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Abstract The use of second-order tensors for the modeling of data from Diffusion
Weighted Magnetic Resonance Imaging (DW-MRI) is limited by their inability to
represent more than one dominant direction in cases of crossing fiber bundles or
partial voluming. Higher-order tensors have been used in High Angular Resolution
Diffusion Imaging (HARDI) to overcome these problems, but their larger number
of parameters leads to longer measurement times for data acquisition. In this work,
we demonstrate that higher-order tensors that indicate likely fiber directions can be
estimated from a small number of diffusion-weighted measurements by taking into
account information from local neighborhoods. To this end, we generalize tensor
voting, a method from computer vision, to higher-order tensors. We demonstrate
that the resulting even-order tensor fields facilitate fiber reconstruction at crossings
both in synthetic and in real DW-MRI data, and that the odd-order fields differentiate
crossings from junctions.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a medical imaging
modality that allows for a non-invasive investigation of fibrous tissue, such as
the nerve fiber bundles in the human brain [1]. In cases where a clear principal
fiber direction exists, it is generally well-aligned with the main diffusion direction
captured by the second-order diffusion tensor (DT-MRI) model [2]. However, DT-
MRI provides insufficient information in cases of partial voluming and crossing or
spreading fiber bundles. High Angular Resolution Diffusion Imaging (HARDI) uses
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more complex models like higher-order tensors [3, 4], but requires a larger number
of measurements, which are usually too time-consuming in a clinical context.

Inpainting is a process by which a damaged image is restored, or an object
is removed from an image in an unobtrusive way. Different strategies have been
developed to fill in the missing information in such cases in an automated manner.
They can be classified roughly into structure-based methods, which try to continue
the surrounding image geometry into the missing region [5] and texture synthesis
approaches, that generate patches from statistical models [6] or by copying pixels
from example images [7].

Our work is motivated by the observation that the image inpainting problem
resembles the problem of complex fiber configurations in DT-MRI data: In both
cases, information is missing in certain regions of a dataset. Our goal is to use ideas
from inpainting in a preprocess that facilitates fiber tracking through such complex
regions. Our method belongs to the class of techniques that fill in small holes by
continuing existing structures in the neighborhood. It is based on tensor voting, an
approach from computer vision that can be used to infer likely continuations of
lines, and that we extend to higher-order tensors in order to preserve directional
information at crossings.

This chapter is structured as follows: After reviewing related work in Sect. 2, we
will introduce the concept of higher-order tensor voting in Sect. 3. In Sect. 4, we
explain the application of this method to the problem of estimating tensors that can
be used for fiber tracking. Finally, results are presented in Sect. 5 and the paper is
concluded in Sect. 6.

2 Related Work

Tensor voting [8] is a framework for perceptual organization. Based on principles of
human perception, it tries to group tokens (like points, lines, or surface segments)
into structures that appear natural to a human observer. The method was first
proposed for the automated detection of perceptual contours [9], but has been
extended to numerous other applications, including the inpainting problem [10].

Our work differs from this existing use of tensor voting for inpainting in that our
input is a three-dimensional second-order tensor field rather than a two-dimensional
color image. The formulation of texture synthesis as a tensor voting problem, which
is one of the main contributions of [10], does not apply to our problem. Instead,
we extend tensor voting by using higher-order tensors to represent directional
information at crossings.

Inpainting small image regions is closely related to image interpolation. Weickert
and Welk [11] have developed a PDE-based method for interpolation of second-
order tensor fields. As part of our experiments, we successfully applied their
approach to higher-order tensor fields. However, we found that tensor voting makes
it easier to re-orient the propagated tensors and, in our particular application,
allows for a simpler, non-iterative, and relatively fast implementation. A comparison
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between tensor voting and PDE-based methods in a different context is presented
by Moreno et al. in Chap. 9 of this book.

The higher-order tensors generated by our method are similar to the “tractose-
mas” proposed by Barmpoutis et al. [12] and the “extrapolated spherical diffusion
functions” by Prčkovska [13] in that they do not have an immediate physical
meaning, but are designed to indicate likely fiber directions. However, the main
purpose of [12] is to create distributions from HARDI data which are no longer
antipodally symmetric. Even though Sect. 5.3 will demonstrate that asymmetries can
also be detected by tensor voting, our focus is to infer information about crossings
from data with low angular resolution.

A study by Caan et al. [14] has pursued a similar goal, but under different
conditions: They acquire low angular resolution data from different subjects, and
estimate a high angular resolution atlas from the coregistered results. In contrast,
our method takes its information from spatial neighborhoods rather than a cohort of
subjects and thus works on individual datasets.

Previous work that integrates neighborhood information into the fiber tracking
process includes the tensorlines algorithm by Weinstein et al. [15]. However, it only
uses information from the previous tracking step, while our voting process takes the
full neighborhood into account.

The spin glass model by Mangin et al. [16] aims at balancing local diffusion
directions with global curvature constraints by simulating coupled compass needles
in a magnetic field which is defined from the diffusion tensors. Even though a simple
synthetic crossing has been resolved using a two-compass variant [17], it has not
been applied to curved tracts, and results on real data have only been presented
based on a single-compass model that does not support crossings [16].

An alternative voting-based approach to tractography, inspired by the Hough
transform, was recently presented by Aganj et al. [18]. They identify the most
plausible fiber trajectories by voting on a large number of possible curves, while our
method votes on local fiber directions and does a tractography only in a subsequent
step. Since [18] is only an extended abstract, it does not provide enough detail for a
reproduction and side-by-side comparison of results.

3 Higher-Order Tensor Voting

3.1 Basics of Tensor Voting

The input of the tensor voting algorithm is a set of tokens. Even though tensor voting
allows for different types of tokens, like unoriented points and curve or surface
elements, we are specifically interested in reconstructing the trajectories of major
nerve fiber bundles, so we only make use of the part of the framework that deals
with curves.

In tensor voting, each curve element generates hypotheses about likely contin-
uations and votes for them. Individual votes encode the direction of the proposed
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Fig. 1 Given two points O and P along with a tangent t at O, tensor voting considers the osculating
circle (gray) to be their most likely connection, leading to the inferred tangent v at P

curve, and a scalar saliency, indicating the confidence that the voter has in it. In a
subsequent step, the accumulated votes are analyzed to identify the curve for which
all input tokens together provide the strongest evidence. Accumulated votes reflect
the overall saliency, the average direction, weighted by individual saliencies, and
the spread around it.

For a curve element given by a point O and a tangent direction t, tensor voting
assumes that the most likely continuation that includes a second point P is an arc of
their osculating circle, i.e., the circle that passes through both O and P and shares the
tangent t at O (cf. Fig. 1). Consequently, the direction of the vote cast from O to P is
the tangent v of the osculating circle at that point. The saliency of the vote decreases
both with arc length s and with the curvature � of the circle. If the angle � between
t and the line OP exceeds 45ı, the saliency is set to zero. A detailed justification of
these choices is given in [19].

3.2 Introducing Higher-Order Tensors

In the original framework, votes are represented by second-order tensors with sorted
eigenvalues �1 � �2 � �3 � 0. The relative magnitudes of the eigenvalues reflect
the type of a structure, the eigenvector directions describe its orientation.

Our implementation deviates from the established tensor voting algorithm in two
ways: First, curve elements are traditionally encoded as planar tensors (�1 D �2 �
�3) whose larger eigenvector pair spans the normal plane. In contrast, we let the
major eigenvector represent the tangent direction. This agrees with the role of the
principal eigenvector in DT-MRI, which is assumed to be tangential to the fiber
trajectory, and it allows us to use simple stick votes for curves, which are the only
relevant elements in our application.

Second, traditional tensor voting represents crossings and junctions as isotropic
tensors (�1 D �2 D �3), which do not possess any directional information. Since it
is the main motivation of our work to overcome the inability of DT-MRI to resolve
the involved fiber directions at crossings, we replace the second-order tensors with a
higher-order tensor representation, which retains directional information even when
averaging differently oriented stick tensors. This is done in analogy to the higher-
order structure tensors in [20] and is illustrated in Fig. 2.
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Fig. 2 When adding orthogonal second-order tensors, the result has no directional information (a).
In the sixth-order case, the orientations of the individual terms is reflected in the sum (b). Therefore,
we use higher-order tensors in our voting

3.3 Formalizing the Voting Process

The votes in our algorithm are created in three steps: First, the correct direction
is determined and represented as a unit vector v. Then, the scalar saliency  is
computed. Finally, a higher-order tensor vote V is formed by a repeated outer
product of v with itself, scaled with saliency  .

The first two steps are analogous to the traditional creation of stick votes [19]:
Let � be the angle between the tangent t at O and the vector OP (Fig. 1). Then, v is
the tangent of the osculating circle at P, and is created by rotating t by the angle 2�
around the axis given by t � OP. Thus, t, v, and OP lie in a common plane.

Saliency decreases with arc length s and curvature �:

s D �kOPk
sin �

� D 2 sin �

kOPk (1)

The voting has two main parameters: � determines how rapidly saliency decays
with distance, � controls the decay with curvature. If � > 45ı, the saliency  is set
to zero. Otherwise, it is given as

 .s; �/ D e
� s2

�2
� �2

�2 : (2)

In the original tensor voting approach, � is set as a function of � , based on the
assumption that it is equally plausible to join two orthogonal curve elements with a
smooth curve or a sharp corner [9]. In fiber tracking, it is commonly assumed that
fiber bundles do not bend sharply [21]. Therefore, we penalize curvature more than
regular tensor voting would. This is achieved by fixing � D 2 and � D 0:3.

With these ingredients, the final vote is computed as V D  .s; �/v˝l , where v˝l
denotes taking the outer product of v with itself l times. In component notation,

ŒV �i1i2:::il D  .s; �/vi1vi2 � � � vil : (3)

Since V is invariant under arbitrary index permutations, it is sufficient to store
a small number of non-redundant components (cf. [20]). All presented experiments
use tensor order l D 6, which has been found sufficient to resolve intersections of
three fiber bundles [22].
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3.4 Analyzing the Accumulated Votes

Individual votes are accumulated by simple component-wise addition of the respec-
tive tensors. In traditional tensor voting, the resulting tensor T is analyzed via its
spectral decomposition into eigenvalues �1 � �2 � �3 and eigenvectors e1, e2, e3:

T D
3X

iD1
�iei ˝ ei (4)

From this, a stick, plate, and a ball component are detected with saliencies

 s D �1 � �2;  p D �2 � �3;  b D �3 (5)

respectively. No exact equivalent of the spectral decomposition exists for the higher-
order case, but a previous work [22] proposed an algorithm to approximate a given
order-l tensor T with a sum of symmetric rank-1 terms:

T �
rX

iD1
�ie˝l

i (6)

Here, the vectors ei are still unit-length, but no longer pairwise orthogonal. The
rank-1 terms e˝l

i correspond to stick components, and represent curve elements in
our modified tensor voting framework. Since equally large �1��2 can now indicate
two salient stick components in different directions, we can no longer rely on the
difference �1 � �2 to define saliency, as in Eq. (5). Rather, we assign high saliency
to a direction if the tensor’s homogeneous form

T .v/ D T �l v D
X

i1;i2;:::;il

ŒT �i1i2:::il vi1vi2 � � � vil ; (7)

as it is plotted in Fig. 2b, has large convex curvature in that direction.
Restrict T .v/ to the unit sphere and let Hi be the symmetric 2�2 Hessian matrix

of second derivatives of T .v/ on the sphere, evaluated at the curve direction ei that
was estimated in Eq. (6). This Hessian can be obtained either numerically [23] or
analytically, by expressing T .v/ in spherical coordinates [24]. Let �1 � �2 be the
sorted eigenvalues of Hi . If ei is a salient stick component, we expect T .v/ to be
strongly convex (�1 � 0), so we measure saliency  as

 D ��1
l
: (8)

The normalization by tensor order l ensures that the maximum saliency of compo-
nent e˝l

i is given by  D �i . In case of the second-order tensors used in traditional
tensor voting,�1 D 2.�2��1/. Therefore, the definition of in Eq. (8) is equivalent
to  s in Eq. (5) in this case.
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Fig. 3 Accumulated higher-order votes are approximated with a sum of rank-1 terms that
represent stick components. In Subfigure (a), all three contributions have significant saliency,
as computed according to Eq. (8) from the convex shape in these directions. In (b), the planar
contribution orthogonal to the main direction is decomposed into three sticks with zero saliency

Figure 3a illustrates that a single accumulated higher-order tensor vote can
contain multiple stick components, with different angles and saliencies. The plate
component in Fig. 3b can be subdivided further into four rank-1 terms, but they have
zero saliency as stick components. This is completely analogous to second-order
plate tensors, which can be written as e1 ˝ e1 C e2 ˝ e2 for any two orthonormal
vectors e1 and e2 that span the plane.

4 Inpainting as a Preprocess for Tractography

Fiber tracking [25], also known as tractography [21], infers likely fiber trajectories
by computing integral curves which are everywhere tangential to the major eigen-
vector of the diffusion tensor field. Tracking is stopped when the difference �1 � �2
between the larger two eigenvalues becomes too small, since this typically indicates
that the diffusion tensor no longer represents a single homogeneous fiber bundle. A
common criterion is the linearity measure of Westin et al. [26],

cl D �1 � �2

�1
: (9)

In our experiments, we stop when cl < 0:4.
In order to use tensor voting as a preprocess for fiber tracking, we need to define a

set of tokens that generate the votes, and to mark the region in which the inpainting
should happen. Tokens are placed in all voxels where cl is large enough for fiber
tracking. Their direction is given by the principal eigenvector of the diffusion tensor.
In analogy to streamline tractography, which makes a hard binary decision about
whether or not to follow an eigenvector direction, our method assigns the same
saliency to all input tokens. The inpainting mask is given by the voxels in which cl
is too low for fiber tracking. Information from the neighborhood is propagated into
the inpainting region by the tensor voting process described in Sect. 3.
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Outside the mask, tokens are represented as rank-1 tensors, as given by Eq. (3).
To keep the norm of tensors within and outside the mask in a comparable range,
we scale all votes by 2=

”
 , where

”
 denotes the integral of  from Eq. (2)

over three-dimensional space. In practice, we evaluate the integral numerically over
a spatial neighborhood where  > 0:01.

Fiber tracking is performed on the resulting higher-order tensor field using the
algorithm from [22]. Voxels outside the brain are marked a priori based on their low
MR signal, and are not taken into account at any point. Setting up the inpainting
does not involve any new parameters, since the threshold on cl is taken from the
algorithm for DT-MRI tractography. However, the higher-order tracking process
needs a termination criterion; in our examples, we stop when no rank-1 contribution
with  > 0:01 is found within 20ı of the current tracking direction.

5 Results

In order to validate our method, we have applied it to three synthetic datasets. They
were created by modeling fiber crossings as a mixture of second-order diffusion
tensors with fractional anisotropy FA D 0:87 [27], by simulating diffusion-weighted
images (DWIs) from them, and estimating a DT-MRI model through a linearized
least squares fit [2]. DWIs were simulated in 12 evenly distributed directions, with
a b-value of b D 1;000 s/mm2.

We also used our method for the reconstruction of a major fiber bundle in a real
dataset of a healthy human brain. Like the synthetic data, it consisted of 12 diffusion-
weighted images at b = 1,000 s/mm2, plus one non-weighted image, and the same
fitting procedure was used.

5.1 Results on Synthetic Data

Our first example is a crossing of two orthogonal fiber bundles. Figure 4 shows
a superquadric glyph visualization [28] of the synthetic DT-MRI data (a), the
inpainted higher-order tensor field (b), and a tractography based on the higher-order
tensors (c). Our inpainting reconstructs this simple configuration perfectly.

As a more challenging test case, we created a second dataset in which a straight
fiber bundle is intersected by a parabolic one. In Fig. 5a, a ground truth tractography
is presented. It is based on a spherical deconvolution model [29] that has been
computed from simulated HARDI measurements (60 directions, b = 1,000 s/mm2).
In all examples, the tracking is seeded at the top and at the left side of the image.

Since the parabolic shape violates the constant curvature assumption made by the
tensor voting approach, the curved bundle is not reconstructed perfectly in this case;
however, the correct connectivity is still inferred in a large part of the bundle (b).
For comparison, Subfigure (c) demonstrates that the tensorlines algorithm [15], a
previous approach that integrates neighborhood information in the fiber tracking
process, fails completely to reconstruct the crossing.
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Fig. 4 At a 90ı crossing, second-order tensors become planar, preventing fiber tracking (a). Our
inpainting process infers higher-order tensors (b) that allow for a reconstruction of the crossing (c)

Fig. 5 Since the parabolic (green) fibers in (a) violate the constant curvature assumption of tensor
voting, which was illustrated in Fig. 1, our inpainting produces imperfect results, but is still able to
infer the correct connectivity (b). The tensorlines algorithm is unable to resolve the crossing (c)

5.2 Result on Real Data

In the real dataset, we aimed at tracking the left pyramidal tract by seeding in the
internal capsule. Due to its high importance to motor function, reconstructions of
this tract have been used repeatedly for surgical planning [30–32].

With second-order diffusion tensors alone, it is difficult to capture the bundle in
its entirety, since cl drops when the tract crosses the transcallosal fibers that run
through the corpus callosum (Fig. 6a, red ellipse). As shown in Fig. 6b, higher-
order tensor inpainting successfully bridges this gap, and allowed us to continue
the tracking towards the cortical surface.

5.3 Distinguishing Crossings from Junctions

Recently, Barmpoutis et al. [12] have employed a diffusion process to create a field
of asymmetric spherical functions that differentiate between X-shaped crossings and
Y-shaped junctions. To illustrate that the same distinction can also be made via a
tensor voting, we have created a synthetic junction, shown in Fig. 7a.
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Fig. 6 Due to crossing transcallosal fibers, tracking of the pyramidal tract in this DT-MRI dataset
ended prematurely (a). Higher-order tensor inpainting allowed the tracking to continue towards the
cortex (b)

Fig. 7 The direction and polarity of fibers meeting in a 120ı junction (a) is clearly shown by
third-order tensor votes (b, closeup), whose homogeneous forms are antisymmetric (blue indicates
negative values, red positive). At the center of crossings, odd-order tensor votes cancel out
(c), effectively distinguishing crossings from junctions

In order to find the location and polarity of boundaries, Tong et al. [33] extend
the traditional second-order tensor voting framework towards vectors (“first-order
tensors”): Regions in the center of a structure will receive vector votes from both
sides, which cancel out due to their opposite orientation. At structure boundaries,
however, vector votes accumulate.

This approach does not carry over to our problem directly, since vectors cancel
out both at crossings and at regular (e.g., 120ı triple) junctions. However, we
observe that tensors of odd order l�3 still cancel out at crossings, while they have
non-zero norm and indicate the directions of the involved bundles at junctions.

This is because the homogeneous form T .v/ that characterizes a symmetric
tensor (Eq. 7) is antipodally antisymmetric T .�v/ D �T .v/ for odd l , but can
become multimodal for l � 3. Odd-order votes are generated in complete analogy
to even-order ones (cf. Sect. 3.3).

Figure 7b, c plot the homogeneous forms of accumulated third-order tensor
votes; blue indicates positive values, red negative ones. The glyph at the center of
the junction (b) clearly indicates the directions and polarities of the three joining
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bundles. At the center of crossings (c), odd-order votes cancel out; the directions of
the involved bundles is instead given by the even-order votes (Fig. 4b).

Taken together, even-order (antipodally symmetric) and odd-order (antipodally
antisymmetric) tensors hold all the information that is present in general asymmetric
functions on the sphere, as they are used in [12].

6 Conclusion and Future Work

In this chapter, we have made two contributions. First, we have introduced higher-
order tensor voting, an extension of the standard tensor voting method that allows
one to preserve directional information at crossings and junctions. We expect that
higher-order tensor voting will also prove useful in other applications. However, to
leverage the full framework, rather than being restricted to inferring curves, more
research is required on decompositions of totally symmetric higher-order tensors.

Second, we have approached the problem of missing information in DT-MRI
due to partial voluming from a new perspective, by treating it in analogy to
image inpainting. For this, we have relied on generic rules of what constitutes a
good continuation of a curve. They are encoded in the tensor voting algorithm
and include proximity, similarity, and simplicity [19]. In the future, one might
consider exploiting more specific prior knowledge about likely continuations of
fiber bundles, which could be given in the form of a HARDI brain atlas. While we
have concentrated on structure-inferring inpainting in this work, such an approach
could take inspiration from example-based texture synthesis [7].

It is not the goal of our research to establish inpainting as an alternative to
HARDI. However, our results indicate that in cases where the acquisition of high
angular resolution data cannot be afforded, inpainting can help with the extraction
of clinically relevant fiber tracts.

As part of our future work, we would like to employ tensor voting techniques
similar to the one described in this chapter to stabilize the tracking process in cases
where HARDI data is available, and exploit the antisymmetric information provided
by odd-order tensor votes.
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