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Abstract Infinite random sequences of letters can be viewed as stochastic chains or
as strings produced by a source, in the sense of information theory. The relationship
between Variable Length Markov Chains (VLMC) and probabilistic dynamical
sources is studied. We establish a probabilistic frame for context trees and VLMC
and we prove that any VLMC is a dynamical source for which we explicitly build
the mapping. On two examples, the “comb” and the “bamboo blossom”, we find
a necessary and sufficient condition for the existence and the uniqueness of a
stationary probability measure for the VLMC. These two examples are detailed in
order to provide the associated Dirichlet series as well as the generating functions
of word occurrences.
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1 Introduction

Our objects of interest are infinite random sequences of letters. One can imagine
DNA sequences (the letters are A, C, G, T'), bits sequences (the letters are 0, 1)
or any random sequence on a finite alphabet. Such a sequence can be viewed as a
stochastic chain or as a string produced by a source, in the sense of information
theory. We study this relation for the so-called Variable Length Markov Chains
(VLMCO).

From now on, we are given a finite alphabet 7. An infinite random sequence of
letters is often considered as a chain (X),),ez, i.e. an . Z_yalued random variable.
The X, are the letters of the chain. Equivalently such a chain can be viewed as
a random process (U, ),en that takes values in the set .¥ = & N of left-infinite
words' and that grows by addition of a letter on the right at each step of discrete time.
The .#-valued processes we consider are Markovian ones. The evolution from U, =
o X2 XoXy .. X, to Uy = Uy X4 1s described by the transition probabilities
P(Un_H = Un()é|Un), o e d.

In the context of chains, the point of view has mainly been a statistical one until
now, going back to Harris [14] who speaks of chains of infinite order to express the
fact that the production of a new letter depends on a finite but unbounded number
of previous letters. Comets et al. [7] and Gallo and Garcia [11] deal with chains
of infinite memory. Rissanen [23] introduces a class of models where the transition
from the word U,, to the word U, +; = U, X, + depends on U,, through a finite suffix
of U, and he calls this relevant part of the past a context. Contexts can be stored as
the leaves of a so-called context tree so that the model is entirely defined by a family
of probability distributions indexed by the leaves of a context tree. In this paper,
Rissanen develops a near optimal universal data compression algorithm for long
strings generated by non independent information sources. The name VLMC is due
to Biihlmann and Wyner [5]. It emphasizes the fact that the length of memory needed
to predict the next letter is a not necessarily bounded function of the sequence U,,.
An overview on VLMC can be found in Galves and Locherbach [12].

We give in Sect.2 a complete probabilistic definition of VLMC. Let us present
here a foretaste, relying on the particular form of the transition probabilities
P(U,+1 = U,a|U,). Let 7 be a saturated tree on </, which means that every
internal node of the tree—i.e. a word on .«/—has exactly |.<7| children. With each
leaf ¢ of the tree, also called a context, is associated a probability distribution g,
on 7. The basic fact is that any left-infinite sequence can thus be “plugged in” a

'In the whole text, N denotes the set of nonnegative integers.
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unique context of the tree .7: any U, can be uniquely written U, = ...<¢, where, for
any word ¢ = « -+ -ay, ¢ denotes the reversed word ¢ = oy - - - «y. In other terms,
for any n, there is a unique context ¢ in the tree 7 such that ¢ is a suffix of U,;
this word is denoted by ¢ = f;?ﬁ (U,). We define the VLMC associated with these
data as the .Z-valued homogeneous Markov process whose transition probabilities
are, for any letter o € o7,

P(Up+1 = Uya|Uy) = q trer w)(@)-

When the tree is finite, the final letter process (X, ),>o is an ordinary Markov chain
whose order is the height of the tree. The case of infinite trees is more interesting,
providing concrete examples of non Markov chains.

In the example of Fig. 1, the context tree is finite of height 4 and, for instance,
PWU,+1 = U,0|U, = ---0101110) = ¢o11(0) because fﬁf (---0101110) = 011
(read the word - - - 0101110 right-to-left and stop when finding a context).

In information theory, one considers that words are produced by a probabilistic
source as developed in Vallée and her group papers (see Clément et al. [6] for an
overview). In particular, a probabilistic dynamical source is defined by a coding
function p : [0, 1] — <7, amapping T : [0, 1] — [0, 1] having suitable properties
and a probability measure p on [0, 1]. These data being given, the dynamical source
produces the .o/-valued random process (Y,)nen = (p(T"&))nen, where £ is a
p-distributed random variable on [0, 1]. On the right side of Fig. 1, one can see
the graph of some T, a subdivision of [0, 1] in two subintervals Iy = p~!(0) and
I = ,0_1 (1) and the first three real numbers x, 7 x and T2x, where x is a realization

51

doo

qo11

90100 90101 T?z 2 Tx

Fig. 1 Example of probabilized context tree (on the left) and its corresponding dynamical system
(on the right)
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of the random variable £. The right-infinite word corresponding to this example has
010 as a prefix.

We prove in Theorem 1 that every stationary VLMC is a dynamical source.
More precisely, given a stationary VLMC, (U, ),en say, we construct explicitly a
dynamical source (Y,),en such that the letter processes (X,),en and (Y;),en are
symmetrically distributed, which means that for any finite word w of length N + 1,
P(Xy...Xy =w) =Py...Yy = W). In Fig. 1, the dynamical system together
with Lebesgue measure on [0, 1] define a probabilistic source that corresponds to
the stationary VLMC defined by the drawn probabilized context tree.

The previous result is possible only when the VLMC is stationary. The question
of existence and uniqueness of a stationary distribution arises naturally. We give
a complete answer in two particular cases (Propositions 1 and 4 in Sect.4) and
we propose some tracks for the general case. Our two examples are called the
“infinite comb” and the “bamboo blossom”; they can be visualized in Figs. 6 and 7,
respectively pages 17 and 28. Both have an infinite branch so that the letter process
of the VLMC is non Markovian. They provide quite concrete cases of infinite order
chains where the study can be completely handled. We first exhibit a necessary and
sufficient condition for existence and uniqueness of a stationary measure. Then the
dynamical system is explicitly built and drawn. In particular, for some suitable data
values, one gets in this way examples of intermittent sources.

Quantifying and visualizing repetitions of patterns is another natural question
arising in combinatorics on words. Tries, suffix tries and digital search trees are
usual convenient tools. The analysis of such structures relies on the generating
functions of the word occurrences and on the Dirichlet series attached to the sources.
In both examples, these computations are performed.

The paper is organized as follows. Section 2 is devoted to the precise definition of
variable length Markov chains. In Sect. 3 the main result Theorem 1 is established.
In Sect. 4, we complete the paper with our two detailed examples: “infinite comb”
and “bamboo blossom”. The last section gathers some prospects and open problems.

2 Context Trees and Variable Length Markov Chains

In this section, we first define probabilized context trees; then we associate with a
probabilized context tree a so-called variable length Markov chain (VLMC).

2.1 Words and Context Trees

Let & be a finite alphabet, i.e. a finite ordered set. Its cardinality is denoted by
|<7|. For the sake of shortness, our results in the paper are given for the alphabet
«/ = {0, 1} but they remain true for any finite alphabet. Let
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W:UM

n>0

be the set of all finite words over 7. The concatenation of two words v = v; ... vy
andw = wy...wy iSvw = v ...vyw ... wy. The empty word is denoted by @.
Let

L =g N

be the set of left-infinite sequences over ¢ and
B = N

be the set of right-infinite sequences over .«7. If k is a nonnegative integer and if
w = a_j - -+ 0 is any finite word on .7, the reversed word is denoted by

W=0p" Q.

The cylinder based on w is defined as the set of all left-infinite sequences having w
as a suffix:
Lw={seZ Vjel{-k, -, 0}, s5; =a;}

By extension, the reversed sequence of s = ---a_jp € £ iS5 = qpa—1 -+ € ZX.
The set .Z is equipped with the o-algebra generated by all cylinders based on finite
words. The set Z is equipped with the o-algebra generated by all cylinders wZ =
{r e Z,wis aprefix of r}.

Let .7 be a tree, i.e. a subset of # satisfying two conditions:

e 0eT
s YuveW , we T —ueJ

This corresponds to the definition of rooted planar trees in algorithmics. Let €'F (.7)
be the set of finite leaves of 7, i.e. the nodes of .7 without any descendant:

CH(T)={ue T Njeduj¢T)

An infinite word u € Z such that any finite prefix of u belongs to .7 is called an
infinite leaf of 7. Let us denote the set of infinite leaves of .7 by

€(T)={ue R Vvprefixof u,v e T}.

Let € (7) = €7 (7) U % (7) be the set of all leaves of 7. The set 7 \ € (.7)
is constituted by the internal nodes of 7. When there is no ambiguity, .7 is omitted
and we simply write ¢, 6'F and €.

Definition 1. A tree is saturated when each internal node w has exactly |<7|
children, namely the set {wa, o0 C &/} C 7.
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Definition 2. (Context tree) A context tree is a saturated tree having a finite or
countable set of leaves. The leaves are called contexts.

Definition 3. (Probabilized context tree) A probabilized context tree is a pair

(gv (qC)ceﬁf(ﬂ))

where .7 is a context tree over .27 and (¢, ).e«% () is a family of probability measures
on <7, indexed by the countable set ' (7) of all leaves of .7.

Examples. See Fig. 1 for an example of finite probabilized context tree with five
contexts. See Fig. 6 for an example of infinite probabilized context tree, called the
infinite comb.

Definition 4. A subset .Z of # U Z is a cutset of the complete |.o7 |-ary tree when
both following conditions hold

(1) no word of # is a prefix of another word of %

(i) Vr € Z,3u € X, uprefix of r.

Condition (i) entails uniqueness in (ii). Obviously a tree .7 is saturated if and only
if the set of its leaves ¥ is a cutset. Take a saturated tree, then

Vr e, eitherr e  orIueW, uesk, u prefix of r. @))]

This can also be said on left-infinite sequences:

Vs € &, eithers € €' orAw e ¥, w e €F, wsuffix of s. )
In other words:
z=Jsu | 2w A3)
se! weeF

This partition of .Z will be extensively used in the sequel. Both cutset properties (1)
and (2) will be used in the paper, on Z for trees, on .Z for chains. Both orders of
reading will be needed.

Definition 5. (Prefix function) Let .7 be a saturated tree and % its set of contexts.
For any s € .Z, f)?ef (s) denotes the unique context o; ...y such that s =
..on ...op. The map

pref 1. — €

is called the prefix function. For technical reasons, this function is extended to
pref 1 LUW — T

in the following way:

e if we 7 then fﬁf w) =w;
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o ifwe #\ J then fﬁf (w) is the unique context «; ...y such that w has
oy ...ap as a suffix.

Note that the second item of the definition is also valid when w € %. Moreover
I(Ef (w) is always a context except when w is an internal node.

2.2 VLMC Associated with a Context Tree

Definition 6. (VLMC) Let (7, (¢.)cc#) be a probabilized context tree. The
associated Variable Length Markov Chain (VLMC) is the order 1 Markov chain
(Un)n>0 with state space ., defined by the transition probabilities

Vn >0, Vo€ o, P(U,t = U|U,) = q et ) (@) “)

Remark 1. As usually, we speak of the Markov chain defined by the transition
probabilities (4), because these data together with the distribution of U, define a
unique .Z-valued Markov random process (U, ),>o (see for example Revuz [22]).

The rightmost letter of the sequence U, € .Z will be denoted by X, so that
VYn >0, U1 = Uy Xyt1.

The final letter process (X,),>o0 is not Markov of any finite order as soon as
the context tree has at least one infinite context. As already mentioned in the
introduction, when the tree is finite, (X;,),>0 is a Markov chain whose order is
the height of the tree, i.e. the length of its longest branch. The vocable VLMC is
somehow confusing but commonly used.

Definition 7. (SVLMC) Let (U,),>0 be a VLMC. When a stationary probability
measure on . exists and when it is the initial distribution, we say that (U, ),>0 is a
Stationary Variable Length Markov Chain (SVLMC).

Remark 2. In the literature, the name VLMC is usually applied to the chain
(X,)nez. There exists a natural bijective correspondence between <7 -valued chains
(Xn)nez and Z-valued processes (U, = UpX;...X,,n > 0). Consequently,
finding a stationary probability for the chain (X,),cz is equivalent to finding a
stationary probability for the process (Uy,),>0-

3 Stationary Variable Length Markov Chains

The existence and the uniqueness of a stationary measure for two examples of
VLMC will be established in Sect.4. In the present section, we assume that a
stationary measure 7 on . exists and we consider a w-distributed VLMC. In the
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preliminary Sect. 3.1, we show how the stationary probability of finite words can be
expressed as a function of the data and the values of 7 at the tree nodes. In Sect. 3.2,
the main theorem is proved.

3.1 General Facts on Stationary Probability Measures

For the sake of shortness, when 7 is a stationary probability for a VLMC, we write
7 (w) instead of 7 (Zw), forany w € #:

a(w) =PWUy € Zw) =P(X_(jw-1) - .- Xo = w). (5)

Extension of notation g, for internal nodes. The VLMC is defined by its context
tree .7 together with a family (g.).e« of probability measures on .2/ indexed by the
contexts of the tree. When u is an internal node of the context tree, we extend the

notation g, by
7 (uar)

— ifz(u) #0
gule) = { 7@ ©)
Oifr(w) =0
for any @ € /. Thus, in any case, m being stationary, 7w (ue) = m(u)q,(«) as

soon as u is an internal node of the context tree. With this notation, the stationary
probability of any cylinder can be expressed by the following simple formula (8).

Lemma 1. Consider a SVLMC defined by a probabilized context tree and let w
denote any stationary probability measure on .£. Then,
(i) for any finite word w € W and for any letter o € o7,

m(wat) = T(W)G Gret o) (@) @)

(ii) For any finite wordw = oy ...ay € ¥/,

N-1
rw) =[] 4 st @ oo @t1) (®)
k=0

(ifk =0, ay ...a, denotes the empty word @, fﬁf @) =0, gp(x) = n(a) and
(@) =n(Z)=1).

Proof. (i) If w is an internal node of the context tree, then I%f (w) = w and the
formula comes directly from the definition of ¢. If not, 7(wa) = 7 (U; € Lwa)
by stationarity; because of Markov property,

r(wa) =P(Uy € Lw)P(U, € LwalUy € Lw) = (W) et w) ().



Context Trees, Variable Length Markov Chains and Dynamical Sources 9

Finally, (ii) follows from (i) by a straightforward induction. O

Remark 3. When o/ = {0, 1} and m is any stationary probability of a SVLMC,
then, for any natural number 7, 7(10") = 7(0"1). Indeed, on one hand, by disjoint
union, 7(0") = 7 (0"*) + (10"). On the other hand, by stationarity,

7(0") =P(X,... X, =0") =P(X,... X,_1 = 0")
=PXo... X, = 0" +P(Xo... X, = 0"1) = 7(0" ") + 7(0"1).

These equalities lead to the result. Of course, symmetrically, 7(01") = m(1"0)
under the same assumptions.

3.2 Dynamical System Associated with a VLMC

We begin with a general presentation of a probabilistic dynamical source in
Sect.3.2.1. Then we build step by step partitions of the interval [0, 1] (Sect.3.2.2)
and a mapping (Sect.3.2.3) based on the stationary measure of a given SVLMC.
It appears in Sect.3.2.4 that this particular mapping keeps Lebesgue measure
invariant. All these arguments combine to provide in the last Sect. 3.2.5 the proof of
Theorem 1 which allows us to see a VLMC as a dynamical source.

In the whole section, I stands for the real interval [0, 1] and the Lebesgue
measure of a Borelian J will be denoted by |/ |.

3.2.1 General Probabilistic Dynamical Sources

Let us present here the classical formalism of probabilistic dynamical sources (see
Clément et al. [6]). It is defined by four elements:

* A topological partition of / by intervals (/y)yeor

e A coding function p : I — 7, such that, for each letter «, the restriction of p to
1, is equal to o

e AmappingT : [ — [

e A probability measure p on /

Such a dynamical source defines an .«7-valued random process (Y}),en as follows.
Pick a random real number x according to the measure . The mapping 7" yields
the orbit (x, T(x), T?(x),...) of x. Thanks to the coding function, this defines the
right-infinite sequence p(x)o(7 (x))p(T?(x)) - -- whose letters are Y, := p(T"(x))
(see Fig. 2).

For any finite wordw = ...y € #/, let

N
B, = (T
k=0
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Fig. 2 The graph of a
mapping T, the intervals [,
and I, that code the interval [
by the alphabet .« = {0, 1} L
and the first three points of
the orbit of an x € I by the
corresponding dynamical 4
system

Iy

be the Borelian set of real numbers x such that the sequence (Y},),en has w as
a prefix. Consequently, the probability that the source emits a sequence of symbols
starting with the pattern w is equal to £ (B,,). When the initial probability measure p
on [ is T-invariant, the dynamical source generates a stationary <7 -valued random
process which means that for any n € N, the random variable Y, is po pu-distributed.

The following classical examples often appear in the literature: let p €]0, 1],
Iy =1[0,1—p]and I} =]1 — p,1].Let T : I — I be the only function which maps
linearly and increasingly /o and 7, onto / (see Fig.3 when p = 0.65, left side).
Then, starting from Lebesgue measure, the corresponding probabilistic dynamical
source is Bernoulli: the Y, are i.i.d. and P(Yy = 1) = p. In the same vein, if T is
the mapping drawn on the right side of Fig. 3, starting from Lebesgue measure, the
{0, 1}-valued process (Y, ),en is Markov and stationary, with transition matrix

0.4 0.6

0703)°
The assertions on both examples are consequences of Thales theorem. These two
basic examples are particular cases of Theorem 1.

3.2.2 Ordered Subdivisions and Ordered Partitions of the Interval

Definition 8. A family (/,,),,ey of subintervals of I indexed by all finite words is
said to be an &/ -adic subdivision of I whenever
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Iy I Iy L

Fig. 3 Mappings generating a Bernoulli source and a stationary Markov chain of order 1. In both
cases, Lebesgue measure is the initial one

(i) forany w € #, I, is the disjoint union of 1,,,, & € <7;
(ii) for any («, B) € 72, forany w € #/,

a<f=Vxeln Vyelsg x<y.

Remark 4. For any integer p > 2, the usual p-adic subdivision of / is a particular
case of .«7-adic subdivision for which |«/| = p and |I,,| = p~™! for any finite
word w € # . For a general </ -adic subdivision, the intervals associated with two
k-length words need not have the same length.

The inclusion relations between the subintervals /,, of an <7 -adic subdivision are
thus coded by the prefix order in the complete |.<7|-ary planar tree. In particular, for
any w € # and for any cutset 2 of the complete | <7 |-ary tree,

I, = U I,

veEX

(this union is a disjoint one; see Sect. 2.1 for a definition of a cutset).

We will use the following convention for .«7-adic subdivisions: we require the
intervals 7, to be open on the left side and closed on the right side, except the ones
of the form Iy that are compact. Obviously, if p is any probability measure on
% = /N, there exists a unique .7-adic subdivision of I such that |I,,| = pu(wZ%)
foranyw e #'.

Given an .7 -adic subdivision of /, we extend the notation [, to right-infinite
words by
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VreZ, I, = ﬂ I,.

wEW
w prefix of r

Definition 9. A family (/,),ey of subintervals of / indexed by a totally ordered set
V is said to define an ordered topological partition of I when

() I =,y (1),
(ii) forany v,v' € V,v # Vv — int([,) N int(1/) = @,
(iii) for any v,V € V,

v<vV =Vxel, Vx el,, x <x'

where cl(/,) and int(/,) stand respectively for the closure and the interior of /,,.

We will denote
I=> 11,

veV

We will use the following fact: if I = Y ., 11, = Y,y 1 J, are two ordered
topological partitions of / indexed by the same countable ordered set V/, then I, =
J, forany v € V assoon as |1,| = |J,| foranyv e V.

3.2.3 Definition of the Mapping T

Let (U,)n>0 be a SVLMC, defined by its probabilized context tree (7, (¢c)cew)
and a stationary? probability measure 7 on .. We first associate with 7 the unique
o/ -adic subdivision (/,,),ex of I, defined by:

YweW, |I,| =xw),

(recall thatif w = & ... o, wis the reversed word ay . . . &y and that 7w (w) denotes
7 (LWw)).

We consider now three ordered topological partitions of /.

e The coding partition:
It consists in the family (/y)geor:

I=> 11,=1I+1.

o€

e The vertical partition:
The countable set of finite and infinite contexts % is a cutset of the .o/-ary
tree. The family (/.).c¢ thus defines the so-called vertical ordered topological

Note that this construction can be made replacing 7 by any probability measure on .Z.
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partition
I=> 11
cEF
e The horizontal partition:

/€ is the set of leaves of the context tree &/.7 = {aw, . € &/, we T}.
As before, the family (/y)qcecre defines the so-called horizontal ordered
topological partition

I= 3" 1l

ac€EAEC

Definition 10. The mapping 7 : I — [ is the unique left continuous function such
that:

(i) the restriction of 7" to any I, is affine and increasing;

(ii) for any ac € €, T(1y.) = I..

The function T is always increasing on /o and on /;. When ¢, («) # 0, the slope
of T on an interval I, is 1/g.(«). Indeed, with formula (7), one has

[{oc] = m(Ca) = g (o) (c) = |1Ic|gc(a).

When ¢. (o) = 0 and |I.| # 0, the interval /,. is empty so that 7" is discontinuous
at x, = n({s € £, 5 < c}) (< denotes here the alphabetical order on %). Note
that |I.| = 0 implies |/,.| = 0. In particular, if one assumes that all the probability
measures ¢., ¢ € %, are nontrivial (i.e. as soon as they satisfy ¢g.(0)g.(1) # 0),
then T is continuous on Iy and ;. Furthermore, T'(Iy) = cl(T' (1)) = I and for
anyc € ¢, T "I. = Iy U I, (see Fig. 4).

Example: the four flower bamboo. The four flower bamboo is the VLMC defined
by the finite probabilized context tree of Fig.5. There exists a unique stationary
measure 7 under conditions which are detailed later, in Example 3. We represent
on Fig. 5 the mapping 7" built with this m, together with the respective subdivisions

[0(’, I

Fig. 4 Action of T on horizontal and vertical partitions. On this figure, ¢ is any context and the
alphabet is {0, 1}
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of x-axis and y-axis by the four /. and the eight /.. The x-axis is divided by both
coding and horizontal partitions; the y-axis is divided by both coding and vertical
partitions. This figure has been drawn with the following data on the four flower
bamboo: ¢go(0) = 0.4, go10(0) = 0.6, go11(0) = 0.8 and ¢;(0) = 0.3.

3.2.4 Properties of the Mapping T

The following key lemma explains the action of the mapping 7" on the intervals of
the «7-adic subdivision (/,,),ey . More precisely, it extends the relation 7' (1,.) =
1., for any ac € /€, to any finite word.

Lemma 2. For any finite word w € # and any letter o € o7, T'(1y,) = I,.

Proof. Assume first that w ¢ 7. Let then ¢ € % be the unique context such that
c is a prefix of w. Because of the prefix order structure of the «7-adic subdivision
(I,)y, one has the first ordered topological partition

L= Y 11 ©)

vew . |v|l=|w|
c prefix of v

(the set of indices is a cutset in the tree of ¢ descendants). On the other hand, the
same topological partition applied to the finite word aw leads to

I, = Z Tlav-

vew, |vl=Iw|

¢ prefix of v
L L
’/
& Ton
11
+ 1010 | I
doo I()U 1
Iy I,
do10 do11 ) :
Tono Iy oo Iy
/N /TN

Toowo Loonn Liowo Lro1n

Fig. 5 On the left, the four flower bamboo context tree. On the right, its mapping together with
the coding, the vertical and the horizontal partitions of [0, 1]
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Taking the image by T, one gets the second ordered topological partition

L= Y 1T (10)

vew . |vl=|w|
¢ prefix of v

Now, if ¢ is a prefix of a finite word v, I, C Iy, and the restriction of T" to Iy, is
affine. By Thales theorem, it comes

1]
T(Iy)| = o] 5.
T )| = el 17

Since 7 is a stationary measure for the VLMC,

[{oc] = m(ca) = gc(o)m(c) = |1Ic|gc(@).

Furthermore, one has 7w (va) = ¢, ()7 (v). Finally, |T (14,)| = |I,|. Relations (9)
and (10) are two ordered countable topological partitions, the components with the
same indices being of the same length: the partitions are necessarily the same. In
particular, because w belongs to the set of indices, this implies that 7'(/,,) = 1.

Assume now that w € 7. Since the set of contexts having w as a prefix is a cutset
of the tree of the descendants of w, one has the disjoint union

CEE
w prefix of ¢

Taking the image by T leads to

T(Iaw) = U I.=1,

CEC ,w prefix of ¢

and the proof is complete. O

Remark 5. The same proof shows in fact that if w is any finite word, T7'1,, =
Iy, U I}, (disjoint union).

Lemma 3. Forany a € </, for any context ¢ € €, for any Borelian set B C I,
[le N T™'B| = |Blgc(a).

Proof. Itis sufficient to show the lemma when B is an interval. The restriction of T’
to Iy, is affine and T~'1. = Iy, U I;,. The result is thus due to Thales Theorem. O

Corollary 1. If T is the mapping associated with a SVLMC, Lebesgue measure is
invariant by T, i.e. |T "' B| = |B| for any Borelian subset of I.
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Proof. Since B = | J.co B N 1, (disjoint union), it suffices to prove that |7~ B| =
| B| for any Borelian subset of I, where ¢ is any context. If B C I, because of
Lemma 3,

IT™'B| = [lyNT™'B| + [[i N T™'B| = | B|(¢.(0) + q.(1)) = |B|.

3.2.5 SVLMC as Dynamical Source

We now consider the stationary probabilistic dynamical source ((Io)pewrs 05 T, |.])
built from the SVLMC. It provides the <7-valued random process (Y;)nen
defined by

Y, = p(T"§)

where £ is a uniformly distributed 7-valued random variable and p the coding
function. Since Lebesgue measure is 7T'-invariant, all random variables Y,, have the
same law, namely P(Y,, = 0) = |Io| = 7(0).

Definition 11. Two «7-valued random processes (V;,),en and (W,),en are called
symmetrically distributed whenever for any N € N and for any finite word w €
GNTLPWoW, ... Wy =w) =P(VoV...Vy =W).

In other words, (V},),en and (W,,),en are symmetrically distributed if and only if
forany N € N, the random words WyW; ... Wy and Vy Vy_; ...V, have the same
distribution.

Theorem 1. Let (U,),eny be a SVLMC and 7 a stationary probability measure
on Z. Let (X,)nen be the process of final letters of (Uy)yen. Let T : I — I be
the mapping defined in Sect. 3.2.3. Then,

(i) Lebesgue measure is T -invariant.

(ii) If € is any uniformly distributed random variable on I, the processes (X, )nen
and (p(T"§)),en are symmetrically distributed.

Proof. (i) has been already stated and proven in Corollary 1.

(ii) As before, for any finite word w = o ...any € #/, let B,, = ﬂ]]c\;o Tk Iy,
be the Borelian set of real numbers x such that the right-infinite sequence
(p(T"x))pen has w as a prefix. By definition, B, = I, if « € 7. More generally,

we prove the following claim: for any w € #, B, = I,. Indeed, if « € </
and w € #, By, = I, N T7'B,; thus, by induction on the length of w,
Byw = I, NT7'1, = I,,, the last equality being due to Lemma 2. There is

now no difficulty in finishing the proof: if w € # is any finite word of length
N + 1, then P(Xy...Xy = W) = w(w) = |I,,|. Thus, because of the claim,
P(Xy...Xy =w) = |B,,| =P(Y,...Yy = w). This proves the result. O
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qo1 /
qoo1

. /\ 0001 1y

qo> qon1 L

Iy L

Fig. 6 Infinite comb probabilized context tree (on the left) and the associated dynamical system
(on the right)

4 Examples

4.1 The Infinite Comb

4.1.1 Stationary Probability Measures

Consider the probabilized context tree given on the left side of Fig. 6. In this case,
there is one infinite leaf 0°° and countably many finite leaves 0”1, n € N. The data
of a corresponding VLMC consists thus in probability measures on &7 = {0, 1}:

oo and qor1, N € N.

Suppose that 7 is a stationary measure on .Z’. We first compute 7z (w) (notation
(5)) as a function of (1) when w is any context or any internal node. Because of
formula (7), 7(10) = n(1)q:(0) and an immediate induction shows that, for any
n=>0,

7(10") = 7 (1)cy, (1r)

where ¢yp = 1 and, for any n > 1,

n—1

cn =[] 401 (0). (12)

k=0

The stationary probability of a reversed context is thus necessarily given by
formula (11). Now, if 0" is any internal node of the context tree, we need going
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down along the branch in .7 to reach the contexts; using then the disjoint union
7(0"*t1) = 7(0") — (10"), by induction, it comes for any n > 0,

n—1

70 =1-7(1)> c. (13)

k=0

The stationary probability of a reversed internal node of the context tree is thus
necessarily given by formula (13).

It remains to compute 7 (1). The countable partition of the whole probability
space given by all cylinders based on leaves in the context tree (Formula (3)) implies
1 —7(0%°) =x(1) + #(10) 4+ 7(100) + ..., i.e.

1= 7(0%) =) m()ecy. (14)

n>0

This leads to the following statement that covers all cases of existence, unique-
ness and nontriviality for a stationary probability measure for the infinite comb.
In the generic case (named irreducible case hereunder), we give a necessary and
sufficient condition on the data for the existence of a stationary probability measure;
moreover, when a stationary probability exists, it is unique. The reducible case is
much more singular and gives rise to nonuniqueness.

Proposition 1. (Stationary probability measures for an infinite comb)
Let (Uy)n>0 be a VLMC defined by a probabilized infinite comb.
(i) Irreducible case. Assume that ggeo (0) # 1.

(i.a) Existence. The Markov process (Uy)n>0 admits a stationary probability
measure on . if and only if the numerical series y_, ¢, defined by (12) converges.

(i.b) Uniqueness. Assume that the series y_ ¢, converges and denote

S() =Y "cn. (15)

n>0

Then, the stationary probability measure w on £ is unique; it is characterized by
a(l) = —— (16)

and formula (11), (13) and (8).

Furthermore, 1 is trivial if and only if q,(0) = 0, in which case it is defined by
(1) = 1.

(ii) Reducible case. Assume that oo (0) = 1.

(ii.a) If the series Y_ ¢, diverges, then the trivial probability measure & on £
defined by w(0°°) = 1 is the unique stationary probability.
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(ii.b) If the series Y c, converges, then there is a one parameter family of
stationary probability measures on L. More precisely, for any a € [0, 1], there
exists a unique stationary probability measure 7w, on £ such that w,(0°) = a. The
probability t, is characterized by 7,(1) = % and formula (11), (13) and (8).

Furthermore, 7, is non trivial except in the two following cases:

e a =1, in which case m; is defined by 7, (0°) = 1;
e a =0andq,(0) =0, in which case my is defined by my(1°°) = 1.

Proof. (i) Assume that gooo (0) # 1 and that 7 is a stationary probability measure.
By definition of probability transitions, 7(0%°) = 7(0°°)g(0) so that 7 (0°°)
necessarily vanishes. Thus, thanks to (14), (1) # 0, the series Y ¢, converges
and formula (16) is valid. Moreover, when w is any context or any internal node
of the context tree, 7 (w) is necessarily given by formula (16), (11) and (13). This
shows that for any finite word w, m(w) is determined by formula (8). Since the
cylinders Zw, w € # span the o-algebra on .Z, there is at most one stationary
probability measure. This proves the only if part of (i.a), the uniqueness and the
characterization claimed in (i.b).

Conversely, when the series converges, formula (16), (11), (13) and (8) define
a probability measure on the semiring spanned by cylinders, which extends to a
stationary probability measure on the whole o-algebra on . (see Billingsley [3]
for a general treatment on semirings, o-algebra, definition and characterization of
probability measures). This proves the if part of (i.a). Finally, the definition of ¢,
directly implies that S(1) = 1 if and only if ¢;(0) = 0. This proves the assertion of
(i.b) on the triviality of .

(ii) Assume that goeo (0) = 1. Formula (14) is always valid so that the divergence
of the series Y ¢, forces (1) to vanish and, consequently, any stationary measure
7 to be the trivial one defined by 7 (0%°) = 1.

Besides, with the assumption ggeo (0) = 1, one immediately sees that this trivial
probability is stationary, proving (ii.a).

To prove (ii.b), assume furthermore that the series ) ¢, converges and let
a € [0, 1]. As before, any stationary probability measure 7 is completely determined
by 7 (1). Moreover, the probability measure defined by 7,(1) = %, formula (11),
(13) and (8) and in a way extended to the whole o-algebra on .Z is clearly stationary.
Because of formula (14), it satisfies

7,(0°) =1—-m,(1)S(1) = a.

This proves the assertion on the one parameter family. Finally, 7, is trivial only if
w,(1) € {0,1}. If a = 1 then 7, (1) = O thus 7y is the trivial probability that only
charges 0. If ¢ = 0 then 7,(1) = 1/S(1) is nonzero and it equals 1 if and only
if S(1) = 1, i.e. if and only if ¢;(0) = 0, in which case 7 is the trivial probability
that only charges 1°°. O

Remark 6. This proposition completes previous results which give sufficient condi-
tions for the existence of a stationary measure for an infinite comb. For instance, in
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Galves and Locherbach [12], the intervening condition is

> qga(1) = +oo,

k>0

which is equivalent with our notations to ¢, — 0. Note that if )_ ¢, is divergent,
then the only possible stationary distribution is the trivial Dirac measure §geo.

4.1.2 The Associated Dynamical System

The vertical partition is made of the intervals /¢ for n > 0. The horizontal partition
consists in the intervals Iop»; and Ion1, for n > 0, together with two intervals
coming from the infinite context, namely lpco and /jpcc. In the irreducible case,
7(0%°) = 0 and these two last intervals become two accumulation points of the
partition: O and 7(0). The following lemma is classical and helps understand the
behaviour of the mapping 7" at these accumulation points.

Lemmad. Let f : [a,b] — R be continuous on [a, b], differentiable on la,b[\ D
where D is a countable set. The function f admits a right derivative at a and

f@)= lim f'(x)

1
=
x&D

as soon as this limit exists.

Corollary 2. If (qo:1(0))nen converges, then T is differentiable at 0 and 7 (0) (with
a possibly infinite derivative) and

T/(0) =

T/(7(0)) =

e o1 (0)’ e gor1 (1)’

When (¢o+1(0)),en converges to 1, 7/(0) = 1. In this case, 0 is an indifferent fixed
point and 7/(7(0)) = +oo. The mapping T is a slight modification of the so-
called Wang map (Wang [27]). The statistical properties of the Wang map are quite
well understood (Lambert et al. [17]). The corresponding dynamical source is said
intermittent.

4.1.3 Dirichlet Series

For a stationary infinite comb, the Dirichlet series is defined on a suitable vertical
open strip of C as
A(s) = Y w(w)'.
weEW
In the whole section we suppose that > ¢, is convergent. Indeed, if it is divergent
then the only stationary measure is the Dirac measure doco and A(s) is never defined.
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The computation of the Dirichlet series is tractable because of the following
formula: for any finite words w,w' € #/,

awlw)z(1) = z(wh)mz(1w). (17)

This formula, which comes directly from formula (8), is true because of the very
particular form of the contexts in the infinite comb. It is the expression of its renewal
property. The computation of the Dirichlet series is made in two steps.

Step 1. A finite word either does not contain any 1 or is of the form w10", w € #/,

n > 0. Thus,
Als) =) w0 + Y Y w(wlo")'.

n>0 n>0 wey

Because of formula (17) and (16), 7 (w10") = S(1)w(wl)7(10"). Let us denote

A(s) =Y m(wl)',

weW

With this notation and formula (11) and (13),

1 A s
A(s) = ST Z:O RS + Ay(s) ’;c,,

where R,, stands for the rest

Rn = ch' (18)

Step 2. It consists in the computation of A;. A finite word having 1 as last letter
either can be written 0”1, n > 0 or is of the form wl10"1, w € #, n > 0. Thus it

comes,
A(s) =Y w01+ YY" a(wl0"1)'.

n>0 n>0 wew

By formula (17) and (11), #(w10"1) = w(wl)c,qo1(1) = m(wl)(c, — cn+1), SO
that

MO = 51 Xt A9 e =)

. ano C;
S 1- ano(cn —Cpt1)? .

Putting results of both steps together, we obtain the following proposition.

and
Aq(s) =

Proposition 2. With notations (12), (15) and (18), the Dirichlet series of a source
obtained from a stationary infinite comb is
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_ S (Ez0)’
A(s) = Sy g n T 1= =0(Cn = 1)

2
(ZnZO 0151
. . . =2 0ln—cuy1) .
because its denominator vanishes while its numerator is a convergent series.

Remark 7. The analytic function is always singular for s = 1

Examples. (1) Suppose that 0 <a < 1 and that g¢:;(0) = a for any n > 0. Then

n « . . .
¢, =a", R, = 1aTa and S(1) = ﬁ For such a source, the Dirichlet series is

1
1—[a* + (1 —a)]

A(s) =

In this case, the source is memoryless: all letters are drawn independently with the
same distribution. The Dirichlet series of such sources have been extensively studied
in Flajolet et al. [8] in the realm of asymptotics of average parameters of a trie.

(2) Extension of Example 1: take a,b €]0, 1] and consider the probabilized
infinite comb defined by

a if n is even,

901 (0) = %b if 1 is odd.

After computation, the Dirichlet series of the corresponding source under the
stationary distribution turns out to have the explicit form

1 a—+ab\’ 1—ab\’

A(S):l—(ab)s[1+(l+a) +(1+a)
y (14 a*)? :|
I—(aby —(1—ay —a(1—by ]’

The configuration of poles of A depends on arithmetic properties (approximation
by rationals) of the logarithms of ab, 1 — a and a(1 — b). The poles of such a series
are the same as in the case of a memoryless source with an alphabet of three letters,
see Flajolet et al. [8]. This could be extended to a family of examples.

(3) Let « > 2. We take data g¢:1(0), » > 0 in such a way that ¢) = 1 and, for
anyn > 1,

1 1
cn=C(n,a):= @;k_"

where ¢ is the Riemann function. Since ¢, € &' (n'~%) when n tends to infinity, there
exists a unique stationary probability measure 7 on .Z. One obtains
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B {la—1)
S(H)y=1+ —é‘(oz)
and, foranyn > 1,
_te-1 D —(n—
R, = (@) {(nya—1) = (n—1¢(n,a).

In particular, R, € ¢(n*~%) when n tends to infinity. The final formula for the
Dirichlet series of this source is

2
1 g (Zn>0 C;;)
A(s) = R+ ——

(4) One case of interest is when the associated dynamical system has an
indifferent fixed point (see Sect. 4.1.2), for example when

1 o
n(0)=(1———| ,
qor1(0) ( n+2)

with 1 < o < 2. In this situation, ¢, = (1 +n)™* and

2
A) = Y tnay + 22 :

= (@ I LT
SRS R )

n>1

4.1.4 Generating Function for the Exact Distribution of Word
Occurrences in a Sequence Generated by a Comb

The behaviour of the entrance time into cylinders is a natural question arising in
dynamical systems. There exists a large literature on the asymptotic properties of
entrance times into cylinders for various kind of systems, symbolic or geometric;
see Abadi and Galves [1] for an extensive review on the subject. Most of the results
deal with an exponential approximation of the distribution of the first entrance time
into a small cylinder, sometimes with error terms. The most up-to-date result on
this framework is Abadi and Saussol [2] in which the hypothesis are made only in
terms of the mixing type of the source (so-called a-mixing). We are here interested
in exact distribution results instead of asymptotic behaviours.

Several studies in probabilities on words are based on generating functions. For
example one may cite Régnier [20], Reinert et al. [21], Stefanov and Pakes [25].
For i.i.d. sequences, Blom and Thorburn [4] give the generating function of the first
occurrence of a word, based on a recurrence relation on the probabilities. This result
is extended to Markovian sequences by Robin and Daudin [24]. Nonetheless, other
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approaches are considered: one of the more general techniques is the so-called
Markov chain embedding method introduced by Fu [9] and further developed by
Fu and Koutras [10], Koutras [16]. A martingale approach (see Gerber and Li [13],
Li [18], Williams [28]) is an alternative to the Markov chain embedding method.
These two approaches are compared in Pozdnyakov et al. [19].

We establish results on the exact distribution of word occurrences in a random
sequence generated by a comb (or a bamboo in Sect.4.2.4). More precisely,
we make explicit the generating function of the random variable giving the r™®
occurrence of a k-length word, for any word w such that w is not an internal node
of 7.

Let us consider the process X = (X,),>0 of final letters of (U,),>0, in the
particular case of a SVLMC defined by an infinite comb. Let w = wy...wy be a
word of length k > 1. We say that w occurs at position n > k in the sequence X if
the word w ends at position n:

{watn} = {X—k41... Xy = w} ={U, € Lw}.

Let us denote by va,r) the position of the r occurrence of w in X and <1§,(v") its
generating function:
P (x) ==Y P(T\") =n)

n>0
The following notation is used in the sequel: for any finite word u € %, for any
finite context ¢ € ¥ and for any n > 0,

g ) =P (Xp—uit1--- Xn = u|X_(ej=1y - .. Xo =) .
These quantities may be computed in terms of the data g.. Proposition 3 generalizes
results of Robin and Daudin [24].

Proposition 3. For a SVLMC defined by an infinite comb, with the above notations,
for a word w such that w is non internal node, the generating function of its first
occurrence is given, for |x| < 1, by

Xk (w)

(1) _
20 = 98,0

and the generating function of its r' occurrence is given, for |x| < 1, by

vy — D) 1 )H
B (x) = &0 (x) (1 o)

where

Sw(x) = Cul(x) + Z gy X,
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k—1
Cw(x) =1+ Z l{wj-_H...wk=w1...wk7‘/}q(%f W) (Wk—j+l cee Wk) x/.
j=l

Remark 8. The term C,,(x) is a generalization of the probabilized autocorrelation
polynomial defined in Jacquet and Szpankowski [15] in the particular case when the
(X)n>0 are independent and identically distributed. For a word w = wy ... wy this
polynomial is equal to

k—1 1
cw(x) = ch’wn(w—xj’
j=0 b

..Wk_j)

where ¢;,, = 1 if the k — j-length suffix of w is equal to its k — j-length prefix,
and is equal to zero otherwise. When the (X,,),>0 are independent and identically
distributed, we have

k—1

) . rr(w) .
Zl{wj+1...wk=w1...wk7j}q }Ef (w) (Wk—j-H x] chw x/
j=1 « Wi— J)
that is

Cy(x) = m(w)ey(x).

Proof. We first deal with w = 10¥~!, that is the only word w of length k such
that W € . For the sake of shortness, we will denote by p, the probability that
Tvﬁl) = n. From the obvious decomposition

{watn} = {va,l) =n}U {va,l) <nandwatn}, (disjointunion)

it comes by stationarity of

n—1

w(w) = py + Z p-P (Xn—k+l Xy = W|Tyf~l) = Z) .
=k

Due to the renewal property of the comb, the conditional probability can be rewritten

PXp—tt1... Xy =W X,py1... X, =w)ifz<n—k
0 ifz>n—k

the second equality being due to the lack of possible auto-recovering in w.
Consequently, we have

(W) = pn + Z Pal " (w).
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Hence, for x < 1, it comes

xn(w) anx +Z szqwn (),

so that
xkn(w)
-V (1) ()
— x) 1+§qu .
which leads to .
eW(x) = T(w) ‘
A R XS

Note that when w = 10!, C,,(x) = 1.
Proceeding in the same way for the r" occurrence, from the decomposition

{watn} = {va,l) =n}U {va,z) =njU...U {va,’) =n}U {Tvﬁ") < nandw at n},

and denoting p(n,{) = P(T,f.{) = n), the following recursive equation holds:

n—1
aw) = p,+pmn,2)+...+ pn,r) +ZP(TVY) = Zandwatn).
=k

Again, by splitting the last term into two terms and using the non-overlapping
structure of w, one gets

W) = pu+ p(n.2) + ...+ p(n.r) + szq(” I (w).
=k

From this recursive equation, proceeding exactly in the same way, one gets for the
generating function, for x < 1,

vy — oD 1 )H
D (x) =@, (x) (1 5.0 .

Let us now consider the case of words w such that w ¢ .7, that is the words w such
that w; = 1 for at least one integer j € {2,...,k}. We denote by i the last position
of a 1 in w, that is fﬁf (w) = 0F~71. Once again we have

n—1

w(w) = py + Z p-P (Xn—k+l Xy = W|Tyf~l) = Z) .
=k
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When z < n — k, due to the renewal property, the conditional probability can be

rewritten as
1 (n—z
P(Xytp1... X, =w|TV =2) =¢ }}rrezf) o (W)

w1 Wk—n+z Wk
Z n
1 1
T T
wi Wp—z+1 Wi

When z > n — k (see figure above),

1 (n—2)
P (W at anw = Z) = l{w,,_z+1...wk=w1...w'k_n+z}q }szer (W)(Wk—n+z+l cee Wk)v

this equality holding if » — k + i # z. But when k=i

z = n — k + i, because the first occurrence of w w=%10---0
is at z, necessarily wy = 1 and hence i = k, and 1 f
z = n which contradicts z < n. Consequently for n—kti  n

z=n—k + i we have
P (Xn—k+l Xy = W|Twl = Z) =0= l{wn_z_H...wk=w1...wk_n+z}-

Finally one gets

n—k
T(W) = pa+ 3 pq" ()W)

z=1

n—1

(n—z
+ Z pzl{wn_z_H...wk=w1...wk_,,+z}q }}pTer) (W) (Wk—n+z+l cee Wk)s

z=n—k+1
and hence
k
xKaw)/(1 —x)
o (x) = —— o
i () j ()
1+ Z X’q “pref (W)(W) + Z x/ l{wj-+|4.4w1(:w14.4wk7,'}q “pret (W)(Wk—j+l oo WE)
=k j=1

Proceeding exactly in the same way by induction on r, we get the expression of
Theorem 3 for the r-th occurrence. O

Remark 9. The case of internal nodes w = 0 is more intricate, due to the absence
of any symbol 1 allowing a renewal argument. Nevertheless, for the forthcoming
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q(01)"00

q(01)>°

Qo1+

Fig. 7 Bamboo blossom probabilized context tree (on the left) and the associated dynamical
system (on the right)

applications, we will not need the explicit expression of the generating function of
such words occurrences.

4.2 The Bamboo Blossom

4.2.1 Stationary Probability Measures

Consider the probabilized context tree given by the left side of Fig. 7. The data of
a corresponding VLMC consist in probability measures on .« indexed by the two
families of finite contexts

(qo1y"1)n=0 and (g01)700)n>0

together with a probability measure on the infinite context g1y

As before, assuming that 7 is a stationary probability measure on .Z’, we compute
the probabilities of any w(w), W being an internal node or w being a context, as
functions of the data and of both 7 (1) and 7(00). Determination of stationary
probabilities of cylinders based on both contexts 1 and 00 then leads to assumptions
that guarantee existence and uniqueness of such a stationary probability measure.

Computation of 7 (w), w Context
Two families of cylinders, namely .£’1(10)" and .-Z2°00(10)", correspond to contexts.
For any n > 0, 7(1(10)"™!) = 7(1(10)")qo1y1(1)q1(0) and (00(10)"*1) =
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m(00(10)")g01)y200(1)q1(0). A straightforward induction implies thus that for any
n=>0,
7(1(10)") = m(1)cn (1)
19)
7(00(10)") = 7(00)c,(00)

where ¢o(1) = ¢o(00) = 1 and

n—1

cn(1) = q1(0)" l_[ qonri(1)
k=0

n—1
¢ (00) = q1(0)" | | gony00(1)
k=0

forany n > 1.

Computation of 7 (w), w Internal Node
Two families of cylinders, .20(10)" and .Z(10)", correspond to internal nodes. By
disjoint union of events, they are related by

(0(10)") = 7((10)") — w(1(10)")
2((10)"+1) = w(0(10)") — 7(00(10)")

for any n > 0. By induction, this leads to: Vn > 0,

7(0(10)") = 1 — 7(1)S, (1) — 7(00)S,-1(00)
(20)
7((10)") = 1 =7 (1)S,—1 (1) — 7(00)S,-1(00)

where S_;(1) = S_(00) = 0 and, for any n > 0,
Su(1) = 3 k=g (1)

S, (00) = > _, ¢k (00).

These formula give, by quotients, the conditional probabilities on internal nodes
defined by (6) and appearing in formula (8).

Computation of 77 (1) and of 7 (00)
The context tree defines a partition of the set . of left-infinite sequences (see (3)).
In the case of bamboo blossom, this partition implies

1= 7((10)®) = Y " w(1(10)") + Y w(00(10)") 1)

n>0 n>0
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=Y w(D)ea(1) + Y 7(00)c, (00). (22)

n>0 n>0

We denote

S(l) = ZnZO C*’l(l)

S(00) = 3,50 ¢a(00) € [1, 400].
Note that the series S(1) always converges. Indeed, the convergence is obvious if

q1(0) # 1; otherwise, ¢;(0) = 1 and ¢,(1) = 0, so that any ¢, (1), n > 1 vanishes
and S(1) = 1. In the same way, the series S(00) is finite as soon as ¢; (0) # 1.

Proposition 4. (Stationary measure on a bamboo blossom)
Let (Uy)n>0 be a VLMC defined by a probabilized bamboo blossom context tree.

(i) Assume that q,(0) # 1, then the Markov process (Uy),>0 admits a stationary
probability measure on £ which is unique if and only if S (1)—S(00)(1+¢1(0))# 0.

(ii) Assume that ¢;(0) = 1.

(ii.a) If S(00) = oo, then (U,)n>0 admits m = %8(10)00 + %5(10)001 as unique
stationary probability measure on L.

(ii.b) If S(00) < oo, then (U,)n>0 admits a one parameter family of stationary
probability measures on L.
Proof. (i) Assume that ¢;(0) # 1 and that 7 is a stationary probability measure.
Applying (7) gives

7((10)%) = q1(0)g (o1 (D7 ((10)*) (23)

and consequently 7((10)*°) = 0. Therefore, (21) becomes S(1)rx(1) +
S(00)7(00) = 1. We get another linear equation on 7 (1) and 7(00) by disjoint
union of events: 7(0) = 1 — (1) = 7 (10) + 7(00) = 7(1)g,(0) + 7(00). Thus
(1) and 7 (00) are solutions of the linear system

S(1)m(1) + S(00)7(00) = 1
(24)
[1 + ¢1(0)] 7(1) + 7(00) = 1.

This system has a unique solution if and only if the determinantal assumption
S(1) = S00) [T +4¢1(0)] #0

is fulfilled, which is a very light assumption (if this determinant happens to be
zero, it suffices to modify one value of some ¢,, u context for the assumption to
be satisfied). Otherwise, when the determinant vanishes, System (24) is reduced
to its second equation, so that it admits a one parameter family of solutions.
Indeed,
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1< S() <14+ q0)(1=41(0) + Y q1(0)" (1 =g1(0)) = 1 +¢1(0)

n>2

and S(00) > 1, so that S(1) — S(00)(1 + ¢;(0)) = 0 implies that S(1) = 1+ ¢,(0)
and S(00) = 1. In any case, System (24) has at least one solution, which ensures
the existence of a stationary probability measure with formula (20), (19) and (8) by
a standard argumentation. Assertions on uniqueness are straightforward.

(ii) Assume that ¢;(0) = 1. This implies g;(1) = 0 and consequently S(1) = 1.
Thus, 7 (1) and 7 (00) are solutions of

7(1) + S(00)7(00) = 1 — 7((10)%)
(25)
27(1) + 7(00) = 1.

so that, since S(00) > 1, the determinantal condition S(1) — S(00)(1 + ¢1(0)) # 0
is always fulfilled.

(ii.a) When S(00) = oo, (00) = 0, (1) = 1 and 7((10)>) = 1. This defines
uniquely a stationary probability measure 7. Because of (23), g1)eo (1) = 1 so that
7((10)®°1) = 7((10)®)) = 1. This shows that 7 = 181000 + 3810001

(ii.b) When S(00) < oo, if we fix the value a = x((10)°°), System (25)
has a unique solution that determines in a unique way the stationary probability
measure 7. O

4.2.2 The Associated Dynamical System

The vertical partition is made of the intervals I(o1)100 and I(1y»; for n > 0. The
horizontal partition consists in the intervals Zoo1y200, 101700, Zoo1y»1 and Iy
for n > 0, together with the two intervals coming from the infinite context, namely
Io1yee and I(o1yo-. If we make an hypothesis to ensure 77((10)°°) = 0, then these
two last intervals become two accumulation points of the horizontal partition, ag
and a;. The respective positions of the intervals and the two accumulation points
are given by the alphabetical order

0(01)"7'00 < 0(01)"00 < 0(01)* < 0(01)"1 < 0(01)"'1
1(01)"7'00 < 1(01)"00 < 1(01)>® < 1(01)"1 < 1(01)"~'1

Lemma 5. If (q01)00(0))nen and (qo1y1(0))nen converge, then T is right and left
differentiable in ay and a, — with possibly infinite derivatives — and

1
T/(ap) = lim ————, T/(ap) = lim
17004 (01)"00(0) n>00 4 (01)"1(0)
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. 1 .
T/(a)) = lim ———, T/(a;) = lim .
n=>00 ¢ (01)"00(1) n=>00 g (01" 1(1)

Proof. We use Lemma 4. O

4.2.3 Dirichlet Series

As for the infinite comb, the Dirichlet series of a source generated by a stationary
bamboo blossom can be explicitly computed as a function of the SVLMC data. For
simplicity, we assume that the generic Condition (i) of Proposition 4 is satisfied.
An internal node is of the form (01)” or (01)"0 while a context writes (01)"00 or
(01)"1. Therefore, by disjoint union,

Als)=A(s)+ > 7w00(10)") + > x(wl(10)")’

n=0we¥ n=0.we¥

where

A(s) =D w((10)")" + Y 7 (0(10)")°

n>0 n>0

is explicitly given by formula (20) and (24). Because of the renewal property
of the bamboo blossom, formula (7) leads by two straightforward inductions to
w(w00(10)") = m(w00)c,(00) and 7w (wl1(10)") = w(wl)c,(1) for any n > 0.
This implies that

A(s) = A(s) + Ano(s) Y y(00) + A1 (s) Y ea(1)

n>0 n>0

where

Ago(s) = Y w(w00)' and Ay(s) = Y m(wl)'.

weW weW

It remains to compute both Dirichlet series Aoy and A;, which can be done by a
similar procedure.
By disjoint union of finite words,

Aw(s) = Apo(s) + Y w(w00(10)"00) + » " m(wl(10)"00)* (26)

n>0we¥w n>0wew
where
An(s) = Y 7((10y'00)° + > w(0(10)"00)°
n>0 n>0
and

Ai(s) = Ai(s) + Y ww00(10)"1)' + > w(wl(10)"1)*  (27)

n>0wew n>0,we¥w
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with

Ai(s) =Y m((10)"1)" + Y m(0(10)"1)".

n>0 n>0

Computation of A; and A
By disjoint union and formula (7),

7((10)"7100) = 7(0(10)"00) — 7(00(10)")¢(01y700(0)g00(0), 1 > 0
and
7(0(10)"00) = 7((10)*00) — 7 (1(10)")g(01y71(0)g00(0), n > 1

where 7(00(10)") and 7 (1(10)") are already computed probabilities of con-
texts (19). Since 7(000) = m(00)goo(0), one gets recursively 7((10)"00) and
7(0(10)"00) from these two relations as functions of the data. This computes Agg.
A very similar argument leads to an explicit form of A;.

Ultimate Computation of A; and A
Start with (26) and (27). As above, for any n > 0, by induction and with formula (7),

7 (w00(10)"00) = 7(w00)c, (00)g01y100(0)g00(0).
In the same way, but only whenn > 1,

7(wl(10)"00) = w(wl)c, (1)go1y71(0)q00(0).

Similar computations lead to similar formula for 7 (w00(10)"1) and 7 (w1(10)"1),
for any n > 0. So, (26) and (27) lead to

Ago(s) = Aoo(s) + Aroo(s) + Ago(s)Boo(s) + A1(s)Bi(s) (28)

where By (s) and Bj(s) are explicit functions of the data and where

Aigo(s) = Y m(wl00).

weW

As above, after disjoint union of words, splitting by formula (7) and double
induction, one gets

Avoo(s) = Aroo(s) + Aoo(s)Coo(s) + A1(s)Ci(s)

where Apo(s), Coo(s) and C,(s) are explicit series, functions of the data. Replacing
Ajgo by this value in formula (28) leads to a first linear equation between Agy(s)
and A;(s). A second linear equation between them is obtained from (27) by
similar arguments. Solving the system one gets with both linear equations gives an
explicit form of Ago(s) and A;(s) as functions of the data, completing the expected
computation.
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4.2.4 Generating Function for the Exact Distribution of Word
Occurrences in a Sequence Generated by a Bamboo Blossom

Let us consider the process X = (X, ),>0 of final letters of (U, ),>o in the particular
case of a SVLMC defined by a bamboo blossom. We only deal with finite words
w such that w is not an internal node, i.e. W is a finite context or w ¢ .7. One can
see that such a word of length k > 1 can be written in the form *11(10)17 or
*00(10)17, with p € {0, 1} and £ € N, where * stands for any finite word.

Proposition 5. For a SVLMC defined by a bamboo blossom, with notations of
Sect. 4.1.4, the generating function of the first occurrence of a finite word w =
Wi ... wy is given for |x| < 1 by

XK (w)

(1 - T NI
P ) = 5.0

and the generating function of the r'™ occurrence of w is given by

vy — D) 1 )H
%m-%awl%@ ,

where

() if w is of the form x00(10)" or x11(01)%0, with £ € N, S,,(x) is defined in
Proposition 3 and

(ii) if w is of the form %00(10)‘1, £ € N,

o0
Su(x) = Cul®) + Y 101000 X7
j=k

k—1
Cw(-x) =1+ Z I{Wj+l~~~Wk=Wl---kaj}qii(gl)loo (Wj+l cee Wk) x7/.
j=1

and if w is of the form ¥11(01)¢, £ € N,

o0
Su(x) = Cul®) + Y d(lg iy, (0¥,
j=k

k—1

§ () j
Cw(x) =1+ I{Wj+1~~~Wk=W1---kaj}q({o)lll (Wj+l .. -Wk) x/.

Jj=1

Proof. (i) We first deal with the words w such that

pref (w) = (01)'00 or  pref (w) = (01)‘1.
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Let us denote by p, the probability that TV = n. Proceeding exactly in the same
way as for Proposition 3, from the decomposition

n—1

w(w) = pn + ZPZP(Xn—k+l Xy = W|Tv£,1) = Z) ,
=k

and due to the renewal property of the bamboo, one has

n—k
7(w) = pn + ZpZP (Un € Xw\U; € Zsuff(w))
=k

n—1

+ Z pzl{wn72+l~~~wk=wl---Wk7n+z}P (Un €Zw
z=n—k+1

U e suff(w))

where suff(w) is the suffix of w equal to the reversed word of fﬁf (w). Hence, for
x < 1, it comes

xkrr(w) +o0 +o0 —k

_ (n—z)

1—x - anx” + an szq pref (w)(w)
n=k n=k 7=k

n—1

+o00
(n—=2)
+ an Z pzl{w,,_z_;,_l...wk:wl...wk_,,+z}q (l;f (w) (W)
n=k z=n—k+1

which leads to the expression of oM (x) given in Proposition 3. The r™ occurrence
can be derived exactly in the same way from the decomposition

fwatn} = {T"V =ny U{TP =n}U...U{TY =} U{T" < nandwatn}.

(ii) In the particular case of words w = %00(10)1, the main difference is that
the context 1 is not sufficient for the renewal property. The computation relies on
the equality

P(Xy—it1-.. Xu = w|TD =2)

—P (X,,_k+1 Xy = WXt X, = 00(10)‘31).

The sketch of the proof remains the same replacing ¢ e ov) (W) bY q101yt00(W)-
The case w = *11(01)* is analogous. O
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5 Some Remarks, Extensions and Open Problems

5.1 Stationary Measure for a General VLMC

Infinite comb and bamboo blossom are two instructive but very particular examples,
close to renewal processes. Nevertheless, we think that an analogous of Proposi-
tions 1 or 4 can be written for a VLMC defined by a general context tree with a
finite or countable number of infinite branches.

In order to generalize the proofs, it is clear that formula (8) in Lemma 1 is crucial.
In this formula, for a given finite word w = o ...y € # itis important to check
whether the subwords fﬁf (aq...0x), k < N, are internal nodes of the tree or not.
Consequently, the following concept of minimal context is natural.

Definition 12. (Minimal context) Define the following binary relation on the set
of the finite contexts as follows:

Yuve€F, u<v<e=dww e, v=wun

(in other words u is a sub-word of v). This relation is a partial order. In a context
tree, a finite context is called minimal when it is minimal for this partial order on
contexts.

Remark 10. (Alternative definition of a minimal context) Let .77 be a context
tree. Let ¢ = ay ...« be a finite context of .7. Then ¢ is minimal if and only if
Vke{l,...,N —1}, pref (a1 ...ax) ¢ €7 (7).

Example 1. In the infinite comb, the only minimal context is 1. In the bamboo
blossom, the minimal contexts are 1 and 00.

Remark 11. There exist some trees with infinitely many infinite leaves and a finite
number of minimal contexts. Take the infinite comb and at each 0F branch another
infinite comb. In such a tree, the finite leaf 10 is the only minimal context.

Nonetheless, a tree with a finite number of infinite contexts has necessarily a
finite number of minimal contexts.

As one can see for the infinite comb or for the bamboo blossom (see Sects. 4.1.1
and 4.2.1), minimal contexts play a special role in the computation of stationary
probability measures. First of all, when 7 is a stationary probability measure and
w a finite word such that w ¢ .7, formula (8) implies that w(w) is a rational
monomial of the data ¢, () and of the 7 («) where u belongs to 7. This shows that
any stationary probability is determined by its values on the nodes of the context
tree. In both examples, we compute these values as functions of the data and of
the 7r(m), where m are minimal contexts, and we finally write a rectangular linear
system satisfied by these 7 (m). Assuming that this system has maximal rank can
be viewed as making an irreducibility condition for the Markov chain on .Z. We
conjecture that this situation happens in any case of VLMC.
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Fig. 8 (n + 1)-teeth comb
probabilized context tree

q1

q01

/\ qoo1

qoutly qon1

In the following example, we detail the above procedure, in order to understand
how the two main principles (the partition (3) and the disjoint union) give the linear
system leading to the irreducibility condition.

Example 2. Let 7 be a probabilized context tree corresponding to Fig. 8 (finite
comb with n + 1 teeth). There are two minimal contexts: 1 and 0" *!. Assume that &
is a stationary probability measure on .. Like in the case of the infinite comb, the
probability of a word that corresponds to a teeth is 7(10F) = 7(1)ct, 0 < k < n
where ¢y is the product defined by (12). Also, the probabilities of the internal nodes
and of the handle are

7(0F) =1—m(1)Sk—1, 0<k <n+1,

where S, := Zf=0 ¢;. By means of these formula, 7 is determined by 7 (1).
In order to compute 7 (1), one can proceed as follows. First, by the partition
principle (3), we have 1 = 7 (0" 1) + 7 (1) Y7 _, ck- Secondly, by disjoint union,

(0" = (0" ) + 7 (10" = 7 (0" ) ggr41(0) + 7(10")gor1 (0).
This implies the linear relation between both minimal contexts probabilities:

(0"t + S, (1) =1
qorr1 (D7 (0"+Y) — g1 (0)c,u 7 (1) = 0.

In particular, this leads to the irreducibility condition ¢y.+1(1)S, + ¢o:1(0)c, # 0
for the VLCM to admit a stationary probability measure. One can check that this
irreducibility condition is the classical one for the corresponding .<7-valued Markov
chain of order n + 1.

Example 3. Let 7 be a probabilized context tree corresponding to Fig.5 (four
flower bamboo). This tree provides another example of computation procedure
using formula (7) and (8), the partition principle (3) and the disjoint union.
This VLMC admits a unique stationary probability measure if the determinantal
condition

goo(D[1 + q1(0)] + ¢1(0)%¢010(0) + q1(0)g1(1)go11(0) # 0

is satisfied; it is fulfilled if none of the ¢, is trivial.
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5.2 Tries

In a first kind of problems, n words independently produced by a source are inserted
in a trie. There are results on the classical parameters of the trie (size, height, path
length) for a dynamical source Clément et al. ([6]), which rely on the existence of
a spectral gap for the underlying dynamical system. We would like to extend these
results to cases when there is no spectral gap, as may be guessed in the infinite comb
example.

Another interesting application consists in producing a suffix trie from one
sequence coming from a VLMC dynamical source, and analyzing its parameters.
For his analysis, Szpankowski [26] puts some mixing assumptions (called strong
a-mixing) on the source. A first direction consists in trying to find the mixing type
of a VLMC dynamical source. In a second direction, we plan to use the generating
function for the occurrence of words to improve these results.

Acknowledgements We are very grateful to Antonio Galves, who introduced us to the challenging
VLMC topics. We warmly thank Brigitte Vallée for valuable and stormy discussions.
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