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Abstract Gene therapy is a technique for correcting defective genes responsible
for disease development. Nucleic acid-based molecules (deoxyribonucleic acid,
complementary deoxyribonucleic acid, complete genes, ribonucleic acid, and
oligonucleotides) are utilized as research tools within the broad borders of gene
therapy and the emerging field of molecular medicine. Although most of the nucleic
acid-based drugs are in early stages of clinical trials, these classes of compounds
have emerged in recent years to yield extremely promising candidates for drug
therapy to a wide range of diseases, including cancer, infectious diseases, diabetes,
cardiovascular, inflammatory, and neurodegenerative diseases, cystic fibrosis,
hemophilia, and other genetic disorders. Gene therapy may be classified into two
types: somatic and germ line gene therapy. There are many ethical, social, and
commercial issues raised by the prospects of treating patients using gene therapy.
This chapter summarizes deoxyribonucleic acid-based therapeutics, ribonucleic
acid-based therapeutics, and gene transfer technologies. Deoxyribonucleic acid-
based therapeutics includes plasmids, oligonucleotides for antisense and antigene
applications, deoxyribonucleic acid aptamers, and deoxyribonucleic acidzymes,
while ribonucleic acid-based therapeutics includes ribonucleic acid aptamers,
ribonucleic acid decoys, antisense ribonucleic acid, ribozymes, small interfering
ribonucleic acid, and micro ribonucleic acid. This chapter also includes current
status of gene therapy and recent developments in gene therapy research.

Keywords Gene therapy ¢ Nucleic acid therapeutics « DNA-based therapeutics ¢
RNA-based therapeutics * Gene transfer technology ¢ Viral vectors  Nonviral
vectors * Liposomes

1 Introduction

Modern drug research aims to discover biologically active molecule(s) that are
absolutely specific to the molecular targets responsible for the disease progression.
Moreover, there is strong belief that medicine will soon benefit from the develop-
ment of new therapeutic technologies to directly target human genes. Insertion of
new genetic material into the cells of an individual with the intention of producing a
therapeutic benefit for the patient is human gene therapy (Anderson 1992;
Baltimore 1988; Mizutani et al. 1995), while gene therapy is a technique for
correcting defective genes responsible for disease development. Numerous gene
therapy strategies are under development, some of which use nucleic acid-based
molecules to inhibit gene expression at either the transcriptional or posttranscrip-
tional level (Gewirtz et al. 1998), and this strategy has potential applications, such
as in cardiovascular (Mann et al. 1999a, b; Ehsan et al. 2001; Stull and Szoka 1995;
Patil and Burgess 2003) and inflammatory disorders (Dean et al. 1994; Yacyshyn
et al. 1998), cancer (Mardan et al. 2002), neurological disorders (Shi et al. 2001),
and infectious diseases (Macpherson et al. 1999; Welch et al. 1998; Zu Putlitz et al.
1999; Campagno et al. 1999), as well as in organ transplantation (Katz et al. 1997).
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A number of human diseases are known to be genetic in origin (e.g., Huntington’s
chorea and cystic fibrosis), and virtually all diseases, except for some trauma, have
a hereditary component (SoRelle 2000). Thus, gene therapy represents an opportu-
nity for the treatment of genetic disorders in humans by modifying their cells
genetically (Report 1995).

Despite the obvious advantages that might be gained from human gene therapy
(i.e., replacing a defective gene with a normal one), there are many ethical, social,
and commercial issues surrounding the technology. The outcome of an error in
technology might not be observed for many years. Moreover, it is feared that
unpredictable and perhaps irreversible side effects occur in treated individuals.
The social implications of such technology include the possibility that patients
might suffer from depression as a result of being “genetically altered” or might not
be accepted by society in the way that they were before treatment. The commercial
implications of such technology are that the insurance companies and other such
institutions also would want to access the available information prior to them
granting life insurance policies, etc. Hence, it is obvious that a person shown to
have a predisposition to a genetic disease could be severely penalized because of a
mutation in their DNA.

The possibility of using nucleic acids as drugs for the treatment of genetic
diseases is still very much in its infancy. One reason for this is that, unlike
monogenetic disorders such as severe combined immune deficiency (SCID),
which is caused by a mutation in the adenosine deaminase (ADA) gene, very few
diseases are caused by a single gene mutation; most are caused by the mutation of
multiple genetic components. For example, cancer usually involves multiple
genetic lesions within the same cell and it is unlikely that the nature of every one
of these oncogenic mutations is yet known.

Elucidation of the human genome has also provided a major impetus in
identifying human genes implicated in diseases, which may eventually lead to the
development of nucleic acid-based drugs for gene replacement or potential targets
for gene ablation (Baker 2001). Moreover, the Human Genome project will help
determine genetic markers responsible for patient response to drug therapy, drug
interactions, and potential side effects (Van Ommen et al. 1999). Currently, all gene
therapy trials approved for human use target somatic cells that will live only as long
as the patient, and this is known as the somatic gene therapy. Its purpose is to
alleviate disease in the treated individual alone. In contrast, it is also possible to
target directly the gametes (sperm and ova) to modify the genetic profile of the
subsequent generation of unborn “patients.” This gene transfer at an early stage of
embryonic development is known as the germ line gene therapy. More than 300
clinical trials involving gene transfer in patients have been approved, and the first
nucleic acid drug, an antisense oligonucleotide, fomivirsen (marketed as
Vitravene), has been approved by the US Food and Drug Administration (FDA)
for the treatment of cytomegalovirus retinitis in immunocompromised patients
(Rosenberg et al. 2000).

In 1999, the biggest setback for gene therapy occurred when Jesse Gelsinger, an
18-year-old high-school graduate from Arizona, died as a result of a gene therapy
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experiment. Gelsinger developed fever and blood clots throughout his body within
hours of treatment to correct partial ornithine transcarbamylase (OTC) deficiency, a
rare metabolic disease that can cause a dangerous buildup of ammonia in the body,
and died 4 days later (Lehrman 1999). The FDA has not yet approved any human
gene therapy product for sale.

This chapter summarizes DNA-based therapeutics, RNA-based therapeutics,
and gene transfer technologies for the diseases that are known to be genetic
in origin. DNA-based therapeutics includes plasmids, oligonucleotides for anti-
sense and antigene applications, DNA aptamers, and DNAzymes, while RNA-
based therapeutics includes antisense RNA, ribozymes, RNA decoys, RNA
aptamers, small interfering RNA, and microRNA. This chapter also includes
the current status of gene therapy and recent developments in gene therapy
research.

2 DNA-Based Therapeutics

2.1 Plasmids

Plasmids are high molecular weight, double-stranded DNA constructs
containing transgenes, which encode specific proteins. On the molecular level,
plasmid DNA molecules can be considered prodrugs that upon cellular internal-
ization employ the DNA transcription and translation apparatus in the cell to
biosynthesize the therapeutic entity, the protein (Uherek and Wels 2000). The
mechanism of action of plasmid DNA requires that the plasmid molecules gain
access into the nucleus after entering the cytoplasm. Nuclear access or lack
thereof eventually controls the efficiency of gene expression. In addition to
disease treatment, plasmids can be used as DNA vaccines for genetic immuni-
zation (Johnston et al. 2002). In the early stages of development, plasmid-based
gene therapy was attempted to correct inheritable disorders resulting from a
single gene defect. The first federally approved human gene therapy protocol
was initiated in 1990 for the treatment of adenosine deaminase deficiency
(Anderson 1998). Since then, more than 500 gene therapy protocols have been
approved or implemented (Vorburger and Hunt 2002). In 2002, the successful
gene-therapy-based cure for SCID was reported (Otsu and Candotti 2002). In
2003, the Chinese drug regulatory agency approved the first gene therapy
product for head and neck squamous carcinoma under the trade name Gendicine
(Zhaohui 2003). Currently, diseases with complex etiologies such as cancer
(Galanis and Russell 2001; Mulherkar 2001) and neurodegenerative disorders
such as Alzheimer’s disease and Parkinson’s disease (Baeckelandt et al. 2000)
are being targeted. In addition, DNA vaccines for malaria, AIDS, and many
other diseases are in development (Bunnel and Morgan 1996). DNA vaccines
have also been used to prevent allergic response (Horner et al. 2001).
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2.2 Oligonucleotides for Antisense and Antigene Applications

Oligonucleotides are short single-stranded segments of DNA that upon cellular
internalization can selectively inhibit the expression of a single protein. For anti-
sense applications, oligonucleotides interact and form a duplex with the mRNA or
the pre-mRNA and inhibit its translation or processing, consequently inhibiting
protein biosynthesis. For antigene applications, oligonucleotides must enter the cell
nucleus, form a triplex with the double-stranded genomic DNA, and inhibit the
translation as well as the transcription process of the protein. On the molecular
level, numerous mechanisms have been proposed to explain the basis of oligonu-
cleotide action (Crooke 1999a, b; Speedie 2005). For therapeutic purposes,
oligonucleotides can be used to selectively block the expression of proteins that
are implicated in diseases (Akhtar et al. 2000). With successful antisense inhibition
of proteins in animal models, the first antisense drug, fomivirsen sodium
(Vitravene, Isis Pharmaceuticals, Carlsbad, CA), was approved for the treatment
of cytomegalovirus retinitis in AIDS patients in 1998 (Crooke 1998b). Antisense
oligonucleotides such as MG98 and ISIS 5132, designed to inhibit the biosynthesis
of DNA methyltransferase and c-raf kinase respectively, are in human clinical trials
for cancer (Mardan et al. 2002). Synthetic antisense DNA oligonucleotides and
oligonucleotide analogs (Agarawal and Tang 1992), which inhibit the replication of
several infectious agents such as hepatitis C virus (Alt et al. 1995), human cyto-
megalovirus (Azad et al. 1993), human immunodeficiency virus, and papilloma
virus (Bordier et al. 1992; Cowsert et al. 1993; Gerviax et al. 1997; Hanecak et al.
1996; Kinchington et al. 1992; Lisziewicz et al. 1992, 1993; Mirabelli et al. 1991;
Morvan et al. 1993; Tonkinson and Stein 1993), have also been designed.

2.3 Aptamers

DNA aptamers are double-stranded nucleic acid segments that can directly interact
with proteins (Stull and Szoka 1995). Aptamers interfere with the molecular
functions of disease-implicated proteins or those that participate in the transcription
or translation processes. Aptamers are preferred over antibodies in protein inhibi-
tion owing to their specificity, nonimmunogenicity, and stability of pharmaceutical
formulation (Jayasena 1999). DNA aptamers have demonstrated promise in inter-
vention of pathogenic protein biosynthesis against HIV-1 integrase enzyme
(de Saultrait et al. 2002).

2.4 DNAzymes

DNAzymes are analogs of ribozymes with greater biological stability (Akhtar et al.
2000). The RNA backbone chemistry is replaced by the DNA motifs that confer
improved biological stability. DNAzyme directed against vascular endothelial
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growth factor receptor 2 was confirmed to be capable of tumor suppression by
blocking angiogenesis upon intratumoral injections in mice (Zhang et al. 2002).

3 RNA-Based Therapeutics

3.1 RNA Aptamers

RNA aptamers are single-stranded nucleic acid segments that can directly interact
with proteins (Stull and Szoka 1995). Aptamers recognize their targets on the basis
of shape complementarity (Kaur and Roy 2008). Moreover, their binding specificity
and affinity for the target are extremely high and similar to monoclonal antibodies.
RNA aptamers have demonstrated promise in intervention of pathogenic protein
biosynthesis against HIV-1 transcriptase (Chaloin et al. 2002). Moreover, RNA
aptamers that specifically bind and inactivate vascular endothelial growth factor
(VEGF) in vitro have been isolated. A clinical study on humans with injection
of anti-VEGF aptamers in the eye showed that 80% of the patients retained
or improved the eyesight, and they had no side effects (The Eyetech Study
Group 2002).

3.2 RNA Decoys

The RNA decoys are designed to provide alternate, competing binding sites for
proteins that act as translational activators or mRNA-stabilizing elements (Beelman
and Parker 1995; Liebhaber 1997). Decoys can prevent translation or induce
instability and, ultimately, destruction of the mRNA. Overexpressed short RNA
molecules corresponding to critical cis-acting regulatory elements can be used as
decoys for trams-activating proteins, thus preventing binding of these trans
activators to their corresponding cis-acting elements in the viral genome (Sullenger
et al. 1990, 1991). RNA decoys have an advantage over other nucleic acid-based
strategies, that is, the decoys are less likely to be affected by variability of the
infectious agent because any mutation in the frans-activating protein affects not
only binding to the decoys but also binding to the endogenous targets. However,
there is some question whether RNA decoy strategies will be as benign to the cell
physiology as antisense RNAs, since it has been postulated that cellular factors may
associate with them (Sullenger et al. 1990). It has previously been demonstrated
that a cellular factor termed loop-binding protein is an absolute requirement for Tat-
mediated trans-activation in an HIV-infected cell (Marciniak et al. 1990). Finally,
RNA decoys do not function by sequestering either the Tat or Rev-protein but by
sequestering the cellular factors such as the loop-binding protein.
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3.3 Antisense RNA

Antisense drugs are short stretches of deoxyribonucleotide analogs that bind to
specific complementary areas of the mRNA by Watson—Crick base pairing to block
gene expression in a sequence-specific fashion. Antisense drugs may induce an
RNaseH, which cleaves the mRNA at the site of binding, or can physically block
translation or other steps in mRNA processing and transport to protein synthesis.
The antisense drugs work at an early stage in the production of a disease-causing
protein and theoretically can be applied to a number of diseases where the
basic pathophysiology involves an overexpression of a given protein molecule
(Crook 1998a, Speedie 2005).

Antisense ODNs can base-pair with a gene’s transcript and constitute a new
technology for the control of gene expression in prokaryotes and eukaryotes,
including mammalian cells (Zamecnik and Stephenson 1978). The existence of
naturally occurring RNAs and their role in regulating gene expression were shown
in the mid-1980s (Simons and Kleckner 1983; Mizuno et al. 1984). Newer antisense
oligonucleotides may offer improved pharmacokinetic and safety profiles because
of reduced nonspecific interactions (Agarwal and Kandimalla 2000).

A stoichiometric disadvantage of antisense RNA is the high expression required
to successfully bind to all target RNA. A major advantage is the lack of immuno-
genicity of antisense constructs, such that the oligonucleotides and the cells pro-
ducing them will not be destroyed by the host immune response. The antisense
approach to modulating gene expression has been extensively reviewed (Gewirtz
et al. 1998; Scanlon et al. 1995; Stein 1998).

3.4 Ribozymes

Antisense RNA alone is not potent enough to produce complete inhibition in vivo.
An enzymatic moiety can be included with antisense oligonucleotide, which will
cleave the target RNA once the RNA-RNA duplex has formed. These enzymatic
RNA strands are called “Ribozymes.” They are antisense RNA molecules that are
capable of sequence-specific cleaving of RNA molecules (Stull and Szoka 1995).
They function by binding to the target moiety through antisense sequence-specific
hybridization and inactivating it by cleaving the phosphodiester backbone at a
specific site. Thus, they can selectively bind to target mRNAs and form a duplex
having highly distorted confirmation that is easily hydrolyzed, and this hydrolysis
of mRNA may be used for targeted suppression of specific gene (Mardan et al.
2002). Two types of ribozymes, the hammerhead and hairpin ribozymes (the names
are derived from their theoretical secondary structures), have been extensively
studied owing to their small size and rapid kinetics (Earnshaw and Gait 1997;
Hampel 1998) and for therapeutic applications (Stull and Szoka 1995). Hammer-
head ribozymes cleave RNA at the nucleotide sequence U-H (H = A, C, or U) by
hydrolysis of a 3'-5" phosphodiester bond, while hairpin ribozymes utilize the
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nucleotide sequence C—U-G as their cleavage site (Breaker and Joyce 1994; Burke
1996; Usman et al. 1996). The presence of the RNA backbone in ribozymes makes
them easy targets for degradation by RNases, so these molecules are biologically
unstable in vivo (Mardan et al. 2002). Ribozymes can be used for knockout gene
therapy by targeting overexpressed oncogenes such as the human epidermal growth
factor receptor type-2 gene implicated in breast cancer (Aigner et al. 2001) and
human papilloma virus infection. The development of ribozymes that colocalize in
the same subcellular compartment as their target may further increase their effec-
tiveness (Sullenger and Cech 1993). A significant limitation of the use of ribozymes
for gene therapy is that they are susceptible to RNases.

3.5 Small Interfering RNAs

RNA interference (RNAIi) is a posttranscriptional mechanism of gene silencing
through chromatin remodeling, inhibition of protein translation, or direct mRNA
degradation, which is ubiquitous in eukaryotic cells (Caplen 2004; Dorsett and
Tuschl 2004; Shankar et al. 2005). Small interfering RNAs (siRNAs) can be used
for downregulation of disease-causing genes through RNA interference.

Typically, these are short double-stranded RNA segments with 21-23
nucleotides and are complementary to the mRNA sequence of the protein whose
transcription is to be blocked. On administration, siRNA molecules are
incorporated into RNA-induced silencing complexes (RISC), which bind to the
mRNA of interest and stimulate mRNA degradation mechanisms, such as nuclease
activity, that lead to silencing of the particular gene (Bertrand et al. 2002; McMinus
and Sharp 2002; Scherr et al. 2003).

The structure and functions of RISC have yet to be completely elucidated
(Kurreck 2003). Introduction of foreign double-stranded RNAs (dsSRNA) can initiate
a potent cascade of sequence-specific degradation of endogenous mRNAs that bear
homology to the dsRNA trigger (Fire et al. 1998). When dsRNAs are introduced into
the cytoplasm, they are processed by the RNase III enzyme called Dicer, which
cleaves long dsRNAs into short 21-23 nucleotide duplexes that have symmetric 2—3
nucleotide 3’ overhangs and 5’ phosphate and 3’ hydroxyl groups (Tuschl et al. 1999;
Hamilton and Baulcombe 1999). Although it was initially believed that effective
RNAI required almost complete sequence homology throughout the length of the
mRNA, now it appears that as few as seven contiguous complementary base pairs
can direct RNAi-mediated silencing (Jackson and Linsley 2004). The use of siRNA
as a therapeutic agent is still in its infancy. siRNAs are being investigated to inhibit
HIV (Martinez et al. 2002), hepatitis (Zamore and Aronin 2003), and influenza
infection (Ge et al. 2003). Moreover, RNAi technology has been applied to silence
the expression of dominant mutant oncogenes, gene amplification, translocations,
and viral oncogenes in order to elucidate their function and their interaction with
other genes in a number of critical cellular pathways. Since siRNAs do not integrate
into the genome and they offer greater safety than plasmid molecules, it is possible to
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deliver a cocktail of siRNAs targeting multiple disease-causing genes in a single
delivery system to control complex diseases such as cancer where several genes are
malfunctioning (Wong 2001).

3.6 MicroRNA

MicroRNAs (miRNAs) are a class of naturally occurring, small noncoding RNA
molecules 21-25 nucleotides in length. These molecules are partially complemen-
tary to messenger RNA (mRNA) molecules, and their main function is
downregulation of gene expression via translational repression, mRNA cleavage,
and deadenylation. MicroRNAs were first described in 1993 (Lee et al. 1993), and
the term microRNA was coined in 2001(Ruvkun 2001). Numerous miRNAs have
been identified in various organisms hitherto. The central online repository for
miRNA nomenclature, sequence data, annotation, and target prediction is miRBase,
hosted by the Sanger Institute. MicroRNAs are transcribed by RNA polymerase 11
called pri-miRNAs that complete with a 5’ cap and poly-A tail (Lee et al. 2004). In
the nucleus, pri-miRNAs are processed into pre-miRNAs by the microprocessor
complex, which consists of the RNAse III enzyme Drosha (Han et al. 2004) and the
double-stranded RNA Pasha/DGCRS (Denli et al. 2004). These pre-miRNAs are
exported by the karyopherin exportin (Exp5) and Ran—-GTP complex (Yi et al.
2003). Then Ran GTPase binds with Exp5 to form a nuclear heterotrimer with pre-
miRNAs (Yi et al. 2003; Lund et al. 2004). These pre-miRNAs are additionally
processed by the RNAse Il enzyme Dicer (Bernstein et al. 2001) to generate
miRNA. Moreover, Dicer is also responsible for the initiation of the formation of
RISC, which is responsible for the gene silencing observed due to miRNA expres-
sion and RNA interference (Hammond et al. 2000; Hammond 2005).

4 Gene Transfer Technologies

Gene transfer technologies can be classified into three general types: electrical
techniques, mechanical transfection, and vector-assisted delivery systems.

4.1 Mechanical and Electrical Techniques

Strategies of introducing naked DNA into cells by mechanical and electrical
techniques include microinjection, particle bombardment, the use of pressure, and
electroporation. Microinjection is highly efficient since one cell at a time is targeted
for DNA transfer, but it is time consuming. Ballistic transfer of gold microparticles
may be performed using particle bombardment equipment such as the gene gun.
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Electroporation is achieved using high-voltage electrical current to facilitate DNA
transfer that results in high cell mortality and is not suitable for clinical use
(McAlister et al. 2000; Luo and Saltzman 2000; Regnier et al. 2000; Huang and
Viroonchatapan 1999).

4.2 Vector-Assisted Delivery Systems

Vector-assisted DNA/gene delivery systems can be classified into two types based
on their origin: biological viral DNA delivery systems and chemical nonviral
delivery systems.

4.2.1 Viral Delivery Systems

In Viral Delivery Systems, nonpathogenic attenuated viruses can be used as delivery
systems for genes/DNA molecules, especially plasmids (Kamiya et al. 2001; Mah
et al. 2002; Lotze and Kost 2002). These viral DNA-delivery vectors include both
RNA and DNA viruses. The viruses used as gene therapy vectors can be classified
into four types: Retroviruses (McTaggart and Al-Rubeai 2002), Adenoviruses,
Adeno-associated viruses (Martin et al. 2002), and Herpes simplex viruses. Gene
expression using viral vectors has been achieved in tissues such as kidney (Lien and
Lie 2002), heart muscle (Chamberlain 2002), eye (Martin et al. 2002), and ovary
(Wolf and Jenkins 2002). Moreover, gene therapy using viral systems has made
considerable progress for the treatment of a wide range of diseases, such as muscular
dystrophy (Chamberlain 2002), AIDS (Lever 1996), and cancer (Zhao et al. 2002).
Viruses are used in more than 70% of human clinical gene therapy trials worldwide
(Walther and Stein 2000). The only approved gene therapy treatment (Gendicine)
delivers the transgene using a recombinant adenoviral vector (Galanis and Russell
2001). DNA delivery using viral vectors has been extensively reviewed (Mah et al.
2002; Lotze and Kost 2002; Hale and Green 2002).

The first-generation retroviral vectors were largely derived from oncore-
troviruses, such as the Moloney Murine Leukemia virus (MMuLv), and were unable
to transfer genes into nondividing cells (Roe et al. 1993; Lewis and Emerman
1994). This limited the potential for their application as a delivery system in gene
therapy. The utilization of the lentivirus family of retroviruses has overcome this
shortcoming. Lentiviruses, which include Human immunodeficiency virus type 1
(HIV-1), Bovine immunodeficiency virus (BIV), Feline immunodeficiency virus
(FIV), and Simian immunodeficiency virus (SIV), are able to transfer genes to
nondividing cells (Lewis and Emerman 1994; Naldini et al. 1996). Retroviral
vectors used in gene therapy are replication deficient, such that they are unable to
replicate in the host cell and can infect only one cell (Mann et al. 1983; Cone and
Mulligan 1984). This characteristic, although essential for the safety of viral vectors
in gene therapy, imposes restrictions on the amounts of virus that can safely
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be administered (Kim et al. 1998; Sheridan et al. 2000). Retroviral-mediated
delivery of therapeutic DNA has been widely used in clinical gene therapy
protocols, including the treatment of cancers, such as melanoma (Fujji et al.
2000) and ovarian cancer (Tait et al. 1999), adenosine deaminase deficiency—severe
combined immune deficiency (Bordignon et al. 1995; Onodera et al. 1998), and
Gaucher’s disease (Dunbar et al. 1998). Retroviral vectors are capable of
transfecting high populations (45-95%) of primary human endothelial and smooth
muscle cells, a class of cells that are generally extremely difficult to transfer
(Garton et al. 2002).

Adenoviruses have been used to deliver therapeutic DNA to patients suffering
from metastatic breast, ovarian, and melanoma cancers (Stewart et al. 1999;
Alvarez et al. 2000a, b). Indeed, the severe immune response of the host contributes
to the limited survival of the adenoviral DNA in the targeted cells and results in a
transient expression of the therapeutic gene since the adenoviral DNA is lost over
time (Byrnes et al. 1995; Yang et al. 19964, b; van Ginkel et al. 1997; Michou et al.
1997). First-generation adenoviral vectors were able to accommodate the introduc-
tion of therapeutic genes over 7 kb long (but rarely larger) into targeted cells (Bett
et al. 1993). However, the generation of gutless adenoviral vectors, which lack all
viral genes, has facilitated adenoviral delivery of up to 30 kb of a therapeutic DNA
sequence (Clemens et al. 1996; Kochanek et al. 1996; Parks and Grahm 1997;
Morsy et al. 1998) with decreased toxicity (Schiedner et al. 1998). Adenoviral-
mediated gene transfer in COS-7 cells was significantly higher than that achieved
by liposomal delivery systems (Heider et al. 2000).

The use of Adeno-Associated Viral (AAV) vector provides an alternative to
adenoviral vectors for gene therapy and a means for long-term gene expression with
a reduced risk of adverse reactions upon administration of the vector (Fisher et al.
1997; Jooss et al. 1998). AAV viruses are linear, single-stranded DNA parvoviruses
that are not associated with any disease in humans (Rose et al. 1969). In humans, the
site of AAV viral DNA integration is on chromosome 19 (Kotin et al. 1990;
Samulski et al. 1991). In the engineering of AAV vectors, most of the AAV genome
can be replaced with the therapeutic gene (Samulski et al. 1989), which signifi-
cantly reduces potential adverse responses of the host to viral infection. However,
the size of the therapeutic gene is limited to approximately 5 kb (Dong et al. 1996;
Hermonat et al. 1997). First-generation adeno-associated viruses had a very small
capacity of ~4.7 kb for encapsulation of the plasmid DNA cargo. Recent reports
demonstrate efficient production of second-generation adeno-associated viruses
with higher encapsulating capabilities (Owens 2002). It has been demonstrated
that adenoviruses in formulations may lose their potency after storage in commonly
used pharmaceutical vials (Nyberg-Hoffman and Aguilar-Cardova 1999). Herpes
simplex virus (HSV) vector is a large and relatively complex enveloped, double-
stranded DNA virus that has the capacity to encode large therapeutic genes and, like
AAYV, can remain latent in infected cells, providing the potential for long-term
expression of the therapeutic gene (Carpenter and Stevens 1996). Although able to
infect many cell types, HSV vectors currently are limited in their use by vector
toxicity (Lowenstein et al. 1994).
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4.2.2 Nonviral Delivery Systems

Nonviral delivery systems have the greatest advantage over viral delivery
systems—the lack of immune response and ease of formulation and assembly.
Commonly used nonviral vectors for delivery of DNA-based therapeutics can be
classified into three major types: Naked DNA delivery systems, polymeric delivery
systems, and liposomal delivery systems (Mardan et al. 2002; Fattal et al. 1999,
2001; Pedroso de Lima et al. 2001).

Naked DNA can be administered via two possible routes, either by ex vivo
delivery or by in vivo delivery. The ex vivo method of naked DNA delivery has
been used successfully for the introduction of DNA into endothelial and smooth
muscle cells (Nakamura et al. 1998; Mann et al. 1999a, b); its reliance on the culture
of harvested cells renders it unsuitable for many cell types. In vivo delivery of
naked DNA was first described in 1990 (Wolff et al. 1990). Efficiency of the
delivery of naked DNA can be improved when administered in a pressure-mediated
fashion (Mann et al. 1999a, b; Liu et al. 1999). Particle bombardment technology
enables the localized delivery of DNA readily into skin or muscle (Fynan et al.
1993). Another technique for delivery of naked DNA directly into target cells is
electroporation. The successful delivery of DNA by electroporation in vivo has
been reported in tissues such as skin and muscle (Wong and Neumann 1982;
Neumann et al. 1982; Rols et al. 1998; Rizzuto et al. 1999).

In polymeric delivery systems, cationic polymers are used in gene delivery because
they can easily complex with the anionic DNA molecules (Hwang and Davis 2001).
The mechanism of action of these polycomplexes is based on the generation of a
positively charged complex owing to electrostatic interaction of these cationic
polymers with anionic DNA (Luo and Saltzman 2000). Commonly used polymers
include polyethylenimine (Lemkine and Demeneix 2001), poly-L-lysine (Lollo et al.
2002), chitosans (Borchard 2001), and dendrimers (Mardan et al. 2002). Agents such
as folates, transferrin, antibodies, or sugars such as galactose and mannose can be
incorporated for tissue targeting (Mardan et al. 2002). Synthetic polymers such as
protective interactive noncondensing polymers (PINC), poly-L-lysine, cationic
polymers, and dendrimers offer an alternative to cationic lipids as a vehicle for
DNA delivery into target cells (Boussif et al. 1995; Wadhwa et al. 1995;
Kukowska-Latello et al. 1996; Tang and Szoka 1997; Mumper et al. 1998). Encapsu-
lation of a DNA molecule or even a therapeutic viral vector within a biodegradable
polymer has been demonstrated to permit the controlled release of the DNA in a
targeted cell over a period of weeks or months (Naughton et al. 1992; Singh et al.
2000). The inclusion of proteins and peptides in the DNA complex, which are
recognized by receptors on targeted cells, has led to an improvement in the efficiency
of DNA uptake in several instances (Jenkins et al. 2000). Some polymers have
inherent potent pharmacological properties (such as hypercholesterolemia induced
by chitosans) that make them extremely unfavorable for human use (LeHoux and
Grondin 1993).

Liposomes are one of the most versatile tools for the delivery of DNA therapeu-
tics (Akhtar et al. 2000; Fattal et al. 1999, 2001; Godbey and Mikos 2001). Liposome
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and drug/lipid complexes have been used for the delivery of the anticancer drugs
doxorubicin and daunorubicin (Tejada-Berges et al. 2002). Liposomes can be used
as DNA drug delivery systems either by entrapping the DNA-based therapeutics
inside the aqueous core or complexing them to the phospholipids lamellae. Lipo-
some can also be used for specialized gene delivery options, such as long circulation
half-life and sustained and targeted delivery (Fattal et al. 1999). Numerous studies
have demonstrated the use of cationic liposomal formulations for the delivery of
different plasmid constructs in a wide range of cells, both in vivo and in vitro
(Marshal et al. 1999). The use of cationic lipids to transfer DNA into cells was
first described as an in vitro method of DNA delivery (Felgner et al. 1987). Cationic
liposomes have also been used in clinical trials to deliver therapeutic DNA (Caplen
et al. 1995; Hyde et al. 2000; Noone et al. 2000; Nabel et al. 1993, 1996). Cationic
liposomal formulations consist of mixtures of cationic and zwitterionic lipids
(Godbey and Mikos 2001; Felgner et al. 1994; Hofland et al. 1996). Proprietary
formulations of cationic lipids such as Lipofectamine (Invitrogen, Carlsbad, CA),
Effectene (Qiagen, Valencia, CA), and Tranfectam (Promega, Madison, WI) are
commercially available (Kang et al. 1999), but most of the kits are useful only for
in vitro experimentation. There are reports of improved efficiency of DNA delivery
by cationic lipid via the coupling of specific receptor ligands or peptides to DNA/
liposome complexes (Jenkins et al. 2000; Ellison et al. 1996; Simoes et al. 1998;
Shinmura et al. 2000; Compton et al. 2000). Cytotoxicity of cationic lipids has been
established in numerous in vitro (Lappalainen et al. 1994; Patil et al. 2004) and
in vivo (Dokka et al. 2000; Filion and Philips 1997; Freimark et al. 1998) studies.
Low transfection efficiencies have been attributed to the heterogeneity and instabil-
ity of cationic lipoplexes (Lee et al. 2001). Another drawback in the use of cationic
lipids is their rapid inactivation in the presence of serum (Hofland et al. 1996;
Audouy et al. 2000). Some in vivo studies have revealed that the gene transduction
responses obtained by cationic liposomes were transient and short-lived (Liu et al.
1997; Wheeler et al. 1996). As an alternative to cationic lipids, the potential of
anionic lipids for DNA delivery has been investigated. The safety of anionic lipids
has been demonstrated when administered to epithelial lung tissue. In recent years, a
few studies using anionic liposomal DNA delivery vectors have been reported.
There have been attempts to incorporate anionic liposomes into polymeric delivery
systems. However, these vectors have limited applications, mainly because of (1)
inefficient entrapment of DNA molecules within anionic liposomes and (2) lack of
toxicity data. Lack of further progress of these systems may be attributed, in part, to
the poor association between DNA molecules and anionic lipids, caused by electro-
static repulsion between these negatively charged species (Patil et al. 2004, 2005;
Dokka et al. 2000; Patil and Rhodes 2000a, b; Fillion et al. 2001; Lakkaraju et al.
2001; Lee and Huang 1997; Guo et al. 2002; Perrie and Gregoriadis 2000). Along
with numerous cationic and anionic lipid derivatives, functionalized liposomal
formulations serving specific therapeutic objectives have shown promise in gene
therapy (Fattal et al. 1999; Venugopalan et al. 2002; Maclean et al. 1997).
Specialized liposomal delivery platforms include pH-sensitive liposomes,
immunoliposomes, and stealth liposomes. pH-sensitive liposomes can be generated
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by the inclusion of 1,2-dioleoyl-3-phosphoethanolamine (DOPE) into liposomes
composed of acidic lipids such as cholesterylhemisuccinate or oleic acid. At the
neutral cellular pH 7, these lipids have the typical bilayer structure; however, upon
endosomal compartmentalization, they undergo protonation and collapse into a
nonbilayer structure, thereby leading to the disruption and destabilization of the
endosomal bilayer, which in turn helps in the rapid release of DNA into the
cytoplasm (Venugopalan et al. 2002). Efficient gene delivery of the beta-
galactosidase and luciferase reporter plasmids has been obtained using pH-sensitive
liposomes in a variety of mammalian cell lines (Legendre and Szoka 1992). A
chemical derivative of DOPE, cCitraconyl-DOPE, has been used to deliver DNA-
based therapeutics to cancer cells, thereby combining the targeting and the rapid
endosome-releasing aspects of specialized liposomal delivery systems (Reddy and
Low 2000). A phosphatidylcholine/glycyrrhizin combination was also successful in
pH-sensitive gene delivery in mice (Sviridov et al. 2001). Immunoliposomes are
sophisticated gene delivery systems that can be used for cell targeting by the
incorporation of functionalized antibodies attached to lipid bilayers (Maclean
et al. 1997). Immunoliposomes containing an antibody fragment against the
human transferrin receptor were successfully used in targeted delivery of tumor-
suppressing genes into tumors in vivo (Xu et al. 2002). Tissue-specific gene delivery
using immunoliposomes has been achieved in the brain (Shi et al. 2001), embryonic
tissue (Khaw et al. 2001), and breast cancer tissue (Krauss et al. 2000). Stealth
liposomes are sterically stabilized liposomal formulations that include polyethylene
glycol (PEG)-conjugated lipids (Fattal et al. 1999).

Recently, polyethylenimine (PEI), poly(lactic-co-glycolic acid) (PLGA),
polypeptides, chitosan, cyclodextrin, dendrimers, and polymers containing differ-
ent nanoparticles are used in vitro and in vivo with respect to their structure,
physicochemical properties, and delivery efficiency as an siRNA delivery vehicle
(Kaushik et al. 2011).

S Current Status of Gene Therapy Research

The FDA has not yet approved any human gene therapy product for sale. Current
gene therapy is experimental and has not proven very successful in clinical trials.
Little progress has been made since the first gene therapy clinical trial began in
1990. In 1999, gene therapy suffered a major setback with the death of 18-year-old
Jesse Gelsinger.

Another major blow came in January 2003 when the FDA placed a temporary
halt on all gene therapy trials using retroviral vectors in blood stem cells. FDA took
this action after it learned that a second child treated in a French gene therapy trial
had developed a leukemia-like condition. Both that child and another who had
developed a similar condition in August 2002 had been successfully treated by gene
therapy for X-linked severe combined immunodeficiency disease (X-SCID), also
known as “bubble baby syndrome.”
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FDA'’s Biological Response Modifiers Advisory Committee (BRMAC) met at
the end of February 2003 to discuss possible measures that could allow a number of
retroviral gene therapy trials for treatment of life-threatening diseases to proceed
with appropriate safeguards.

In April of 2003, the FDA eased the ban on gene therapy trials using retroviral
vectors in blood stem cells.

6 Recent Developments in Gene Therapy

Month/year Development in Author(s) name; name of Title of the article =~ Summary/inference
gene therapy journal(s)/URL
March 2009 Nanotechnology and  Schatzlein A [http://news.bbc. ~ Nano-treatment to  School of Pharmacy in
gene therapy co.uk/2/hi/health/7935592. torpedo cancer London is testing
yields treatment stm/ (March 10)] a treatment in mice,
to torpedo which delivers genes
cancer wrapped in

nanoparticles to
cancer cells

April 2008  Results of world’s 1. James et al.; N Engl J Med 1. Effect of Gene ~ UK researchers from the
April 2008 first gene 2. Albert et al.; N Engl J Med Therapy on UCL Institute of
therapy for Visual Ophthalmology and
inherited Function in Moorefield’s Eye
blindness show Leber’s Hospital NIHR
sight Congenital Biomedical
improvement Amaurosis Research Centre
2. Safety and have announced
Efficacy of results from the
Gene Transfer world’s first clinical
for Leber’s trial to test a
Congenital revolutionary gene
Amaurosis therapy treatment for

a type of inherited
blindness (Leber’s
congenital
amaurosis). The
results show that
the experimental
treatment is safe and
can improve sight.
The findings are a
landmark for gene
therapy and could
have a significant
impact on future
treatments for eye

diseases
May 2007  This is the first trial  Ben H [http://www.reuters. Doctors test gene A team of British doctors
to use gene com/article/scienceNews/ therapy to treat from Moorefield’s
therapy in an idUSL016653620070501?/ blindness Eye Hospital and
operation to (May 1, 2007)] University College
treat blindness in London conduct
in humans the first human gene

therapy trials to treat
Leber’s congenital
amaurosis, a type of

(continued)
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Title of the article

Summary/inference

Month/year Development in Author(s) name; name of
gene therapy journal(s)/URL

Jan 2007 A combination of Scott M [http://www.newswise.
two tumor- com/p/articles/view/
suppressing 526526/ (January 11,
genes delivered 2007)]
in lipid-based
nanoparticles

Aug 2006 This is the first time Morgan et al. [http://www.

that gene cancer.gov/newscenter/
therapy is used pressreleases/
to successfully MelanomaGeneTherapy/

treat cancer in
humans

(August 31, 2006)]

March 2006 This is the first study [http://www.

March 2003 This method has

to show that
gene therapy
can cure
diseases of the
myeloid system

cincinnatichildrens.org/
(March 31, 2006)]

Anil A [http://www.

potential for newscientist.com/section/

treating science-news/ (March 22,
Parkinson’s 2003)]
disease

Dual gene therapy
suppresses
lung cancer in
preclinical test

Cancer regression
in patients
mediated by
transfer of
genetically
engineered
lymphocytes

Gene therapy
appears to cure
myeloid blood
diseases in
ground-
breaking
international
study

Undercover genes
slip into the
brain

inherited childhood
blindness caused by
a single abnormal
gene. The procedure
has already been
successful at
restoring vision for
dogs

A combination of two

tumor-suppressing
genes delivered in
nanoparticles
drastically reduces
the number and size
of human lung
cancer tumors in
mice during trials
conducted in the
University of Texas

Researchers at the

National Cancer
Institute (NCI)
successfully
reengineer immune
cells, called
lymphocytes,

to target and attack
cancer cells in
patients with
advanced metastatic
melanoma

Gene therapy is

effectively used

to treat two adult
patients for a disease
affecting
nonlymphocytic
white blood cells
called myeloid cells.
Myeloid disorders
are common and
include a variety of
bone marrow failure
syndromes

University of California

research team gets
genes into the brain
using liposomes
coated in
polyethylene glycol.
The transfer of genes
into the brain is a
significant
achievement because
viral vectors are too
big to get across the
“blood—brain
barrier”

(continued)
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Month/year Development in Author(s) name; name of Title of the article ~ Summary/inference
gene therapy journal(s)/URL
March 2003 RNA interference or Bob H [http://www. Gene therapy may  Short pieces of double-
gene silencing newscientist.com/section/ switch off stranded RNA
may be a new science-news/ (March 13, Huntington’s (siRNAs) are used
way to treat 2003)] by cells to degrade
Huntington’s RNA of a particular

sequence. If an
siRNA is designed
to match the RNA
copied from a faulty
gene, then the
abnormal protein
product of that gene
will not be produced

Oct 2002 Technique has Danny P [http://www. Subtle gene New gene therapy
potential to treat newscientist.com/section/ therapy approach repairs
the blood science-news/ (October 11, tackles blood errors in messenger
disorder 2002)] disorder RNA derived from
thalassemia, defective genes
cystic fibrosis,
and some
cancers

Oct 2002 Gene therapy for Emma Y [http://www. “Miracle” gene Gene therapy for treating
treating children newscientist.com/section/ therapy trial children with
with X-SCID science-news/ (October 3, halted X-SCID (severe

2002)] combined
immunodeficiency)

is stopped in France
when the treatment
causes leukemia in
one of the patients

May 2002  Researchers are able Sylvia PW [http://www. DNA nanoballs Researchers at Case
to create tiny newscientist.com/section/ boost gene Western Reserve
liposomes for science-news/ (May 12, therapy University and
transferring 2002)] Copernicus
therapeutic Therapeutics are
DNA able to create tiny

liposomes that can
carry therapeutic
DNA through pores
in the nuclear

membrane
March 2002 Sickle cell is Jennifer FW; The Scientist Murine Gene The scientists corrected
successfully 16:36 [http://www. Therapy the murine
treated in mice the-scientist.com/2002/3/ Corrects symptoms of this
18] Symptoms chronic, inherited,
of Sickle Cell and often painful
Disease disorder (sickle cell

disease)
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