) g′′(t)− (d− 1) t g′(t),

we see that if pn(t) is a polynomial of degree n, then so is Ldpn(t). Let
0 ≤ m ≤ n− 1. By the weighted orthogonality relation (2.69), we have

(Pn,d, LdPm,d)d = 0.

Then by (2.80),

(Pm,d, LdPn,d)d = 0, 0 ≤ m ≤ n− 1.

Thus, the polynomial LdPn,d(t) must be a multiple of Pn,d(t). Writing

Pn,d(t) = a0n,dt
n + l.d.t. (2.81)
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Here l.d.t. stands for the lower degree terms. We have

LdPn,d(t) = −n (n+ d− 2) a0n,dt
n + l.d.t.

Hence,
LdPn,d(t) + n (n+ d− 2)Pn,d(t) = 0.

So Pn,d is an eigenfunction for the differential operator −Ld corresponding to
the eigenvalue n (n+ d− 2). In other words, the Legendre polynomial Pn,d(t)
satisfies the differential equation

(
1− t2

) 3−d
2

d

dt

[(
1− t2

) d−1
2

d

dt
Pn,d(t)

]
+ n (n+ d− 2)Pn,d(t) = 0, (2.82)

which can also be written as

(1− t2)P ′′
n,d(t)− (d− 1) t P ′

n,d(t) + n (n+ d− 2)Pn,d(t) = 0. (2.83)

Next, we present a result regarding distributions of the roots of the
Legendre polynomials. This result plays an important role in the theory of
Gaussian quadratures. From the differential equation (2.83), we deduce that
Pn,d(t) and P

′
n,d(t) cannot both vanish at any point in (−1, 1); in other words,

Pn,d(t) has no multiple roots in (−1, 1). Assume Pn,d(t) has k distinct roots
t1, · · · , tk in the interval (−1, 1), and k < n. Then

pk(t) = (t− t1) · · · (t− tk)

is a polynomial of degree k, pk(1) > 0, and Pn,d(t) = qn−k(t) pk(t) with
a polynomial qn−k of degree n − k. Since the polynomial qn−k(t) does not
change sign in (−1, 1) and is positive at 1, it is positive in (−1, 1). So

∫ 1

−1

Pn,d(t) pk(t)
(
1− t2

) d−3
2 dt =

∫ 1

−1

qn−k(t) pk(t)
2
(
1− t2

) d−3
2 dt > 0.

However, since k < n, the integral on the left side is zero and this leads to
contradiction. We summarize the result in the form of a proposition.

Proposition 2.27. The Legendre polynomial Pn,d(t) has exactly n distinct
roots in (−1, 1).

For n even, Pn,d(t) is an even function so that its roots can be written
as ±t1, . . . , ±tn/2 with 0 < t1 < · · · < tn/2 < 1. For n odd, Pn,d(t) is an
odd function so that its roots can be written as 0, ±t1, . . . , ±t(n−1)/2 with
0 < t1 < · · · < t(n−1)/2 < 1.

In the particular case d = 2, it is easy to find the n roots of the equation

Pn,2(t) = cos(n arccos t) = 0



2.7 Legendre Polynomials: Properties 45

to be

tj = cos
(2j + 1)π

2n
, 0 ≤ j ≤ n− 1.

For n = 2k even, noting that t2k−1−j = −tj , we can list the roots as

±t0, ±t1, · · · , ±tk−1 with tj = cos
(2j + 1)π

4k
, 0 ≤ j ≤ k − 1.

For n = 2k + 1 odd, noting that tk = 0 and t2k−j = −tj , we can list the
roots as

0, ±t0, ±t1, · · · , ±tk−1 where tj = cos
(2j + 1)π

2(2k + 1)
, 0 ≤ j ≤ k − 1.

2.7.3 Recursion Formulas

Recursion formulas are useful in computing values of the Legendre polyno-
mials, especially those of a higher degree.

Let us first determine the leading coefficient a0n,d of Pn,d(t) (see (2.81)).
We start with the equality

∫ 1

−1

[Pn,d(t)]
2 (1− t2

) d−3
2 dt = a0n,d

∫ 1

−1

tnPn,d(t)
(
1− t2

) d−3
2 dt, (2.84)

obtained by an application of the orthogonality property (2.69). By (2.78),
the left side of (2.84) equals

|Sd−1|
Nn,d |Sd−2| .

Applying Proposition 2.26, we see that the right side of (2.84) equals

a0n,dRn,dn!

∫ 1

−1

(
1− t2

)n+ d−3
2 dt.

To compute the integral, we let s = t2:

∫ 1

−1

(
1− t2

)n+ d−3
2 dt =

∫ 1

0

s
1
2−1(1− s)n+

d−1
2 −1ds

=
Γ(12 ) Γ(n+ d−1

2 )

Γ(n+ d
2 )

.
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Hence,
|Sd−1|

Nn,d |Sd−2| = a0n,dRn,dn!
Γ(12 ) Γ(n+ d−1

2 )

Γ(n+ d
2 )

.

Therefore, the leading coefficient of the Legendre polynomial Pn,d(t) is

a0n,d =
2n−1Γ(d− 1) Γ(n+ d−2

2 )

Γ(d2 )Γ(n+ d− 2)
. (2.85)

As an application of the formula (2.85), we note that

a0n,d
a0n−1,d

=
2n+ d− 4

n+ d− 3
.

So
(n+ d− 3)Pn,d(t)− (2n+ d− 4) t Pn−1,d(t)

is a polynomial of degree ≤ n − 1 and is orthogonal to Pk,d(t) with respect
to the weighted inner product (·, ·)d for 0 ≤ k ≤ n − 3. Thus, when this
polynomial is expressed as a linear combination of Pj,d(t), 0 ≤ j ≤ n − 1,
only the two terms involving Pn−2,d(t) and Pn−1,d(t) remain. In other words,
for two suitable constants c1 and c2,

(n+ d− 3)Pn,d(t)− (2n+ d− 4) t Pn−1,d(t) = c1Pn−1,d(t) + c2Pn−2,d(t).

The constants c1 and c2 can be found from the above equality at t = ±1,
since Pk,d(1) = 1 and Pk,d(−1) = (−1)k (cf. (2.73)):

c1 + c2 = 1− n,

c1 − c2 = n− 1.

The solution of this system is c1 = 0, c2 = 1 − n. Thus, the Legendre
polynomials satisfy the recursion relation

Pn,d(t) =
2n+ d− 4

n+ d− 3
t Pn−1,d(t)− n− 1

n+ d− 3
Pn−2,d(t), n ≥ 2, d ≥ 2.

(2.86)
The initial conditions for the recursion formula (2.86) are

P0,d(t) = 1, P1,d(t) = t. (2.87)

It is convenient to use the recursion formula (2.86) to derive expressions of
the Legendre polynomials. The following are some examples. Note that in any
dimension d, the first two Legendre polynomials are the same, given by (2.87).
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For d = 2,

P2,2(t) = 2 t2 − 1,

P3,2(t) = 4 t3 − 3 t,

P4,2(t) = 8 t4 − 8 t2 + 1,

P5,2(t) = 16 t5 − 20 t3 + 5 t.

For d = 3,

P2,3(t) =
1

2

(
3 t2 − 1

)
,

P3,3(t) =
1

2

(
5 t3 − 3 t

)
,

P4,3(t) =
1

8

(
35 t4 − 30 t2 + 3

)
,

P5,3(t) =
1

8

(
63 t5 − 70 t3 + 15 t

)
.

For d = 4,

P2,4(t) =
1

3

(
4 t2 − 1

)
,

P3,4(t) = 2 t3 − t,

P4,4(t) =
1

5

(
16 t4 − 12 t2 + 1

)
,

P5,4(t) =
1

3

(
16 t5 − 16 t3 + 3 t

)
.

For d = 5,

P2,5(t) =
1

4

(
5 t2 − 1

)
,

P3,5(t) =
1

4

(
7 t3 − 3 t

)
,

P4,5(t) =
1

8

(
21 t4 − 14 t2 + 1

)
,

P5,5(t) =
1

8

(
33 t5 − 30 t3 + 5 t

)
.

Graphs of these Legendre polynomials are found in Figs. 2.1–2.4.
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Fig. 2.1 Legendre polynomials for dimension 2
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Fig. 2.2 Legendre polynomials for dimension 3
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Fig. 2.3 Legendre polynomials for dimension 4
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Fig. 2.4 Legendre polynomials for dimension 5
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As another application of the formula (2.85), we derive a formula for
derivatives of the Legendre polynomials in terms of the polynomials
themselves. Note that

a0n,d
a0n−1,d+2

=
n+ d− 2

d− 1
.

So

(d− 1)P ′
n,d(t)− n (n+ d− 2)Pn−1,d+2(t) (2.88)

is a polynomial of degree ≤ n− 2. For k ≤ n− 2,

∫ 1

−1

P ′
n,d(t)Pk,d+2(t)

(
1− t2

) d−1
2 dt

= −
∫ 1

−1

Pn,d(t)
d

dt

[
Pk,d+2(t)

(
1− t2

) d−1
2

]
dt

= −
∫ 1

−1

Pn,d(t)
[
(1 − t2)P ′

k,d+2(t)− (d− 1) t Pk,d+2(t)
] (

1− t2
) d−3

2 dt.

Since

(1 − t2)P ′
k,d+2(t)− (d− 1) t Pk,d+2(t)

is a polynomial of degree ≤ n− 1,

∫ 1

−1

P ′
n,d(t)Pk,d+2(t)

(
1− t2

) d−1
2 dt = 0, 0 ≤ k ≤ n− 2.

Thus, the polynomial (2.88) is of degree ≤ n− 2 and is orthogonal to all the
polynomials of degree ≤ n − 2 with respect to the weighted inner product
(·, ·)d+2. Then the polynomial (2.88) must be zero. Summarizing, we have
shown the following relation

P ′
n,d(t) =

n (n+ d− 2)

d− 1
Pn−1,d+2(t), n ≥ 1, d ≥ 2. (2.89)

Applying (2.89) recursively, we see that

P
(j)
n,d(t) = cn,d,jPn−j,d+2j(t)

where the constant cn,d,j is

n (n− 1) · · · (n− (j − 1)) · (n+ d− 2) (n+ d− 1) · · · (n+ j + d− 3)

(d− 1) (d+ 1) · · · (d+ 2j − 3)
.
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The denominator of the above fraction can be rewritten as

2j
(
d− 1

2

)

j

=
2jΓ(j + d−1

2 )

Γ(d−1
2 )

,

where (1.12) is applied. Thus,

P
(j)
n,d(t) =

n! (n+ j + d− 3)! Γ(d−1
2 )

2j(n− j)! (n+ d− 3)! Γ(j + d−1
2 )

Pn−j,d+2j(t), n ≥ j, d ≥ 2.

(2.90)
Note that for n < j, P

(j)
n,d(t) = 0.

The formula (2.90) provides one way to compute the Legendre polynomials
in higher dimensions d ≥ 4 through differentiating the Legendre polynomials
for d = 3 and d = 2. This is done as follows. First, rewrite (2.90) as

Pn,d(t) =
2jn! (n+ d− j − 3)! Γ(d−1

2 )

(n+ j)! (n+ d− 3)! Γ(d−1
2 − j)

P
(j)
n+j,d−2j(t). (2.91)

For d = 2k even, take j = k − 1. Then from (2.91),

Pn,2k(t) =
2k−1n! (n+ k − 2)! Γ(k − 1

2 )

(n+ k − 1)! (n+ 2k − 3)! Γ(12 )
P

(k−1)
n+k−1,2(t).

Applying (1.10), we have

Pn,2k(t) =
(2k − 2)!n!

2k−1(n+ k − 1) (k − 1)! (n+ 2k − 3)!
P

(k−1)
n+k−1,2(t).

For d = 2k + 1 odd, take j = k − 1. Then from (2.91),

Pn,2k+1(t) =
2k−1n! (k − 1)! (n+ k − 1)!

(n+ k − 1)! (n+ 2k − 2)!
P

(k−1)
n+k−1,3(t)

=
2k−1n! (k − 1)!

(n+ 2k − 2)!
P

(k−1)
n+k−1,3(t).

Let us derive some recursion formulas for the computation of the derivative
P ′
n,d(t). First, we differentiate (2.76) to obtain

(1− t2)P ′
n,d(t) = −(n+ d− 2) [Pn+1,d(t)− t Pn,d(t)] . (2.92)

Since (2.76) is valid for d ≥ 3 and t ∈ (0, 1], the relation (2.92) is proved for
d ≥ 3 and t ∈ (0, 1). For d = 2, Pn,2(t) = cos(nθ) with θ = arccos θ, and it is
easy to verify that both sides of (2.92) are equal to n sin θ sin(nθ). Then the
relation (2.92) is valid for d ≥ 2 and t ∈ (0, 1). Since Pn,d(−t) = (−1)nPn,d(t),
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we know that (2.92) holds for t ∈ (−1, 0) as well. Finally, since both sides of
(2.92) are polynomials, we conclude that the relation remains true for t = ±1
and 0, i.e.,

(1− t2)P ′
n,d(t) = −(n+ d− 2) [Pn+1,d(t)− t Pn,d(t)] ,

n ∈ N0, d ≥ 2, t ∈ [−1, 1]. (2.93)

Then, from (2.86), we have

t Pn,d(t) =
1

2n+ d− 2
[(n+ d− 2)Pn+1,d(t) + nPn−1,d(t)] .

Using this equality in (2.93) we obtain another relation

(1− t2)P ′
n,d(t) =

n (n+ d− 2)

2n+ d− 2
[Pn−1,d(t)− Pn+1,d(t)] ,

n ∈ N, d ≥ 2, t ∈ [−1, 1]. (2.94)

Finally, we differentiate the integral representation formula (2.72),

P ′
n,d(t) =

|Sd−3|
|Sd−2|

∫ 1

−1

n
[
t+ i (1− t2)1/2s

]n−1

·
[
1− i t (1− t2)−1/2s

]
(1− s2)

d−4
2 ds.

Then we find out

(1− t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] .

This equality is proved for d ≥ 3. For d = 2, Pn,2(t) = cos(n arccos t) and one
can verify directly the equality. So we have the relation

(1 − t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] , n ≥ 1, d ≥ 2, t ∈ [−1, 1].

(2.95)

2.7.4 Generating Function

Consider the following generating function of the Legendre polynomials

φ(r) =

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(t) r

n, |t| ≤ 1, |r| < 1. (2.96)

Let us first derive a compact formula for φ(r).
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Since |Pn,d(t)| ≤ 1 for any n, d and t, it is easy to verify that the series
converges absolutely for any r with |r| < 1. We differentiate (2.96) with
respect to r to find

φ′(r) =
∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 (2.97)

=

∞∑
n=0

(n+ 1)

(
n+ d− 2

d− 3

)
Pn+1,d(t) r

n. (2.98)

Using (2.97) and (2.98), we can write

(
1 + r2 − 2 r t

)
φ′(r) =

∞∑
n=0

(n+ 1)

(
n+ d− 2

d− 3

)
Pn+1,d(t) r

n

+

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n+1

− 2 t

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n. (2.99)

In the first sum of (2.99), for n ≥ 1, use the following relation from (2.86):

Pn+1,d(t) =
2n+ d− 2

n+ d− 2
t Pn,d(t)− n

n+ d− 2
Pn−1,d(t).

Then after some straightforward algebraic manipulations, we obtain from
(2.99) that (

1 + r2 − 2 r t
)
φ′(r) = (d− 2) (t− r)φ(r). (2.100)

The unique solution of the differential equation (2.100) with the initial
condition

φ(0) = P0,d(0) = 1

is

φ(r) =
(
1 + r2 − 2 r t

)− d−2
2 .

Therefore, we have the following compact formula for the generating function
of the Legendre polynomials:

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(t) r

n =
(
1 + r2 − 2 r t

)− d−2
2 , |t| ≤ 1, |r| < 1.

(2.101)
In particular, we have, for Pn(t) := Pn,3(t),

∞∑
n=0

rnPn(t) =
1

(1 + r2 − 2rt)1/2
, |t| ≤ 1, |r| < 1. (2.102)
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The Legendre polynomials Pn,3(t) were originally introduced as coefficients
of the expansion (2.102).

For d ≥ 3, we differentiate (2.101) with respect to r for |r| < 1:

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 =
(d− 2) (t− r)

(1 + r2 − 2 r t)
d
2

. (2.103)

Note that

1

(1 + r2 − 2 r t)
d−2
2

+
2 r (t− r)

(1 + r2 − 2 r t)
d
2

=
1− r2

(1 + r2 − 2 r t)
d
2

.

Multiply both sides by (d−2) and apply (2.101) and (2.103). Then we obtain

∞∑
n=0

(2n+ d− 2)

(
n+ d− 3

d− 3

)
Pn,d(t) r

n =
(d− 2) (1− r2)

(1 + r2 − 2 r t)
d
2

.

This identity can be rewritten as

∞∑
n=0

Nn,dr
nPn,d(t) =

1− r2

(1 + r2 − 2rt)
d
2

and has been proved for d ≥ 3. It can be verified that the identity holds also
for d = 2. Therefore, we have the next result.

Proposition 2.28. (Poisson identity) For d ≥ 2,

∞∑
n=0

Nn,dr
nPn,d(t) =

1− r2

(1 + r2 − 2rt)
d
2

, |r| < 1, t ∈ [−1, 1]. (2.104)

Consider the special case d = 2. Then Pn,2(t) = cos(n arccos t). With
t = cos θ, the Poisson identity (2.104) is

1 + 2

∞∑
n=1

rn cos(nθ) =
1− r2

1 + r2 − 2r cos θ
|r| < 1, 0 ≤ θ ≤ π. (2.105)

With d = 3, the Poisson identity (2.104) is

∞∑
n=0

(2n+ 1) rnPn,3(t) =
1− r2

(1 + r2 − 2rt)
3
2

, |r| < 1, t ∈ [−1, 1].

This Poisson identity provides the expansion of the Henyey–Greenstein phase
function (1.2) with respect to the Legendre polynomials.
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We now use (2.101) to derive a few more recursive relations involving the
first order derivative of the Legendre polynomials. Differentiate (2.101) with
respect to t,

∞∑
n=0

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n = (d− 2) r
(
1 + r2 − 2 r t

)− d
2 .

Differentiate (2.101) with respect to r,

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 = (d− 2) (t− r)
(
1 + r2 − 2 r t

)− d
2 .

Combining these two equalities we have

(t− r)

∞∑
n=1

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n =

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n,

i.e.,

t

∞∑
n=1

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n −
∞∑
n=2

(
n+ d− 4

d− 3

)
P ′
n−1,d(t) r

n

=

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n.

Thus, for n ≥ 2,

t

(
n+ d− 3

d− 3

)
P ′
n,d(t)−

(
n+ d− 4

d− 3

)
P ′
n−1,d(t) = n

(
n+ d− 3

d− 3

)
Pn,d(t),

which can be simplified to

(n+ d− 3) t P ′
n,d(t)− nP ′

n−1,d(t) = n (n+ d− 3)Pn,d(t). (2.106)

Differentiate (2.86) with respect to t,

(n+ d− 2)P ′
n+1,d(t) = (2n+ d− 2)

[
t P ′

n,d(t) + Pn,d(t)
] − nP ′

n−1,d(t).
(2.107)

Add (2.106) and (2.107) to obtain

(n+ d− 2)P ′
n+1,d(t)− (n+ 1) t P ′

n,d(t) =
[
n2 + (d− 1)n+ d− 2

]
Pn,d(t).
(2.108)



56 2 Spherical Harmonics

We can use either (2.106) or (2.108) to express a Legendre polynomial in
terms of derivatives of Legendre polynomials:

Pn,d(t) =
1

n
t P ′

n,d(t)−
1

n+ d− 3
P ′
n−1,d(t), (2.109)

and

Pn,d(t) =
n+ d− 2

n2 + (d− 1)n+ d− 2
P ′
n+1,d(t)

− n+ 1

n2 + (d− 1)n+ d− 2
t P ′

n,d(t). (2.110)

Replace n by (n− 1) in (2.108),

(n+ d− 3)P ′
n,d(t)− n t P ′

n−1,d(t) = n (n+ d− 3)Pn−1,d(t).

Then subtract from this relation the identity obtained from (2.106) multiplied
by t,

(1− t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] .

This is the formula (2.95).
From (2.86),

Pn−1,d(t) =
2n+ d− 2

n
t Pn,d(t)− n+ d− 2

n
Pn+1,d(t).

We can use this relation in (2.95) to recover (2.93).

2.7.5 Values and Bounds

First, we recall the parity property (2.73),

Pn,d(−t) = (−1)nPn,d(t), −1 ≤ t ≤ 1. (2.111)

We know from (2.20) that

Pn,d(1) = 1.

Using the property (2.111), we further have

Pn,d(−1) = (−1)n. (2.112)
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This result also follows from the value

pn(−1) =
2nΓ(n+ d−1

2 )

Γ(d−1
2 )

,

computed with a similar technique used in evaluating pn(1) in the proof of
Theorem 2.23.

We use (2.72) to compute Pn,d(0) for d ≥ 3.

Pn,d(0) =
|Sd−3|
|Sd−2|

∫ 1

−1

insn(1 − s2)
d−4
2 ds.

For n odd, n = 2k + 1, k ∈ N0, obviously,

P2k+1,d(0) = 0. (2.113)

For n even, n = 2k, k ∈ N0,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2| 2

∫ 1

0

s2k(1− s2)
d−4
2 ds.

Use the change of variable t = s2,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2|

∫ 1

0

tk−1/2(1− t)
d−4
2 dt.

Therefore,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2|

Γ(d−2
2 ) Γ(k + 1

2 )

Γ(k + d−1
2 )

. (2.114)

As an example,

P2k,3(0) = (−1)k
(2k − 1)!!

2kk!
.

Alternatively, we may use the generating function formula (2.101) to
compute the values. For example, take x = −1 in (2.101):

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(−1) rn = (1 + r)−(d−2).

Apply (2.4) to expand the right side to obtain

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(−1) rn =

∞∑
n=0

(
n+ d− 3

d− 3

)
(−r)n, |r| < 1.
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Hence,
Pn,d(−1) = (−1)n.

We may also apply (2.90) to find derivative values at particular points.
For instance, since

Pn−j,d+2j(1) = 1,

Pn−j,d+2j(−1) = (−1)n−j ,

we have for n ≥ j and d ≥ 2,

P
(j)
n,d(1) =

n!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

,

P
(j)
n,d(−1) =

(−1)nn!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

.

In particular, for d = 3,

P
(j)
n,3(1) =

(n+ j)!

2jj!(n− j)!
,

from which,

P ′
n,3(1) =

1

2
n (n+ 1) , P ′′

n,3(1) =
1

8
(n− 1)n (n+ 1) (n+ 2) .

Next we provide some bounds for the Legendre polynomials and their
derivatives. We use (2.72) to bound Pn,d(t). For s, t ∈ [−1, 1],

∣∣∣t+ i (1− t2)1/2s
∣∣∣ = [

t2 + (1− t2) s2
]1/2 ≤ (t2 + 1− t2)1/2 = 1. (2.115)

So for d ≥ 3,

|Pn,d(t)| ≤ |Sd−3|
|Sd−2|

∫ 1

−1

(1− s2)
d−4
2 ds = 1, t ∈ [−1, 1].

This bound is valid also for d = 2. Thus,

|Pn,d(t)| ≤ 1, n ∈ N0, d ≥ 2, t ∈ [−1, 1]. (2.116)

Instead of (2.115), we can use the bound

∣∣∣t+ i (1− t2)1/2s
∣∣∣ = [

1− (1 − t2) (1− s2)
]1/2 ≤ e−(1−t2) (1−s2)/2
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for s, t ∈ [−1, 1]. Then,

|Pn,d(t)| ≤ |Sd−3|
|Sd−2|

∫ 1

−1

e−n (1−t2) (1−s2)/2(1− s2)
d−4
2 ds

= 2
|Sd−3|
|Sd−2|

∫ 1

0

e−n (1−t2) (1−s2)/2(1− s2)
d−4
2 ds.

Let t ∈ (−1, 1). Use the change of variable s = 1 − u and the relation u ≤
1− s2 ≤ 2u for s ∈ [0, 1],

|Pn,d(t)| < 2
d−2
2

|Sd−3|
|Sd−2|

∫ ∞

0

e−n (1−t2)u/2u
d−4
2 du.

For the integral, we apply the formula (1.4),

∫ ∞

0

e−n (1−t2)u/2u
d−4
2 du =

[
2

n (1− t2)

] d−2
2

Γ

(
d− 2

2

)
.

Then,

|Pn,d(t)| < 2d−2 |Sd−3|
|Sd−2|

Γ(d−2
2 )

[n (1− t2)]
d−2
2

=
Γ(d−1

2 )√
π

[
4

n (1− t2)

] d−2
2

.

This inequality is valid also for d = 2. Therefore,

|Pn,d(t)| <
Γ(d−1

2 )√
π

[
4

n (1− t2)

] d−2
2

, n ∈ N0, d ≥ 2, t ∈ (−1, 1). (2.117)

From (2.90), we have bounds for derivatives of Pn,d(t) of any order:

∣∣∣P (j)
n,d(t)

∣∣∣ ≤ P
(j)
n,d(1) =

n!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

.

In particular,

max
t∈[−1,1]

∣∣∣P (j)
n,d(t)

∣∣∣ = O(n2j). (2.118)

As an application of (2.118), we observe that for any t, s ∈ [−1, 1],

Pn,d(t)− Pn,d(s) = P ′
n,d(τ) (t− s)
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for some τ between t and s. Applying (2.118) with j = 1, we have

|Pn,d(t)− Pn,d(s)| ≤ c n2|t− s| ∀ t, s ∈ [−1, 1]. (2.119)

Hence,

|Pn,d(ξ·ζ)− Pn,d(η·ζ)| ≤ c n2|ξ − η| ∀ ξ,η, ζ ∈ S
d−1. (2.120)

2.8 Completeness

In this section, we show in a constructive way that the spherical harmonics
are complete in C(Sd−1) and in L2(Sd−1), i.e., linear combinations of the
spherical harmonics are dense in C(Sd−1) and in L2(Sd−1).

2.8.1 Completeness in C(Sd−1)

Let f ∈ C(Sd−1). Formally,

f(ξ) =

∫

Sd−1

δ(1 − ξ·η) f(η) dSd−1(η), ξ ∈ S
d−1

using a Dirac delta function δ(t) whose value is 0 at t �= 0, +∞ at t = 0, and
which satisfies formally

∫

Sd−1

δ(1− ξ·η) dSd−1(η) = 1 ∀ ξ ∈ S
d−1.

The idea to demonstrate the completeness of the spherical harmonics in
C(Sd−1) is to construct a sequence of kernel functions {kn(t)} such that
kn(ξ·η) approaches δ(1 − ξ·η) and is such that for each n ∈ N, the function∫
Sd−1 kn(ξ·η) f(η) dSd−1(η) is a linear combination of spherical harmonics of
order less than or equal to n. One possibility is to choose kn(t) proportional
to (1 + t)n/2n. Thus, we let

kn(t) = En,d

(
1 + t

2

)n

,

where En,d is a scaling constant so that

∫

Sd−1

kn(ξ·η) dSd−1(η) = 1 ∀ ξ ∈ S
d−1. (2.121)



2.8 Completeness 61

To satisfy the condition (2.121), we have

En,d =
(n+ d− 2)!

(4π)
d−1
2 Γ(n+ d−1

2 )
. (2.122)

This formula is derived as follows. First,

∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = |Sd−2|
∫ 1

−1

(
1 + t

2

)n

(1− t2)
d−3
2 dt.

Use the change of variable s = (1 + t)/2,

∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = 2d−2|Sd−2|
∫ 1

0

sn+
d−3
2 (1− s)

d−3
2 ds.

By (1.19),

|Sd−2| = 2 π
d−1
2

Γ(d−1
2 )

.

Moreover,

∫ 1

0

sn+
d−3
2 (1 − s)

d−3
2 ds = B

(
n+

d− 1

2
,
d− 1

2

)
=

Γ(n+ d−1
2 ) Γ(d−1

2 )

Γ(n+ d− 1)
.

Thus
∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = (4π)
d−1
2

Γ(n+ d−1
2 )

Γ(n+ d− 1)
.

Hence, (2.122) holds.
Now we introduce an operator Πn,d by the following formula

(Πn,df)(ξ) := En,d

∫

Sd−1

(
1 + ξ·η

2

)n

f(η) dSd−1(η), f ∈ C(Sd−1).

(2.123)
Let us express (Πn,df)(ξ) as a linear combination of spherical harmonics of
order less than or equal to n. For this purpose, we write

En,d

(
1 + t

2

)n

=

n∑
k=0

μn,k,d
Nk,d

|Sd−1| Pk,d(t). (2.124)

To determine the coefficients {μn,k,d}nk=0, multiply both sides by the function

Pl,d(t) (1 − t2)
d−3
2 , 0 ≤ l ≤ n, integrate from t = −1 to t = 1 and use the

orthogonality relation (2.79) to obtain
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μn,l,d = |Sd−2|En,d

∫ 1

−1

(
1 + t

2

)n

Pl,d(t) (1 − t2)
d−3
2 dt.

Applying Proposition 2.26, we have

μn,l,d = |Sd−2|En,dRl,d

∫ 1

−1

(
d

dt

)l (
1 + t

2

)n

(1− t2)l+
d−3
2 dt

= |Sd−2|En,dRl,d
n!

2n(n− l)!

∫ 1

−1

(1 + t)
n−l

(1− t2)l+
d−3
2 dt.

To compute the integral, we let t = 2 s− 1. Then

∫ 1

−1

(1 + t)
n−l

(1− t2)l+
d−3
2 dt = 2n+l+d−2

∫ 1

0

sn+
d−3
2 (1 − s)l+

d−3
2 ds

= 2n+l+d−2Γ(n+ d−1
2 ) Γ(l + d−1

2 )

Γ(n+ l + d− 1)
.

Hence, using the formulas (1.19), (2.71), and (2.122), we have

μn,l,d =
n!(n+ d− 2)!

(n− l)!(n+ l+ d− 2)!
.

It is easy to see that μn,l,d < μn+1,l,d and μn,l,d → 1 as n → ∞. From the
expansion (2.124), we get, by making use of the projection operator Pn,d

defined in Definition 2.11,

(Πn,df)(ξ) =

n∑
k=0

μn,k,d(Pk,df)(ξ). (2.125)

In other words, Πn,df is a linear combination of spherical harmonics of order
less than or equal to n.

To prove the completeness, we note the following property.

Lemma 2.29. If t ∈ [−1, 1), then

lim
n→∞En,d

(
1 + t

2

)n

= 0.

Proof. By Stirling’s formula (1.11),

Γ(x) ∼ √
2π xx−1/2e−x for x→ ∞.
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Then,

En,d ∼ n
d
2

(4π)
d−1
2

and the statement holds. ��
Now we state and prove a completeness result.

Theorem 2.30.

lim
n→∞ ‖Πn,df − f‖C(Sd−1) = 0 ∀ f ∈ C(Sd−1). (2.126)

Proof. Use the modulus of continuity

ω(f ; δ) = sup{|f(ξ)− f(η)| : ξ,η ∈ S
d−1, |ξ − η| ≤ δ}, δ > 0,

and recall that since f ∈ C(Sd−1),

ω(f ; δ) → 0 as δ → 0.

Denote

M := sup{|f(ξ)− f(η)| : ξ,η ∈ S
d−1} <∞.

Let ξ ∈ S
d−1 be arbitrary but fixed. Using (2.121), we have

(Πn,df)(ξ)− f(ξ) = En,d

∫

Sd−1

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η)

≡ I1(ξ) + I2(ξ),

where

I1(ξ) = En,d

∫

{η∈Sd−1:|ξ−η|≤δ}

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η),

I2(ξ) = En,d

∫

{η∈Sd−1:|ξ−η|>δ}

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η).

We bound each term as follows:

|I1(ξ)| ≤ ω(f ; δ)En,d

∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = ω(f ; δ),

|I2(ξ)| ≤M En,d|Sd−1|
(
1− δ2

2

)n

.
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In bounding I2(ξ), we used the relation

|ξ − η| > δ =⇒ ξ·η < 1− δ2

2

for ξ,η ∈ S
d−1. Thus, for any δ ∈ (0, 1), applying Lemma 2.29, we have

lim sup
n→∞

‖Πn,df − f‖C(Sd−1) ≤ ω(f ; δ).

Note that ω(f ; δ) → 0 as δ → 0. So the stated result holds. ��
Using the formula (2.125), we can restate Theorem 2.30 as follows.

Theorem 2.31. For any f ∈ C(Sd−1),

f(ξ) = lim
n→∞

n∑
k=0

μn,k,d(Pk,df)(ξ) uniformly in ξ ∈ S
d−1.

If Pk,df = 0 for all n ∈ N0, then f = 0.

Theorem 2.31 combined with Theorem 2.14 implies that {Yd
n : n ∈ N0} is

the only system of primitive spaces in C(Sd−1) since any primitive space not
identical with one of Yd

n, n ∈ N0, is orthogonal to all and is therefore trivial.

2.8.2 Completeness in C(Sd−1) via the Poisson
Identity

We now use the Poisson identity (2.104) to give another constructive proof
of the completeness of the spherical harmonics. First we introduce a lemma.

Lemma 2.32. The function

Gd(r, t) :=
|Sd−2|
|Sd−1|

1− r2

(1 + r2 − 2rt)
d
2

, |r| < 1, t ∈ [−1, 1] (2.127)

is positive and has the properties:

∫ 1

−1

Gd(r, t) (1− t2)
d−3
2 dt = 1, (2.128)

lim
r→1−

Gd(r, t) = 0 uniformly for t ∈ [−1, t0]

with any fixed t0 ∈ (−1, 1). (2.129)
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Proof. For (2.128),

∫ 1

−1

Gd(r, t) (1− t2)
d−3
2 dt =

|Sd−2|
|Sd−1|

∫ 1

−1

∞∑
n=0

Nn,dr
nPn,d(t)(1 − t2)

d−3
2 dt

=
|Sd−2|
|Sd−1|

∫ 1

−1

(1− t2)
d−3
2 dt

= 1.

For (2.129), note the bound

1− r2

(1 + r2 − 2rt)
d
2

=
1− r2

[(1 − r)2 + 2r(1 − t)]
d
2

≤ 1− r2

[2r(1− t0)]
d
2

which is valid for t ∈ [−1, t0]. ��
Define an operator Gd(r) by

(Gd(r)f)(ξ) =
1

|Sd−2|

∫

Sd−1

Gd(r, ξ·η) f(η) dSd−1(η).

Note that for |r| < 1,

(Gd(r)f)(ξ) =
1

|Sd−2|
∞∑
n=0

Nn,dr
n

∫

Sd−1

Pn,d(ξ·η) f(η) dSd−1(η),

i.e.,

(Gd(r)f)(ξ) =

∞∑
n=0

rn(Pn,df)(ξ). (2.130)

Thus, Gd(r)f is the limit of a sequence of finite linear combinations of the
spherical harmonics.

Theorem 2.33 (Completeness).

lim
r→1−

‖Gd(r)f − f‖C(Sd−1) = 0 ∀ f ∈ C(Sd−1). (2.131)

Proof. The proof is similar to that of Theorem 2.30. Using (2.128),

(Gd(r)f)(ξ)− f(ξ) =

∫

Sd−1

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η)

≡ I1(ξ) + I2(ξ),
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where

I1(ξ) =

∫

|ξ−η|≥δ

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η),

I2(ξ) =

∫

|ξ−η|<δ

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η).

For any δ > 0, by (2.129),

|I1(ξ)| → 0 uniformly as r → 1− .

Also,
|I2(ξ)| ≤ ω(f ; δ).

So
lim sup
r→1−

‖Gd(r)f − f‖C(Sd−1) ≤ ω(f ; δ)

and (2.131) follows. ��

2.8.3 Convergence of Fourier–Laplace Series

We now consider convergence in average and uniform convergence of the
Fourier–Laplace series. For a given function f , the series

∞∑
k=0

Pk,df

is called the Fourier–Laplace series of the function f . Recall Definition 2.11
for the projection Pk,df .

First, we present a result for convergence in average.

Theorem 2.34. We have the convergence in average of the Fourier–Laplace
series:

lim
n→∞

∥∥∥f −
n∑

k=0

Pk,df
∥∥∥
L2(Sd−1)

= 0 ∀ f ∈ L2(Sd−1). (2.132)

Proof. Note that the operator Pk,d is self-adjoint:

(f,Pk,dg) = (Pk,df, g) ∀ f, g ∈ L2(Sd−1).

Also, (Pk,d)
2 = Pk,d. Therefore,

(f,Pk,df) = (f, (Pk,d)
2f) = (Pk,df,Pk,df) = ‖Pk,df‖2L2(Sd−1)
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and

(Pk,df,Pn,df) = δkn‖Pk,df‖2L2(Sd−1).

Apply the above two equalities to obtain

∥∥∥f −
n∑

k=0

Pk,df
∥∥∥
2

L2(Sd−1)
= ‖f‖2L2(Sd−1) −

n∑
k=0

‖Pk,df‖2L2(Sd−1). (2.133)

Hence,
n∑

k=0

‖Pk,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1) ∀n ∈ N0.

Then,

∞∑
k=0

‖Pk,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1) ∀ f ∈ L2(Sd−1). (2.134)

First we assume f ∈ C(Sd−1). From the formula (2.130),

‖Gd(r)f‖2L2(Sd−1) =
∞∑
k=0

r2k‖Pk,df‖2L2(Sd−1). (2.135)

By Theorem 2.33, Gd(r)f converges uniformly to f on S
d−1 as r → 1−. Take

the limit r → 1− in (2.135) to obtain

‖f‖2L2(Sd−1) =

∞∑
k=0

‖Pk,df‖2L2(Sd−1). (2.136)

Then by (2.133) we obtain (2.132) for f ∈ C(Sd−1).
Extension of the result from a C(Sd−1) function to an L2(Sd−1) function is

achieved by using the density of C(Sd−1) in L2(Sd−1), by noticing that since
spherical harmonics of different order are orthogonal,

∥∥∥
n∑

k=0

Pk,df
∥∥∥
2

L2(Sd−1)
=

n∑
k=0

‖Pk,df‖2L2(Sd−1)

and by applying the bound (2.134). ��
Then we turn to a study of uniform convergence of the Fourier–Laplace

series.
Define Sn : C(Sd−1) → C(Sd−1) to be the linear operator given by the

partial sum of the spherical harmonic expansion
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Snf(ξ) :=

n∑
k=0

(Pk,df)(ξ), f ∈ C(Sd−1). (2.137)

Denote by ‖Sn‖ the norm of the operator. To answer the question when do
the partial sums {Snf} converge uniformly to f , an important tool is the
following result, due to Lebesgue.

Theorem 2.35. For f ∈ C(Sd−1),

‖f − Snf‖C(Sd−1) ≤ (1 + ‖Sn‖)En,∞(f), (2.138)

where

En,∞(f) := inf
{
‖f − pn‖C(Sd−1) : pn ∈ Y

d
0:n

}
(2.139)

and

Y
d
0:n :=

n⊕
j=0

Y
d
j .

Proof. Note that

Snpn = pn ∀ pn ∈ Y
d
0:n.

Thus,

f − Snf = (f − pn)− Sn(f − pn) ∀ pn ∈ Y
d
0:n.

Apply the C(Sd−1)-norm,

‖f − Snf‖C(Sd−1) ≤ (1 + ‖Sn‖) ‖f − pn‖C(Sd−1).

Then take the infimum with respect to pn over the subspace Y
d
0:n to get

(2.138). ��
The operator norm ‖Sn‖ is called the “Lebesgue constant”. In [94], it is

shown that

‖Sn‖ = O
(
n(d−2)/2

)
, d ≥ 3.

Based on this bound, the next result regarding the uniform convergence of
the Fourier–Laplace series can be proved.

Theorem 2.36. Let d ≥ 3 and f ∈ Ck,α
(
S
d−1

)
for some k ≥ 0 and α ∈

(0, 1]. Assume k+α > d/2−1. Then Snf converges uniformly to f over Sd−1.

The spaces Ck
(
S
d−1

)
and Ck,α

(
S
d−1

)
can be defined in a variety of ways,

some of which are discussed in Sects. 4.2.1 and 4.2.2.We say f ∈ Ck,α
(
S
d−1

)
if

all of its kth-order derivatives are Hölder continuous with exponent α ∈ (0, 1].
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This theorem is proven in [94], based on results from [93] and [54]. Results
from these papers are discussed in greater detail in Sect. 4.2 for the special
case of S2.

In the case d = 2, the Fourier–Laplace series reduces to the ordinary
Fourier series. The Lebesgue constant is [123, Chap. 2, p. 67]

‖Sn‖ =
4

π2
lnn+O(1).

The following uniform convergence result on the Fourier series holds (see,
e.g., [13, Sect. 3.7]).

Theorem 2.37. Let f : R → R be a periodic function, with 2π being an
integer multiple of its period. If f ∈ Ck,α(R) with k ∈ N0 and α ∈ (0, 1], then
for the nth order partial sum Snf of the Fourier series of the function f ,

‖f − Snf‖C[0,2π] ≤ c
ln(n+ 2)

nk+α
.

In particular, this implies the uniform convergence of the Fourier series of
the function f .

2.8.4 Completeness in L2(Sd−1)

Theorem 2.34 implies the completeness of spherical harmonics in L2(Sd−1),
i.e., the subspace of linear combinations of spherical harmonics is dense in
L2(Sd−1).

An alternative way to show the completeness of spherical harmonics in
L2(Sd−1) is through using the operator Πn,d defined in (2.123). First, we

show the operator Πn,d is bounded as a mapping from L2(Sd−1) to L2(Sd−1):

‖Πn,df‖L2(Sd−1) ≤ ‖f‖L2(Sd−1) ∀ f ∈ L2(Sd−1). (2.140)

This is proved as follows:

‖Πn,df‖2L2(Sd−1) =

∫

Sd−1

E2
n,d

[∫

Sd−1

(
1 + ξ·η

2

)n

f(η) dSd−1(η)

]2
dSd−1(ξ)

≤
∫

Sd−1

E2
n,d

[∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(η)

∫

Sd−1

(
1 + ξ·η

2

)n

|f(η)|2dSd−1(η)

]
dSd−1(ξ).
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Apply (2.121),

‖Πn,df‖2L2(Sd−1) ≤
∫

Sd−1

En,d

[∫

Sd−1

(
1 + ξ·η

2

)n

|f(η)|2dSd−1(η)

]
dSd−1(ξ)

=

∫

Sd−1

|f(η)|2
[
En,d

∫

Sd−1

(
1 + ξ·η

2

)n

dSd−1(ξ)

]
dSd−1(η).

Apply (2.121) again to obtain

‖Πn,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1),

i.e., (2.140) holds.
Let f ∈ L2(Sd−1). For any ε > 0, by the density of C(Sd−1) in L2(Sd−1),

we can find a function fε ∈ C(Sd−1) such that

‖f − fε‖L2(Sd−1) <
ε

3
.

Choose n sufficiently large so that, following Theorem 2.30,

‖Πn,dfε − fε‖L2(Sd−1) <
ε

3
.

Then,

‖Πn,df − f‖L2(Sd−1) ≤ ‖Πn,d(f − fε)‖L2(Sd−1) + ‖Πn,dfε − fε‖L2(Sd−1)

+ ‖f − fε‖L2(Sd−1)

≤ 2 ‖f − fε‖L2(Sd−1) + ‖Πn,dfε − fε‖L2(Sd−1)

< ε.

Thus, the spherical harmonics are dense in L2(Sd−1).
Since spherical harmonics of different orders are orthogonal, we can also

deduce the next result.

Theorem 2.38. We have the orthogonal decomposition

L2(Sd−1) =

∞⊕
n=0

Y
d
n.

Thus, any function f ∈ L2(Sd−1) can be uniquely represented as

f(ξ) =

∞∑
n=0

fn(ξ) in L
2(Sd−1), fn ∈ Y

d
n, n ≥ 0. (2.141)
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We call fn ∈ Y
d
n the n-spherical harmonic component of f and have the

following formula

fn(ξ) =
Nn,d

|Sd−1|

∫

Sd−1

f(η)Pn,d(ξ·η) dSd−1(η), n ≥ 0. (2.142)

This formula is derived from (2.141) as follows. Replace ξ by η in (2.141), mul-
tiply both sides by Pn,d(ξ·η) and integrate with respect to η ∈ S

d−1 to obtain

∫

Sd−1

f(η)Pn,d(ξ·η) dSd−1(η) =

∫

Sd−1

∞∑
j=0

fj(η)Pn,d(ξ·η) dSd−1(η)

=

∞∑
j=0

∫

Sd−1

fj(η)Pn,d(ξ·η) dSd−1(η).

By the orthogonality of spherical harmonics of different orders,

∫

Sd−1

fj(η)Pn,d(ξ·η) dSd−1(η) = 0 ∀ j �= n.

Moreover, by (2.33),

∫

Sd−1

fn(η)Pn,d(ξ·η) dSd−1(η) =
|Sd−1|
Nn,d

fn(ξ).

Hence, ∫

Sd−1

f(η)Pn,d(ξ·η) dSd−1(η) =
|Sd−1|
Nn,d

fn(ξ)

and the formula (2.142) is proved. Notice that fn(ξ) = (Pn,df)(ξ) with the
projection operator Pn,d defined in (2.44).

As a consequence of (2.141), we have the Parseval equality on L2(Sd−1):

‖f‖2L2(Sd−1) =

∞∑
n=0

‖fn‖2L2(Sd−1) ∀ f ∈ L2(Sd−1), (2.143)

where fn is given by (2.142). This equality extends (2.136) from C(Sd−1)
functions to L2(Sd−1) functions.

2.9 The Gegenbauer Polynomials

The Gegenbauer polynomials are useful in generalizing the expansion
(2.102). Recall the integral representation formula (2.72) for the Legendre
polynomials.
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Definition 2.39. For ν > 0, n ∈ N0,

Cn,ν(t) :=

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1 − s2)ν−1ds

(2.144)
is called the Gegenbauer polynomial of degree n with index ν.

Note that for an arbitrary number a, the binomial coefficient

(
a

n

)
:=

a (a− 1) · · · (a− (n− 1))

n!
, n ∈ N.

Why Cn,ν(t) is a polynomial of degree n? First,

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

(
n

j

)
tn−j(1− t2)j/2(is)j .

For j = 2k + 1 odd, the integral of the corresponding term is

∫ 1

−1

s2k+1(1− s2)ν−1ds = 0.

So Cn,ν(t) is real valued and

Cn,ν(t) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

[n/2]∑
k=0

(
n

2k

)
tn−2k(−1)k(1− t2)k

·
∫ 1

−1

s2k(1− s2)ν−1ds

is a polynomial of degree ≤ n. The coefficient of tn in Cn,ν(t) is

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

[n/2]∑
k=0

(
n

2k

)∫ 1

−1

s2k(1− s2)ν−1ds > 0.

Hence, Cn,ν(t) is a polynomial of degree n.
Observe that, recalling the formula (2.72),

Cn, d−2
2
(t) =

(
n+ d− 3

n

)
Pn,d(t), d ≥ 3. (2.145)

Proposition 2.40. (Gegenbauer identity)

∞∑
n=0

rnCn,ν(t) =
1

(1 + r2 − 2rt)ν
, |r| < 1, t ∈ [−1, 1]. (2.146)
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Proof. First we calculate Cn,ν(1):

Cn,ν(1) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

(1 − s2)ν−1ds.

Let t = s2. Then,

Cn,ν(1) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

0

t−
1
2 (1− t)ν−1dt.

Since ∫ 1

0

t−
1
2 (1 − t)ν−1dt =

Γ(12 ) Γ(ν)

Γ(ν + 1
2 )
,

we have

Cn,ν(1) =

(
n+ 2ν − 1

n

)
. (2.147)

From the power series (2.4),

∞∑
n=0

(
n+ 2ν − 1

n

)
zn =

1

(1− z)2ν
, |z| < 1.

For |r| < 1 and |t| ≤ 1,

∞∑
n=0

rnCn,ν(t) =
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

(1− s2)ν−1

[1− rt− i r (1 − t2)1/2s]2ν
ds. (2.148)

Write
1− rt− i r (1 − t2)1/2 = (1 + r2 − 2rt)1/2e−iα

for some α ∈ [
0, π2

)
. Use the substitution (2.74), recall the relations (2.75),

and note that

1− rt− i r (1− t2)1/2s = (1 + r2 − 2rt)1/2 (cosα− i tanhu sinα)

= (1 + r2 − 2rt)1/2
cosh(u− iα)

coshu
.

So from (2.148), we have

∞∑
n=0

rnCn,ν(t) =
Γ(ν + 1

2 )√
π Γ(ν)

1

(1 + r2 − 2rt)ν

∫ ∞

−∞

1

cosh2ν(u− iα)
du.

Since the poles of the function (coshu)−2ν are u = iπ (k + 1/2), k ∈ Z, and
since 0 ≤ α < π/2, we can apply the Cauchy integral theorem in complex
analysis to get
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∫ ∞

−∞

1

cosh2ν(u− iα)
du =

∫ ∞

−∞

1

cosh2ν u
du,

which is a constant. Thus, for some constant c,

∞∑
n=0

rnCn,ν(t) =
c

(1 + r2 − 2rt)ν
.

Let t = 1 and use the value (2.147):

c

(1− r)2ν
=

∞∑
n=0

(
n+ 2ν − 1

n

)
rn =

1

(1− r)2ν
.

So the constant c = 1. ��
Obviously, (2.102) is a special case of (2.146) by taking ν = 1/2.

2.10 The Associated Legendre Functions

We have seen that the Legendre polynomials play an important role in the
study of spherical harmonics. In an increasing order of complexity, we next
introduce associated Legendre functions which are useful in constructing
spherical harmonics from those in a lower dimension.

2.10.1 Definition and Representation Formulas

Recall the first integral representation formula (2.72) for the Legendre
polynomials. We then introduce the following definition.

Definition 2.41. For d ≥ 3 and n, j ∈ N0,

Pn,d,j(t) =
|Sd−3|
|Sd−2| i

−j

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
Pj,d−1(s) (1− s2)

d−4
2 ds,

t ∈ [−1, 1]. (2.149)

is called the associated Legendre function of degree n with order j in
dimension d.

When j = 0, Pn,d,0(t) = Pn,d(t) is the Legendre polynomial of degree
n in d-dimensions. The factor i−j is included in (2.149) to make Pn,d,j(t)
real-valued. To see this, note that
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[
t+ i (1− t2)1/2s

]n
=

n∑
k=0

(
n

k

)
tn−k(1− t2)k/2iksk.

Thus,

Pn,d,j(t) =
|Sd−3|
|Sd−2|

n∑
k=0

(
n

k

)
tn−k(1− t2)k/2ik−j

∫ 1

−1

skPj,d−1(s) (1− s2)
d−4
2 ds.

By the parity property (2.111) for the Legendre polynomials, when |k− j| is
odd, skPj,d−1(s) is an odd function and then

∫ 1

−1

skPj,d−1(s) (1− s2)
d−4
2 ds = 0.

Consequently, Pn,d,j(t) is real-valued.
The associated Legendre functions can be used to generate orthonormal

systems of spherical harmonics on S
d−1; see Sect. 2.11.

Applying Proposition 2.26, we have

Pn,d,j(t) = Rj,d−1
|Sd−3|
|Sd−2|

n!

(n− j)!
(1 − t2)

j
2

·
∫ 1

−1

[
t+ i (1− t2)1/2s

]n−j

(1 − s2)j+
d−4
2 ds,

where by (2.71),

Rj,d−1 =
Γ(d−2

2 )

2jΓ(j + d−2
2 )

.

Since

∫ 1

−1

[
t+ i (1− t2)1/2s

]n−j

(1− s2)j+
d−4
2 ds =

π
1
2Γ(j + d−2

2 )

Γ(j + d−1
2 )

Pn−j,d+2j(t)

by an application of the integral representation formula (2.72), we have thus
shown the following result.

Proposition 2.42. For d ≥ 3 and 0 ≤ j ≤ n,

Pn,d,j(t) =
n!Γ(d−1

2 )

2j(n− j)!Γ(j + d−1
2 )

(1− t2)
j
2Pn−j,d+2j(t), t ∈ [−1, 1].

In some references, the associated Legendre functions are also called the
associated Legendre polynomials. From Proposition 2.42, it is evident that
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the associated Legendre function Pn,d,j(t) is a polynomial in t if and only if
j is even.

Combining Theorem 2.23 and Proposition 2.42, we obtain the formula

Pn,d,j(t) =
(−1)n−jn!Γ(d−1

2 )

2n(n− j)!Γ(n+ d−1
2 )

(1− t2)
3−d−j

2

(
d

dt

)n−j

(1− t2)n+
d−3
2

for d ≥ 3, 0 ≤ j ≤ n and t ∈ [−1, 1]. For the particular case d = 3, with
0 ≤ j ≤ n and t ∈ [−1, 1],

Pn,3,j(t) =
(−1)n−j

2n(n− j)!
(1− t2)−

j
2

(
d

dt

)n−j

(1− t2)n. (2.150)

Furthermore, by the formula (2.90), we obtain the next result.

Proposition 2.43. For d ≥ 3 and 0 ≤ j ≤ n,

Pn,d,j(t) =
(n+ d− 3)!

(n+ j + d− 3)!
(1− t2)

j
2P

(j)
n,d(t), t ∈ [−1, 1].

Thus, the associated Legendre functions can be computed through differ-
entiating the Legendre polynomials.

Combining Theorem 2.23 and Proposition 2.43, we obtain the formula

Pn,d,j(t) =
(−1)n(n+ d− 3)!Γ(d−1

2 )

2n(n+ j + d− 3)!Γ(n+ d−1
2 )

(1 − t2)
j
2

·
(
d

dt

)j [
(1 − t2)

3−d
2

(
d

dt

)n

(1 − t2)n+
d−3
2

]

for d ≥ 3, 0 ≤ j ≤ n and t ∈ [−1, 1]. For d = 3, with 0 ≤ j ≤ n and
t ∈ [−1, 1],

Pn,3,j(t) =
(−1)n

2n(n+ j)!
(1− t2)

j
2

(
d

dt

)n+j

(1− t2)n. (2.151)

From (2.150) and (2.151), we obtain an identity

(1− t2)j
(
d

dt

)n+j

(1− t2)n = (−1)j
(n+ j)!

(n− j)!

(
d

dt

)n−j

(1− t2)n, 0 ≤ j ≤ n.

For d = 2, we use the formulas given in Proposition 2.42 or Proposition 2.43
to define Pn,2,j(t) for 0 ≤ j ≤ n.
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2.10.2 Properties

First we present an addition theorem for the associated Legendre functions.
The function

[
t+ i (1− t2)1/2s

]n
is a polynomial of degree n in the variable s.

Consider the expansion

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

cj(t)Pj,d−1(s)

and let us determine cj(t). By Definition 2.41, for 0 ≤ k ≤ n,

Pn,d,k(t) =
|Sd−3|
|Sd−2| i

−k
n∑

j=0

cj(t)

∫ 1

−1

Pk,d−1(s)Pj,d−1(s) (1− s2)
d−4
2 ds.

Using (2.79), we have

Pn,d,k(t) =
1

ikNk,d−1
ck(t).

So
ck(t) = ikNk,d−1Pn,d,k(t)

and then we can write the expansion as

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

ijNj,d−1Pn,d,j(t)Pj,d−1(s). (2.152)

Temporarily assume m ≥ n ≥ 0. We use the identity (2.152) to obtain

Pm+n,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]m+n

(1 − s2)
d−4
2 ds

=
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]m n∑
j=0

ijNj,d−1Pn,d,j(t)

· Pj,d−1(s) (1− s2)
d−4
2 ds

=
|Sd−3|
|Sd−2|

n∑
j=0

ijNj,d−1Pn,d,j(t)

∫ 1

−1

[
t+ i (1− t2)1/2s

]m

· Pj,d−1(s) (1− s2)
d−4
2 ds

=

n∑
j=0

(−1)jNj,d−1Pm,d,j(t)Pn,d,j(t),
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recalling the defining relation (2.149). Thus,

Pm+n,d(t) =

min{m,n}∑
j=0

(−1)jNj,d−1Pm,d,j(t)Pn,d,j(t), m, n ∈ N0. (2.153)

This is an addition theorem for the associated Legendre functions.
For the case d = 2, Pn,2(t) = cos(n arccos t). With the new variable θ =

arccos t, we have Pn,2(cos θ) = cos(nθ). Also, in this case, Nn,1 is given by
(2.11). By Proposition 2.43,

Pn,2,j(t) =
(n− 1)!

(n+ j − 1)!
(1− t2)

j
2

(
d

dt

)j

cos(n arccos t). (2.154)

In particular, with j = 1, we obtain from (2.154) that

Pn,2,1(t) = sin(n arccos t).

The addition theorem formula (2.153) with d = 2

Pm+n,2(t) =

min{m,n}∑
j=0

(−1)jNj,1Pm,2,j(t)Pn,2,j(t)

takes the following familiar form, with θ = arccos t,

cos((m+ n)θ) = cos(mθ) cos(nθ)− sin(mθ) sin(nθ), m, n ∈ N0.

Next, we derive a differential equation for Pn,d,j(t). Differentiate (2.83) j
times,

(
d

dt

)j [
(1 − t2)P ′′

n,d(t)− (d− 1) t P ′
n,d(t) + n (n+ d− 2)Pn,d(t)

]
= 0.

Since

(
d

dt

)j [
(1− t2)P ′′

n,d(t)
]
= (1 − t2)P

(j+2)
n,d (t)− 2 j t P

(j+1)
n,d (t)

− j (j − 1)P
(j)
n,d(t),

(
d

dt

)j [
t P ′

n,d(t)
]
= t P

(j+1)
n,d (t) + j P

(j)
n,d(t),
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we get

(1− t2)P
(j+2)
n,d (t)− (2j + d− 1) t P

(j+1)
n,d (t)

+ [n (n+ d− 2)− j (j + d− 2)]P
(j)
n,d(t) = 0. (2.155)

By Proposition 2.43,

P
(j)
n,d(t) = c0(1− t2)−

j
2Pn,d,j(t), c0 =

(n+ j + d− 3)!

(n+ d− 3)!
.

Then,

P
(j+1)
n,d (t) = c0(1 − t2)−

j
2

[
P ′
n,d,j(t) + j t (1− t2)−1Pn,d,j(t)

]
,

P
(j+2)
n,d (t) = c0(1 − t2)−

j
2−1

[
(1− t2)P ′′

n,d,j(t) + 2 j t P ′
n,d,j(t)

+ j
(
(j + 2)(1− t2)−1 − (j + 1)

)
Pn,d,j(t)

]
.

Substitute these expressions in (2.155) and rearrange the terms to get the
differential equation

(1− t2)P ′′
n,d,j(t)− (d− 1) t P ′

n,d,j(t)

+

[
n (n+ d− 2)− j (j + d− 3)

1− t2

]
Pn,d,j(t) = 0. (2.156)

Taking j = 0 in (2.156), we recover the differential equation (2.83) for the
Legendre polynomials Pn,d(t) = Pn,d,0(t).

We now use the differential equation (2.156) to prove the following
orthogonality property.

Proposition 2.44.

∫ 1

−1

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 dt = 0, m �= n. (2.157)

Proof. We rewrite (2.156) in the form

(1− t2)−
d−3
2
d

dt

[
(1− t2)

d−1
2
d

dt
Pn,d,j(t)

]

+

[
n (n+ d− 2)− j (j + d− 3)

1− t2

]
Pn,d,j(t) = 0.
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From this equation, we deduce that

Pm,d,j(t)
d

dt

[
(1− t2)

d−1
2
d

dt
Pn,d,j(t)

]
− Pn,d,j(t)

d

dt
[
(1− t2)

d−1
2
d

dt
Pm,d,j(t)

]
+ (m− n) (m+ n+ d− 2)

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 = 0.

Integrate this equation for t ∈ [−1, 1] to get

(m− n) (m+ n+ d− 2)

∫ 1

−1

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 dt = 0.

Thus, (2.157) holds. ��
Various recursion formulas for the associated Legendre functions exist;

see [49, Sect. 3.12] in the case d = 3. The recursion formulas are useful for
pointwise evaluation of the functions.

2.10.3 Normalized Associated Legendre Functions

In explicit calculations involving the associated Legendre functions, usually
it is more convenient to use the normalized ones. From the formula given in
Proposition 2.42,

∫ 1

−1

[Pn,d,j(t)]
2 (1− t2)

d−3
2 dt =

[
n!Γ(d−1

2 )

2j(n− j)!Γ(j + d−1
2 )

]2

∫ 1

−1

[Pn−j,d+2j(t)]
2
(1− t2)j+

d−3
2 dt.

Use (2.79) for the integral,

∫ 1

−1

[Pn−j,d+2j(t)]
2
(1 − t2)j+

d−3
2 dt =

|Sd+2j−1|
Nn−j,d+2j|Sd+2j−2| .

Then

∫ 1

−1

[Pn,d,j(t)]
2
(1− t2)

d−3
2 dt =

2d−2(n!)2Γ(d−1
2 )2

(2n+ d− 2) (n− j)!(n+ d+ j − 3)!
.
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Thus, we define normalized associated Legendre functions

P̃n,d,j(t) =
[(2n+ d− 2) (n− j)! (n+ d+ j − 3)!]

1
2

2
d−2
2 n! Γ(d−1

2 )
Pn,d,j(t),

t ∈ [−1, 1]. (2.158)

We can also write, with the help of Proposition 2.43,

P̃n,d,j(t) =
(n+ d− 3)!

n! Γ(d−1
2 )

[
(2n+ d− 2) (n− j)!

2d−2(n+ d+ j − 3)!

] 1
2

(1− t2)
j
2P

(j)
n,d(t),

t ∈ [−1, 1]. (2.159)

These functions are normalized:

∫ 1

−1

[
P̃n,d,j(t)

]2
(1 − t2)

d−3
2 dt = 1.

Moreover, note that P̃n,d,j(t) is proportional to Pn,d,j(t). Hence, these func-
tions are orthonormal:

∫ 1

−1

P̃n,d,j(t) P̃m,d,j(t) (1 − t2)
d−3
2 dt = δnm. (2.160)

In the case d = 3,

P̃n,3,j(t) =

[
(n+ 1

2 ) (n− j)!

(n+ j)!

] 1
2

(1 − t2)
j
2P

(j)
n,3(t). (2.161)

In the case j = 0, P̃n,d,0(t) is proportional to the Legendre polynomial Pn,d(t),

P̃n,d,0(t) =
1

Γ(d−1
2 )

[
(2n+ d− 2) (n+ d− 3)!

2d−2n!

] 1
2

Pn,d(t).

2.11 Generating Orthonormalized Bases for
Spherical Harmonic Spaces

We now discuss a procedure to generate an orthonormal basis in Y
d
n from

orthonormal bases in (d − 1) dimensions, by making use of the associated
Legendre functions introduced in Sect. 2.10.
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Let d ≥ 3. Consider a vector ζ = ζ(d) ∈ C
d of the form ζ(d) = ed +

i
(
ηT , 0

)T
with η ∈ S

d−2. A simple calculation shows ζ · ζ = 0 and
hence Δx(ζ·x)n = 0. So the function x �→ (ζ·x)n = (xd + ix(d−1)·η)n is
homogeneous and harmonic. Then

f(x) :=
i−j

|Sd−2|

∫

Sd−2

(xd + ix(d−1)·η)nYj,d−1(η) dS
d−2(η)

is a homogeneous harmonic polynomial of degree n, i.e., it is an element of
Yn(R

d). Use the polar coordinates (1.15),

x = |x| ξ, ξ = t ed +
√
1− t2 ξ(d−1), |t| ≤ 1, ξ(d−1) ∈ S

d−1,

noting that ξ(d−1) denotes a d-dimensional vector (ξ1, · · · , ξd−1, 0)
T . The

restriction of the function f(x) to S
d−1 is

f(ξ) =
i−j

|Sd−2|

∫

Sd−2

(t+ i (1− t2)
1
2 ξ(d−1)·η)nYj,d−1(η) dS

d−2(η).

Applying the Funk–Hecke formula (Theorem 2.22), we have

∫

Sd−2

(t+ i (1− t2)
1
2 ξ(d−1)·η)nYj,d−1(η) dS

d−2(η) = λYj,d−1(ξ(d−1)),

where

λ = |Sd−3|
∫ 1

−1

Pj,d−1(s)
(
t+ i (1− t2)

1
2 s
)j

(1− t2)
d−4
2 dt.

Thus,
f(ξ) = Pn,d,j(t)Yj,d−1(ξ(d−1))

is a spherical harmonic of order n in dimension d. So we have shown the
following result.

Proposition 2.45. If Yj,d−1 ∈ Y
d−1
j , then Pn,d,j(t)Yj,d−1(ξ(d−1)) ∈ Y

d
n in

polar coordinates (1.15).

This result allows us to construct a basis for Yd
n in d dimensions in terms

of bases in Y
d−1
0 , . . . ,Yd−1

n in (d− 1) dimensions. In the following we use the
normalized associated functions P̃n,d,j since most formulas will then have a
simpler form.

Definition 2.46. For d ≥ 3 and m ≤ n, define an operator

P̃n,m : Yd−1
m → Y

d
n
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by the formula

(P̃n,mYm,d−1)(ξ) = P̃n,d,m(t)Ym,d−1(ξ(d−1)), Ym,d−1 ∈ Y
d−1
m .

Then define Y
d
n,m := P̃n,m(Yd−1

m ), called the associated space of order

m in Y
d
n.

The spherical harmonic space Y
d
n can be decomposed as an orthogonal

sum of the associated spaces Yd
n,m, 0 ≤ m ≤ n.

Theorem 2.47. For d ≥ 3 and n ≥ 0,

Y
d
n = Y

d
n,0 ⊕ · · · ⊕ Y

d
n,n. (2.162)

Proof. First we show that the subspaces on the right side of (2.162) are
pairwise orthogonal. Let 0 ≤ k,m ≤ n with k �= m. For any Yk,d−1 ∈ Y

d−1
k

and any Ym,d−1 ∈ Y
d−1
m ,

(P̃n,kYk,d−1, P̃n,mYm,d−1)L2(Sd−1)

= (Yk,d−1, Ym,d−1)L2(Sd−2)

∫ 1

−1

P̃n,d,k(t) P̃n,d,m(t) (1− t2)
d−3
2 dt

= 0

using the orthogonality (2.160). Thus, Yd
n,k ⊥ Y

d
n,m for k �= m.

For each m, 0 ≤ m ≤ n, Yd
n,m is a subspace of Yd

n and so

Y
d
n ⊃ Y

d
n,0 ⊕ · · · ⊕ Y

d
n,n. (2.163)

Since the mapping P̃n,m : Yd−1
m → Y

d
n,m is a bijection,

dimY
d
n,m = dimY

d−1
m = Nm,d−1.

Hence, recalling the identity (2.14),

n∑
m=0

dimY
d
n,m =

n∑
m=0

Nm,d−1 = Nn,d = dimY
d
n.

In other words, the two sides of equality (2.162) are finite-dimensional spaces
of equal dimension. Then the equality (2.162) holds in view of the relation
(2.163). ��

From Theorem 2.47 and its proof, we see that if

{Ym,d−1,j : 1 ≤ j ≤ Nm,d−1}
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is an orthonormal basis for Yd−1
m , 0 ≤ m ≤ n, then

{
P̃n,d,m(t)Ym,d−1,j(ξ(d−1)) : 1 ≤ j ≤ Nm,d−1, 0 ≤ m ≤ n

}
(2.164)

is an orthonormal basis for Yd
n.

Example 2.48. An orthonormal basis for Y2
n is presented in Sect. 2.2. Let us

apply the above result and use the orthonormal basis for Y2
n to construct an

orthonormal basis for Y3
n. We use the relation

ξ(3) = t e3 +
√
1− t2

(
ξ(2)
0

)
,

where t = cos θ for 0 ≤ θ ≤ π, ξ(2) = (cosφ, sinφ)T for 0 ≤ φ ≤ 2 π. In the
notation of the above discussion,

{
Ym,2,1(ξ(2)) =

1√
π

cos(mφ), Ym,2,2(ξ(2)) =
1√
π

sin(mφ)

}

is an orthonormal basis for Y2
m. Recall the formula (2.161),

P̃n,3,m(t) =

[
(n+ 1

2 ) (n−m)!

(n+m)!

] 1
2

(1− t2)
m
2 P

(m)
n,3 (t).

Here P
(m)
n,3 (t) denotes the mth derivative of the function Pn,3(t). Then, an

orthonormal basis for Y3
n is given by the functions

[
(2n+ 1) (n−m)!

2 π (n+m)!

] 1
2

(sin θ)mP
(m)
n,3 (cos θ) cos(mφ), 0 ≤ m ≤ n,

[
(2n+ 1) (n−m)!

2 π (n+m)!

] 1
2

(sin θ)mP
(m)
n,3 (cos θ) sin(mφ), 1 ≤ m ≤ n.

The basis is usually also written as

(−1)(m+|m|)/2
[
(2n+ 1) (n− |m|)!

4 π (n+ |m|)!
] 1

2

(sin θ)mP
(m)
n,3 (cos θ) eimφ,

− n ≤ m ≤ n.

This latter form is more convenient to use in some calculations. �
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We now use the orthonormal system (2.164) to express the addition
theorem. Set

ξ(d) = t ed + (1− t2)
1
2 ξ(d−1), −1 ≤ t ≤ 1,

η(d) = s ed + (1− s2)
1
2η(d−1), −1 ≤ s ≤ 1.

Then the identity (2.24)

Nn,d

|Sd−1| Pn,d(ξ·η) =
Nn,d∑
k=1

Yn,k(ξ)Yn,k(η)

is rewritten as

Nn,d

|Sd−1| Pn,d(s t+ (1 − s2)
1
2 (1− t2)

1
2 ξ(d−1)·η(d−1))

=

n∑
m=0

P̃n,d,m(s)P̃n,d,m(t)

Nn,d−1∑
k=1

Ym,k(ξ(d−1))Ym,k(η(d−1))

=
n∑

m=0

Nm,d−1

|Sd−2| P̃n,d,m(s)P̃n,d,m(t)Pm,d−1(ξ(d−1)·η(d−1)),

where in the last step, the identity (2.24) is applied again. Denote u =
ξ(d−1)·η(d−1). Then for d ≥ 3 and s, t, u ∈ [−1, 1],

n∑
m=0

Nm,d−1P̃n,d,m(s)P̃n,d,m(t)Pm,d−1(u)

=
Nn,d|Sd−2|
|Sd−1| Pn,d(s t+ (1− s2)

1
2 (1− t2)

1
2u). (2.165)

Another identity can be derived from (2.165) as follows. Multiply both

sides of (2.165) by Pk,d−1(u) (1 − u2)
d−4
2 , 0 ≤ k ≤ n, integrate with respect

to u from −1 to 1, and use the orthogonality relation (2.79) for the Legendre
polynomials,

Nn,d

|Sd−1|

∫ 1

−1

Pn,d(s t+ (1− s2)
1
2 (1− t2)

1
2u)Pk,d−1(u) (1 − u2)

d−4
2 du

=
1

|Sd−3| P̃n,d,k(s)P̃n,d,k(t),
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i.e.,

∫ 1

−1

Pn,d(s t+ u (1− s2)
1
2 (1− t2)

1
2 )Pk,d−1(u) (1 − u2)

d−4
2 du

=
2π

(d− 2)Nn,d
P̃n,d,k(s)P̃n,d,k(t). (2.166)

In particular, taking k = 0 in (2.166) and noting that

P̃n,d,0(t) =

(
Nn,d|Sd−2|
|Sd−1|

) 1
2

Pn,d(t),

we arrive at an identity for the Legendre polynomials,

∫ 1

−1

Pn,d(s t+ (1− s2)
1
2 (1− t2)

1
2u)(1− u2)

d−4
2 du =

|Sd−2|
|Sd−1|Pn,d(s)Pn,d(t)

(2.167)
for d ≥ 3.
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