Chapter 2
Almost Periodic Solutions

In the present chapter, we shall state some basic existence and uniqueness
results for almost periodic solutions of impulsive differential equations.
Applications to real world problems will also be discussed.

Section 2.1 will offer the existence and uniqueness theorems for almost
periodic solutions of hyperbolic impulsive differential equations.

In Sect.2.2, using weakly non-linear integro-differential systems, the
existence and exponential stability of almost periodic solutions of impulsive
integro-differential equations will be discussed.

In Sect. 2.3, we shall study the existence of almost periodic solutions for
forced perturbed impulsive differential equations. The example here, will state
the existence criteria for impulsive differential equations of Lienard’s type.

Section 2.4 will deal with sufficient conditions for the existence of almost
periodic solutions of impulsive differential equations with perturbations in
the linear part.

In Sect. 2.5, we shall consider the strong stability and almost periodicity
of solutions of impulsive differential equations with fixed moments of impulse
effect. The investigations are carried out by means of piecewise continuous
Lyapunov functions.

Section 2.6 is devoted to the problem of the existence of almost periodic
projektor-valued functions for dichotomous impulsive differential systems.

In Sect.2.7, we shall investigate separated solutions of impulsive differ-
ential equations with variable impulsive perturbations and we shall give
sufficient conditions for almost periodicity of these solutions.

Finally, in Sect. 2.8, the existence results for almost periodic solutions of
abstract differential equations in Banach space will be given. Applications for
impulsive predator—prey systems with diffusion will be considered.
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34 2 Almost Periodic Solutions
2.1 Hyperbolic Impulsive Differential Equations

In this paragraph, we shall consider the following systems of impulsive
differential equations with impulses at fixed moments

{z‘zA(t)z—i-f(t), t # b, 1)
Az(tk) =bg, k==+1,42,...,
and
i= Az + F(t,2), t # ty, 22)
Az(ty) = In(2(ty)), k= +1,42,.. ., '

where t € R, {tx} € B, A: R>R™" f:R—->R" b,eR”, F:R x 2 —
R™, I, : £2 — R,

By z(t) = z(t;to, 2z0), we denote the solution of (2.1) or (2.2) with initial
condition z(t]) = 20, to € R, 29 € R™. Together with the systems (2.1) and
(2.2), we shall consider the corresponding homogeneous system

3= At). (2.3)

Definition 2.1 ([71]). The system (2.3) is said to be hyperbolic, if there
exist constants o > 0, A > 0 and for each t € R there exist linear spaces
M™(t), and M~ (t), whose external direct sum is M T ()& M~ (t) = R", such
that if 290 € M¥(tg), then for all ¢ > ty the inequality

[|2(; to, 20)|| < al|zolle™ "),
holds true, while if zo € M ~(ty) then for all ¢ < ¢y, we have
[|2(; to, 20)|| < al|zol[e* 7).

In this part, we shall investigate the existence of almost periodic solutions
of systems (2.1) and (2.2), assuming that the corresponding homogeneous
system is hyperbolic.

Introduce the following conditions:

H2.1. The matrix function A € C[R,R"*"] is almost periodic in the sense
of Bohr.

H2.2. The function f € PC[R,R"] is almost periodic.

H2.3. The sequence {by}, k = £1,42,..., is almost periodic.

H2.4. The set of sequences {t]}, t, = tpy; — tn, k = £1,£2,...,
j = +1,+2,.., is uniformly almost periodic, and infit; = 6 > 0.

H2.5. The function F € C[R x 2,R"] is almost periodic with respect to ¢
uniformly in z € 2.
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H2.6. The sequence of functions {I(z)}, Iy € C[2,R"], k = +1,+2,...,
is almost periodic with respect to k uniformly in z € (2.

We shall use the following lemmas:

Lemma 2.1. Let conditions H2.1-H2.4 hold. Then for each & > 0 there exist
€1, 0 < &1 < e, arelatively dense setT" of real numbers, and a set P of integer
numbers, such that the following relations are fulfilled:

(a) ||A(t+71)—A@)|| <e, teR, T€T.

M) ||ft+7)—fO)| <e, teR, T€T.

(c) ||brtqg —brl| <e, g€ P, k==£1,£2,....
(d) [t} —7|<e1, qeP, 7T, k==+1,4+2,....

The proof of Lemma 2.1 is analogous to the proof of Lemma 1.7.

Lemma 2.2. Let the system (2.3) is hyperbolic and the condition H2.1 holds.
Then there exists a non-singular transformation, defined by almost periodic
matriz S(t), S € C[R,R™ "], which reduces the system (2.1.3) into the next
ones

i=Q"(t)x (2.4)
and
y=Q (t)y (2.5)

where z € R¥, y € R*%, Qt € C[R,R¥*¥], Q— € C[R,R(~Fx(=F)] qnd
the following assertions hold true:

1. QT (t) and Q(t) are almost periodic matriz-valued functions.
2. If dT(t,s) and &~ (,s) are the corresponding fundamental matrices of the
systems (2.4) and (2.5), then the following inequalities hold true:

187 (¢, 5)|| <ae 9, > s, (2.6)
187 (t,5)|| <@, ¢ <, (2.7)

where s,t € R, @ > 0.

3. For each ¢ > 0, t € R, s € R there exists relatively dense set T of
e—almost periods, such that for each T € T, fundamental matrices &+ (t, s)
and D~ (t, s) satisfy the inequalities

Bt (t+7,5+7)— Dt (L, s)]| <eKe 2079 ¢ >, (2.8)
|6~ (t+7,5+7)— D (t,s)]| <cKe? %) ¢ <s, (2.9)

where X\ >0, K > 0.
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Proof. Assertions 1 and 2 are immediate consequences of Theorem 1 in [71].
In fact, following the ideas used in [71], we define the matrix S(¢) to be
formed by the vector-columns, which are solutions of (2.3). It follows from
the condition H2.1, that S(¢) consists of almost periodic functions. On the
other hand, the transformation z = S(¢)u rewrites (2.3) in the form

= Q(t)u,

where

Q) = 571 M (AMSE) - $1)).

Hence, Q(t) is an almost periodic function. The estimates (2.6) and (2.7)
are direct consequences of Theorem 1 in [71].

To prove Assertion 3, let T (¢, s) and &~ (1, s) be the fundamental matrices
of systems (2.4) and (2.5), respectively. Then for each ¢ > 0 the following
relations hold true

8@;(;, s) =Q ()T (t+ 71,5+ 7)+ (Q+(t—|— ) — Q+(t)>¢+(t+7,s+r),
8@73—(575) =Q (M2 (t+7s+7)+ (Qi(t‘FT) - Qi(t))@*(t—kr,s—kr)
and

ST (t+7,8+7)=DT(t,5)
+/: 2 (0,0) (@0 +7) ~ Q7)) (0 + 7.5 + ),
S (t+ 7.5+ 7) =D (13)
+ /: o (t,v) (Q—(v ) - Q‘(v))@‘(v 7,5+ 7)dv.
Therefore,
9+ 7o 1) - @l < [ 19 CIIIQ0+1)
— QT |||F (v + 7,5+ 7)||dv,
=t +7,s+7) =2 (¢,s)] < /:||¢_(tav)||||Q_(U+T)

—Q W2~ (v+ 7,5+ 7)||dv.
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It follows from (2.6), that

|87 (t+7,5+7) = &7 (t,5)]| <eKe 2079 ¢ >,
where in this case K = (@)?.
The proof of (2.9) is analogous. O

From Lemma 2.2 it follows that, by a transformation with the matrix S(¢),
system (2.1) takes on the form

@ =Q* )+ fH(t), t#ty,
Ax(ty) = b, k=+1,42,...,
y=Q (t)y+ f(1), t # tr,
Ay(ty) = b, , k=%1,£2,...,

(2.10)

where z € R¥, y e R*F f*:R - RF, f~:R — R" % b and b, are k
and n — k-dimensional constant vectors, respectively.

In an analogous way, the system (2.2) after a transformation with the
matrix S(t), goes to the form

T=QV (t)x + FT(t,x,y), t # tg,
Ax(ty) = L (x(t), y(tr)), k=£1,£2,...,
y=Q ()y+F (t,z,y), t #tx,
Ay(te) =1, (x(te), y(te)), k=£1,£2,...,

(2.11)

where F© @ R x RF x R*™™% — RF, F~ : R x RF x R** — R"* and
IF  RF x R"F 5 RE, I i RF x Rk — Rk,

Theorem 2.1. Let the following conditions hold:

1. Conditions H2.1-H2./ hold.
2. The system (2.3) is hyperbolic.

Then for the system (2.1) there exists a unique almost periodic solution, which
is exponentially stable.

Proof. We consider the following equations

x(t) = /t Dty 5) fT(s)ds + Y DTt 1)y,

—o0 tp<t
y(t) = / & () (s)ds + 3 @ (1, )b
t te >t

which are equivalent to the (2.10).
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Let € > 0 be an arbitrary chosen constant. It fo_llows from Lemma 2.1 that
there exist sets T" and P such that for each 7 € T and ¢ € P, the following
estimates hold true:

|z(t +7) — ()| =/ 127 (t+ 7,5+ 7) = T (L 9)|[I1£7 (s + 7)llds

t
+/ 127 (& )1 (s+7) = f7(s)llds
+ )BT+ T tg) — B ()16 |
te<t
+ > Nt )l — bl (2.12)
te<t

and
ly(t +7) —y@)ll = /too D™ (t+ 7,5 +7) =2 (L, s)|lI[f7 (s + 7)llds

+/too||¢(t78)llllf(8+T)—f(8)||d8

+ ) NI+ 7 thrg) = 27 (E )11y
>t

+ > 18 () [0k g — br |- (2.13)

t>t,
From Lemma 2.2, (2.12) and (2.13), we have

lz(t+ 7) — z(t)|| < Kie, (2.14)
where

2K @ 2Na 2Na
K= —=swl[fTOll+ ¥+ ——= sw [+

A teRr A1 —e 3 petl 2, —e N
In the same manner, we obtain
ly(t+7) =yl < Kae, (2.15)
where
2K a 2Na 2Na
Ky = —supl|f (¢)||+~+—F sup b, + .
2= sl Ol 5 sl
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The number N, which is defined in the last inequalities, is from Lemma 1.2
Now, from (2.14) and (2.15), we conclude that the solution z(t) = (z(t), y(t))
of system (2.1) is almost periodic.

On the other hand, each solution (z(t),y(t)) of (2.1) can be written in the
form

x(t) = DT (t,tg)x + /t Dt (t,s)ft(s)ds + Z DF(t, )b,

to s<tp<t

y(t) = — /too B (t,8)f " (s)ds + Y & (t,tx)by

t >t

where x is a constant k-dimensional vector.
It follows that, for two different solutions z;(t) and z2(t) of system (2.1)
the estimate

ll22(t) = z2(0)] < @] [21(to) — 22(to)] (2.16)
holds true.
Thus, (2.16) implies that the solution z(¢) of (2.1) is unique and exponen-
tially stable. ad
Let 2 = By,.

Theorem 2.2. Let the following conditions hold:

1. Conditions H2.1, H2.4—H2.6 hold.

2. The system (2.3) is hyperbolic.

3. The functions F(t,z), Ix(z), k = +£1,£2,..., are Lipschitz continuous
with respect to z € By, with a Lipschitz constant L > 0, 1.e.,

[|F(t,21) — F(t, 20)|| + |1k (21) — Ik (22)|] < L]|z1 — 22|,

and they are bounded, i.e. there exists a constant L1 > 0, such that

maz( swp |F@2)l s [I()]) = Ly < oo,
teR,zeBy, k=+1,42,..., z€By,

4. The following inequalities hold

a 2aN
LI(X—’——I—&*)‘) < h,

(T

Then for the system (2.2) there exists a unique almost periodic solution.
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Proof. Denote by AP the set of all almost periodic solutions ¢(t), ¢ €
PCI[R, §2], such that ||¢|| < h.

We define in AP the operator SAP, such that if ¢ € AP, then
¢ = (pt,07), where o : R — RF ¢~ : R — R" % SAPp =
(SAPpT,SAPp™), u = SAPpT is the almost periodic solution of

U= QJr(t)u + F+(ta (p(t)),t 7£ lk,
Au(ty) = LT (p(ty)), k = £1,£2,...,

and v = SAPp~ is the almost periodic solution of

{f} = Q (v + F~(t,p(t).t # tr,
Au(ty) = I (p(tg)), kb = £1,£2, .. ..

The existence of almost periodic solutions u(t) and v(t), is guaranteed
by Theorem 2.1. In fact, the almost periodicity of the sequence {p(tx)},
k = +1,£2,... follows from Lemma 1.5, and from the method for find-
ing of common almost periods, we obtain that the sequence {Ij(p(tx))},
k = +1,£2,...., is almost periodic, also. The almost periodicity of the
function F'(t, (t)) follows from Theorem 1.17. Further on, conditions 2 and
3 imply that SAP(AP) C AP.

Let ¢, 1» € AP. Then, the estimate

/1 2N
154Pg — SAPY|| < La(5 + 1 )lo — Yl

where |¢ — 1|oo = sup ||p(t) — ¥ (¢)|| holds true.
teR

It follows from condition 3, and from the last inequality, that SAP is
a contracting operator on SAP. Hence, for the system (2.2) there exists a
unique almost periodic solution. a

2.2 Impulsive Integro-Differential Equations

In this section, we shall present the main results on the existence of almost
periodic solutions of impulsive integro-differential systems.

Consider the following linear system of impulsive integro-differential
equations

&= A(t)a(t) +t{ K(t,s)x(s)ds + f(t), t # tr, (2.17)

Ax(tk) = Bkilf(tk), k= :|:1, :|:2, ceey
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where t € R, {t;} € B, A € PC[R,R*™"], K € PC[R%,R"™™"], f €
PC[R,R"™], B, € R"™*™ k= +1,42,....
The solution of (2.17), x(t) = x(t;tg, zo) with initial condition x(t]) =
xg,to € R, z¢p € R", is characterized at the following way:
1. For t # tg, k= +1,+£2,..., the mapping point (¢, z(¢)) moves along some
of the integral curves of the system

& = A(t)z(t) + / K(t,s)z(s)ds + f(1).

2. At the moment t = t;, k = +1,42,..., the system is subject to an
impulsive effect, as a result of which the mapping point is transferred
“instantly” from the position (t,z(tx)) into a position (tg,z(tx) +
ka(tk)). Afterwards, for ¢ < t < tp41 the solution z(t) coincides with
the solution y(t) of the system

§ = Alt(t) + f K(t. 8)y(s)ds + F(O), ¢ % be,
y(tx) = x(tx) + Bra(ty), k=+£1,4£2,...,

At the moment ¢ = t;1, the solution is subject to a new impulsive effect.
We shall, also, consider weakly nonlinear impulsive integro-differential
systems

£(t) = AW)(t) + [ K(ts)a(s)ds + Pt 2(1)). £ # b (2.18)

AI(tk) = BkZE(tk), k= :|:1, :|:2, ceey

where F(t,z) € PC[R x R",R"], and

aRgz, s) _ A(t)x(t) +/K(t,v)R(v,s)dv, § F# by, t# ty,
to

(2.19)
R(t{,s) = (E + By)R(ty,s), k=+1,%2,...,

where R(t, s) is an n x n-dimensional matrix function and R(s,s) = E, E is
the identity matrix in R"™.

Lemma 2.3 ([131]). If R(t,s) is a solution of (2.19), then the unique
solution x(t) = x(t;to, xo) of (2.17) is given by
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x(t) = R(t,to)z(to) + /R(t,s)f(s)ds, z(td) = 2o.

Introduce the following conditions:

H2.7. There exists an n x n-dimensional matrix function R(t,s), satisfying
(2.19).

H2.8. det(E + By) £0, k= +1,+2,. ...

H2.9. plA(t) — R(t,t)] < —a, o> 0, p[.] is the logarithmic norm.

Lemma 2.4 ([15]). Let conditions H2.7-H2.9 hold.
Then
|R(t, 5)|| < Kye*t), (2.20)

where K1 >0, t > s.

Remark 2.1. In the special case, when in (2.17), K(t,s) = 0, we obtain the
linear impulsive system

{j: =At)z + f(t), t # ti,
AI(tk) = ka(tk), k= :|:17 :|:27 RN

Then, from Lemma 2.3, it follows, respectively, well known variation
parameters formula [94], where R(¢,s) is the fundamental matrix and
R(to,to) = E.

We shall investigate the existence of almost periodic solutions of systems
(2.17), (2.18), and we shall use the following conditions:

H2.10. A(t) is an almost periodic n x n-matrix function.

H2.11. The sequence {By}, k= +1,£2,... is almost periodic.

H2.12. The set of sequences {t]}, k = £1,4+2,..., j = £1,£2,... is
uniformly almost periodic, and infit; =60 > 0.

H2.13. The matrix K (¢, s) is almost periodic along the diagonal line, i.e. for
any € > 0, the set T'(K,e) composed from e-almost periods 7, such
that for 7 € T(K,¢), K (¢, s) satisfies the inequality

|K(t+ 71,54 7)— K(t,s)|| <ee 209,
t > s, is relatively dense in R.
H2.14. The function f(t), f € PC[R,R"] is almost periodic.

H2.15. The function F(t, z) is almost periodic along ¢ uniformly with respect
to x € £2.

We shall use the next lemma, which is similar to Lemma 1.7.
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Lemma 2.5. Let conditions H2.10-H2.12 and H2.1/4 hold. .
Then for each € > 0 there exist e1, 0 < €1 < g, a relatively dense set T of

real numbers and a set P of integer numbers, such that the following relations
are fulfilled:

(a) ||[A(t +7) — A(t)|| <e, teR, 7€T.

) |Ift+7)—f@)|| <e, teR, TET, |t —tgx] >¢, k==41,42,....
(¢) ||Bryq — Bil| <e, g€ P, k=+1,%2,....

(d) [ty — 7| <e1, qe P, 7€T, k=+1,42,....

Lemma 2.6. Let conditions H2.7-H2.13 hold.
Then R(t,s) is almost periodic along the diagonal line and the following
inequality holds

|R(t+ 7,5+ 7) — R(t,s)|| <ele 2= (2.21)

where t > s, I' >0, € >0, 7 is an almost period.

Proof. Let € > 0 and 7 be a common e-almost period of A(t) and K(t, s).
Then, for s # t, t # t}., we have

OR(t+ 1,54+ 7)

5 =AWR{t+71,s+7)+ (At +7) — A(t))R(t+ 7,5 +7T)

t

x/(K(t+r,v+7')—K(t,v))R(v+T,s+7’)dv
t

+ [ Kt oR+ rs - rd,

S

and
Rty +71,s4+7) = (E+ Bp)R(t), + 7,8+ T) + (Bsq — Bp)R(tx + 7,5 + 7),

where ¢}, = t,, — 7 and 7, ¢ are the numbers from Lemma 2.5.
Hence, from (2.19), we obtain

R(t+7,s+7)— R(t,s)

t

= /R(t, u)(A(u+7) — A(w))R(u+ 7,5 + 7)du

S
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/Rtu / (U+T,U+T)—K(U,U)R(U+T,S+T)dv)du

+ > R Byiq — B)R(t, + 7,5+ 7). (2.22)

s<t) <t

From Lemma 2.5, it follows that, if [t —#;[ > e, € R, then ¢}, <t+7 <
thyqr1 and from (2.20), (2.22), we obtain

[|IR(t+ 7,5+ 7)— R(t,s)]| < K125 (e_a(t_s)(t —s)+ %(a_%(t_s)i(&t)e_a(t_s))7

where i(t, ) is the number of points ¢ in the interval (¢, s).
Now, from the condition H2.12 and Lemma, 1.2, it follows that there exists
a positive integer N, such that for any ¢t € R, s € R and ¢t > s the following
inequality holds
i(s,t) < (t—s)N + N.
Therefore,
[|R(t +7,s+7)— R(t,s)|| <ele 5=5)

p N
where t > 5, I'= K22 (1+ N—i—Ta)

The next theorems are the main in this paragraph.
Theorem 2.3. Let conditions H2.7-H2.14 hold.

Then for the system (2.17), there exists a unique exponentially stable
almost periodic solution (t), such that

2K,
< — . .
eIl < = max| £ (2.23)

Proof. Consider the function

t

o(t) = / R(t, s)f(s)ds. (2.24)

— 00

From (2.19), (2.24), and Fubini’s theorem, it follows that

s = [ 20 psyas+ s

— 00

t

= / (A(t)R(t,s)-i— / K(t,u)R(tau)du)ﬂs)derf<t)

— 00
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t t

=A(t)cp(t)+/(/K(t,u)R(u,s)f(s)ds)du

= A(t)p(t) + /K(t,s)ga(s)ds + f(t), (2.25)

where s < t, s # tg, t 1, k==+1,£2,....
On the other hand, for t = t;, k = +1,+2, ..., we have

Ap(tr) = p(t;) — @(tr) = Brep(tr). (2.26)

Then, from (2.25) and (2.26), it follows that ¢(t) is a solution of system
(2.17).
From Lemma 2.4, we obtain

el < [ IR sl lds < 25 max (o)

Let 7 € T, q € P, where T and P are determined in Lemma 2.5. From
Lemma 2.6, it follows that

llp(t +7) — eIl = / |R(t+ 7,5 +7)f(s +7) — R(t,5) [ (s)||ds

— 00

s/Wm@+ns+ﬂ—RW$mu@+ﬂw5

+ / 1Rt )| f (s +7) = f(s)llds

(2.27)

where M = m3§<||f(t)|| The estimate (2.27) means that ¢(t) is an almost

periodic function.
Let n(t) is one other solution of (2.17). Then, from (2.20), it follows that

lle(t) = n(t)]] < Kie= =" jp(to) — n(to)],

and we obtain that the solution ¢(t) is unique and exponentially stable. O
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Theorem 2.4. Let the following conditions hold:

1. Conditions H2.7-H2.18, and H2.15 hold.
2. The function F(t,x) is Lipschitz continuous with respect to x € By, with
a Lipschitz constant L > 0, i.e.

||F(t,$1) —F(t,.fz)” < L”Il _‘r2||7 T1,T2 € Bhv

and F(t,x) is uniformly bounded, i.e. there exists a constant G > 0, such
that
1E(E, )] < G, lz]] < h.

3. The following inequalities hold

K KL
1G<h, — < 1
«

«

Then there exists a unique exponentially stable almost periodic solution of
(2.18).

Proof. Let us denote by AP the set of all almost periodic functions ¢(t),
¢ € PC[R,R"], satisfying the inequality ||¢(t)|] < h, and let |p(t)|ec =
sup [|¢(t)]].
teR

In AP, we define an operator S

t

Se = /R(t,s)F(t,cp(s))ds. (2.28)

— 00

Let ¢ € AP. From (2.28), it follows that

IS¢l < /IIR(LS)IIIIF(t,sD(S))IIdS

t

K
< K, / e =) qds < LYY (2.29)
a
On the other hand, from Theorem 1.17, it follows that the function
F(t,o(t)) is almost periodic, and let 7 be the common almost period of ¢(t)
and F(t,o(t)).
Then,

1St +7) = Se(d)]|

< [ IRG+ s+ 1) F(sypls 4 ) = Rt 9)F (s 0() s

— 0o

< (BT 5 (2.30)
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Hence, using (2.29) and (2.30), we obtain that S(AP) C AP.
Let ¢ € AP, n € AP. From (2.28) and Lemma 2.6, we have

1S¢(t) = Sn(t)]| < / IR, $)I[[[F(s, 0(s)) = F(s,m(s))]|ds

— 00

< B ot) — (D) (2.31)

Therefore, the inequality (2.31) shows that S is a contracting operator
in AP, and hence, there exists a unique almost periodic solution of system
(2.18).

Now, let 1(t) is one other solution of (2.18). Then, Lemma 2.3 and (2.20)
imply that

() = (@)l

t
< Killo(to) = w(to)l[e "~ + /Kle_a(t_s)Lllw(S) —(s)[lds. (2.32)

Set
o(t) = |l(t) — v (t)]]e*®.

From (2.32) and Gronwall-Belman’s inequality, we have
u(t) < Klv(to)exp(/KlLds).

Consequently,

le(t) = ¥(@)]] < Kullp(to) — w(to)||erEm =t

From the last inequality, it follows that ¢(t) is exponentially stable. a

2.3 Forced Perturbed Impulsive Differential
Equations

In this part, we shall consider sufficient conditions for the existence of almost
periodic solutions for forced perturbed systems of impulsive differential
equations with impulsive effects at fixed moments.
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We shall consider the system

{x'_A(t)x+g(t)+uX(t,x,,u), t # t, (2.33)
Az(ty) = Bra(ty) + gx + pXi(x(te), ), k=+£1,4£2,..., '

where t € R, {tx} e B,A: R >R g: R > R", pe M CR, X:
Rx2xM—R" By € RV, g € R™, Xp: 2 x M — R", k= +1,42, ...,
Denote by z(t, u) = 2(¢; to, 2o, ) the solution of (2.33) with initial condi-
tion z(ty, 1) = z0, w0 € 2, p € M.
We shall use the following definitions:

Definition 2.2. The system

P = A+ 9(0), 1 £ 1, .
Ax(ty) = Brx(ty) + gr, k= =+1,%+2,..., '

is said to be generating system of (2.33).

Definition 2.3 ([56]). The matrix A(t) is said to has a column dominant
with a parameter o > 0 on [a, b], if

ai;(t) + Z |aji(t)| < —a <0,
J#i

for each 4,5 =1,...,n, and t € [a, b].

Introduce the following conditions:

H2.16. The matrix function A € C[R,R™*"] is almost periodic in the sense
of Bohr.

H2.17. {By}, k= =+1,4£2,... is an almost periodic sequence.

H2.18. det(E + By) # 0, k = £1,+2,... where F is the identity matrix in
Rnxn.

H2.19. The function g € PC[R,R"] is almost periodic.

H2.20. {gx}, k= +1,£2,...is an almost periodic sequence.

H2.21. The function X € C[R x 2 x M,R"] is almost periodic in ¢ uniformly
with respect to (z,u) € 2 x M, and is Lipschitz continuous with
respect to z € By, with a Lipschitz constant [, > 0, such that

X (t, 2, 1) — X (¢ y, Wl < hllz —yll, 2,y € B,
for any t € R and p € M.

H2.22. The sequence of functions { X (z,p)}, k= +1,£2,..., X € C[2 %
M,R"™] is almost periodic uniformly with respect to (z, u) € 2 x M,
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and the functions X}, are Lipschitz continuous with respect to x € By,
with a Lipschitz constant I > 0, such that

[ Xk (2, 1) — Xic(y, Wl < 2|z —y[|, 2,y € Ba,

for k==+1,+2,..., pe M.
H2.23. The set of sequences {t]}, t] =tpy; — tu, k= £ 1,£2,..., j =
+1,42,... is uniformly almost periodic, and infit; = 6 > 0.

We shall use the next lemma, which is similar to Lemma 1.7.

Lemma 2.7. Let conditions H2.16, H2.17, H2.19, H2.20 and H2.23 hold.
Then for each € > 0 there exist €1, 0 < €1 < €, a relatively dense set T of
real numbers, and a set P of integer numbers, such that the following relations

are fulfilled:

(a) |A(t+7) — A(t)]| <e, teR, T€T.

() llgt+7)—gt)|| <e, teR, T€T, |t —tgx] >e, k=41,42,....
(¢c) ||Bi+q — Brll <&, q€ P, k=41,+2,....

(@) |lgr+q — gkl <&, g€ P, k=+1,£2,....

(e) |t} —7|<e1,qe P, 7€T, k=+1,£2,....

Lemma 2.8. Let conditions H2.19, H2.20 and H2.23 hold.

Then there exists a positive constant Cy such that

maz(sup [|g(t)|[, sup  |[gkl]) < C1.
ter k=+1,+2,...

Proof. The proof follows from Lemma 1.7. O
Lemma 2.9 ([138]). Let the following conditions hold:

1. Conditions H2.16-H2.18 and H2.23 are met.
2. For the Cauchy matriz W (t,s) of the system

= A(t)z, t #tg,
AI(tk) = ka(tk), k= :|:17 :|:27 ceey

there exist positive constants K and \ such that
W (t, )] < Ke ),

where t > s, t,s € R.

Then for anye >0, t e R, s € R, [t —tx| > >0, |[s—tg| > ¢, k=
+1,%£2,..., there exists a relatively dense setI" of e-almost periods of matriz
A(t) and a positive constant I', such that for 7 € T it follows
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W (t+7,s+7) = W(t,s)|| <ele 309,

Now, we are ready to proof the main theorem.
Theorem 2.5. Let the following conditions hold:

1. Conditions H2.16-H2.23 are met.
2. There exists a positive constant Ly, such that

mar{ sup ||X(tz,p)ll sup ([ Xi(z,pll} < Lo

b
tER k=+1,+2,...
(z,u)EQRXM (w,n)EQXM

3. For the generating system (2.34), there exists a unique almost periodic
solution.

Then there exists a positive constant po, po € M such that:

1. For any p, |u| < po and C < Cy, where the constant C1 is from Lemma 2.8,
there exists a unique almost periodic solution of (2.33).
2. There exists a positive constant L such that

| (t, p1) — x(t, p2)|| < Lips — pol,

where t € R, |u;| < po, i =1,2.

3. For |u| — 0, z(t, ) converges to the unique almost periodic solution of
(2.34).

4. The solution x(t, ) is exponentially stable.

Proof of Assertion 1. Let we denote by AP, the set of all almost periodic
functions (¢, 1), ¢ € AP € PC[R x M,R"| satisfying the inequality ||o|| <

C,and let |pleoc = sup ||t w)||
teR, peM
In AP, we define the operator .S,

Se = /_too Wi(t,s) (9(8) + 1 X (s, (s, 1), u))ds

+> W(tatk)(gk + u Xk (e(tr, M)aﬂ))- (2.35)

te<t

From Lemma 2.8 and Lemma, 2.9, it follows

ISell = [ 1w (e (lo(o)-+ ell X st ) ) s

— 00

+ S W1 (gl + Ll X (ot ), 1)1
K KN )

<(Ci+ |M|L1)(X R gy
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Consequently, there exists a positive constant pq such that for pu €
(—p1, 1) and C = (Cy + |M|L1)(§ + ﬂ) < (1, we obtain

1—e— A
ISl < C. (2.36)

Now, let 7 € T, ¢ € P, where the sets T and P are determined in
Lemma 2.7. From Lemma 1.5 and Theorem 1.17, we have

[[S(t + 7, 1) — Seo(t, )]

< [ Wi s+ n - wies)(lgts + 7

1lllX (s + 7ol 7)) ) ds
[l (s + 1) - gl

+ | X (s +7,0(s +7,1), 1) — X(S,so(sau)w)ll)ds
+ DWW+ Toterq) = W )| (llgedl

tp<t

|l X g (P (tatar 1), )11

+ S IW )l (llgnra — gl

tp<t

|l X (g ), 1) = X (ot ), )

<<+ Mm)(% + %) O+ M)(% + %)) (2.37)

Thus, by (2.35) and (2.36), we obtain Sy € AP.
Let ¢ € AP, ¢ € AP. Then from (2.35), it follows

IS¢ — Sy < |M|[ W (t, )11 X (s, 0(5, 1), 1) = X (s,35(s, ), )| ds

kD IW S X0 (s 1), 1) = X (@t 1), )|

tp<t
l2

e
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Since there exists a positive constant pg < pq such that

1y lo
MOK(X + l—e*A> <L

we have that S is a contracting operator in AP.

Proof of Assertion 2. Let ¢; = @,(t, 1), 7 =1,2, and |p | < po-
Then,

t

lon = all <l =gl ([ 1IW (e S)IIX 52015 pa) s s

— 0o

+ I X (s ), 1))

t <t

el ([ WP s pa(s,m). ) = X502l na). s

— 00

SN ABIPACKTNENTES ACHONTNTSI)

te<t
< Llpa — pol, (2.38)
where ; ; ; N
_ l 2 B 1 2
L_LlK(AJH—efA)(l “OK)K(A+1—67A)'
Proof of Assertion 3. Let we denote by x(t) the almost periodic solution of
(2.33).

From (2.35) and Lemma 2.9, it follows

t

lattop) =l < 1l [ WX 551 ds

— 00

+ 2w tlIXe (et 1), )

te<t

1 N
(N
< Il )\+1—e_>‘

Then x(t, u) — x(t) for |u| — 0.

Proof of Assertion 4. Let y(t) be an arbitrary solution of (2.34). Then using
(2.35), we obtain

y(t) — x(t, p) = W(t, to) (y(to) — x(to, 1))

([ W) (X(s.5(5), 1) = X (5,5, 1), 1) ds

to

DT W) (Xaly(t) ) — Xi(alte, ), m))-

to<tr<t
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Now, we have
ly(8) — a(t, w)l| < Ke 7|y (to) — a(to, )|

t
+lul( [ Kue 9 y(s) — as, ) lds

to

+ 3 Klge**“*tk’IIy(tk)—w(tkau)H)'

to<tp<t

Set u(t) = ||y(t) — z(t, u)||e~* and from Gronwall-Bellman’s inequality,
it follows

lly() = 2(t, w)l| < Klly(to) —(to, w)l|(L + [ K1) o eATIRIETR) )

where i(t, s) is the number of points ¢ in the interval (¢, s). Obviously, if there
exists u € M such that N In(1+|u|Kl1)+|u|Kl2 < A, then the solution x (¢, 1)
is exponentially stable. a

Lemma 2.10. Let the following conditions hold:

1. Conditions H2.16, H2.17 are met.
2. The matriz-valued function A(t) has a column dominant with a parameter
a>0 forteR.

Then for the Cauchy’s matriz W (t, s) it follows
W (t,s)|| < Kem2),

wheret € R, seR, t>s, K >0.
Proof. The proof follows from the definition of matrix W(t, s). O

Example 2.1. We consider the following system of impulsive differential
equations of Lienard’s type:

k
+g;i+uXk(x(tk)7 (), 1), (2.39)
) @(tr), 1), k= +1,+2,.

where t € R, x € R, u € M, {tx} € B, the functions f € PC[R,R], ¢q €
PC[R,R] are almost periodic, the function h € C[R? x M,R] is almost
periodic in ¢ uniformly with respect to x,2 and pu, b7' € R, g* € R, the
sequences {b'}, {g"} are almost periodic, X € C[R? x M,R] and the
sequences {X'}, k= £1,£2,..., m = 1,2, are almost periodic uniformly
with respect to z, 2 and pu.
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Set

y
g = (af(t) —a® = f(t))x — ay — q(t) + ph(t, 2, p),

= gyc)’ Al) = (a];f((tt))—a 2 f(t) —1a>’ X = (2)’

(
5= )
-

) —a) X} + X3
: 0)
() —a)by — b3 (f(tk) — a) b}

1
_ Ik _ 0
Ik = » g(t) = :
()=o) 10 = L)
Then, we can rewrite system (2.39) in the form

{z—A(t>z+g(t)+uX(t,z,u>, t # t,

Now, the conditions for the column dominant of the matrix A(t) are

l<a< = ( —1+\/ )—1) +4f(t)—4f(t)),
a—f(t)+|aft)—a —f(t)‘<0,

ie.
(F(1) = 1)* <4f() < (F() +1)%, (2.40)
2f(t) — f(t) —2> 0. '
Theorem 2.6. Let the following conditions hold:

1. Condition H2.23 and the inequalities (2.40) are met.

2. bpb 4+by + b +140, k==+1,42,....

3. The functions h(t,x,z,pn), Xg(x,&,u) are Lipschitz continuous with
respect to x and & uniformly fort € R, k = +1,+2,..., and p € M
respectively.

Then there exists a positive constant po, po € M such that:

1. For any p, || < po the system (2.39) has a unique almost periodic solution.

2. The almost periodic solution is exponentially stable.

3. For |u| — 0 the solution is convergent to the unique almost periodic
solution of the system
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S AWz 1 olt), £ £ 1,
Az(ty) = Brz(te) + gr, k=+£1,42,....

Proof. The proof follows directly from Theorem 2.5. ad

Now, we shall consider the following systems

z = f(t,x), t # tg,
{ A;v(tk) = Ik(x(tkl;), k= :|:1, :|:2, ceey (2-41)
and
{:.E_f(tvx)+g(t)+ﬂX(taxaU)v t?’étkv (242)
Ax(ty) = In(x(tr)) + gk + uXp(x(tr), p), k==+1,+2,.... '

Introduce the following conditions:

H2.24. The function f € C[R x 2, R"] is almost periodic in ¢ uniformly with
respect to x € {2 and it is Lipschitz continuous with respect to x € By,
with a Lipschitz constant I3 > 0, such that uniformly in ¢t € R

1f @t 2) = f(& o)l < sllz —yll, =,y € B

H2.25. The sequence of functions {I;}, I € C[2,R"], k = £1,+2,... is
almost periodic uniformly with respect to € (2, and the functions
I}, are Lipschitz continuous with respect to x,y € Bj, with a Lipschitz
constant l4 > 0, such that

Mk () = Ie(y)l| < lallz = yl],

where z,y € By, k=+1,4+2,....

We shall suppose that for the system (2.42) there exists an almost periodic
solution ¢(t), and consider the system

b= P e, 10,
(2.43)
Az(ty) = %@p(m), k=+1,42,....

Let

Li(0) = sup |[[f(t,0(t) +2) = f(£, @),

teR, z€Bs

Ly(6) = sup 11k (p(te) + 2) — Ii(o(te))]l-
k=+1,42,..., 2€Bs
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Theorem 2.7. Let the following conditions hold:

1. Conditions H2.19-H2.25 are met.

2. Condition 2 of Theorem 2.5 holds.

3. For the Cauchy’s matriz W1(t,s) of the system (2.43), conditions of
Lemma 2.3.5 are met.

4. There exist positive constants Cy, C1, Co and py such that

K of K
X(l?’ + poli + sup ||%(t7@(f))||) + ﬁ(ls + pola

0
i oz U <1,
k:isllﬁz... I Oz (e k>)||)

K of
T (Ot oLy +sup |50 o))

K p
+ Y (C2 + poly + k:fﬁihn ||%(S"(tk))||> < Co.

Then there exists a positive constant ug € M, and for any p, |p| < uo,
system (2.42) has a unique almost periodic solution, such that:

L z(t, 1) — (@[] < Co.

2. lim x(t,pu) = x(t,0).
|| =0

3. The solution x(t, ) is exponentially stable.

Proof. Set x = z + ¢(t) and from (2.43), it follows the equation
. of

ox
AZ(tk) = Lj(w(tk)) + Rk(z(tk)) + ,UX(Z(tk) + <P(tk,,u), ‘u)7 (2.44)

k=41,42, ...,

where

R(t,2) = f(t, o(t) +2) — f(t.o(t)) + g(t) g

Ry (2) = Ix(p(t) + 2) — I(p(tk)) + gr — %(sﬁ(tk))-

(t, go(t))z,

Let AP, AP C PC[R x M,R"] is the set of all almost periodic functions
o(t, p), satisfying the inequality ||¢|| < Co.
Let us define in AP an operator Sy,

Sz = / ; Wa(t, ) (R(t,2(5)) + pX (s, 2(5) + o(s), ) ) ds

+ Z Wi (t,tk)(Rk(Z(tk)) + puXk(z(tr) + (p(tk))>. (2.45)

tp<t
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From (2.45), Lemma 1.5, Theorem 1.17, Lemma 2.8 and the conditions of
Theorem 2.7 it follows that the operator S, is contracting in AP. Hence, there
exists a unique almost periodic solution z(t, ) of system (2.44). Moreover,
x(t, ) = z(t, u) + p(t) is an almost periodic solution of (2.42). The proof of
Assertions 1-3 are analogous to the proof of Theorem 2.5. O

2.4 Perturbations in the Linear Part

In this paragraph, sufficient conditions for the existence of almost periodic
solutions of differential equations with perturbations in the linear part, are
obtained.

We shall consider the system of impulsive differential equations

i=Alt)z+ f(t), t # t,
{Ax(tk) = Apz(ty) +lg, k==+1,+2,..., (2.46)

where t € R, {tx} € B, A: R — R"™" f:R — R", A, € R"*" [, € R,
E==£1,4£2,.... By z(t) = x(t; to,x0) we denote the solution of (2.46) with
initial condition z(t;) = zo, to € R, z¢ € (2.

Together with the system (2.46), we shall consider the following systems
of impulsive differential equations with perturbations in the linear part:

{:b = (A(t) + B(t))z + f(t), t #ty, (2.47)
Ax(ty) = (Ak-l—Bk)x(tk)-f—lk, k==+1,42,..., '

and

{;b = (A(t) + B(t))z + F(t,x), t # ty, (2.48)

Ax(ty) = (Ak + Bk)x(tk) + In(2(ty)), k==+1,+2,...,

where B : R — R"™ " F : R x 2 — R", B, € R, and I : 2 — R",
k=+1,42, ...

Introduce the following conditions:

H2.26. The matrix function A € C[R,R™*"] is almost periodic in the sense
of Bohr.

H2.27. det(FE + Ay) # 0, where F is the identity matrix in R™, and the
sequence {Ay}, k= 41,%2,.. . is almost periodic.

H2.28. The set of sequences {1}, t, = tpy; —te, k = £1,£2,..., j =
+1,42, ... is uniformly almost periodic, and in fxt) = 6 > 0.

H2.29. The function f € PC[R,R"] is almost periodic.

H2.30. The sequence {l}, k = £1,42,... is almost periodic.
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H2.31. The matrix function B € C[R,R"*"] is almost periodic in the sense
of Bohr.
H2.32. The sequence {Bj}, k= +1,+2,... is almost periodic.

Let us denote with W (¢, s) the Cauchy matrix for the linear impulsive
system

{A.I(tk) :Akx(tk), k = :|:Li2,.”7 (249)

and with Q(¢, s) the Cauchy matrix for the linear perturbed impulsive system

{;b = (A(t) + B(t))z, t # ts,
Az(ty) = (Ak + Bi)z(ty), k= +£1,£2,....

In this part, we shall use the following lemmas:

Lemma 2.11 ([138]). For the system (2.46) there exists only one almost
periodic solution, if and only if:

1. Conditions H2.26-H2.30 hold.
2. The matriz W (t, s) satisfies the inequality

W (t,5)]| < Kem (=), (2.50)

where s <t, K >1, a>0.

Lemma 2.12 ([148]). Let the following conditions hold:

1. Conditions H2.26-H2.28, H2.31 and H2.32 hold.
2. For K>1, a>0 and s <t, it follows

[|[W(t, )] < Keolt=s),
Then:

1. If there exists a constant d > 0 such that

sup ||B(t)|| <d, sup |[|Bkl| <d,
tE(to,00) ty € (to,00)

then _
1|Q(t, s)|| < Kef(ade)(tfs)Jrz(s,t)’ (2.51)

where s < t.
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2. If there exists a constant D > 0 such that

| 1@+ Y 184 < b,

to to<tk

then
1Q(t, 5)|| < KeXPema(t=2), (2.52)

where s < t.
The proof of the next lemma is similar to the proof of Lemma 1.7.

Lemma 2.13. Let the conditions H2.26-H2.32 hold. Then for each € > 0
there exist 1, 0 < €1 < g, a relatively dense set T of real numbers and a set
P of integer numbers, such that the following relations are fulfilled:

(a) ||[A(t +7) — A(t)|| <e, teR, T€T.

(b) |B(t+7)—B(t)||<e, teR, 7€T.

(c) |1fit+71)—ft)||<e, teR, T€T.

(d) ||Aktq — Akll <e, g€ P, k=+1,£2,....

(e) ||Br+q — Bil| <&, g€ P, k==+1,%£2,....

(f) ||lk+q—lk|| <eg, g€ P, k_: +1,4+2,....

(9) It} —7|<e1,qe P, 7€T, k=+1,£2,....

Lemma 2.14 ([148]). Let the conditions H2.31 and H2.32 hold. Then there
ezist positive constants di, and ds, such that

sup ||B@®)|| <dyi, sup ||Bil|| < da.
tE€(to,00) ti €(to,00)

Lemma 2.15. Let the following conditions hold:

1. Conditions H2.26-H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) [|W(t,s)|| < Ke (%) where s <t, K >1 and a >0,
(b) v=—a—Kd— N(1+ Kd) >0,

where d = max(dy, ds), di and ds are from Lemma 2.1/, N is the number of
the points ty, lying in the interval (s,t).

Then for each € > 0, t € R, s € R there exists a relatively dense setT' of
e-almost periods, common for A(t) and B(t) such that for each T € T the
following inequality holds

1Q(t+7,s+7)—Q(t,s)|| < ele (%), (2.53)

1 Nd
where I' = —2KNO+ED (1 4 N 4 T)
v

Proof. Let T and P be the sets, defined in Lemma 2.13.
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Then for 7 € T and q € P the matrix Q(t + 7,5 + 7) is a solution of the
system

%—Cf = (A{t)+B)Q(t+7,s+T7)

+(A(t+7)+B(t+71)— A(t) - B1))Q(t + 7,5+ 1), t # 1],
AQ(t;c) (Ak —I—Bk)(Q(fl +T,S+T))
+(Ak+q+Bk+q — A — )Q(ti’g""TvS""T)a

where k = £1,42,..., t}, =t, — 7.
Then

Qt+T7,s+7)—Qt,s) /Q A(c+7)+ B(o+ 1) — A(o)

- (U))Q(O’+T$+Td0'+ Z +)

s<t) <t

X (Aksq + Bryg — Ax — Br)Q(t, + 7,5+ 7).
From Lemmas 1.2 and 2.13, we have

1Q(t + 7,5+ 1) = Q(t, 5)|| < eK MUK (7)1 )
+i(s,t)e V7)) < el 579, O

The proof of the next lemma is analogously.
Lemma 2.16. Let the following conditions hold:

1. Conditions H2.26-H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) |[W(t,s)|| < Ke =9 where s <t, K>1, a >0,
(b) / |[B(o)||do + Z ||Br|| < D, D >0, where s <t, D> 0.

to to<ty

Then for each ¢ > 0, t € R, s € R there exists a relatively dense set T
of e-almost periods, common for A(t) and B(t) such that for each 7 € T the
following inequality holds

|Qt +7,s+7)—Q(t,8)]| < 6787%@75), (2.54)

_ 2 2N
whereF:KeKD—(1+N—|——).
« «
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Now, we are ready to proof the main results in this paragraph.

Theorem 2.8. Let the following conditions hold:

1. Conditions H2.26-H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.

Then there exists a constant dy such that for d € (0,do] for the system
(2.47) there exists a unique almost periodic solution ¢(t), and

)|l < Cmaz(sup||fll, sup [[ll]l), (2.55)
teR 1,+2,...

where C' > 0.

Proof. Let the inequalities (2.50) and (2.51) hold, and let we consider the
function

o= [ Quofeds+ Y Qb

te <t
A straightforward verification yields, that ¢(t) is a solution of (2.47). O
Then, from Lemma 2.15 it follows that there exists a constant dy > 0 such
that for any d € (0, do|, we have
v=a—Kd— NIn(1+ Kd) > 0.

Now, we obtain

K —u(t—
(Ol < 5 sup (1) |+ KN "D sup ] 37 e, (2.56)

=£1,£2,. th<t
Then, from the relations
o0
2N
—v(t—tr) _ —v(t—tr) <
e = e —_—
D >y <
th<t k=0 t—k—1<ty<t—k

and (2.56), we obtain

()l < Cmaz(sup|lf @), sup  [liel]).
teR +2,...

1 2N

where C' = KN (1+Kd) (— + )
v l—ev

Let € > 0 be an arbitrary chosen constant. It follows from Lemma 2.13,

that there exist sets T and P, such that for each 7 € T, ¢ € P, and d € (0, dp]
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the following estimates hold:

t

llp(t+7) — ()]l S/ |Q(t + 7,0 +7) = Q¢ o)lll[f (o + 7)l|do

— 00

+/ |Q(, o)l f(o +7) = flo)]ldo

+ DR + 7, ,) = QU D) 1 krll

t <t

+ > Qg — Wil < Me,

te<t

where M > 0, |t — x| > .
The last inequality implies, that the function ¢(t) is almost periodic.
The uniqueness of this solution follows from the fact that the homogeneous

part of system (2.47) has only the zero bounded solution under conditions
H2.26, H2.27, H2.31 and H2.32, and from the estimate (2.50). O

Theorem 2.9. Let the following conditions hold:

1. Conditions H2.26-H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. There exists a constant Doy > 0, such that

/ 1B(o)lldo + 3 11Bsl| < Do.
to to<tp

Then, for D € (0, Dy] for the system (2.47), there exists a unique almost
periodic solution ¢(t) such that

lel| < Cmaz(sup Ifl, swp  Jll)),
teR k==+1,42,...

where C' > 0.

Proof. Using Lemma 2.16 and (2.52), the proof of Theorem 2.9 is carried out
in the same way as the proof of Theorem 2.8. O

Theorem 2.10. Let the following conditions hold:

1. Conditions H2.26-H2.30 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. B(t) = B, Bx = A, where B and A are constant matrices such that

[|B|| + |A]] < di, di > 0.

Then there exists a constant dy > 0, do < dy, such that for d € (0,do] for
the system (2.47), there exists a unique almost periodic solution.
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Proof. The proof of Theorem 2.10 is carried out in the same way as the proof
of Theorem 2.8. O

Ezample 2.2. We shall consider the systems

x:_fﬂ—i—f(t)’ t#tlﬁ
{Aw(tk) e k=41 42 (2.57)

and
i=(b(t)—1)a+ f(t), t # tr,
(2.58)
AI(tk) =lp+gr, k==x1,+2,...,
where t € R, z € R, {tx} € B, the function b € C[R,R] is almost periodic

in the sense of Bohr, the function f € PC[R,R] is almost periodic, b, € R,
I € Rand {b}, {lx}, k= +1,+£2,..., are almost periodic sequences.

Let condition H2.28 holds. From [138] it follows that for the system (2.57)
there exists a unique almost periodic solution.

Then, the conditions of Theorem 2.8. are fulfilled, and hence, there exists
a constant dy such that for any d € (0, dg] for the system (2.58), there exists
a unique almost periodic solution in the form

o)~ [ Qto)f©dr+ Y Qi

te<t

where

Qt.s) = ][] (1—|—bk)e:17p{/ b(o)do — (t —s)}.

s<tp<t

Now, we shall investigate the existence of almost periodic solutions for the
system (2.48).
Introduce the following conditions:

H2.33. The function F' € C[R x 2,R"] is almost periodic in ¢ uniformly
with respect to z € (2, and it is Lipschitz continuous with respect to
x € By, with a Lipschitz constant L > 0,

|E(t,2) = F(t9)ll < Lllz —yll, .y € By, t € R.

H2.34. The sequence of functions {I(z)}, Iy € C[£2,R"] is almost periodic
uniformly with respect to z € (2, and the functions Iy (z) are Lipschitz
continuous with respect to z € Bj, with a Lipschitz constant L > 0,

Uk (2) = Ie()I| < Lllz —yll, 2,y € B, k=41,42,....
Theorem 2.11. Let the following conditions hold:
1. Conditions H2.26-H2.28, H2.31-H2.3/ are met.
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2. For the functions F(t,x) and I;(z), k = +£1,£2,..., there exists a
constant Ly > 0 such that

maz( s [P, swp|L@)l) < Li.
teR,z€B), k=+1,+2,..., z€B),

3. The inequalities (2.50) and
CLy <h, CL<1. (2.59)

hold.

Then there exists a constant dy > 0 such that for any d € (0,dy], for the
system (2.48) there exists a unique almost periodic solution.

Proof. Let we denote by AP the set of all almost periodic solutions ¢(¢),
¢ € PC[R,R"], satisfy the inequality ||| < h, and let |¢|oc = sup ||p(t)]].
teR
(t) 1

We define in AP the operator S, such that if ¢ € AP, then y = Sp(t) is
the almost periodic solution of the system

{ZJ = (A®t) + B(t)y + F(t, (1)), t # tx,
Ay(ty) = (Ak + Bk)y(tk) + I(p(tr)), k=+1,42,...,

determined by Theorem 2.8.

We shall note that the almost periodicity of the sequence {¢(tx)}, the
function F(¢,(t)) and the sequence {Iy(¢(tr))} follows from Lemma 1.5
and Theorem 1.17.

On the other hand, there exists a positive constant dy > 0 such that for
any d € (0, do),

a—Kd— Nn(1+ Kd) > 0.

From the last inequality and (2.59), it follows that (2.51) and conditions
of Lemma 2.15 hold.

Then S(AP) C AP.

If p € AP, 1) € AP, then from (2.51) and condition 2 of Theorem 2.11,
we get

1Sp(t) = SY@)|| < CLI@ = oo (2.60)

Finally, from (2.59) and (2.60,) it follows that S is contracting in AP, i.e.
there exists a unique almost periodic solution of system (2.48). O
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2.5 Strong Stable Impulsive Differential Equations

In this section, conditions for strong stability and almost periodicity of
solutions of impulsive differential equations with impulsive effect at fixed
moments will be proved. The investigations are carried out by means of
piecewise continuous Lyapunov functions.

We shall consider the system of impulsive differential equations

{g'c:f(t,:v), t# th, (2.61)

Ax(ty) = I(x(ty)), k==+1,%£2,...,
where t e R, {tx} € B, f:Rx 2 =R I}, : 2 - R", k=+1,42,....
Set
p((E,y) = ||.’I] - y||7 x,y S Rnu
Bp(a) ={x € R", ||z —a|| < h}, h >0, a € R",
Uy, = {(t,x) E R X By, x© € By, if (t,z) € G and x + Iy(x) € By,
if t =t}
where G is the set from Sect. 1.1.

Introduce the following conditions:

H2.35. The function f € C[R x Bjp,R"], and has continuous partial
derivatives of the first order with respect to all components of x € By,.
H2.36. The functions I}, € C[By,R"], k = +1,+£2,... and have continuous
partial derivatives of the first order with respect to all components of

r € By
H2.37. There exists hg, 0 < hg < h such that if z € By, then « + I.(z) €
Bp, k=41,42,. ...

H2.38. The functions Ly(x)=z + Iy(z), k = =£1,42,... are such that
L;'(x) € By, for € By,

From [138] if the conditions H2.35-H2.38 are satisfied, then for each point
(to,zo) € R X By, there exists a unique solution T(t) = Z(¢; tg, o) of system
(2.61), which satisfies the initial condition z(t{) = zo.

We need the following condition in our subsequent analysis:

H2.39. f(¢t,0) =0, I;(0) =0 for t € R and k = +1,+2, ..., respectively.

If the conditions H2.35-H2.39 hold, then there exists a zero solution for
system (2.61).

Definition 2.4 ([90]). The zero solution x(t) = 0 of system (2.61) is said
to be strongly stable, if
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(Ve > 0)(30 > 0)(Vto € R)(Vzp € Bs : (to,x0) € ¥s)
(Vt € R) : p(Z(t;to,z0),0) < e.
Definition 2.5 ([90]). An arbitrary solution Z(t) = Z(¢;tg, zo) of (2.61) is
said to be strongly stable, if
(Ve > 0)(Vn > 0)(F0 > 0)(Vr1 € R, Vz € R, p(Z(71),T(12)) < 9)
(VteR) : p(T(t +71),T(t + 72)) <e.
Definition 2.6. The function V € Vj belongs to the class V", if V has
continuous partial derivatives on the sets Gj.

For each function V' € V{, we define the function

for (t,z) €
If Z(¢) is a solution of system (2.61), then

d

dtV( Z(t)) = V(£,T(t)), t € R, t # ty.

Definition 2.7. The function V' € Vj belongs to the class V5™, if V has

continuous partial derivatives of the second order in the sets Gy.

Let V' € Vg, If the function f(t,z) satisfies condition H2.35 and has a
continuous partial derivative with respect to ¢, we can define the function

for (t,x) € G.
In the further considerations, we shall use the next class K of functions

K = {a € C[R,R"], ais strictly increasing and a(0) = 0}.

Introduce the following conditions:

H2.40. The function f(t,z) is almost periodic in ¢ uniformly with respect to
x, x € By.

H2.41. The sequence {I(z)}, k = £1,42,..., is almost periodic uniformly
with respect to z, x € By,
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H2.42. The set of sequences {ti}, ti:tkﬂ —tp, k= £1,4£2,..., 5 =
+1,+2,..., is uniformly almost periodic, and infkt,lC =60>0.

Definition 2.8 ([114]). The set S, S C R is said to be:

(a) A—m set, if from every m+ 1 real numbers 71, 7o, ..., Ty41 one can find
i # j, such that 7; — 7; € S.

(b) symmetric A—m set, if S is A—m set symmetric with respect to the
number 0.

Lemma 2.17 ([114]). Every symmetric A —m set is relatively dense.

Theorem 2.12. Let conditions H2.35-H2.42 hold. Then any strongly stable
bounded solution of (2.61) is almost periodic.

Proof. Let T = T(t;to,x9) be a unique bounded solution of system (2.61)

with initial condition Z(tp) = . Let € > 0 be given, §(¢) > 0, and the points
ai, ag,...,an+1,a0; € R" 1 =1,2,...,N+1, are such that for ¢t € R, t > ¢,

it follows that Z(t) € Bs (ar). If to, ..., tn41 are given real numbers, then for
some i # j and some [ € {1,..., N + 1}, we get
_ o(e _ d(e
p(Z(1),a1) < %, p(T(75), a1) < %

Consequently, p(Z(t;), Z(t;)) < d(e).

On the other hand, the solution Z(¢) is strongly stable, i.e. it follows that
p(T(t+7),Z(t+ 1)) < e, where t € R.

Then, for ¢t € R we have p(Z(t+7; —7;),Z(t)) < € and consequently, 7; — T;
is an e-almost period of the solution Z(t).

Let T be the set of all e-almost periods of 2(t). Then, for any sequence of
numbers Ty, ..., 7y from above, it follows that there exists ¢ # j, such that
Ti —Tj € T.

From Definition 2.8, we get that T is a symmetric A — N set, and from
Lemma 2.17, it follows that T is a relatively dense set. Then, Z(t) is an almost
periodic function. a

Let Z(t) be a solution of the system (2.61). Set z = x — Z(¢), and consider
the system

2=g(t,2), t # ti,
{Az(fk) = Jk(Z(t:)), k=41,42,..., (2.62)

where g(t,2) = f(t,z+Z(t)) — f(t,Z(t)), Jp(z) = (2 +T) — I1(T).
Theorem 2.13. Let the following conditions hold:

1. Conditions H2.35-H2./2 are met.
2. There exist functions V € Vi and a, b € K such that:
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(a) a(|[z]]) < V(¢ 2) <b(|[=]]), (¢ 2) € R X By,

(b) V(t,z) =0, for (t,z) € R X By, t# ty.
(c) V(tf, 2+ Ix(2)) = V(tg, 2), k=+1,£2,..., 2 € By.

Then the solution T(t) of (2.61) is almost periodic.
Proof. Let 0 <e < h, 0 < p < h be given, and let

§ = () < min{e, b~ (ale)), b~ (a(u))},

where a,b € K. If z(t) = z(t; 0, 2z0) be a solution of (2.62) such that ¢y €
R, (to,xo) € Ss, then from condition 2 of Theorem 2.13, it follows that

a(ll2l]) < V(t,2(1)) = V(tg, 20) < b(([lz0]]) < (3(e)) < min{a(e), a(p)}-

Consequently, ||z(¢;to, z0)|| < min(e, p) for t € R, i.e. the zero solution of
(2.62) is strongly stable. Then, T(t) is strongly stable, and from conditions
H2.40-H2.42, and Theorem 2.12, it follows that Z(¢) is almost periodic. O

Definition 2.9 ([90]). The zero solution of system (2.62) is said to be
uniformly stable to the right (to the left), if for any € > 0 there exists 6(g) > 0,
such that if o € R and (Zo,20) € R X By, then [|z(t;to, 20)|| < € for all
t > to (for all t < tg), where z(¢;to,20) is a solution of (2.62) such that
2(td) = 2o.

Lemma 2.18 ([90]). The zero solution of system (2.62) is uniformly stable
to the left if and only if for any € > 0 the following inequality holds:

7(5)2inf{||z(t;t0,zo)|| o to €ER, ||20]] 25} > 0.

Lemma 2.19 ([90]). The zero solution of system (2.62) is strongly stable if
and only if it is stable to the left and to the right at the same time.

Ezample 2.3. We shall consider the linear impulsive system of differential
equations
&= At)x, t #ty,
2.63
{Al‘(tk) = Bra(ty), k==£1,£2,..., ( )

where A(t) is a square matrix, the elements of which are almost periodic
continuous functions for ¢ € R, {By} is an almost periodic sequence of
constant matrices such that det(F + Bj) # 0, and for the points ¢j the
condition H2.42 is fulfilled. Let W (¢, s) be the Cauchy matrix of system (2.63).

Since the nontrivial solution of (2.63) is given by the formula x(¢; to, x0) =
W (t,t0)x0, then xg = WL(t,t)x(t; to, 2¢). Hence, for any ¢ > 0 and ||zo|| >
€, we have

e < lzoll < [[WH(t, to) Il (s to, o),
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and
[lz(t; to, wo)l| = el[W ' (¢, to)[| .
However, for t = tg and ||zo|| = €, we have
|| (t; to, wo)|| = el[W (¢, t0) ]| "
Hence,

7(5):inf{5||W*1(t,t0)||*1 : tzto} >0

and, applying Lemma 2.18, we conclude that the zero solution of system
(2.63) is uniformly stable to the left if and only if the function |[W=1(¢,s)||
is bounded on the set s <t < oco. Moreover, it is clear that the zero solution
of (2.63) is uniformly stable to the right if and only if the function ||[W (¢, s)||
is bounded on the set s < t < oo. Then, by virtue of Lemma 2.18, the
zero solution of system (2.63) is strongly stable if and only if the functions
[|W(t,to)|| and |[W~L(t,t9)|| are bounded for ¢t € R. Consequently, an
arbitrary solution z(t) of the system (2.63) is bounded and strongly stable.
From Theorem 2.7, it follows that the solution z(t) is almost periodic.
Now, we consider the following scalar impulsive differential equations:

i =wi(t,u), t# t,
(i s, w0

where wy : [to — T, to] X x = R, x is an open interval in R, and ¢, and T are
constants such that tg > T, P, : x — X;

0 =wa(t,v), tF# b,
{A“(tk) = Py(v(ty)), k==+1,£2,..., (2.65)

where ws : [to,to + 1] x x = R;

i =w(t,u,a), t#tg,
Aulty) = Ag(u(ty)), k==+1,+2,..., (2.66)
Au(ty) = Br(u(ty), w(tr)), k= +1,£2,...,

where w : [to — T,to+T] X x1 X x2 = R, Ag : x2 = x1, Br : x1 X X2 = X2,
x1 and 2 are open intervals in R.

Theorem 2.14. Let the following conditions hold:

1. Conditions H2.35-H2./2 are met.

2. The zero solution u(t) = 0, (v(t) =0) of (2.64), (2.65) is uniformly stable
to the left (to the right).

3. The functions u + Px(u), k = +1,£2,..., are monotone increasing in
R x Bh.
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4. There exist functions V € V' and a,b € K such that

(a) a(||z]]) < V(t, 2) < b(||2]]), (t,2) € R x By.
(b) wi(t,V(t, z)) <V(t,z) <ws(t,V(t,2)) (t,2) € R X By,.
(c) V(t, 2+ Ju(2)) = V(tg, 2) + Pe(V(ty,2)), k=+1,42,....

5. The solution T(t) of system (2.61) is bounded.
Then the solution T(t) of system (2.61) is almost periodic.

Proof. From conditions of the theorem and [90], it follows that the zero
solution of system (2.61) is strongly stable, i.e. the solution Z(¢) is strongly
stable. Then, from H2.40-H2.42 and Theorem 2.12, it follows that Z(¢) is
almost periodic. a

Definition 2.10 ([90]). The zero solution x(t) = 0 of (2.66) is said to be
u-strongly stable, if
(Ve > 0)(30 > 0)(Vto € R)(Vup : 0 < g < d(g)) (Vg € R : |ug| < d(e))
(Vt € R) : 0 < u(t;to, ug, to) < €.

Theorem 2.15. Let the following conditions hold:

1. Conditions H2.35-H2.42 are met.

2. The function g(t,x) has continuous partial derivative of the first kind with
respect to t.

3. There exist functions V € V5™ and a,b € K, such that

(a) a(||z])) < V(¢ 2) < b(||z]]), (¢,2) € R x By.
(b) V(t,z) < c||z||, ¢ = const >0, (t,z) € G.

(c) V(t,z) Sw(t,V(t,2),V(t,z)) for (t,z) € R X By, t # ty,
where w(t,u1,uz), w : R® — RT is continuous and monotone
increasing on uy and w(t,0,0) =0 fort € R.

(d) V(tf, 2+ Ji(2) < Vg, 2) + Ae(V (tk, 2))-

(e) V5, 24 Jk(2) <V (t, 2)+Be(V(ty, 2), V(tg, 2)), k=41,42,...,2 €
Bh.

4. The following inequalities hold

ur + Ak (v1) < ug + Ag(v2),
v1 + By(u1,v1) < vy + By (uz2,v2)

for ur < wus, v1 < w9, where uy,us € x1, V1,2 € X2, k=+1,4+2,....
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5. The zero solution of equation (2.66) is strongly u-stable.
6. The solution T(t) of system (2.61) is bounded.

Then the solution T(t) of system (2.61) is almost periodic.

Proof. The proof of Theorem 2.15 is analogous to the proof of Theorem 2.14.
O

2.6 Dichotomies and Almost Periodicity

In this part, the existence of an almost periodic projector-valued function
of dichotomous impulsive differential systems with impulsive effects at fixed
moments is considered.

First, we shall consider the linear system of impulsive differential equations

i‘ = A(t)fl}‘, t # tkv
{Aw(tk) = Bra(ty), k= £1,42,..., (2.67)

where t € R, {ty} € B, A: R — R™™ B, € R"™" k= +1,42, ...

By «(t) = x(t;tg, o) we denote the solution of (2.67) with initial condition
z(t§) = z0, o € R™.

Introduce the following conditions:

H2.43. The matrix-valued function A € PC[R,R™*"] is almost periodic.

H2.44. {By}, k= =+1,4£2,... is an almost periodic sequence.

H2.45. det(E + By) # 0, k = +1,£2,... where E is the identity matrix
in R™. -

H2.46. The set of sequences {t]}, t = tpy; — tn, k = £1,£2,..., j =
+1,42,... is uniformly almost periodic, and infyt; = 6 > 0.

Let W (t, s) be the Cauchy matrix of system (2.67). From conditions H2.43~
H6.46, it follows that the solutions z(¢) are written down in the form

x(t;to, o) = W(t, to)o.

It is easy to verify, that the equalities W(t,t) = E and W(t,t9) =
X ()X Ytg) are valid, X (t) = (z1(t),22(t),...,2,(t)) is some non degen-
erate matrix solution of (2.67).

Definition 2.11. The linear system (2.67) is said to has an ezponential
dichotomy in R, if there exist a projector P and positive constants K, L, a,
such that

I X(t)PX(s)|| < K e=®t=9) ¢ > s,

IX()(E — P)X~(s)|| < L e Bt=2), s >1¢. (2.68)

Lemma 2.20. Let the system (2.67) has an exponential dichotomy in R.
Then any other fundamental matriz of the form X (t)C satisfies inequalities
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(2.68) with the same projector P if and only if the constant matriz C' com-
mutes with P.

Proof. The proof of this lemma does not use the particular form of the matrix
X (t), and is analogous to the proof of a similar lemma in [46]. O

Definition 2.12. The functions f € PC[R, 2], g € PC[R, 2] are said to be
e-equivalent, and denoted f ~ g, if the following conditions hold:

(a) The points of possible discontinuity of these functions can be enumerated

t'};, t7, admitting a finite multiplicity by the order in R, so that
[t — 1| <e.

(b) There exist strictly increasing sequences of numbers {t,.}, {t}/}, t. <
thy1s th < ty,q, k==1,£2,... for which we have

sup 1f(6) =gl <&, [t —tgl <e, k=F1,£2,....

tE(ty,th 1), YEW )

By p(f,g) = infe we denote the distance between functions f € PC[R, 2]
and g € PC[R, {2], and by PCy the set of all functions ¢ € PC[R, §2], for
which p(f, ) is a finite number. It is easy to verify, that PC'¢ is a metric
space.

Definition 2.13 ([9]). The function ¢ € PC[R, (2] is said to be almost
periodic, if for any e the set

T={r: plet+71),0(t) <e, t, 7 €R}

is relatively dense in R.

By D={M;},i € I, we denote the family of countable sets of real numbers
unbounded below an above and not having limit points, where I is a countable
index set. Let M7 and Ms be sets of D.

Lemma 2.21 ([9]). The function ¢ € PC[R, (2] is almost periodic if and
only if for an arbitrary sequence {s,} the sequence {p(t + s,)} is compact
in PCop.

Definition 2.14. The sets M; and M, are said to be e—equivalent, if
their elements can be renumbered by integers mj, mj, admitting a finite
multiplicity by their order in R, so that

sup  |mp —mi| <e.
k=+1,42,...

Definition 2.15. The number pp(M;, My)= inf ¢ is said to be a dis-
My~ Mo
tance in D.
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Throughout the rest of this paragraph, the following notation will be used:

Let conditions H2.43-H2.46 hold and let {s/ } be an arbitrary sequence of
real numbers. Analogously to the process from Chap. 1, it follows that there
exists a subsequence {s,}, s, = s/, such that the system (2.67) moves to the
system

&= A5z, t £ 15,
2,
{Ax(t;):B,g:c(t;), k=41,42,.... (2:69)

The systems of the form (2.69), we shall denote by E*, and in this meaning
we shall denote (2.67) by Ey. From [127], it follows that, each sequence of
shifts E*» of system Ej is compact, and let denote by H (A, By, tx) the set
of shifts of E, for an arbitrary sequence {s,, }.

Now, we shall consider the following scalar impulsive differential equation

0 =p(t)v, t # tg,
{A’U(tk) = bkv(tk), k= :|:1, :|:2, ceey (270)

where p € PC[R,R], b, € R.
Lemma 2.22. Let the following conditions hold:

1. Condition H2.46 holds.

2. The function p(t) is almost periodic.

3. The sequence by, is almost periodic.

4. The function v(t) is a nontrivial almost periodic solution of (2.70).

Then gnﬂg [v(t)| > 0 and the function 1/v(t) is almost periodic.
€

Proof. Suppose that inﬂg |[v(t)] = 0. Then, there exists a sequence {s/, } of real
te
numbers such that lim v(s,) = 0. From the almost periodicity of p(t) and
n—oo

v(t) it follows that, the sequences of shifts p(t+s,) and v(t+s, ) are compact
in the sets PC, and PC), respectively. Hence, from Ascoli’s diagonal process,
it follows that there exists a subsequence {sy, }, common for p(t) and v(t)
such that the limits

lim p(t+ sp,) = p°(t),

k— o0

and

lim v(t + sy, ) = v°(t)

k—o0
exist uniformly for ¢ € R. Analogously, it is proved that for the sequences of
shifts {tx + ni} and {by + ny} there exists a subsequence of {ny}, for which
there exist the limits {¢;} and {b}}. Consequently, for the system

0% = p*(t)v°, t #t3,
AvS(t3) = bos(t3), k=+1,42,...
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with initial condition v*(0) = 0 it follows that there exists only the trivial
solution.
Then,
v(t) = lim v*(t — $p,) =0

k—o00

for all t € R, which contradicts the conditions of Theorem 1.20. Hence,
gnﬂg|v(t)| > 0, and from Lemma 2.21 it follows that 1/v(¢) is an almost
€

periodic solution. a
Theorem 2.16. Let the following conditions hold:

1. Conditions H2.43-H2.46 are met.
2. The fundamental matriz X (t), X € PC[R,R"] is almost periodic.

Then X ~Y(t) is an almost periodic matriz-valued function.

Proof. From the representation of W(t, s) in Sect. 1.1, we have that X (t) =
W (t, to)X (to), hence

X7Ht) = X Hto)WL(t, to)

- X‘l(to)(det W(t,to))_l(adj W(t,to>)T,

where by adj W(t,ty) we denote the matrix of cofactors of matrix W (¢, to).
Then, X (¢) will be almost periodic when the following function

—1

(U(t)) T (det Wit to))

is almost periodic.
From

t
H det(F + Bk)eacp(/ Tr A(s)ds), t > to,
det W (t, tg) = { Toste<t o

H det(E + Bk)ea:p(/t Tr A(s)ds), t <to,

t<ti<to to

where TrA(t) is the trace of the matrix A, and a straightforward verification,
it follows that the function v(t) = det W (¢, () is a nontrivial almost periodic
solution of the system

0="Tr A(t)v, t # t,
Av(ty) = bro(ty), k==+1,4+2,....

Then, from Lemma 2.22 it follows that 1/v(¢) is an almost periodic
function. O
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Theorem 2.17. Let the following conditions hold:

1. Conditions H2.43-H2.46 are met.
2. The fundamental matriz X (t) satisfies inequalities (2.68).

Then the fundamental matriz X *(t) of system (2.70) also satisfies inequalities
(2.68).

Proof. Let we denote by H the square root of the positively definite Hermite
matrix

H?>=PX*XP+(E—-P)X * X(E - P).

Since P commutes with H2, then P commutes with H and H .

The matrix X (¢) is continuously differentiable for ¢ # t;, and with points of
discontinuity at the first kind at ¢ = t,. Hence, the matrices H, XH ', HX !
enjoy the properties of X(t), and let {s,} be an arbitrary sequence of real
numbers. By a straightforward verification we establish that the matrix X,, =
x(t + s,)H 1(s,) is a fundamental matrix of system (2.69).

On the other hand, the matrix H~!(s,) commutes with P, consequently,
from Lemma 2.20 it follows that the matrix X, (¢) satisfies inequalities (2.68).

Hence, the matrices X,,(0), X, 1(0) are bounded, and then there exists
a subsequence, common for both matrix sequences such that X, (0) — X§,
where X is invertible. Then, from the continuous dependence of the solution
on initial condition and on parameter, it follows that X, (¢) tends, uniformly
on each compact interval, to the matrix solution X *(¢) of (2.69). Since n— o0,
we obtain that X (¢) satisfies (2.68). O

Theorem 2.18. Let the following conditions hold:

1. Conditions H2.43-H2.46 are met.
2. For the system (2.67) there exists an exponential dichotomy with an
hermitian projector P and fundamental matriz X (t).

Then, the projector-valued function P(t) = X (t)X ~1(t) is almost periodic.

Proof. Let {s],} be an arbitrary sequence of real numbers, which moves the
system (2.67) to the system (2.69).

Since the function P(t) = X (t)X~1(¢) is bounded and uniformly con-
tinuous in the intervals of the form (¢, ¢r11], hence the sequence {P(t +
s/.)} is uniformly bounded and uniformly continuous on the intervals
(tk—50,s tet1—S0,]- From Ascoli’s diagonal process it follows that there exists
a subsequence {s,} of the sequence {s/,} such that the sequence {P(t+ s,)}
is convergent at each compact interval, and let we denote its limit by Y (¢). If
{sn} is a subsequence of {s/,}, such that X (s,)H ~!(s,) — X¢ is invertible,
then from Theorem 2.17 it follows that the sequence {X(t + s,)H (sp)}
tends uniformly in each compact interval to the fundamental matrix X*(t)

of system (2.69) and X *(¢) satisfies Y (t) = Xs(t)P(Xs(t)) 71.
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From Theorem 2.17 it follows that each uniformly convergent in a compact
interval subsequences of {P(t + s,,)} tends to one and the same limit. Thus,
the sequence {P(t + s,)} tends uniformly to Y (¢) on each compact interval.

Further on, we shall show that this convergence is uniform in R. Suppose
that this is not true. Then, for some y > 0 there exists a sequence {h,} of
real numbers and a subsequence {s,} of {s,} such that

1P (hn + 57,) = Y (hn)l| = 7, (2.71)

for each n. It is easily to verify that E"ntsn and E' are uniformly convergent
in H(A, B,t). From the almost periodicity and from the process of the
construction of E* it follows that the limit of such system in H (A, By, tx) is
one and the same, and let we denote it by E”. Analogously, {P(t+ h, + s,,)}
tends uniformly on each compact interval to Z(t)PZ~1(t), where Z(t) is
the fundamental matrix of system E”, for which there exists an exponential
dichotomy with a projector P. Hence, Y (t+h,,) tends to Z(t)PZ~1(t). Then

1P (hn + s7,) = Y (hn)[| = 0,

which contradicts the assumption (2.71). O

2.7 Separated Solutions and Almost Periodicity

In the present paragraph, by using the notion of separated solutions,
sufficient conditions for the existence of almost periodic solutions of impulsive
differential equations with variable impulsive perturbations are obtained.
Amerio, formulated in [12] the concept of separated solutions, in order to
give sufficient conditions for the existence of almost periodic solutions to
ordinary differential equations.

The objective of this section is to extend the notion of separated solutions
for impulsive differential equations.

Consider the system of impulsive differential equations with variable
impulsive perturbations

&= f(t,x), t # m(z),
{M:Ik(w% t=7y(x), k=+1,42,..., (2.72)

wheret e R, f:RXx Q2 >R 7 : 2 >R and I, : 2 - R", k=41,+£2....
Introduce the following conditions:

H2.47. The function f € C1[R x £2,R"].
H2.48. The functions I, € C[2,R"], k= £1,+2.. ..
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H2.49. If © € 2, then x + I}, (z) € 2, Li(z) = x + I(z) are invertible on 2
and L;'(z) € 2 for k= 41,+2....
H2.50. 7 (z) € C1(2,R) and klirf Tk(x) = oo uniformly on x € (2.
— 00

H2.51. The following inequalities hold:
sup{|lf (&, @)l + (t,2) ERx 2} <A< ox,
sup {1252 we 0, k=+1,42,. } <B<oo, AB<1,
sup{(%%(x + sly(2), Ix(z)) : s€[0,1), z €2, k==+1,%2,... }go.

From Chap.1, it follows that, if conditions H2.47-H2.51 are satisfied,
then system (2.72) has a unique solution x(t) = x(¢;tg, o) with the initial
condition

z(td) = xo.

Assuming that conditions H2.48-H2.51 are fulfilled, we consider the
hypersurfaces:

Ok = {(t,ﬂ?): t = 7(x), er}, k=41,42,....

Let ¢, be the moments in which the integral curve (t,z(¢;to,z9)) meets
the hypersurfaces oy, k = +£1,£2,....
Introduce the following conditions:

H2.52. The function f(t,z) is almost periodic in ¢ uniformly with respect to
xef.

H2.53. The sequences {Iy(x)} and {7(z)}, k = =£1,%2,..., are almost
periodic uniformly with respect to x € {2.

H2.54. The set of sequences {t]}, ¢ = tpy; — tp, k = £1,£2,..., j =
+1,42, ..., is uniformly almost periodic, and infit; =6 > 0.

Let conditions H2.47-H2.54 hold, and let {s},} be an arbitrary sequence
of real numbers. Then, there exists a subsequence {s,}, s,=s, so that

mnp?

analogous to the process in Chap. 1, the system (2.72) moves to the system

.’I.Z'Zfs(t,.’l,'), t?éTi,
2.73
{A:vz]k(x), t=17, k=+1,%2,..., ( )

and in this case, the set of systems in the form (2.73) we shall denote by
H(f, I, ).

We shall introduce the following operator notation. Let a={a,} be a
subsequence of the sequence o = {a,}22,, and denote o C «’. Also with
a + 8 we shall denote {a, + 8, } of the sequences {«,} and {f,}.

By a > 0 we mean «,, > 0 for each n. If « C o/ and 8 C 8/, then o and 3
are said to have matching subscripts, if a = {a}, } and 3 = {8, }.
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Let we denote by Sp+pé and S,Spé the limits lim 0,,15,(¢) and
n—00

lim 6,,( lim 6g, ¢), respectively, where the number 6., is defined in
n—roo m—r oo

Chap.1, and ¢ = (¢(t),T), ¢ € PC[R, 2] x UAPS.

Lemma 2.23. The function ¢(t) is almost periodic if and only if from every
pair of sequences o, 3 one can extracts common subsequencesa C o/, 3 C [’
such that

Sa+pP = SaSpep, (2.74)

exists pointwise.

Proof. Let (2.74) exists pointwise, 7’ be a sequence, such that for v C 7/,
Sy exists. If S,¢ is uniform, we are done. If not, we can find ¢ > 0 and
sequences 3 C v, 8/ C v such that

p(T2, 1Y) <e,

but

sup llp(t + Bn) — @t + B,)|| > ¢ >0,
teR\F. (s(TPuTE'))

where T and T are the points of discontinuity of functions (t + S,),
o(t+p6),n=0,1,2,..., respectively.

From the intermediate value theorem for the common intervals of conti-
nuity of functions ¢(t + 8,) and (¢t + 3,,), and the fact that

lim [|¢(8n) — @(B,)l] = 0,
n—oo
it follows that there exists a sequence « such that

sup [l p(an + Ba) = plan + Bl 2 & > 0. (2.75)
tER\F. (s(TSUTS))

Then, for the sequence « there exist common subsequences a; C «, 51 C £,
B2 C [ such that
Sa1+,31¢ = Ry, Sa1+62¢ = Ry,

where R; = (r(t), Pj), r; € PC, P; e UAPS, j = 1,2, exist pointwise.
From (2.74), we get

Ri = Sa,+819 = 5a,598,¢ = Sa, Sy ¢
= 80,58, = Say 1,6 = Ra, (2.76)

for t € R\FE(S(Pl UPQ))
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On the other hand, from (2.75) it follows that
[Ir1(0) = r2(0)[] > 0,

which is a contradiction of (2.76).

Let ¢(t) be almost periodic and if o and " are given, we take subsequences
a C o, B C ' successively, such that they are common subsequences and
Sad) = le, Sﬁ¢1 = ¢2 and Sa+ﬁ¢ = (bg, where gf)j = ((bja Tj), ij S PC[R, Q] X
UAPS, j =1,2,3, exist uniformly for ¢t € R\ F.(s(Th UT> UT3)).

If € > 0 is given, then

€
0t + a0+ 82) — es(0)l < <,
for n large and for all t € R\ F.(s(Ty.n, UT3)), where T), , is the set of points

of discontinuity of functions ¢(t + ay, + By).
Also,

ot + an + ) = 1t 4 Bu)ll < 5.

for n, m large and for all ¢t € R\ F.(s(Ty,m UTh,n)), where T), ,,, is the set
of points of discontinuity of functions ¢(t + oy, + B) and T4, is formed by
the points of discontinuity of functions ¢ (t + B,).

Finally,

lpa(t + ) = e2(®)ll < 5.

for m large and all t € R\ F.(s(T1,m UT»)), where T3 ,,, is the set of points
of discontinuity of functions @1 (¢t + ).

By the triangle inequality for n=m large, we have ||p2(t) — p3(t)|| < € for
all t € R\ F.(s(Tp UT3)).

Since ¢ is arbitrary, we get w2 (t) = @3(t) for all t € R\ Fo(s(T1,m UT2)),
i.e. (2.74) holds. O

Definition 2.16. The function ¢(t), ¢ € PC[R, (2], is said to satisfy the
condition SG, if for a given sequence 7/, lim 4/, = oo there exist v C 4" and
n—oo

anumber d(7) > 0such that Sy¢, ¢ = (¢(t),T), T € UAPS exists pointwise
for each ¢ > 0. If « is a sequence with o > 0, 8/ C v and 8" C ~ are such
that Sa+5/¢ = (’I”l(t), Pl), Sa+5”¢ = (Tg(t), PQ), then either 1 (t) = Tg(t) or
[|r1(t) — r2(t)|| > d(v) hold for t € R\ F.(s(P U P)).

Definition 2.17. Let K C {2 be a compact. The solution x(t) of system
(2.72) with points of discontinuity in the set T' is said to be separated in K,
if for any other solution y(t) of (2.72) in {2 with points of discontinuity in
the set T there exists a number d(y(t)) such that ||z(¢) — y(¢)|| > d(y(t)) for
t € R\ F.(s(T')). The number d(y(t)) is said to be a separated constant.
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Theorem 2.19. The function p(t), ¢ € PC[R, 2], is almost periodic if and
only if ¢ satisfies the condition SG.

Proof. Let ¢ satisfies the condition SG, and let 4" be a sequence such that
lim ~;, = co. Then there exists v C 4/ such that Sy¢, ¢ = (¢(t),T) exists

n—oo
pointwise. If the convergence is not uniformly in R, then there exist sequences

§ >0, Cr, ' C~, and a number & > 0 such that ||p(c, +8,,) — (8, +
07)|| > €, where we may pick € < d(v). Since S,(¢(0),T') exists, we have

llp(ad) = w(BI < d(v), (2.77)

for large n.

Consequently, k(t) = o(t + o) — o(t + 3),) satisfies ||k(0)|] < d(v) and
[|E(0L)]| > e for large n. Hence, there exists ¢/ such that 6/ C ¢/, and £ <
RG] < dr):

We shall consider the sequences o + 6" and 3’ + §”. By SG there exist
sequences a + 0 C o +¢” and g+ 6 C B’ + ¢’ with matching subscripts
such that Sats¢ = @1, Sats® = P2, ¢; = (p;,T;) exist pointwise, and
1(1) = a(t) o [lg1(t) — a(B)] > 2d(3), for ¢ € R\ Fu(s(Ty UT)).

On the other hand,

le1(0) — @2(0)]] = lim [[p(crn + ) — @(Bu + 82,

and from (2.77), it follows that ||p1(0) — ¢2(0)|| < d(7). The contradiction
shows that S, ¢ exists uniformly on ¢ € R\ F.(s(T)).
Conversely, if ¢(t) is an almost periodic function, and +" be given with

lim 7, = oo then, there exists ¥ C 7/ such that S,¢ exists uniformly on
n—roo

t e R\ F.(s(T)) and Syp = (k(t),Q), (k(t),Q) € PC[R, 2] x UAPS.

Let the subsequences 3/ C v, 8” C v, and a > 0 be such that Sy45¢ =
(T‘l(t),Pl), Sa+ﬂw¢ = (Tg(t),Pg), (Tj(f),Pj) S PC[R, .Q] X [{APS .

From Lemma 2.23 it follows that there exist o C o, 3 C 3, 3 C "
such that

a’ k(t>aQ - Sa(k(t)aQ ) (278)

(2.79)
Hence, from (2.78) and (2.79), we get r1(t) = ro(t) for t € R\ F.(s(PiUP,)).
Then, (p(t),T) satisfies SG. O

Now, let K C {2 be a compact. We shall consider the system of impulsive
differential equations
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‘i.:g(tvx)v t#ak(ib),
{A:szk(x), t=op(x), k=41,42,.. ., (2.80)

where (9, Gk, o) € H(f, I, 7).

Theorem 2.20. Let the following conditions hold:

1. Conditions H2.47-H2.54 are met.
2. Ewery solution of system (2.80) in K is separated.

Then every system in H(f, I, 7r) has only a finite number of solutions
and the separated constant d may be picked to be independent of solutions.

Proof. The fact that each system has only a finite number solutions in K
is a consequence of a compactness of K and the resulting compactness
of the solutions in K. But no solution can be a limit of others by the
separated condition. Consequently, the number of solutions of any system
from H(f, I, 71) is finite and d may be picked as a function of the system.
Let (h, L, k) € H(f, Iy, Tk) and Sy (g, Gg,or) = (h, Ly, lk), with lim

n—oo
ol = oo.

Let (¢(t),T), (¢o(t),To) be two solutions in K, and let o« C o be such
that Sa(e(t), T) and S (po(t), Tp) exist uniformly on K, and are solutions
of (2.80).

Then,

1Sa(p(t), T) = Saleo(t), To)l| = d(g, G ox)-

So, if ¢1,..., ¢, are solutions of (2.80) in K, then So(p;(t),T}), j =
1,2,...,n, are distinct solutions of (2.80) in K such that

||Sa((pj(t)7Tj) - Sa((pi(t)vTi)H > d(Q,Gk,Uk), i 7é J-

Hence, the number of solutions of (2.80) in K is greater or equal than n.
By “symmetry” arguments the reverse is true, hence each system has the
same number of solutions.

On the other hand, S, (¢;, T;) exhaust the solutions of (2.80) in K, so that
d(g,Gg,or) < d(h, L, ;). Again by symmetry, d(h, Lg, ;) > d(g, Gk, 0%)-

O

Theorem 2.21. Let the following conditions hold:

1. Conditions H2.47-H2.54 are met.
2. For every system in H(f, I, ) there exist only separated solutions on K.

Then:

1. If for some system in H(f, I, 7i) there exists a solution in K, then for
every system in H(f, I, 1) there exists a solution in K.
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2. All such solutions in K are almost periodic and for every system in
H(f, I, i) there exists an almost periodic solution in K.

Proof. The first statement has been proved in Theorem 2.20. Let ¢(t) be a
solution of system (2.80) in K and J be the separation constant.
Let 7/ be a sequence such that lim ' = oo and v C 7/, S,(g, Gy, 01) =

n—oo

(h,Lg, i), and S, (p(t), T) exists.
Let 8’ C «, B” C v and a > 0 are such that

Sa-‘rﬂ’(@(t)v T) = ((,01 (t)v Tl)a
Sa-i-,@”(sp(t)v T) = ((pg(t), TQ)'

Again, take further subsequences with matching subscripts, so that
(without changing notations)

Sa+5/(vakaak) = SQSﬁ/(vakao'k)
= SOCS’Y(Q’ Gk,O’k) = Sﬂc(h’aLkalk)v

and
Sa+p(g, Gr,0k) = Salh, Lk, lg).

Consequently, ¢1(t) and @2(t) are solutions of the same system and for
e > 0, p1 = o, for R\ F.(s(T1JT2)) or ||p1(t) — ¢2(t)]|] > 6d=2d on

Therefore, o(t) satisfies the SG, and from Theorem 2.19 it follows that
©(t) is an almost periodic function.

Let now ¢(t) be a solution of (2.80) in K which by the above is an almost
periodic function, and let we choice o/, = n. Then, there exists a C &’ such
that the limits Sa(g,Gk,Uk) = (h,Lk,lk), S_a(h,Lk,lk) = (g, Gkaak) exist
uniformly and S, (¢(t),T) = (r(t), P), S_a(r(t), P) exist uniformly on K,
where S_,(r(t), P) is the solution of (2.80).

From condition 2 of Theorem 2.21 it is easy to see that (r(t),P) =
Solp(t), T) and thus S_,(r(t),P) exists uniformly and ¢(¢) is almost
periodic. a

2.8 Impulsive Differential Equations in Banach Space

The abstract differential equations arise in many areas of applied mathe-
matics, and for this reason these equations have received much attention in
the resent years. Natural generalizations of the abstract differential equations
are impulsive differential equations in Banach space.

In this paragraph, we shall investigate the existence of almost periodic
solutions of these equations.
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Let (X,]].]|x) be an abstract Banach space.
Consider the impulsive differential equation

i(t) = Az + F(t,x)+ Y [Bx+ Hi(2)]6(t — ti), (2.81)
k==+1,+2,...

where A : D(A) € X — X, B: D(B) C X — X are linear bounded
operators with domains D(A) and D(B), respectively. The function F' : D(R x
X) — X is continuous with respect to ¢t € R and with respect to z € X,
Hy : D(Hj) C X — X are continuous impulse operators, 6(.) is the Dirac’s
delta-function, {tx} € B.

Denote by x(t) = x(t; to, xo), the solution of (2.81) with the initial condition
z(ty) = zo, to €R, z9 € X.

The solutions of (2.81) are piecewise continuous functions [16], with points
of discontinuity at the moments t;, & = =£1,£2,... at which they are
continuous from the left, i.e. the following relations are valid:

z(t,) = z(ty), z(t{) = x(tx) + Ba(ty) + He(z(t)), k= £1,£2,....

Let PC[R,X] = {p : R = X, ¢ is a piecewise continuous function with
points of discontinuity of the first kind at the moments ¢, {tx} € B at which

o(ty) and @(t]) exist, and p(t; ) = p(t)}
With respect to the norm ||¢||pc = sup ||¢(¢)||x, PC[R,X] is a Banach
teR
space [16].
Denote by PC B[R, X] the subspace of PC[R, X] of all bounded piecewise
continuous functions, and together with (2.81) we consider the respective
linear non-homogeneous impulsive differential equation

d=Av+ f(t)+ Y [Br+b](t—te), (2.82)
k=+1,4+2,...

where f € PCB[R,X], by : D (b)) C X — X, and the homogeneous
impulsive differential equation

B(t)=Az+ > Bad(t—t). (2.83)
k=41,+2,...

Introduce the following conditions:

H2.55. The operators A and B commute with each other, and for the
operator I + B there exists a logarithm operator L, (I + B), I is
the identity operator on the space X.

H2.56. The set of sequences {t]}, t, = tpyj — th, b = £1,£2,..., j =
+1,42, ..., is uniformly almost periodic, and infit; =6 > 0.
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Following [16], we denote by @(t, s), the Cauchy evolutionary operator for
(2.83),
&(t,s) = eAlt=s) (I + B)—P(t—S)-i-i(t,s)’

where A = A+ pL,(I + B), i(t, s) is the number of points t;, in the interval
(t,s), and p > 0 is defined in Lemma 1.1.

Lemma 2.24. Let conditions H2.55-H2.56 hold, and the spectrum o(A) of
the operator A does not intersect the imaginary axis, and lying in the left
half-planes.

Then for the Cauchy evolutionary operator ®(t,s) of (2.83) there exist
positive constants K1 and o such that

|@(t, s)||x < Kye ), (2.84)

wheret > s, t,s € R.

Proof. Let € > 0 be arbitrary. Then
(1 + B) =419 | < §(e)eap{e|[Ln(I + B)||x(t - )},

where () > 0 is a constant.
On the other hand [50], if aq > 0 and

61 € (a1, A" (n)), A (on) =inf{|Re)|, X € o(A)},

then,
|e29)|[x < Kie ™79 ¢ > s

and (2.84) follows immediately. O

The next definition is for almost periodic functions in a Banach space of
the form PC[R, X]. O

Definition 2.18. The function ¢ € PC[R, X] is said to be almost peri-
odic, if:

(a) The set of sequences {ti}, ti = tpyj; —tk, k = £1,£2,..., j =
+1,42,..., {tx} € B is uniformly almost periodic.

(b) For any ¢ > 0 there exists a real number 0(g) > 0 such that, if the points
t" and ¢’ belong to one and the same interval of continuity of ¢(t) and
satisfy the inequality [t/ —t"| < §, then ||p(t') — p(t")]|x <e.

(c) Forany e > 0 there exists a relatively dense set T such that, if 7 € T, then
[lo(t+7) — p(t)]|x < e for all t € R satisfying the condition |t —tx| > ¢,
k=41,42, ...

The elements of T are called € — almost periods.
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Introduce the following conditions:

H2.57. The function f(¢) is almost periodic.
H2.58. The sequence {b;}, k = £1,+2,... is almost periodic.

We shall use the next lemma, similar to Lemma 1.7.

Lemma 2.25. Let conditions H2.56-H2.58 hold.

Then for each € > 0 there exist €1, 0 < €1 < g, a relatively dense
set T of real numbers, and a set P of integer numbers such that the
following relations are fulfilled:

(@) If(t+7)—f®)llx <&, teR, 7T, [t —tp| >, k==£1,%£2,....
() [lbrtq —bkllx <&, g€ P, k=+1,42,....
) |78—7|<e1, qe P, 7€T, k=+1,42,....

We shall prove the next theorem.
Theorem 2.22. Let the following conditions hold:

1. Conditions H2.55-H2.58 are met.
2. The spectrum o(A) of the operator A does not intersect the imaginary
axis, and lying in the left half-planes.

Then:

1. There exists a unique almost periodic solution x(t) € PCBIR,X] of
(2.82).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function

z(t) = /t B(t,s)f(s)ds + Y D(t,ti)bx. (2.85)

-0 tp<t

It is immediately verified, that the function z(t) is a solution of (2.82).
From conditions H2.57 and H2.58, it follows that f(¢) and {b;} are bounded
and let

maz{||f(t)|[pc, ||bellx } < Co, Co > 0.

Using Lemmas 1.1 and 2.24, we obtain

lz(®)][pe =/ 18(t, 8)l|pellf (s)l|peds + D [19(, t)l| el bl x

- tp<t

t
S/ Kle_a(t_s)||f(5)||PCd5+ ZKe—a(t—tk)ku”X

te<t

Co CoN ) %

<K(— 2.86
= a+1—e*0‘ ( )
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From (2.86) it follows that x(t) € PCB[R, X].
Let e >0, 7 €T, q € Q, where the sets T and P are from Lemma 2.25.
Then,

|z(t +7) —x(®)l|pc

< [ 1ot s)leellf(s+ ) - F(5)lpcds

— 00

+ > It i)l polbryg — brllx < Me,

te<t

where |t —tg| > e, M > 0.

The last inequality implies that the function z(t) is almost periodic. The
uniqueness of this solution follows from the fact that the (2.83) has only the
zero bounded solution under conditions H2.55 and H2.56.

Let £ € PCBIR, X] be an arbitrary solution of (2.82), and y = & — «.
Then y € PCB[R, X] and

y = D(t, to)y(to)- (2.87)
The proof that x(t) is asymptotically stable follows from (2.87), the estimates
from Lemma 2.24, and the fact that i(to,t) — p(t — to) = o(t) for t — co. O
Now, we shall investigate almost periodic solutions of (2.81).
Theorem 2.23. Let the following conditions hold:

1. Conditions H2.55-H2.58 are met.

2. The spectrum o(A) of the operator A does not intersect the imaginary
azxis, and lying in the left half-planes.

3. The function F(t,x) is almost periodic with respect to t € R uniformly at
x € 2 and the sequence { Hi(x)} is almost periodic uniformly at x € 2, 2
is every compact from X, and

|z||x < h, h>0.

4. The functions F(t,x) and Hy(z) are Lipschitz continuous with respect to
x € 2 uniformly for t € R with a Lipschitz constant L > 0,

1 (8 2) = F(t, y)llx < Llle = yllx, [[Hi(x) = Hi(y)l|x < Lz —y[|x
5. The functions F(t,x) and Hy(z) are bounded,
maa{|F(t,2)]x, [|He@)llx } < C,

where C' > 0, z € (2.
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Then, if

KC < hand KL < 1,
where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x(t) € PCB[R, X] of (2.81).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote by D* C PCBJ[R, X] the set of all almost periodic functions
with points of discontinuity of the first kind ¢, k = +1,£2,..., satisfying
the inequality ||¢||pc < h.

In D*, we define an operator S in the following way. If ¢ € D*, then
y = Se(t) is the almost periodic solution of the system

§t) =Ay+ F(t,o)+ Y. [By+ Help(t)]o(t—tr),  (2.88)
k==+1,42,...

determined by Theorem 2.22. Then, from (2.86) and the conditions of
Theorem 2.23, it follows that D (S) C D*.
Let ¢, ¥ € D*. Then, we obtain

1Se(t) = Sy (t)l|lpc < KL.

From the last inequality, and the conditions of the theorem, it follows that
the operator S is a contracting operator in D*. a

Ezxample 2.4. In this example, we shall investigate materials with fading
memory with impulsive perturbations at fixed moments of time.

We shall investigate the existence of almost periodic solutions of the
following impulsive differential equation

E(t) + B(0)2(t) = v(0)Az(t) + f1(t) f2(2(1)), t # tr,
z(t)) = x(ty) + bp, (2.89)
i(th) = @(ty) + b3, k==+1,42,...,

where t, = k + I, I = %|cosk —cosk\2|, k=41,42,. ...
If y(t) = &(t) and
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then the (2.89) rewrites in the form

o0

Ht)=Az+F(t,2)+ Y [Bz+b]o(t—tx). (2.90)
k=+1,42,...

From [138], it follows that the set of sequences {ti}, k=41,42..., j=
+1,42,..., is uniformly almost periodic and for the (2.90) the conditions of
Lemma 1.2 hold.

Let X = H}(w) x L?(w), where w C R?® is an open set with smooth
boundary of the class C*°, B(t), v(t) are bounded and uniformly continuous
R valued functions of the class C? on [0, ), 3(0) > 0, v(0) > 0.

If A: D (A) = H*(w) N H}(w) x Hi(w) — X is the operator from (2.90)
and A is Laplacian on w with boundary condition y|s, = 0, then it follows
that A is the infinitesimal generator of a Cy-semigroup and the conditions of
Lemma 2.24 hold.

By Theorem 2.23 and similar arguments, we conclude with the following
theorem.

Theorem 2.24. Let for (2.89) the following conditions hold:

1. The sequences {bi}, k= =+1,42,..., i =1,2, are almost periodic.

2. The function f1(t) is almost periodic in the sense of Bohr.

3. The function fa(x) is Lipschitz continuous with respect to ||x||x < h with
a Lipschitz constant L > 0,

[fa(z1) = fo(@2)||x < Ll[v1 — 22|lx, ||zillx <h, i=1,2.

4. The function fo(x) is bounded, ||f2(z)]|x < C, where C >0 and x € w.

Then, if o o
KC < hand KL < 1,

where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x € PCBIR, X] of (2.89).
2. The almost periodic solution x(t) is asymptotically stable.

Now, we shall study the existence and uniqueness of almost periodic
solutions of impulsive abstract differential equations out by means of the
infinitesimal generator of an analytic semigroup and fractional powers of this
generator.

Let the operator A in (2.81)—(2.83) be the infinitesimal operator of analytic
semigroup S(¢) in Banach space X. For any o > 0, we define the fractional
power A~¢ of the operator A by

1 o0
AT = —/ to=1S(t)dt,
I'(a) Jo ()
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where I'(«) is the Gamma function. The operators A~% are bounded,
bijective and A% = (A=%)~1 is a closed linear operator such that D(A%) =
R(A~%), where R(A~?) is the range of A~®. The operator A° is the identity
operator in X and for 0 < a < 1, the space X, = D(A®) with norm
[lz]|la = ||A%z||x is a Banach space [50,58,68,115,126].

We shall use the next lemmas.

Lemma 2.26 ([115, 126]). Let A be the infinitesimal operator of an
analytic semigroup S(t).

Then:

1. S(t): X — D(A®) for every t > 0 and « > 0.
2. For every x € D(A®) it follows that S(t)A%x = A*S(t)x.
3. For every t > 0 the operator A*S(t) is bounded, and

[|AYS(t)]|x < Kot~ %M, Ko >0, A> 0.
4. For 0 < a <1 and x € D(A®*), we have
[1S(t)x — z||x < Cot®||A%||x, Co > 0.

Lemma 2.27. Let conditions H2.56-H2.58 hold, and A be the infinitesimal
operator of an analytic semigroup S(t).

Then:

1. There exists a unique almost periodic solution x(t) € PCB[R, X] of (2.82).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function
t
2(t) :/ S(t— ) f(s)ds+ S S(t — t)bi. (2.91)
—o0 tr<t

First, we shall show that the right hand of (2.91) is well defined.
From H2.57 and H2.58, it follows that f(¢) and {bx} are bounded, and let

maz{||f(t)|[pc, bkl x } < Mo, Mo > 0.

Using Lemma 2.26 and the definition for the norm in X%, from (2.91), we
obtain

III(t)IIa:L 1A%S(E = s)l x|/ ()l pcds

+ > NJAYS(E = ti)llx | Ibxl | x

te <t
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t
S/ Ko(t =)~ % M| |f(s)l|peds

+ ) Kot — ) e by || . (2.92)

tp<t

We can easy to verify, that

t
[ Katt= sy e X |pods

t
< KQMO/ (t— s)fo‘efA(tfs)ds

o0

< KQMO%. (2.93)

Let m = min{t — tx, 0 <t —t, < 1}. Then from H2.58 and Lemma 1.2,
the sum of (2.92) can be estimated as follows

> Kot — i)~ M by | x

tp<t
< KoMy Y (8 —tg) e 2070
tp<t
= K., M, [ Z (t _ tk)faefk(tftk)
0<t—t,<1

+ i Z (t _ tk)faefA(tftk)}

J=1 j<t—tp<j+1

m~¢ 1
< 2K, M, N( —) 2.94
< oV (== + o1 (2.94)

From (2.93), (2.94), and equality

I'a)Irl—a)= , 0<a<l,

sinmTo

we have

™

m~ 1
e < KoaMo|—— T 2N( —)}
2@l < T (a)sinmar—= + e + er—1

and z € PCB[R, X].

On the other hand, it is easy to see that the function z(t) is a solution of
(2.82).

Let e >0, 7 € T, g € P, where the sets T" and P are from Lemma 2.25.
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Then,
lle@ +7) = p(t)lla = [[A*(@(t + 7) — z(t))||lPc

< [ 1= 9llxlf(s +7) = 1) lmeds

— 00

+ ) IA%S(t = ti)|x|[bryq — brllx < Mae,

tp<t

where |t —tg| > ¢, My > 0.

The last inequality implies, that the function z(t) is almost periodic. The
uniqueness of this solution follows from conditions H2.56-H2.58 [126].

Let now, & € PCB[R, X] be an arbitrary solution of (2.82), and y = Z—uz.
Then, y € PCB[R, X] and

y = S(t—to)y(to). (2.95)

The proof that x(t) is asymptotically stable follows from (2.95), the
estimates from Lemma 2.26 and the fact that i(to,t) — p(t — to) = o(t) for
t — oo. a

Now, we shall investigate the almost periodic solutions of (2.81).
Introduce the following conditions:

H2.59. The function F(t,x) is almost periodic with respect to t € R
uniformly at x € 2, 2 is compact from X, and there exist constants
Ly >0,1>x>0, 1>a>0such that

[[F(t1, 21) = F(t2, z2)||x < Li([t1 — t2|” + |21 — 22]a),

where (t;,2;) ER x 2, i =1,2.

H2.60. The sequence of functions { Hy(x)}, k = +1,+2, ... is almost periodic
uniformly at = € (2, (2 is every compact from X, and there exist
constants Ly > 0, 1 > «a > 0 such that

[|Hi(x1) — Hi(22)||x < Lallzr — 22]|a »
where z1, x5 € (2.

Theorem 2.25. Let the following conditions hold:

1. Conditions H2.58-H2.60 hold.
2. A is the infinitesimal generator of the analytic semigroup S(t).
3. The functions F(t,z) and Hy(z) are bounded:

maz{|IF(t,2)lx, ||He(@)lx } < M,
wheret e R, k=+1,+£2,..., x € 2, M > 0.
Then if L = max{Lq, Lo}, L > 0 is sufficiently small it follows that:
1. There exists a unique almost periodic solution x € PCB[R, X] of (2.81).
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2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote by D* C PC B[R, X] the set of all almost periodic functions
with points of discontinuity of the first kind ¢y, k = +1,£2,..., satisfying
the inequality ||¢||pc < h, h > 0.

In D*, we define the operator S* in the following way

S*p(t) = /_ A*S(t — s)F(t, A= %p(s))ds

+ ) AS(t — i) He (A (ty)). (2.96)

te<t

The facts that S* is well defined, and S*p(t) is almost periodic function
follow in the same way as in the proof of Lemma 2.27. Now, we shall show,
that S* is a contracting operator in D*.

Let ¢, ¥ € D*. Then, we obtain

1% () = ™9 (t)]]x

S/ |AS(t = )l x[|F(t, A= (1)) — F(t, A=%(t))||x ds

+ ) IATS (=t [ [ HR (Ao (t)) — Hi(A™9(t))l 1 x

< LK Jlott) = 0llx [ [ (t=s) e s

+> - tk)_o‘e_’\(t_t’“)]
tp<t

With similar arguments like in (2.94), for the last inequality, we have

I'l-a)

5% (6) = S0 1x < LKa| =5

—Q

m 1
N (2 + ) let) — wiol
oV (B + ) [l ) - vl
Then, if L is sufficiently small and

T —

L < (Ko e 2V (= + o))

it follows that the operator S* is a contracting operator in D*.
Consequently, there exists ¢ € D* such that
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o(t) = /_ A“S(t — s)F(t, A=%p(s))ds

+ ) AS(t—ty) Hy(A™p(tr)). (2.97)

tp<t

On the other hand, since A% is closed, we get

A™%p(t) = /_ S(t—s)F(t, A=%p(s))ds

+ St — tr)Hi(A™p(t))- (2.98)

te<t

Now, let h € (0,0), where 0 is the constant from H2.56, and t € (i,
ti+1 — .
Then,
lle +h) = @(t)]]a

<l / (S(h) — I)A“S(t — 5)F(t, A®p(s))ds]
t+h
+||/t A°S(t 4+ h— s)F(t, A=%p(s))ds||a. (2.99)

From Lemma 2.26 for (2.99), it follows that

-«

h
llo(t+h) — p(t)]|a < KarsMCh® + KoM —.

Then, there exists a constant C' > 0 such that
ot +h) = (t)]|a < ChS.

On the other hand, from H2.59 it follows that F(t, A~%p(t)) is locally
Holder continuous. From H2.60 and the conditions of the theorem,
Hi (A *p(tx)) is a bounded almost periodic sequence.

Let o(t) be a solution of (2.97), and let consider the equation

@(t) = Az + F(t, A“p(t)) + i Hy(A=“p(tp))(t — ). (2.100)

k=—o0

Using the condition H2.60 and Lemma 2.27, it follows that for (2.100)
there exists a unique asymptotically stable solution in the form
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vy = [ (= s)F(s A p(e)ds + Y S(t— ) H(A™p(t0))

te<t

where ¢ € D(A%).
Then,

A%Y(t) = / A“S(t — s)F (s, A7 %(s))ds

— 00

+ 37 ACH(A () = o).

tp<t

The last equality shows that ¥(t) = A~%p(¢) is a solution of (2.81), and
the uniqueness follows from the uniqueness of the solution of (2.97), (2.100)
and Lemma 2.27. O

Ezample 2.5. Here, we shall consider a two-dimensional impulsive predator—
prey system with diffusion, when biological parameters assumed to change in
almost periodical manner. The system is affected by impulses, which can be
considered as a control.

Assuming that the system is confined to a fixed bounded space domain
2 C R™ with smooth boundary 92, non-uniformly distributed in the domain
2 = 2 x 912 and subjected to short-term external influence at fixed moment
of time. The functions u(t, z) and v(t,z) determine the densities of predator
and pray, respectively, A = 86—% + 6‘9—:% +...+ % is the Laplace operator and
% is the outward normal derivative.

The system is written in the form

ou e (t, z)v

E = ulAu—I—u[al(t,x) — b(t,x)u — m}, t?é tk,

dv co(t, x)u

E_NZAU—FU{ az(t’x)—i_r(t,a:)—u—l-v}’t#tk’

u(tf, x) = u(ty, x) I (z, ulty, @), v(ty, x)), k=+1,42 ..., (2.101)

v(tg,x) =ty ,x)Ji(z, ulte, z), v(ty, x)), k==+1,£2,...,

%
on

" an

o

The boundary condition characterize the absence of migration, pq>0,
e > 0 are diffusion coefficients. We assume that, the predator functional
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C1v

response has the form of the ratio function . The ratio function

T+ U
represents the conversion of prey to predator, ai,as2,c; and co are positive

functions that stand for prey intrinsic growth rate, capturing rate of the
aq(t,x)
b(t, )
gives the carrying capacity of the prey, and r(t,z) is the half saturation
function.

We note that the problems of existence, uniqueness, and continuability of
solutions of impulsive differential equations (2.101) have been investigated
in [7].

predator, death rate of the predator and conversion rate, respectively,

Introduce the following conditions:

H2.61. The functions a;(t,z), ¢;(t,z), i = 1,2, b(t,z) and r(¢, z) are almost
periodic with respect to ¢, uniformly at = € (2, positive-valued on
R x 2 and locally Hélder continuous with points of discontinuity at
the moments t;, kK = +1,42,..., at which they are continuous from
the left.

H2.62. The sequences of functions { It (z, u, v)}, { Jk(z,u,v)}, k = £1,£2, ...
are almost periodic with respect to k, uniformly at x,u,v € f2.

Set w = (u,v), and

—>\—ILL1A 0
A= )

L0 A=A

[ c1(t,x)v

ulay(t,x) — b(t,x)u — ——=——| + Au

Ft,w) = [ Cz(t,zgg,x)v —i—u} 7
_U{— az(t,.%') + r(t,x)—u—kv} + \v
B [u(ty, o) Ix (2, u(ty, ), v(ty, ) — u(te, )

He(wlte) = | i ) ( ultn, o), o(th, 7)) — v(tk,x)}

where A > 0.
Then, the system (2.101) moves to the equation

w(t) = Aw+ F(t,w)+ > Gr(w)d(t — t). (2.102)
k=+1,+2,...

It is well-known [68], that the operator A is sectorial, and Rec(A) < —A,
where 0(A) is the spectrum of A. Now, the analytic semigroup of the operator
Ais e=4t and

1 o0
PR / e At
I'(a) Jo
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Theorem 2.26. Let for the equation (2.102) the following conditions hold:

1. Conditions H2.56, H2.61 and H2.62 are met.
2. For the functions F(t,w) there exist constants Ly >0, 1 >k >0, 1 >
a > 0 such that

||[F(t1,w1) — F(ta,w2)||x < L1(|ts — t2]® + |Jw1 — wal[a),

where (t;,w;) € R x X,, i=1,2.
3. For the set of functions {Hp(w)}, k = £1,4+2,... there exist constants
Ly >0, 1> a >0 such that

[[Hy(w1) — H(w2)||x < Lo|lwi — walla-

where wy, wy € X,
4. The functions F(t,w) and Hy(w) are bounded for t € R,w € X, and
k=+1,42, ...

Then, if L = max{Ly, Lo} is sufficiently small, it follows:

1. There exists a unique almost periodic solution x € PCB[R, X] of (2.101).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. From conditions H2.61, H2.62 and conditions of the theorem, it follows
that all conditions of Theorem 2.25 hold. Then, for (2.102) and consequently
for (2.101) there exists a unique almost periodic solution of (2.101), which is
asymptotically stable. a
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