
Chapter 2
Almost Periodic Solutions

In the present chapter, we shall state some basic existence and uniqueness
results for almost periodic solutions of impulsive differential equations.
Applications to real world problems will also be discussed.

Section 2.1 will offer the existence and uniqueness theorems for almost
periodic solutions of hyperbolic impulsive differential equations.

In Sect. 2.2, using weakly non-linear integro-differential systems, the
existence and exponential stability of almost periodic solutions of impulsive
integro-differential equations will be discussed.

In Sect. 2.3, we shall study the existence of almost periodic solutions for
forced perturbed impulsive differential equations. The example here, will state
the existence criteria for impulsive differential equations of Lienard’s type.

Section 2.4 will deal with sufficient conditions for the existence of almost
periodic solutions of impulsive differential equations with perturbations in
the linear part.

In Sect. 2.5, we shall consider the strong stability and almost periodicity
of solutions of impulsive differential equations with fixed moments of impulse
effect. The investigations are carried out by means of piecewise continuous
Lyapunov functions.

Section 2.6 is devoted to the problem of the existence of almost periodic
projektor-valued functions for dichotomous impulsive differential systems.

In Sect. 2.7, we shall investigate separated solutions of impulsive differ-
ential equations with variable impulsive perturbations and we shall give
sufficient conditions for almost periodicity of these solutions.

Finally, in Sect. 2.8, the existence results for almost periodic solutions of
abstract differential equations in Banach space will be given. Applications for
impulsive predator–prey systems with diffusion will be considered.
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2.1 Hyperbolic Impulsive Differential Equations

In this paragraph, we shall consider the following systems of impulsive
differential equations with impulses at fixed moments

{
ż = A(t)z + f(t), t �= tk,

Δz(tk) = bk, k = ±1,±2, . . . ,
(2.1)

and {
ż = A(t)z + F (t, z), t �= tk,

Δz(tk) = Ik(z(tk)), k = ±1,±2, . . . ,
(2.2)

where t ∈ R, {tk} ∈ B, A : R→R
n×n, f :R→R

n, bk ∈R
n, F :R × Ω →

R
n, Ik : Ω → R

n.
By z(t) = z(t; t0, z0), we denote the solution of (2.1) or (2.2) with initial

condition z(t+0 ) = z0, t0 ∈ R, z0 ∈ R
n. Together with the systems (2.1) and

(2.2), we shall consider the corresponding homogeneous system

ż = A(t)z. (2.3)

Definition 2.1 ([71]). The system (2.3) is said to be hyperbolic, if there
exist constants α > 0, λ > 0 and for each t ∈ R there exist linear spaces
M+(t), and M−(t), whose external direct sum is M+(t)⊕M−(t) = R

n, such
that if z0 ∈M+(t0), then for all t ≥ t0 the inequality

||z(t; t0, z0)|| ≤ a||z0||e−λ(t−t0),

holds true, while if z0 ∈M−(t0) then for all t ≤ t0, we have

||z(t; t0, z0)|| ≤ a||z0||eλ(t−t0).

In this part, we shall investigate the existence of almost periodic solutions
of systems (2.1) and (2.2), assuming that the corresponding homogeneous
system is hyperbolic.

Introduce the following conditions:

H2.1. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.2. The function f ∈ PC[R,Rn] is almost periodic.
H2.3. The sequence {bk}, k = ±1,±2, . . ., is almost periodic.
H2.4. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . ,
j = ±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

H2.5. The function F ∈ C[R × Ω,Rn] is almost periodic with respect to t
uniformly in z ∈ Ω.
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H2.6. The sequence of functions {Ik(x)}, Ik ∈ C[Ω,Rn], k = ±1,±2, . . .,
is almost periodic with respect to k uniformly in z ∈ Ω.

We shall use the following lemmas:

Lemma 2.1. Let conditions H2.1–H2.4 hold. Then for each ε > 0 there exist
ε1, 0 < ε1 < ε, a relatively dense set T of real numbers, and a set P of integer
numbers, such that the following relations are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T .
(c) ||bk+q − bk|| < ε, q ∈ P, k = ±1,±2, . . . .
(d) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

The proof of Lemma 2.1 is analogous to the proof of Lemma 1.7.

Lemma 2.2. Let the system (2.3) is hyperbolic and the condition H2.1 holds.
Then there exists a non-singular transformation, defined by almost periodic
matrix S(t), S ∈ C[R,Rn×n], which reduces the system (2.1.3) into the next
ones

ẋ = Q+(t)x (2.4)

and
ẏ = Q−(t)y (2.5)

where x ∈ R
k, y ∈ R

n−k, Q+ ∈ C[R,Rk×k], Q− ∈ C[R,R(n−k)×(n−k)] and
the following assertions hold true:

1. Q+(t) and Q−(t) are almost periodic matrix-valued functions.
2. If Φ+(t, s) and Φ−(t, s) are the corresponding fundamental matrices of the

systems (2.4) and (2.5), then the following inequalities hold true:

||Φ+(t, s)|| ≤ ae−λ(t−s), t ≥ s, (2.6)

||Φ−(t, s)|| ≤ aeλ(t−s), t ≤ s, (2.7)

where s, t ∈ R, a > 0.
3. For each ε > 0, t ∈ R, s ∈ R there exists relatively dense set T of

ε−almost periods, such that for each τ ∈ T , fundamental matrices Φ+(t, s)
and Φ−(t, s) satisfy the inequalities

||Φ+(t+ τ, s+ τ) − Φ+(t, s)|| ≤ εKe−
λ
2 (t−s), t ≥ s, (2.8)

||Φ−(t+ τ, s+ τ) − Φ−(t, s)|| ≤ εKe
λ
2 (t−s), t ≤ s, (2.9)

where λ > 0, K > 0.
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Proof. Assertions 1 and 2 are immediate consequences of Theorem 1 in [71].
In fact, following the ideas used in [71], we define the matrix S(t) to be
formed by the vector-columns, which are solutions of (2.3). It follows from
the condition H2.1, that S(t) consists of almost periodic functions. On the
other hand, the transformation z = S(t)u rewrites (2.3) in the form

u̇ = Q(t)u,

where
Q(t) = S−1(t)

(
A(t)S(t)− Ṡ(t)

)
.

Hence, Q(t) is an almost periodic function. The estimates (2.6) and (2.7)
are direct consequences of Theorem 1 in [71].

To prove Assertion 3, let Φ+(t, s) and Φ−(t, s) be the fundamental matrices
of systems (2.4) and (2.5), respectively. Then for each ε > 0 the following
relations hold true

∂Φ+(t, s)

∂t
= Q+(t)Φ+(t+ τ, s+ τ) +

(
Q+(t+ τ)−Q+(t)

)
Φ+(t+ τ, s+ τ),

∂Φ−(t, s)
∂t

= Q−(t)Φ−(t+ τ, s+ τ) +
(
Q−(t+ τ) −Q−(t)

)
Φ−(t+ τ, s+ τ)

and

Φ+(t+ τ, s+ τ) = Φ+(t, s)

+

∫ t

s

Φ+(t, v)
(
Q+(v + τ)−Q+(v)

)
Φ+(v + τ, s+ τ)dv,

Φ−(t+ τ, s+ τ) = Φ−(t, s)

+

∫ t

s

Φ−(t, v)
(
Q−(v + τ)−Q−(v)

)
Φ−(v + τ, s+ τ)dv.

Therefore,

||Φ+(t+ τ, s+ τ)− Φ+(t, s)|| ≤
∫ t

s

||Φ+(t, v)||||(Q+(v + τ)

−Q+(v)||||Φ+(v + τ, s+ τ)||dv,

||Φ−(t+ τ, s+ τ)− Φ−(t, s)|| ≤
∫ t

s

||Φ−(t, v)||||Q−(v + τ)

−Q−(v)||||Φ−(v + τ, s+ τ)||dv.
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It follows from (2.6), that

||Φ+(t+ τ, s+ τ) − Φ+(t, s)|| ≤ εKe−
λ
2 (t−s), t ≥ s,

where in this case K = (a)2.
The proof of (2.9) is analogous. �	
From Lemma 2.2 it follows that, by a transformation with the matrix S(t),

system (2.1) takes on the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = Q+(t)x+ f+(t), t �= tk,

Δx(tk) = b+k , k = ±1,±2, . . . ,

ẏ = Q−(t)y + f−(t), t �= tk,

Δy(tk) = b−k , k = ±1,±2, . . . ,

(2.10)

where x ∈ R
k, y ∈ R

n−k, f+ : R → R
k, f− : R → R

n−k, b+k and b−k are k
and n− k-dimensional constant vectors, respectively.

In an analogous way, the system (2.2) after a transformation with the
matrix S(t), goes to the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = Q+(t)x + F+(t, x, y), t �= tk,

Δx(tk) = I+k (x(tk), y(tk)), k = ±1,±2, . . . ,

ẏ = Q−(t)y + F−(t, x, y), t �= tk,

Δy(tk) = I−k (x(tk), y(tk)), k = ±1,±2, . . . ,

(2.11)

where F+ : R × R
k × R

n−k → R
k, F− : R × R

k × R
n−k → R

n−k, and
I+k : Rk × R

n−k → R
k, I−k : Rk × R

n−k → R
n−k.

Theorem 2.1. Let the following conditions hold:

1. Conditions H2.1–H2.4 hold.
2. The system (2.3) is hyperbolic.

Then for the system (2.1) there exists a unique almost periodic solution, which
is exponentially stable.

Proof. We consider the following equations

x(t) =

∫ t

−∞
Φ+(t, s)f+(s)ds +

∑
tk<t

Φ+(t, tk)b
+
k ,

y(t) = −
∫ ∞

t

Φ−(t, s)f−(s)ds+
∑
tk>t

Φ−(t, tk)b−k ,

which are equivalent to the (2.10).
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Let ε > 0 be an arbitrary chosen constant. It follows from Lemma 2.1 that
there exist sets T and P such that for each τ ∈ T and q ∈ P , the following
estimates hold true:

||x(t + τ)− x(t)|| =
∫ t

−∞
||Φ+(t+ τ, s+ τ)− Φ+(t, s)||||f+(s+ τ)||ds

+

∫ t

−∞
||Φ+(t, s)||||f+(s+ τ)− f+(s)||ds

+
∑
tk<t

||Φ+(t+ τ, tk+q)− Φ+(t, tk)||||b+k+q||

+
∑
tk<t

||Φ+(t, tk)||||b+k+q − b+k ||, (2.12)

and

||y(t+ τ)− y(t)|| =
∫ ∞

t

||Φ−(t+ τ, s+ τ) − Φ−(t, s)||||f−(s+ τ)||ds

+

∫ ∞

t

||Φ−(t, s)||||f−(s+ τ)− f−(s)||ds

+
∑
t>tk

||Φ−(t+ τ, tk+q)− Φ−(t, tk)||||b−k+q||

+
∑
t>tk

||Φ−(t, tk)||||b−k+q − b−k ||. (2.13)

From Lemma 2.2, (2.12) and (2.13), we have

||x(t+ τ) − x(t)|| ≤ K1ε, (2.14)

where

K1 =
2K

λ
sup
t∈R

||f+(t)||+ a

λ
+

2Na

1− e−
λ
2

sup
k=±1,±2,...

||b+k ||+
2Na

1− e−λ
.

In the same manner, we obtain

||y(t+ τ) − y(t)|| ≤ K2ε, (2.15)

where

K2 =
2K

λ
sup
t∈R

||f−(t)||+ a

λ
+

2Na

1− e−
λ
2

sup
k=±1,±2,...

||b−k ||+
2Na

1− e−λ
.
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The number N , which is defined in the last inequalities, is from Lemma 1.2
Now, from (2.14) and (2.15), we conclude that the solution z(t) = (x(t), y(t))
of system (2.1) is almost periodic.

On the other hand, each solution (x(t), y(t)) of (2.1) can be written in the
form

x(t) = Φ+(t, t0)χ+

∫ t

t0

Φ+(t, s)f+(s)ds+
∑

s<tk<t

Φ+(t, tk)b
+
k ,

y(t) = −
∫ ∞

t

Φ−(t, s)f−(s)ds+
∑
tk>t

Φ−(t, tk)b−k ,

where χ is a constant k-dimensional vector.
It follows that, for two different solutions z1(t) and z2(t) of system (2.1)

the estimate

||z1(t)− z2(t)|| ≤ ae−λ(t−t0)||z1(t0)− z2(t0)|| (2.16)

holds true.
Thus, (2.16) implies that the solution z(t) of (2.1) is unique and exponen-

tially stable. �	
Let Ω ≡ Bh.

Theorem 2.2. Let the following conditions hold:

1. Conditions H2.1, H2.4–H2.6 hold.
2. The system (2.3) is hyperbolic.
3. The functions F (t, z), Ik(z), k = ±1,±2, . . ., are Lipschitz continuous

with respect to z ∈ Bh with a Lipschitz constant L > 0, i.e.,

||F (t, z1)− F (t, z2)||+ ||Ik(z1)− Ik(z2)|| ≤ L||z1 − z2||,

and they are bounded, i.e. there exists a constant L1 > 0, such that

max
(

sup
t∈R,z∈Bh

||F (t, z)||, sup
k=±1,±2,...,z∈Bh

||Ik(z))||
)
= L1 <∞.

4. The following inequalities hold

L1

(a
λ
+

2aN

1− e−λ

)
< h,

L
(a
λ
+

2aN

1− e−λ

)
< 1.

Then for the system (2.2) there exists a unique almost periodic solution.
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Proof. Denote by AP the set of all almost periodic solutions ϕ(t), ϕ ∈
PC[R, Ω], such that ||ϕ|| < h.

We define in AP the operator SAP , such that if ϕ ∈ AP , then
ϕ = (ϕ+, ϕ−), where ϕ+ : R → R

k, ϕ− : R → R
n−k, SAPϕ =

(SAPϕ+, SAPϕ−), u = SAPϕ+ is the almost periodic solution of

{
u̇ = Q+(t)u + F+(t, ϕ(t)), t �= tk,

Δu(tk) = I+k (ϕ(tk)), k = ±1,±2, . . . ,

and v = SAPϕ− is the almost periodic solution of

{
v̇ = Q−(t)v + F−(t, ϕ(t)), t �= tk,

Δv(tk) = I−k (ϕ(tk)), k = ±1,±2, . . . .

The existence of almost periodic solutions u(t) and v(t), is guaranteed
by Theorem 2.1. In fact, the almost periodicity of the sequence {ϕ(tk)},
k = ±1,±2, . . . follows from Lemma 1.5, and from the method for find-
ing of common almost periods, we obtain that the sequence {Ik(ϕ(tk))},
k = ±1,±2, . . . ., is almost periodic, also. The almost periodicity of the
function F (t, ϕ(t)) follows from Theorem 1.17. Further on, conditions 2 and
3 imply that SAP (AP ) ⊂ AP .

Let ϕ, ψ ∈ AP . Then, the estimate

||SAPϕ− SAPψ|| ≤ La
( 1
λ
+

2N

1− e−λ

)
|ϕ− ψ|∞,

where |ϕ− ψ|∞ = sup
t∈R

||ϕ(t)− ψ(t)|| holds true.
It follows from condition 3, and from the last inequality, that SAP is

a contracting operator on SAP . Hence, for the system (2.2) there exists a
unique almost periodic solution. �	

2.2 Impulsive Integro-Differential Equations

In this section, we shall present the main results on the existence of almost
periodic solutions of impulsive integro-differential systems.

Consider the following linear system of impulsive integro-differential
equations

⎧⎪⎨
⎪⎩
ẋ = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ f(t), t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.17)
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where t ∈ R, {tk} ∈ B, A ∈ PC[R,Rn×n], K ∈ PC[R2,Rn×n], f ∈
PC[R,Rn], Bk ∈ R

n×n, k = ±1,±2, . . ..
The solution of (2.17), x(t) = x(t; t0, x0) with initial condition x(t+0 ) =

x0, t0 ∈ R, x0 ∈ R
n, is characterized at the following way:

1. For t �= tk, k = ±1,±2, . . ., the mapping point (t, x(t)) moves along some
of the integral curves of the system

ẋ = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ f(t).

2. At the moment t = tk, k = ±1,±2, . . ., the system is subject to an
impulsive effect, as a result of which the mapping point is transferred
“instantly” from the position (tk, x(tk)) into a position

(
tk, x(tk) +

Bkx(tk)
)
. Afterwards, for tk < t < tk+1 the solution x(t) coincides with

the solution y(t) of the system

⎧⎪⎨
⎪⎩
ẏ = A(t)y(t) +

t∫
t0

K(t, s)y(s)ds+ f(t), t �= tk,

y(tk) = x(tk) +Bkx(tk), k = ±1,±2, . . . ,

At the moment t = tk+1, the solution is subject to a new impulsive effect.
We shall, also, consider weakly nonlinear impulsive integro-differential

systems⎧⎪⎨
⎪⎩
ẋ(t) = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ F (t, x(t)), t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.18)

where F (t, x) ∈ PC[R× R
n,Rn], and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂R(t, s)

∂t
= A(t)x(t) +

t∫
t0

K(t, v)R(v, s)dv, s �= tk, t �= tk,

R(t+k , s) = (E +Bk)R(tk, s), k = ±1,±2, . . . ,

(2.19)

where R(t, s) is an n× n-dimensional matrix function and R(s, s) = E, E is
the identity matrix in R

n.

Lemma 2.3 ([131]). If R(t, s) is a solution of (2.19), then the unique
solution x(t) = x(t; t0, x0) of (2.17) is given by
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x(t) = R(t, t0)x(t0) +

t∫
t0

R(t, s)f(s)ds, x(t+0 ) = x0.

Introduce the following conditions:

H2.7. There exists an n × n-dimensional matrix function R(t, s), satisfying
(2.19).

H2.8. det(E +Bk) �= 0, k = ±1,±2, . . ..
H2.9. μ[A(t)−R(t, t)] ≤ −α, α > 0, μ[.] is the logarithmic norm.

Lemma 2.4 ([15]). Let conditions H2.7–H2.9 hold.
Then

||R(t, s)|| ≤ K1e
−α(t−s), (2.20)

where K1 > 0, t > s.

Remark 2.1. In the special case, when in (2.17), K(t, s) ≡ 0, we obtain the
linear impulsive system

{
ẋ = A(t)x + f(t), t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . .

Then, from Lemma 2.3, it follows, respectively, well known variation
parameters formula [94], where R(t, s) is the fundamental matrix and
R(t0, t0) = E.

We shall investigate the existence of almost periodic solutions of systems
(2.17), (2.18), and we shall use the following conditions:

H2.10. A(t) is an almost periodic n× n-matrix function.
H2.11. The sequence {Bk}, k = ±1,±2, . . . is almost periodic.
H2.12. The set of sequences {tjk}, k = ±1,±2, . . . , j = ±1,±2, . . . is

uniformly almost periodic, and infkt
1
k = θ > 0.

H2.13. The matrix K(t, s) is almost periodic along the diagonal line, i.e. for
any ε > 0, the set T (K, ε) composed from ε-almost periods τ , such
that for τ ∈ T (K, ε), K(t, s) satisfies the inequality

||K(t+ τ, s+ τ)−K(t, s)|| ≤ εe−
α
2 (t−s),

t > s, is relatively dense in R.
H2.14. The function f(t), f ∈ PC[R,Rn] is almost periodic.
H2.15. The function F (t, x) is almost periodic along t uniformly with respect

to x ∈ Ω.

We shall use the next lemma, which is similar to Lemma 1.7.
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Lemma 2.5. Let conditions H2.10–H2.12 and H2.14 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense set T of

real numbers and a set P of integer numbers, such that the following relations
are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(c) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . ..
(d) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.6. Let conditions H2.7–H2.13 hold.
Then R(t, s) is almost periodic along the diagonal line and the following

inequality holds

||R(t+ τ, s+ τ)−R(t, s)|| ≤ εΓe−
α
2 (t−s), (2.21)

where t > s, Γ > 0, ε > 0, τ is an almost period.

Proof. Let ε > 0 and τ be a common ε-almost period of A(t) and K(t, s).
Then, for s �= t′k, t �= t′k, we have

∂R(t+ τ, s+ τ)

∂t
= A(t)R(t+ τ, s+ τ) +

(
A(t+ τ) −A(t)

)
R(t+ τ, s+ τ)

×
t∫

s

(
K(t+ τ, v + τ)−K(t, v)

)
R(v + τ, s+ τ)dv

+

t∫
s

K(t, v)R(v + τ, s+ τ)dv,

and

R(t′k + τ, s+ τ) = (E +Bk)R(t
′
k + τ, s+ τ) + (Bk+q −Bk)R(tk + τ, s+ τ),

where t′k = tk − τ and τ, q are the numbers from Lemma 2.5.
Hence, from (2.19), we obtain

R(t+ τ, s+ τ)−R(t, s)

=

t∫
s

R(t, u)
(
A(u + τ)−A(u)

)
R(u+ τ, s+ τ)du
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+

t∫
s

R(t, u)
( u∫

s

(
K(u+ τ, v + τ)−K(u, v)R(v + τ, s+ τ

)
dv
)
du

+
∑

s≤t′v<t

R(t, t
′+
v )(Bv+q −Bv)R(t

′
v + τ, s+ τ). (2.22)

From Lemma 2.5, it follows that, if |t− t′k| > ε, t ∈ R, then t′k+q < t+ τ <

t′k+q+1 and from (2.20), (2.22), we obtain

||R(t+ τ, s+ τ )−R(t, s)|| ≤ K2
1ε
(
e−α(t−s)(t− s) +

4

α2
e−

α
2 (t−s)i(s, t)e−α(t−s)

)
,

where i(t, s) is the number of points tk in the interval (t, s).
Now, from the condition H2.12 and Lemma 1.2, it follows that there exists

a positive integer N , such that for any t ∈ R, s ∈ R and t > s the following
inequality holds

i(s, t) ≤ (t− s)N +N.

Therefore,

||R(t+ τ, s+ τ)−R(t, s)|| ≤ εΓe−
α
2 (t−s),

where t > s, Γ = K2
1

2

α

(
1 +

2

α
N +

Nα

2

)
. �	

The next theorems are the main in this paragraph.

Theorem 2.3. Let conditions H2.7–H2.14 hold.
Then for the system (2.17), there exists a unique exponentially stable

almost periodic solution ϕ(t), such that

||ϕ(t)|| ≤ 2K1

α
max
s<t

||f ||. (2.23)

Proof. Consider the function

ϕ(t) =

t∫
−∞

R(t, s)f(s)ds. (2.24)

From (2.19), (2.24), and Fubini’s theorem, it follows that

ϕ̇(t) =

t∫
−∞

∂R(t, s)

∂t
f(s)ds+ f(t)

=

t∫
−∞

(
A(t)R(t, s) +

t∫
u

K(t, u)R(t, u)du
)
f(s)ds+ f(t)
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= A(t)ϕ(t) +

t∫
u

( t∫
−∞

K(t, u)R(u, s)f(s)ds
)
du

= A(t)ϕ(t) +

t∫
s

K(t, s)ϕ(s)ds+ f(t), (2.25)

where s < t, s �= tk, t �= tk, k = ±1,±2, . . ..
On the other hand, for t = tk, k = ±1,±2, . . ., we have

Δϕ(tk) = ϕ(t+k )− ϕ(tk) = Bkϕ(tk). (2.26)

Then, from (2.25) and (2.26), it follows that ϕ(t) is a solution of system
(2.17).

From Lemma 2.4, we obtain

||ϕ(t)|| ≤
t∫

−∞
||R(t, s)||||f(s)||ds ≤ 2K1

α
max
s<t

||f(t)||.

Let τ ∈ T , q ∈ P , where T and P are determined in Lemma 2.5. From
Lemma 2.6, it follows that

||ϕ(t+ τ)− ϕ(t)|| =
t∫

−∞
||R(t+ τ, s+ τ)f(s+ τ)−R(t, s)f(s)||ds

≤
t∫

−∞
||R(t+ τ, s+ τ)−R(t, s)||||f(s+ τ)||ds

+

t∫
−∞

||R(t, s)||||f(s+ τ) − f(s)||ds

≤ ε
(2ΓM

α
+
K1

α

)
, (2.27)

where M = max
s<t

||f(t)||. The estimate (2.27) means that ϕ(t) is an almost

periodic function.
Let η(t) is one other solution of (2.17). Then, from (2.20), it follows that

||ϕ(t) − η(t)|| ≤ K1e
−α(t−t0)||ϕ(t0)− η(t0)||,

and we obtain that the solution ϕ(t) is unique and exponentially stable. �	
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Theorem 2.4. Let the following conditions hold:

1. Conditions H2.7–H2.13, and H2.15 hold.
2. The function F (t, x) is Lipschitz continuous with respect to x ∈ Bh with

a Lipschitz constant L > 0, i.e.

||F (t, x1)− F (t, x2)|| ≤ L‖x1 − x2‖, x1, x2 ∈ Bh,

and F (t, x) is uniformly bounded, i.e. there exists a constant G > 0, such
that

||F (t, x)|| ≤ G, ||x|| < h.

3. The following inequalities hold

K1G

α
< h,

KL

α
< 1.

Then there exists a unique exponentially stable almost periodic solution of
(2.18).

Proof. Let us denote by AP the set of all almost periodic functions ϕ(t),
ϕ ∈ PC[R,Rn], satisfying the inequality ||ϕ(t)|| < h, and let |ϕ(t)|∞ =
sup
t∈R

||ϕ(t)||.
In AP , we define an operator S

Sϕ =

t∫
−∞

R(t, s)F (t, ϕ(s))ds. (2.28)

Let ϕ ∈ AP . From (2.28), it follows that

||Sϕ|| ≤
t∫

−∞
||R(t, s)||||F (t, ϕ(s))||ds

≤ K1

t∫
−∞

e−α(t−s)Gds ≤ K1G

α
< h. (2.29)

On the other hand, from Theorem 1.17, it follows that the function
F (t, ϕ(t)) is almost periodic, and let τ be the common almost period of ϕ(t)
and F (t, ϕ(t)).

Then,

||Sϕ(t+ τ)− Sϕ(t)||

≤
t∫

−∞
||R(t+ τ, s+ τ)F (s, ϕ(s + τ)) −R(t, s)F (s, ϕ(s))||ds

≤
(2GΓ

α
+
K1

α

)
ε. (2.30)
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Hence, using (2.29) and (2.30), we obtain that S(AP ) ⊂ AP.
Let ϕ ∈ AP, η ∈ AP . From (2.28) and Lemma 2.6, we have

||Sϕ(t)− Sη(t)|| ≤
t∫

−∞
||R(t, s)||||F (s, ϕ(s)) − F (s, η(s))||ds

≤ K1L

α
|ϕ(t)− η(t)|∞. (2.31)

Therefore, the inequality (2.31) shows that S is a contracting operator
in AP , and hence, there exists a unique almost periodic solution of system
(2.18).

Now, let ψ(t) is one other solution of (2.18). Then, Lemma 2.3 and (2.20)
imply that

||ϕ(t)− ψ(t)||

≤ K1||ϕ(t0)− ψ(t0)||e−α(t−s) +

t∫
t0

K1e
−α(t−s)L||ϕ(s)− ψ(s)||ds. (2.32)

Set
v(t) = ||ϕ(t)− ψ(t)||eα(t).

From (2.32) and Gronwall–Belman’s inequality, we have

v(t) ≤ K1v(t0)exp
( t∫
t0

K1Lds
)
.

Consequently,

||ϕ(t)− ψ(t)|| ≤ K1||ϕ(t0)− ψ(t0)||e(K1L−α)(t−t0).

From the last inequality, it follows that ϕ(t) is exponentially stable. �	

2.3 Forced Perturbed Impulsive Differential
Equations

In this part, we shall consider sufficient conditions for the existence of almost
periodic solutions for forced perturbed systems of impulsive differential
equations with impulsive effects at fixed moments.
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We shall consider the system{
ẋ = A(t)x + g(t) + μX(t, x, μ), t �= tk,

Δx(tk) = Bkx(tk) + gk + μXk(x(tk), μ), k = ±1,±2, . . . ,
(2.33)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, g : R → R

n, μ ∈ M ⊂ R, X :
R×Ω×M → R

n, Bk ∈ R
n×n, gk ∈ R

n, Xk : Ω×M → R
n, k = ±1,±2, . . ..

Denote by x(t, μ)= x(t; t0, x0, μ) the solution of (2.33) with initial condi-
tion x(t+0 , μ) = x0, x0 ∈ Ω, μ ∈M .

We shall use the following definitions:

Definition 2.2. The system

{
ẋ = A(t)x + g(t), t �= tk,

Δx(tk) = Bkx(tk) + gk, k = ±1,±2, . . . ,
(2.34)

is said to be generating system of (2.33).

Definition 2.3 ([56]). The matrix A(t) is said to has a column dominant
with a parameter α > 0 on [a, b], if

aii(t) +
∑
j �=i

|aji(t)| ≤ −α < 0,

for each i, j = 1, . . . , n, and t ∈ [a, b].

Introduce the following conditions:

H2.16. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.17. {Bk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.18. det(E + Bk) �= 0, k = ±1,±2, . . . where E is the identity matrix in

R
n×n.

H2.19. The function g ∈ PC[R,Rn] is almost periodic.
H2.20. {gk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.21. The function X ∈ C[R×Ω×M,Rn] is almost periodic in t uniformly

with respect to (x, μ) ∈ Ω × M , and is Lipschitz continuous with
respect to x ∈ Bh with a Lipschitz constant l1 > 0, such that

||X(t, x, μ)−X(t, y, μ)|| ≤ l1||x− y||, x, y ∈ Bh,

for any t ∈ R and μ ∈M .
H2.22. The sequence of functions {Xk(x, μ)}, k = ±1,±2, . . . , Xk ∈ C[Ω ×

M,Rn] is almost periodic uniformly with respect to (x, μ) ∈ Ω ×M ,
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and the functions Xk are Lipschitz continuous with respect to x ∈ Bh

with a Lipschitz constant l2 > 0, such that

||Xk(x, μ)−Xk(y, μ)|| ≤ l2||x− y||, x, y ∈ Bh,

for k = ±1,±2, . . . , μ ∈M .
H2.23. The set of sequences {tjk}, tjk = tk+j − tk, k= ± 1,±2, . . . , j =

±1,±2, . . . is uniformly almost periodic, and infkt
1
k = θ > 0.

We shall use the next lemma, which is similar to Lemma 1.7.

Lemma 2.7. Let conditions H2.16, H2.17, H2.19, H2.20 and H2.23 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense set T of
real numbers, and a set P of integer numbers, such that the following relations
are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||g(t+ τ) − g(t)|| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(c) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . ..
(d) ||gk+q − gk|| < ε, q ∈ P, k = ±1,±2, . . ..
(e) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.8. Let conditions H2.19, H2.20 and H2.23 hold.
Then there exists a positive constant C1 such that

max(sup
t∈R

||g(t)||, sup
k=±1,±2,...

||gk||) ≤ C1.

Proof. The proof follows from Lemma 1.7. �	
Lemma 2.9 ([138]). Let the following conditions hold:

1. Conditions H2.16–H2.18 and H2.23 are met.
2. For the Cauchy matrix W (t, s) of the system

{
ẋ = A(t)x, t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

there exist positive constants K and λ such that

||W (t, s)|| ≤ Ke−λ(t−s),

where t ≥ s, t, s ∈ R.

Then for any ε > 0, t ∈ R, s ∈ R, |t − tk| > ε > 0, |s − tk| > ε, k =
±1,±2, . . ., there exists a relatively dense set T of ε-almost periods of matrix
A(t) and a positive constant Γ , such that for τ ∈ T it follows
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||W (t+ τ, s+ τ) −W (t, s)|| ≤ εΓe−
λ
2 (t−s).

Now, we are ready to proof the main theorem.

Theorem 2.5. Let the following conditions hold:

1. Conditions H2.16–H2.23 are met.
2. There exists a positive constant L1, such that

max
{

sup
t∈R

(x,μ)∈Ω×M

||X(t, x, μ)||, sup
k=±1,±2,...
(x,μ)∈Ω×M

||Xk(x, μ)||
} ≤ L1.

3. For the generating system (2.34), there exists a unique almost periodic
solution.

Then there exists a positive constant μ0, μ0 ∈M such that:

1. For any μ, |μ| < μ0 and C < C1, where the constant C1 is from Lemma 2.8,
there exists a unique almost periodic solution of (2.33).

2. There exists a positive constant L such that

||x(t, μ1)− x(t, μ2)|| ≤ L|μ1 − μ2|,

where t ∈ R, |μi| < μ0, i = 1, 2.
3. For |μ| → 0, x(t, μ) converges to the unique almost periodic solution of

(2.34).
4. The solution x(t, μ) is exponentially stable.

Proof of Assertion 1. Let we denote by AP , the set of all almost periodic
functions ϕ(t, μ), ϕ∈AP ∈ PC[R ×M,Rn] satisfying the inequality ||ϕ|| <
C, and let |ϕ|∞ = sup

t∈R, μ∈M
||ϕ(t, μ)||.

In AP, we define the operator S,

Sϕ =

∫ t

−∞
W (t, s)

(
g(s) + μX(s, ϕ(s, μ), μ)

)
ds

+
∑
tk<t

W (t, tk)
(
gk + μXk(ϕ(tk, μ), μ)

)
. (2.35)

From Lemma 2.8 and Lemma 2.9, it follows

||Sϕ|| =
∫ t

−∞
||W (t, s)||

(
||g(s)||+ |μ|||X(s, ϕ(s, μ), μ)||

)
ds

+
∑
tk<t

||W (t, tk)||
(
||gk||+ |μ|||Xk(ϕ(tk, μ), μ)||

)

≤ (C1 + |μ|L1)
(K
λ

+
KN

1− e−λ

)
.
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Consequently, there exists a positive constant μ1 such that for μ ∈
(−μ1, μ1) and C = (C1 + |μ|L1)

(
K
λ + KN

1−e−λ

)
< C1, we obtain

||Sϕ|| ≤ C. (2.36)

Now, let τ ∈ T , q ∈ P , where the sets T and P are determined in
Lemma 2.7. From Lemma 1.5 and Theorem 1.17, we have

||Sϕ(t+ τ, μ)− Sϕ(t, μ)||

≤
∫ t

−∞
||W (t+ τ, s+ τ)−W (t, s)||

(
||g(s+ τ)||

+ |μ|||X(s+ τ, ϕ(s+ τ, μ), μ)||
)
ds

+

∫ t

−∞
||W (t, s)||

(
||g(s+ τ)− g(s)||

+ |μ|||X(s+ τ, ϕ(s+ τ, μ), μ)−X(s, ϕ(s, μ), μ)||
)
ds

+
∑
tk<t

||W (t+ τ, tk+q)−W (t, tk)||
(
||gk+q||

+ |μ|||Xk+q(ϕ(tk+q , μ), μ)||
)

+
∑
tk<t

||W (t, tk)||
(
||gk+q − gk||

+ |μ|||Xk+q(ϕ(tk+q , μ), μ)−Xk(ϕ(tk, μ), μ)||
)

≤ ε
(
(C1 + |μ|L1)

(2Γ
λ

+
NΓ

1− e−λ

)
+ (1 + |μ|)

(K
λ

+
NK

1 + e−λ

))
. (2.37)

Thus, by (2.35) and (2.36), we obtain Sϕ ∈ AP .
Let ϕ ∈ AP, ψ ∈ AP . Then from (2.35), it follows

||Sϕ− Sψ|| ≤ |μ|
∫ t

−∞
||W (t, s)||||X(s, ϕ(s, μ), μ) −X(s, ψ(s, μ), μ)||ds

+ |μ|
∑
tk<t

||W (t, tk)||||Xk(ϕ(tk, μ), μ)−Xk(ψ(tk, μ), μ)||

≤ |μ|K
( l1
λ

+
l2

1− e−λ

)
|ϕ− ψ|∞.
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Since there exists a positive constant μ0 < μ1 such that

μ0K
( l1
λ
+

l2
1− e−λ

)
< 1,

we have that S is a contracting operator in AP .

Proof of Assertion 2. Let ϕj = ϕj(t, μj), j = 1, 2, and |μj | < μ0.
Then,

||ϕ1 − ϕ2|| ≤ |μ1 − μ2|
( ∫ t

−∞
||W (t, s)||||X(s, ϕ1(s, μ1), μ1)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ1(tk, μ1), μ1)||
)

+ |μ2|
(∫ t

−∞
||W (t, s)||||X(s, ϕ1(s, μ1), μ1)−X(s, ϕ2(s, μ2), μ2)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ1(tk, μ1), μ1)−Xk(ϕ2(tk, μ2), μ2)||
)

≤ L|μ1 − μ2|, (2.38)

where

L = L1K
( l1
λ
+

l2
1− e−λ

)
(1− μ0K)K

( l1
λ

+
Nl2

1− e−λ

)
.

Proof of Assertion 3. Let we denote by x(t) the almost periodic solution of
(2.33).

From (2.35) and Lemma 2.9, it follows

||x(t, μ) − x(t)|| ≤ |μ|
( ∫ t

−∞
||W (t, s)||||X(s, ϕ(s, μ), μ)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ(tk, μ), μ)||
)

≤ |μ|L1K
( 1
λ
+

N

1− e−λ

)
.

Then x(t, μ) → x(t) for |μ| → 0.

Proof of Assertion 4. Let y(t) be an arbitrary solution of (2.34). Then using
(2.35), we obtain

y(t)− x(t, μ) =W (t, t0)
(
y(t0)− x(t0, μ)

)
+ μ

(∫ t

t0

W (t, s)
(
X(s, y(s), μ)−X(s, x(s, μ), μ)

)
ds

+
∑

t0<tk<t

W (t, tk)
(
Xk(y(tk), μ)−Xk(x(tk, μ), μ)

))
.
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Now, we have

||y(t)− x(t, μ)|| ≤ Ke−λ(t−t0)||y(t0)− x(t0, μ)||

+ |μ|
( ∫ t

t0

Kl1e
−λ(t−s)||y(s)− x(s, μ)||ds

+
∑

t0<tk<t

Kl2e
−λ(t−tk)||y(tk)− x(tk, μ)||

)
.

Set u(t) = ||y(t) − x(t, μ)||e−λt and from Gronwall–Bellman’s inequality,
it follows

||y(t)− x(t, μ)|| ≤ K||y(t0)− x(t0, μ)||(1 + |μ|Kl1)i(t0,t)e(−λ+|μ|Kl2)(t−t0),

where i(t, s) is the number of points tk in the interval (t, s). Obviously, if there
exists μ ∈M such thatN ln(1+|μ|Kl1)+|μ|Kl2 < λ, then the solution x(t, μ)
is exponentially stable. �	
Lemma 2.10. Let the following conditions hold:

1. Conditions H2.16, H2.17 are met.
2. The matrix-valued function A(t) has a column dominant with a parameter

α > 0 for t ∈ R.

Then for the Cauchy’s matrix W (t, s) it follows

||W (t, s)|| ≤ Ke−α(t−s),

where t ∈ R, s ∈ R, t ≥ s, K > 0.

Proof. The proof follows from the definition of matrix W (t, s). �	
Example 2.1. We consider the following system of impulsive differential
equations of Lienard’s type:

⎧⎨
⎩
ẍ+ f(t)ẋ+ q(t) = μh(t, x, ẋ, μ), t �= tk,

Δx(tk) = b1kx(tk) + g1k + μX1
k(x(tk), ẋ(tk), μ),

Δẋ(tk) = b2kx(tk) + g2k + μX2
k(x(tk), ẋ(tk), μ), k = ±1,±2, . . . ,

(2.39)

where t ∈ R, x ∈ R, μ ∈ M , {tk} ∈ B, the functions f ∈ PC[R,R], q ∈
PC[R,R] are almost periodic, the function h ∈ C[R3 × M,R] is almost
periodic in t uniformly with respect to x, ẋ and μ, bmk ∈ R, gmk ∈ R, the
sequences {bmk }, {gmk } are almost periodic, Xm

k ∈ C[R2 × M,R] and the
sequences {Xm

k }, k = ±1,±2, . . . , m = 1, 2, are almost periodic uniformly
with respect to x, ẋ and μ.
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Set

ẋ = y − (f(t)− a)x,

ẏ =
(
af(t)− a2 − ḟ(t)

)
x− ay − q(t) + μh(t, x, ẋ, μ),

z =
(
x

y

)
, A(t) =

(−f(t) + a 1

af(t)− a2 − ḟ(t) −a
)
, X =

(
0

h

)
,

Xk =
( X1

k(
f(t+k )− a

)
X1

k +X2
k

)
,

Bk =
( b1k 0(
f(t+k )− a

)
b1k − b2k(f(tk)− a) b2k

)
,

gk =
(

g1k(
f(t+k )− a

)
g1k

)
, g(t) =

(
0

−q(t)
)
.

Then, we can rewrite system (2.39) in the form

{
ż = A(t)z + g(t) + μX(t, z, μ), t �= tk,

Δz(tk) = Bkz(tk) + gk + μXk(z(tk), μ), k = ±1,±2, . . . .

Now, the conditions for the column dominant of the matrix A(t) are

1 < a <
1

2

(
f(t)− 1 +

√(
f(t)− 1

)2
+ 4f(t)− 4ḟ(t)

)
,

a− f(t) +
∣∣af(t)− a2 − ḟ(t)

∣∣ < 0,

i.e. (
f(t)− 1

)2
< 4ḟ(t) <

(
f(t) + 1

)2
,

2f(t)− ḟ(t)− 2 > 0.
(2.40)

Theorem 2.6. Let the following conditions hold:

1. Condition H2.23 and the inequalities (2.40) are met.
2. b1kb

2
k + b1k + b2k + 1 �= 0, k = ±1,±2, . . ..

3. The functions h(t, x, ẋ, μ), Xk(x, ẋ, μ) are Lipschitz continuous with
respect to x and ẋ uniformly for t ∈ R, k = ±1,±2, . . . , and μ ∈ M
respectively.

Then there exists a positive constant μ0, μ0 ∈M such that:

1. For any μ, |μ| < μ0 the system (2.39) has a unique almost periodic solution.
2. The almost periodic solution is exponentially stable.
3. For |μ| → 0 the solution is convergent to the unique almost periodic

solution of the system
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{
ż = A(t)z + g(t), t �= tk,

Δz(tk) = Bkz(tk) + gk, k = ±1,±2, . . . .

Proof. The proof follows directly from Theorem 2.5. �	
Now, we shall consider the following systems

{
ẋ = f(t, x), t �= tk,

Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,
(2.41)

and {
ẋ = f(t, x) + g(t) + μX(t, x, μ), t �= tk,

Δx(tk) = Ik(x(tk)) + gk + μXk(x(tk), μ), k = ±1,±2, . . . .
(2.42)

Introduce the following conditions:

H2.24. The function f ∈ C[R×Ω,Rn] is almost periodic in t uniformly with
respect to x ∈ Ω and it is Lipschitz continuous with respect to x ∈ Bh

with a Lipschitz constant l3 > 0, such that uniformly in t ∈ R

||f(t, x)− f(t, y)|| ≤ l3||x− y||, x, y ∈ Bh.

H2.25. The sequence of functions {Ik}, Ik ∈ C[Ω,Rn], k = ±1,±2, . . . is
almost periodic uniformly with respect to x ∈ Ω, and the functions
Ik are Lipschitz continuous with respect to x, y ∈ Bh with a Lipschitz
constant l4 > 0, such that

||Ik(x)− Ik(y)|| ≤ l4||x− y||,

where x, y ∈ Bh, k = ±1,±2, . . ..

We shall suppose that for the system (2.42) there exists an almost periodic
solution ϕ(t), and consider the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ =

∂f

∂x
(t, ϕ(t))x, t �= tk,

Δx(tk) =
∂Ik
∂x

(ϕ(tk)), k = ±1,±2, . . . .

(2.43)

Let

L1(δ) = sup
t∈R, z∈Bδ

||f(t, ϕ(t) + z)− f(t, ϕ(t))||,

L2(δ) = sup
k=±1,±2,..., z∈Bδ

||Ik(ϕ(tk) + z)− Ik(ϕ(tk))||.
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Theorem 2.7. Let the following conditions hold:

1. Conditions H2.19–H2.25 are met.
2. Condition 2 of Theorem 2.5 holds.
3. For the Cauchy’s matrix W1(t, s) of the system (2.43), conditions of

Lemma 2.3.5 are met.
4. There exist positive constants C0, C1, C2 and μ0 such that

K

λ

(
l3 + μ0l1 + sup

t∈R

||∂f
∂x

(t, ϕ(t))||
)
+

K

1− e−λ

(
l3 + μ0l2

+ sup
k=±1,±2,...

||∂Ik
∂x

(ϕ(tk))||
)
< 1,

K

λ

(
C1 + μ0L1 + sup

t∈R

||∂f
∂x

(t, ϕ(t))||
)

+
K

1− e−λ

(
C2 + μ0L1 + sup

k=±1,±2,...
||∂Ik
∂x

(ϕ(tk))||
)
< C0.

Then there exists a positive constant μ0 ∈ M , and for any μ, |μ| < μ0,
system (2.42) has a unique almost periodic solution, such that:

1. ||x(t, μ)− ϕ(t)|| ≤ C0.
2. lim

|μ|→0
x(t, μ) = x(t, 0).

3. The solution x(t, μ) is exponentially stable.

Proof. Set x = z + ϕ(t) and from (2.43), it follows the equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ż =

∂f

∂x
(t, ϕ(t))z +R(t, z) + μX(t, z + ϕ(t), μ), t �= tk,

Δz(tk) =
∂Ik
∂z

(ϕ(tk)) +Rk(z(tk)) + μX(z(tk) + ϕ(tk, μ), μ),

k = ±1,±2, . . . ,

(2.44)

where

R(t, z) = f(t, ϕ(t) + z)− f(t, ϕ(t)) + g(t)− ∂f

∂z
(t, ϕ(t))z,

Rk(z) = Ik(ϕ(tk) + z)− Ik(ϕ(tk)) + gk − ∂Ik
∂z

(ϕ(tk)).

Let AP, AP ⊂ PC[R×M,Rn] is the set of all almost periodic functions
ϕ(t, μ), satisfying the inequality ||ϕ|| < C0.

Let us define in AP an operator Sμ,

Sμz =

∫ t

−∞
W1(t, s)

(
R(t, z(s)) + μX(s, z(s) + ϕ(s), μ)

)
ds

+
∑
tk<t

W1(t, tk)
(
Rk(z(tk)) + μXk(z(tk) + ϕ(tk))

)
. (2.45)



2.4 Perturbations in the Linear Part 57

From (2.45), Lemma 1.5, Theorem 1.17, Lemma 2.8 and the conditions of
Theorem 2.7 it follows that the operator Sμ is contracting in AP . Hence, there
exists a unique almost periodic solution z(t, μ) of system (2.44). Moreover,
x(t, μ) = z(t, μ) + ϕ(t) is an almost periodic solution of (2.42). The proof of
Assertions 1–3 are analogous to the proof of Theorem 2.5. �	

2.4 Perturbations in the Linear Part

In this paragraph, sufficient conditions for the existence of almost periodic
solutions of differential equations with perturbations in the linear part, are
obtained.

We shall consider the system of impulsive differential equations

{
ẋ = A(t)x+ f(t), t �= tk,

Δx(tk) = Akx(tk) + lk, k = ±1,±2, . . . ,
(2.46)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, f : R → R

n, Ak ∈ R
n×n, lk ∈ R

n,
k = ±1,±2, . . .. By x(t) = x(t; t0, x0) we denote the solution of (2.46) with
initial condition x(t+0 ) = x0, t0 ∈ R, x0 ∈ Ω.

Together with the system (2.46), we shall consider the following systems
of impulsive differential equations with perturbations in the linear part:

{
ẋ =

(
A(t) +B(t)

)
x+ f(t), t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk) + lk, k = ±1,±2, . . . ,

(2.47)

and {
ẋ =

(
A(t) +B(t)

)
x+ F (t, x), t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk) + Ik(x(tk)), k = ±1,±2, . . . ,

(2.48)

where B : R → R
n×n, F : R × Ω → R

n, Bk ∈ R
n×n, and Ik : Ω → R

n,
k = ±1,±2, . . ..

Introduce the following conditions:

H2.26. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.27. det(E + Ak) �= 0, where E is the identity matrix in R
n, and the

sequence {Ak}, k = ±1,±2, . . . is almost periodic.
H2.28. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =

±1,±2, . . . is uniformly almost periodic, and infkt
1
k = θ > 0.

H2.29. The function f ∈ PC[R,Rn] is almost periodic.
H2.30. The sequence {lk}, k = ±1,±2, . . . is almost periodic.
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H2.31. The matrix function B ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.32. The sequence {Bk}, k = ±1,±2, . . . is almost periodic.

Let us denote with W (t, s) the Cauchy matrix for the linear impulsive
system {

ẋ = A(t)x, t �= tk,

Δx(tk) = Akx(tk), k = ±1,±2, . . . ,
(2.49)

and with Q(t, s) the Cauchy matrix for the linear perturbed impulsive system

{
ẋ =

(
A(t) +B(t)

)
x, t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk), k = ±1,±2, . . . .

In this part, we shall use the following lemmas:

Lemma 2.11 ([138]). For the system (2.46) there exists only one almost
periodic solution, if and only if:

1. Conditions H2.26–H2.30 hold.
2. The matrix W (t, s) satisfies the inequality

||W (t, s)|| ≤ Ke−α(t−s), (2.50)

where s < t, K ≥ 1, α > 0.

Lemma 2.12 ([148]). Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 hold.
2. For K ≥ 1, α > 0 and s < t, it follows

||W (t, s)|| ≤ Ke−α(t−s).

Then:

1. If there exists a constant d > 0 such that

sup
t∈(t0,∞)

||B(t)|| < d, sup
tk∈(t0,∞)

||Bk|| < d,

then
||Q(t, s)|| ≤ Ke−(α−Kd)(t−s)+i(s,t), (2.51)

where s < t.
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2. If there exists a constant D > 0 such that

∫ ∞

t0

||B(σ)||dσ +
∑
t0≤tk

||Bk|| ≤ D,

then
||Q(t, s)|| ≤ KeKDe−α(t−s), (2.52)

where s < t.

The proof of the next lemma is similar to the proof of Lemma 1.7.

Lemma 2.13. Let the conditions H2.26–H2.32 hold. Then for each ε > 0
there exist ε1, 0 < ε1 < ε, a relatively dense set T of real numbers and a set
P of integer numbers, such that the following relations are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||B(t+ τ)−B(t)|| < ε, t ∈ R, τ ∈ T .
(c) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T .
(d) ||Ak+q −Ak|| < ε, q ∈ P, k = ±1,±2, . . . .
(e) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . . .
(f) ||lk+q − lk|| < ε, q ∈ P, k = ±1,±2, . . . .
(g) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.14 ([148]). Let the conditions H2.31 and H2.32 hold. Then there
exist positive constants d1, and d2, such that

sup
t∈(t0,∞)

||B(t)|| < d1, sup
tk∈(t0,∞)

||Bk|| < d2.

Lemma 2.15. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) ||W (t, s)|| ≤ Ke−α(t−s), where s < t, K ≥ 1 and α > 0,
(b) ν = −α−Kd−N(1 +Kd) > 0,

where d = max(d1, d2), d1 and d2 are from Lemma 2.14, N is the number of
the points tk lying in the interval (s, t).

Then for each ε > 0, t ∈ R, s ∈ R there exists a relatively dense set T of
ε-almost periods, common for A(t) and B(t) such that for each τ ∈ T the
following inequality holds

||Q(t+ τ, s+ τ)−Q(t, s)|| < εΓe−
ν
2 (t−s), (2.53)

where Γ =
1

ν
2KeN ln(1+Kd)(1 +N +

Nd

2
).

Proof. Let T and P be the sets, defined in Lemma 2.13.



60 2 Almost Periodic Solutions

Then for τ ∈ T and q ∈ P the matrix Q(t + τ, s + τ) is a solution of the
system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Q

∂t
=
(
A(t) +B(t)

)
Q(t+ τ, s+ τ)

+
(
A(t+ τ) +B(t+ τ) −A(t)−B(t)

)
Q(t+ τ, s+ τ), t �= t′k,

ΔQ(t′k) =
(
Ak +Bk

)
(Q(t′k + τ, s+ τ))

+
(
Ak+q +Bk+q −Ak −Bk

)
Q(t′k + τ, s+ τ),

where k = ±1,±2, . . . , t′k = tk − τ .
Then

Q(t+ τ, s+ τ)−Q(t, s) =

∫ t

s

Q(t, s)
(
A(σ + τ) +B(σ + τ) −A(σ)

−B(σ)
)
Q(σ + τ, s+ τ)dσ +

∑
s≤t′

k
<t

Q(t, t
′+
v )

× (
Ak+q +Bk+q −Ak −Bk

)
Q(t′ν + τ, s+ τ).

From Lemmas 1.2 and 2.13, we have

||Q(t+ τ, s+ τ) −Q(t, s)|| ≤ εKeN ln(1+Kd)(e−ν(t−s)(t− s)

+ i(s, t)e−ν(t−s)) ≤ εΓe−
ν
2 (t−s). �	

The proof of the next lemma is analogously.

Lemma 2.16. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) ||W (t, s)|| ≤ Ke−α(t−s), where s < t, K ≥ 1, α > 0,

(b)

∫ ∞

t0

||B(σ)||dσ +
∑
t0<tk

||Bk|| ≤ D, D > 0, where s < t, D > 0.

Then for each ε > 0, t ∈ R, s ∈ R there exists a relatively dense set T
of ε-almost periods, common for A(t) and B(t) such that for each τ ∈ T the
following inequality holds

||Q(t+ τ, s+ τ)−Q(t, s)|| < εΓe−
α
2 (t−s), (2.54)

where Γ = KeKD 2

α

(
1 +N +

2N

α

)
.
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Now, we are ready to proof the main results in this paragraph.

Theorem 2.8. Let the following conditions hold:

1. Conditions H2.26–H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.

Then there exists a constant d0 such that for d ∈ (0, d0] for the system
(2.47) there exists a unique almost periodic solution ϕ(t), and

||ϕ(t)|| ≤ Cmax
(
sup
t∈R

||f ||, sup
k=±1,±2,...

||lk||
)
, (2.55)

where C > 0.

Proof. Let the inequalities (2.50) and (2.51) hold, and let we consider the
function

ϕ(t) =

∫ t

−∞
Q(t, s)f(s)ds+

∑
tk<t

Q(t, t+k )lk.

A straightforward verification yields, that ϕ(t) is a solution of (2.47). �	
Then, from Lemma 2.15 it follows that there exists a constant d0 > 0 such

that for any d ∈ (0, d0], we have

ν = α−Kd−N ln(1 +Kd) > 0.

Now, we obtain

||ϕ(t)|| ≤ K

ν
sup
t∈R

||f(t)||+KeN ln(1+K1d) sup
k=±1,±2,...

||lk||
∑
tk<t

e−ν(t−tk). (2.56)

Then, from the relations

∑
tk<t

e−ν(t−tk) =
∞∑
k=0

∑
t−k−1<tk<t−k

e−ν(t−tk) ≤ 2N

1− e−ν,

and (2.56), we obtain

||ϕ(t)|| ≤ Cmax
(
sup
t∈R

||f(t)||, sup
k=±1,±2,...

||lk||
)
,

where C = KeN ln(1+Kd)
(1
ν
+

2N

1− e−ν

)
.

Let ε > 0 be an arbitrary chosen constant. It follows from Lemma 2.13,
that there exist sets T and P , such that for each τ ∈ T , q ∈ P , and d ∈ (0, d0]
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the following estimates hold:

||ϕ(t+ τ) − ϕ(t)|| ≤
∫ t

−∞
||Q(t+ τ, σ + τ)−Q(t, σ)||||f(σ + τ)||dσ

+

∫ t

−∞
||Q(t, σ)||||f(σ + τ)− f(σ)||dσ

+
∑
tk<t

||Q(t+ τ, t+k+q)−Q(t, t+k )||||lk+q||

+
∑
tk<t

||Q(t, t+k )||||lk+q − lk|| ≤Mε,

where M > 0, |t− tk| > ε.
The last inequality implies, that the function ϕ(t) is almost periodic.
The uniqueness of this solution follows from the fact that the homogeneous

part of system (2.47) has only the zero bounded solution under conditions
H2.26, H2.27, H2.31 and H2.32, and from the estimate (2.50). �	
Theorem 2.9. Let the following conditions hold:

1. Conditions H2.26–H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. There exists a constant D0 > 0, such that∫ ∞

t0

||B(σ)||dσ +
∑
t0<tk

||Bk|| < D0.

Then, for D ∈ (0, D0] for the system (2.47), there exists a unique almost
periodic solution ϕ(t) such that

||ϕ(t)|| ≤ Cmax
(
sup
t∈R

||f ||, sup
k=±1,±2,...

||lk||
)
,

where C > 0.

Proof. Using Lemma 2.16 and (2.52), the proof of Theorem 2.9 is carried out
in the same way as the proof of Theorem 2.8. �	
Theorem 2.10. Let the following conditions hold:

1. Conditions H2.26–H2.30 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. B(t) = B, Bk = Λ, where B and Λ are constant matrices such that

||B||+ ||Λ|| ≤ d1, d1 > 0.

Then there exists a constant d0 > 0, d0 ≤ d1, such that for d ∈ (0, d0] for
the system (2.47), there exists a unique almost periodic solution.
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Proof. The proof of Theorem 2.10 is carried out in the same way as the proof
of Theorem 2.8. �	
Example 2.2. We shall consider the systems

{
ẋ = −x+ f(t), t �= tk,

Δx(tk) = lk, k = ±1,±2, . . . ,
(2.57)

and ⎧⎨
⎩
ẋ =

(
b(t)− 1

)
x+ f(t), t �= tk,

Δx(tk) = lk + gk, k = ±1,±2, . . . ,

(2.58)

where t ∈ R, x ∈ R, {tk} ∈ B, the function b ∈ C[R,R] is almost periodic
in the sense of Bohr, the function f ∈ PC[R,R] is almost periodic, bk ∈ R,
lk ∈ R and {bk}, {lk}, k = ±1,±2, . . ., are almost periodic sequences.

Let condition H2.28 holds. From [138] it follows that for the system (2.57)
there exists a unique almost periodic solution.

Then, the conditions of Theorem 2.8. are fulfilled, and hence, there exists
a constant d0 such that for any d ∈ (0, d0] for the system (2.58), there exists
a unique almost periodic solution in the form

x(t) =

∫ t

−∞
Q(t, σ)f(σ)dσ +

∑
tk<t

Q(t, t+k )lk,

where

Q(t, s) =
∏

s≤tk<t

(1 + bk)exp
{ ∫ t

s

b(σ)dσ − (t− s)
}
.

Now, we shall investigate the existence of almost periodic solutions for the
system (2.48).

Introduce the following conditions:

H2.33. The function F ∈ C[R × Ω,Rn] is almost periodic in t uniformly
with respect to x ∈ Ω, and it is Lipschitz continuous with respect to
x ∈ Bh with a Lipschitz constant L > 0,

||F (t, x)− F (t, y)|| ≤ L||x− y||, x, y ∈ Bh, t ∈ R.

H2.34. The sequence of functions {Ik(x)}, Ik ∈ C[Ω,Rn] is almost periodic
uniformly with respect to x ∈ Ω, and the functions Ik(x) are Lipschitz
continuous with respect to x ∈ Bh with a Lipschitz constant L > 0,

||Ik(x) − Ik(y)|| ≤ L||x− y||, x, y ∈ Bh, k = ±1,±2, . . . .

Theorem 2.11. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31–H2.34 are met.
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2. For the functions F (t, x) and Ik(x), k = ±1,±2, . . . , there exists a
constant L1 > 0 such that

max
(

sup
t∈R,x∈Bh

||F (t, x)||, sup
k=±1,±2,..., x∈Bh

||Ik(x))||
)
≤ L1.

3. The inequalities (2.50) and

CL1 < h, CL < 1. (2.59)

hold.

Then there exists a constant d0 > 0 such that for any d ∈ (0, d0], for the
system (2.48) there exists a unique almost periodic solution.

Proof. Let we denote by AP the set of all almost periodic solutions ϕ(t),
ϕ ∈ PC[R,Rn], satisfy the inequality ||ϕ|| < h, and let |ϕ|∞ = sup

t∈R

||ϕ(t)||.
We define in AP the operator S, such that if ϕ ∈ AP , then y = Sϕ(t) is

the almost periodic solution of the system

{
ẏ =

(
A(t) +B(t)

)
y + F (t, ϕ(t)), t �= tk,

Δy(tk) =
(
Ak +Bk

)
y(tk) + Ik(ϕ(tk)), k = ±1,±2, . . . ,

determined by Theorem 2.8.
We shall note that the almost periodicity of the sequence {ϕ(tk)}, the

function F (t, ϕ(t)) and the sequence {Ik(ϕ(tk))} follows from Lemma 1.5
and Theorem 1.17.

On the other hand, there exists a positive constant d0 > 0 such that for
any d ∈ (0, d0],

α−Kd−N ln(1 +Kd) > 0.

From the last inequality and (2.59), it follows that (2.51) and conditions
of Lemma 2.15 hold.

Then S(AP ) ⊂ AP .
If ϕ ∈ AP, ψ ∈ AP , then from (2.51) and condition 2 of Theorem 2.11,

we get

||Sϕ(t)− Sψ(t)|| ≤ CL|ϕ− ψ|∞. (2.60)

Finally, from (2.59) and (2.60,) it follows that S is contracting in AP , i.e.
there exists a unique almost periodic solution of system (2.48). �	
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2.5 Strong Stable Impulsive Differential Equations

In this section, conditions for strong stability and almost periodicity of
solutions of impulsive differential equations with impulsive effect at fixed
moments will be proved. The investigations are carried out by means of
piecewise continuous Lyapunov functions.

We shall consider the system of impulsive differential equations

{
ẋ = f(t, x), t �= tk,

Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,
(2.61)

where t ∈ R, {tk} ∈ B, f : R×Ω → R
n, Ik : Ω → R

n, k = ±1,±2, . . ..
Set

ρ(x, y) = ||x− y||, x, y ∈ R
n,

Bh(a) = {x ∈ R
n, ||x− a|| < h}, h > 0, a ∈ R

n,

Ψh = {(t, x) ∈ R×Bh, x ∈ Bh, if (t, x) ∈ G and x+ Ik(x) ∈ Bh,

if t = tk},

where G is the set from Sect. 1.1.
Introduce the following conditions:

H2.35. The function f ∈ C[R × Bh,R
n], and has continuous partial

derivatives of the first order with respect to all components of x ∈ Bh.
H2.36. The functions Ik ∈ C[Bh,R

n], k = ±1,±2, . . . and have continuous
partial derivatives of the first order with respect to all components of
x ∈ Bh.

H2.37. There exists h0, 0 < h0 < h such that if x ∈ Bh0 , then x + Ik(x) ∈
Bh, k = ±1,±2, . . ..

H2.38. The functions Lk(x)= x + Ik(x), k = ±1,±2, . . . are such that
L−1
k (x) ∈ Bh for x ∈ Bh.

From [138] if the conditions H2.35–H2.38 are satisfied, then for each point
(t0, x0) ∈ R×Bh, there exists a unique solution x(t) = x(t; t0, x0) of system
(2.61), which satisfies the initial condition x(t+0 ) = x0.

We need the following condition in our subsequent analysis:

H2.39. f(t, 0) = 0, Ik(0) = 0 for t ∈ R and k = ±1,±2, . . ., respectively.

If the conditions H2.35–H2.39 hold, then there exists a zero solution for
system (2.61).

Definition 2.4 ([90]). The zero solution x(t) ≡ 0 of system (2.61) is said
to be strongly stable, if
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(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀x0 ∈ Bδ : (t0, x0) ∈ Ψδ)

(∀t ∈ R) : ρ(x(t; t0, x0), 0) < ε.

Definition 2.5 ([90]). An arbitrary solution x(t) = x(t; t0, x0) of (2.61) is
said to be strongly stable, if

(∀ε > 0)( ∀η > 0)(∃δ > 0)(∀τ1 ∈ R, ∀τ2 ∈ R, ρ(x(τ1), x(τ2)) < δ)

(∀t ∈ R) : ρ(x(t+ τ1), x(t+ τ2)) < ε.

Definition 2.6. The function V ∈ V0 belongs to the class V ∗
0 , if V has

continuous partial derivatives on the sets Gk.

For each function V ∈ V ∗
0 , we define the function

V̇ (t, x) =
∂V (t, x)

∂t
+

n∑
i=1

∂V (t, x)

∂xi
fi(t, x)

for (t, x) ∈ G.
If x(t) is a solution of system (2.61), then

d

dt
V (t, x(t)) = V̇ (t, x(t)), t ∈ R, t �= tk.

Definition 2.7. The function V ∈ V0 belongs to the class V ∗∗
0 , if V has

continuous partial derivatives of the second order in the sets Gk.

Let V ∈ V ∗∗
0 . If the function f(t, x) satisfies condition H2.35 and has a

continuous partial derivative with respect to t, we can define the function

V̈ (t, x) =
∂V̇ (t, x)

∂t
+

n∑
i=1

∂V̇ (t, x)

∂xi
fi(t, x)

for (t, x) ∈ G.
In the further considerations, we shall use the next class K of functions

K =
{
a ∈ C[R,R+], a is strictly increasing and a(0) = 0

}
.

Introduce the following conditions:

H2.40. The function f(t, x) is almost periodic in t uniformly with respect to
x, x ∈ Bh.

H2.41. The sequence {Ik(x)}, k = ±1,±2, . . ., is almost periodic uniformly
with respect to x, x ∈ Bh.
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H2.42. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

Definition 2.8 ([114]). The set S, S ⊂ R is said to be:

(a) Δ−m set, if from every m+1 real numbers τ1, τ2, . . . , τm+1 one can find
i �= j, such that τi − τj ∈ S.

(b) symmetric Δ−m set, if S is Δ−m set symmetric with respect to the
number 0.

Lemma 2.17 ([114]). Every symmetric Δ−m set is relatively dense.

Theorem 2.12. Let conditions H2.35–H2.42 hold. Then any strongly stable
bounded solution of (2.61) is almost periodic.

Proof. Let x = x(t; t0, x0) be a unique bounded solution of system (2.61)
with initial condition x(t0) = x0. Let ε > 0 be given, δ(ε) > 0, and the points
a1, a2, . . . , aN+1 , al ∈ R

n, l = 1, 2, . . . , N+1, are such that for t ∈ R, t ≥ t0,
it follows that x(t) ∈ B δ

2
(al). If t0, . . . , tN+1 are given real numbers, then for

some i �= j and some l ∈ {1, . . . , N + 1}, we get

ρ(x(τi), al) <
δ(ε)

2
, ρ(x(τj), al) <

δ(ε)

2
.

Consequently, ρ(x(ti), x(tj)) < δ(ε).
On the other hand, the solution x(t) is strongly stable, i.e. it follows that

ρ(x(t+ τi), x(t+ τj)) < ε, where t ∈ R.
Then, for t ∈ R we have ρ(x(t+τi−τj), x(t)) < ε and consequently, τi−τj

is an ε-almost period of the solution x(t).
Let T be the set of all ε-almost periods of x(t). Then, for any sequence of

numbers τ0, . . . , τN from above, it follows that there exists i �= j, such that
τi − τj ∈ T .

From Definition 2.8, we get that T is a symmetric Δ − N set, and from
Lemma 2.17, it follows that T is a relatively dense set. Then, x(t) is an almost
periodic function. �	

Let x(t) be a solution of the system (2.61). Set z = x− x(t), and consider
the system {

ż = g(t, z), t �= tk,

Δz(tk) = Jk(z(tk)), k = ±1,±2, . . . ,
(2.62)

where g(t, z) = f(t, z + x(t))− f(t, x(t)), Jk(z) = Ik(z + x)− Ik(x).

Theorem 2.13. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. There exist functions V ∈ V ∗

0 and a, b ∈ K such that:
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(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.
(b) V̇ (t, z) ≡ 0, for (t, z) ∈ R×Bh, t �= tk.
(c) V (t+k , z + Ik(z)) = V (tk, z), k = ±1,±2, . . . , z ∈ Bh.

Then the solution x(t) of (2.61) is almost periodic.

Proof. Let 0 < ε < h, 0 < μ < h be given, and let

δ = δ(ε) < min
{
ε, b−1(a(ε)), b−1(a(μ))

}
,

where a, b ∈ K. If z(t) = z(t; t0, z0) be a solution of (2.62) such that t0 ∈
R, (t0, x0) ∈ Sδ, then from condition 2 of Theorem 2.13, it follows that

a(||z||) ≤ V (t, z(t)) = V (t+0 , z0) ≤ b(||z0||) < b(δ(ε)) < min
{
a(ε), a(μ)

}
.

Consequently, ||z(t; t0, z0)|| < min(ε, μ) for t ∈ R, i.e. the zero solution of
(2.62) is strongly stable. Then, x(t) is strongly stable, and from conditions
H2.40–H2.42, and Theorem 2.12, it follows that x(t) is almost periodic. �	
Definition 2.9 ([90]). The zero solution of system (2.62) is said to be
uniformly stable to the right (to the left), if for any ε > 0 there exists δ(ε) > 0,
such that if t0 ∈ R and (t0, z0) ∈ R × Bδ(ε), then ||z(t; t0, z0)|| < ε for all
t ≥ t0 ( for all t ≤ t0), where z(t; t0, z0) is a solution of (2.62) such that
z(t+0 ) = z0.

Lemma 2.18 ([90]). The zero solution of system (2.62) is uniformly stable
to the left if and only if for any ε > 0 the following inequality holds:

γ(ε) = inf
{||z(t; t0, z0)|| : t0 ∈ R, ||z0|| ≥ ε

}
> 0.

Lemma 2.19 ([90]). The zero solution of system (2.62) is strongly stable if
and only if it is stable to the left and to the right at the same time.

Example 2.3. We shall consider the linear impulsive system of differential
equations {

ẋ = A(t)x, t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,
(2.63)

where A(t) is a square matrix, the elements of which are almost periodic
continuous functions for t ∈ R, {Bk} is an almost periodic sequence of
constant matrices such that det(E + Bk) �= 0, and for the points tk the
condition H2.42 is fulfilled. LetW (t, s) be the Cauchy matrix of system (2.63).

Since the nontrivial solution of (2.63) is given by the formula x(t; t0, x0) =
W (t, t0)x0, then x0 =W−1(t, t0)x(t; t0, x0). Hence, for any ε > 0 and ||x0‖ ≥
ε, we have

ε ≤ ||x0|| ≤ ||W−1(t, t0)||||x(t; t0, x0)||,
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and
||x(t; t0, x0)|| ≥ ε||W−1(t, t0)||−1.

However, for t = t0 and ||x0|| = ε, we have

||x(t; t0, x0)|| = ε||W−1(t, t0)||−1.

Hence,

γ(ε) = inf
{
ε||W−1(t, t0)||−1 : t ≥ t0

}
> 0

and, applying Lemma 2.18, we conclude that the zero solution of system
(2.63) is uniformly stable to the left if and only if the function ||W−1(t, s)||
is bounded on the set s ≤ t <∞. Moreover, it is clear that the zero solution
of (2.63) is uniformly stable to the right if and only if the function ||W (t, s)||
is bounded on the set s ≤ t < ∞. Then, by virtue of Lemma 2.18, the
zero solution of system (2.63) is strongly stable if and only if the functions
||W (t, t0)|| and ||W−1(t, t0)|| are bounded for t ∈ R. Consequently, an
arbitrary solution x(t) of the system (2.63) is bounded and strongly stable.
From Theorem 2.7, it follows that the solution z(t) is almost periodic.

Now, we consider the following scalar impulsive differential equations:

{
u̇ = ω1(t, u), t �= tk,

Δu(tk) = Pk(u(tk)), k = ±1,±2, . . . ,
(2.64)

where ω1 : [t0 − T, t0]× χ→ R, χ is an open interval in R, and t0 and T are
constants such that t0 > T, Pk : χ→ χ;{

v̇ = ω2(t, v), t �= tk,

Δv(tk) = Pk(v(tk)), k = ±1,±2, . . . ,
(2.65)

where ω2 : [t0, t0 + T ]× χ→ R;

⎧⎨
⎩
ü = ω(t, u, u̇), t �= tk,

Δu(tk) = Ak(u(tk)), k = ±1,±2, . . . ,

Δu̇(tk) = Bk(u(tk), u̇(tk)), k = ±1,±2, . . . ,

(2.66)

where ω : [t0 − T, t0 + T ]× χ1 × χ2 → R, Ak : χ2 → χ1, Bk : χ1 × χ2 → χ2,
χ1 and χ2 are open intervals in R.

Theorem 2.14. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. The zero solution u(t) ≡ 0, (v(t) ≡ 0) of (2.64), (2.65) is uniformly stable

to the left (to the right).
3. The functions u + Pk(u), k = ±1,±2, . . ., are monotone increasing in

R×Bh.
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4. There exist functions V ∈ V ∗
0 and a, b ∈ K such that

(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.
(b) ω1(t, V (t, z)) ≤ V̇ (t, z) ≤ ω2(t, V (t, z)) (t, z) ∈ R×Bh.
(c) V (t+k , z + Jk(z)) = V (tk, z) + Pk(V (tk, z)), k = ±1,±2, . . . .

5. The solution x(t) of system (2.61) is bounded.

Then the solution x(t) of system (2.61) is almost periodic.

Proof. From conditions of the theorem and [90], it follows that the zero
solution of system (2.61) is strongly stable, i.e. the solution x(t) is strongly
stable. Then, from H2.40–H2.42 and Theorem 2.12, it follows that x(t) is
almost periodic. �	
Definition 2.10 ([90]). The zero solution x(t) ≡ 0 of (2.66) is said to be
u-strongly stable, if

(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀u0 : 0 ≤ u0 < δ(ε))(∀u̇0 ∈ R : |u̇0| < δ(ε))

(∀t ∈ R) : 0 ≤ u(t; t0, u0, u̇0) < ε.

Theorem 2.15. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. The function g(t, x) has continuous partial derivative of the first kind with

respect to t.
3. There exist functions V ∈ V ∗∗

0 and a, b ∈ K, such that

(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.

(b) V̇ (t, z) ≤ c‖z‖, c = const > 0, (t, z) ∈ G.

(c) V̈ (t, z) ≤ ω(t, V (t, z), V̇ (t, z)) for (t, z) ∈ R×Bh, t �= tk,
where ω(t, u1, u2), ω : R

3 → R
+ is continuous and monotone

increasing on u1 and ω(t, 0, 0) = 0 for t ∈ R.
(d) V (t+k , z + Jk(z)) ≤ V (tk, z) +Ak(V̇ (tk, z)).

(e) V̇ (t+k , z+Jk(z))≤ V̇ (tk, z)+Bk(V (tk, z), V̇ (tk, z)), k=±1,±2, . . . , z ∈
Bh.

4. The following inequalities hold

u1 +Ak(v1) ≤ u2 +Ak(v2),

v1 +Bk(u1, v1) ≤ v2 +Bk(u2, v2)

for u1 ≤ u2, v1 ≤ v2, where u1, u2 ∈ χ1, v1, v2 ∈ χ2, k = ±1,±2, . . ..
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5. The zero solution of equation (2.66) is strongly u-stable.
6. The solution x(t) of system (2.61) is bounded.

Then the solution x(t) of system (2.61) is almost periodic.

Proof. The proof of Theorem 2.15 is analogous to the proof of Theorem 2.14.
�	

2.6 Dichotomies and Almost Periodicity

In this part, the existence of an almost periodic projector-valued function
of dichotomous impulsive differential systems with impulsive effects at fixed
moments is considered.

First, we shall consider the linear system of impulsive differential equations

{
ẋ = A(t)x, t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,
(2.67)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, Bk ∈ R

n×n, k = ±1,±2, . . ..
By x(t) = x(t; t0, x0) we denote the solution of (2.67) with initial condition

x(t+0 ) = x0, x0 ∈ R
n.

Introduce the following conditions:

H2.43. The matrix-valued function A ∈ PC[R,Rn×n] is almost periodic.
H2.44. {Bk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.45. det(E + Bk) �= 0, k = ±1,±2, . . . where E is the identity matrix

in R
n.

H2.46. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . is uniformly almost periodic, and infkt

1
k = θ > 0.

LetW (t, s) be the Cauchy matrix of system (2.67). From conditions H2.43–
H6.46, it follows that the solutions x(t) are written down in the form

x(t; t0, x0) =W (t, t0)x0.

It is easy to verify, that the equalities W (t, t) = E and W (t, t0) =
X(t)X−1(t0) are valid, X(t) = (x1(t), x2(t), . . . , xn(t)) is some non degen-
erate matrix solution of (2.67).

Definition 2.11. The linear system (2.67) is said to has an exponential
dichotomy in R, if there exist a projector P and positive constantsK, L, α, β
such that

||X(t)PX−1(s)|| ≤ K e−α(t−s), t ≥ s,

||X(t)(E − P )X−1(s)|| ≤ L e−β(t−s), s ≥ t.
(2.68)

Lemma 2.20. Let the system (2.67) has an exponential dichotomy in R.
Then any other fundamental matrix of the form X(t)C satisfies inequalities
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(2.68) with the same projector P if and only if the constant matrix C com-
mutes with P .

Proof. The proof of this lemma does not use the particular form of the matrix
X(t), and is analogous to the proof of a similar lemma in [46]. �	
Definition 2.12. The functions f ∈ PC[R, Ω], g ∈ PC[R, Ω] are said to be

ε-equivalent, and denoted f
ε∼ g, if the following conditions hold:

(a) The points of possible discontinuity of these functions can be enumerated

tfk , tgk, admitting a finite multiplicity by the order in R, so that

|tfk − tgk| < ε.
(b) There exist strictly increasing sequences of numbers {t′k}, {t′′k}, t′k <

t′k+1, t
′′
k < t′′k+1, k = ±1,±2, . . ., for which we have

sup
t∈(t′k,t

′
k+1), t′∈(t′′k ,t

′′
k+1)

||f(t)− g(t)|| < ε, |t′k − t′′k | < ε, k = ±1,±2, . . . .

By ρ(f, g) = infε we denote the distance between functions f ∈ PC[R, Ω]
and g ∈ PC[R, Ω], and by PCϕ the set of all functions ϕ ∈ PC[R, Ω], for
which ρ(f, ϕ) is a finite number. It is easy to verify, that PCϕ is a metric
space.

Definition 2.13 ([9]). The function ϕ ∈ PC[R, Ω] is said to be almost
periodic, if for any ε the set

T =
{
τ : ρ(ϕ(t+ τ), ϕ(t)) < ε, t, τ ∈ R

}
is relatively dense in R.

By D= {Mi}, i ∈ I, we denote the family of countable sets of real numbers
unbounded below an above and not having limit points, where I is a countable
index set. Let M1 and M2 be sets of D.

Lemma 2.21 ([9]). The function ϕ ∈ PC[R, Ω] is almost periodic if and
only if for an arbitrary sequence {sn} the sequence {ϕ(t + sn)} is compact
in PCϕ.

Definition 2.14. The sets M1 and M2 are said to be ε–equivalent, if
their elements can be renumbered by integers m1

k, m
2
k, admitting a finite

multiplicity by their order in R, so that

sup
k=±1,±2,...

|m1
k −m2

k| < ε.

Definition 2.15. The number ρD(M1,M2)= inf
M1

ε∼M2

ε is said to be a dis-

tance in D.



2.6 Dichotomies and Almost Periodicity 73

Throughout the rest of this paragraph, the following notation will be used:
Let conditions H2.43–H2.46 hold and let {s′m} be an arbitrary sequence of

real numbers. Analogously to the process from Chap. 1, it follows that there
exists a subsequence {sn}, sn = s′m such that the system (2.67) moves to the
system {

ẋ = As(t)x, t �= tsk,

Δx(tsk) = Bs
kx(t

s
k), k = ±1,±2, . . . .

(2.69)

The systems of the form (2.69), we shall denote by Es, and in this meaning
we shall denote (2.67) by E0. From [127], it follows that, each sequence of
shifts Esn of system E0 is compact, and let denote by H(A,Bk, tk) the set
of shifts of E0 for an arbitrary sequence {sn}.

Now, we shall consider the following scalar impulsive differential equation

{
v̇ = p(t)v, t �= tk,

Δv(tk) = bkv(tk), k = ±1,±2, . . . ,
(2.70)

where p ∈ PC[R,R], bk ∈ R.

Lemma 2.22. Let the following conditions hold:

1. Condition H2.46 holds.
2. The function p(t) is almost periodic.
3. The sequence bk is almost periodic.
4. The function v(t) is a nontrivial almost periodic solution of (2.70).

Then inf
t∈R

|v(t)| > 0 and the function 1/v(t) is almost periodic.

Proof. Suppose that inf
t∈R

|v(t)| = 0. Then, there exists a sequence {s′m} of real

numbers such that lim
n→∞ v(sn) = 0. From the almost periodicity of p(t) and

v(t) it follows that, the sequences of shifts p(t+sn) and v(t+sn) are compact
in the sets PCp and PCv, respectively. Hence, from Ascoli’s diagonal process,
it follows that there exists a subsequence {snk

}, common for p(t) and v(t)
such that the limits

lim
k→∞

p(t+ snk
) = ps(t),

and
lim
k→∞

v(t+ snk
) = vs(t)

exist uniformly for t ∈ R. Analogously, it is proved that for the sequences of
shifts {tk + nk} and {bk + nk} there exists a subsequence of {nk}, for which
there exist the limits {tsk} and {bsk}. Consequently, for the system

{
v̇s = ps(t)vs, t �= tsk,

Δvs(tsk) = bskv
s(tsk), k = ±1,±2, . . . ,
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with initial condition vs(0) = 0 it follows that there exists only the trivial
solution.

Then,
v(t) = lim

k→∞
vα(t− snk

) = 0

for all t ∈ R, which contradicts the conditions of Theorem 1.20. Hence,
inf
t∈R

|v(t)| > 0, and from Lemma 2.21 it follows that 1/v(t) is an almost

periodic solution. �	
Theorem 2.16. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. The fundamental matrix X(t), X ∈ PC[R,Rn] is almost periodic.

Then X−1(t) is an almost periodic matrix-valued function.

Proof. From the representation of W (t, s) in Sect. 1.1, we have that X(t) =
W (t, t0)X(t0), hence

X−1(t) = X−1(t0)W
−1(t, t0)

= X−1(t0)
(
detW (t, t0)

)−1(
adj W (t, t0)

)T
,

where by adj W (t, t0) we denote the matrix of cofactors of matrix W (t, t0).
Then, X(t) will be almost periodic when the following function

(
v(t)

)−1

=
(
detW (t, t0)

)−1

is almost periodic.
From

detW (t, t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
t0≤tk<t

det(E +Bk)exp
( ∫ t

t0

Tr A(s)ds
)
, t > t0,

∏
t≤tk<t0

det(E +Bk)exp
( ∫ t

t0

Tr A(s)ds
)
, t ≤ t0,

where TrA(t) is the trace of the matrix A, and a straightforward verification,
it follows that the function v(t) = detW (t, t0) is a nontrivial almost periodic
solution of the system

{
v̇ = Tr A(t)v, t �= tk,

Δv(tk) = bkv(tk), k = ±1,±2, . . . .

Then, from Lemma 2.22 it follows that 1/v(t) is an almost periodic
function. �	
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Theorem 2.17. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. The fundamental matrix X(t) satisfies inequalities (2.68).

Then the fundamental matrix Xs(t) of system (2.70) also satisfies inequalities
(2.68).

Proof. Let we denote by H the square root of the positively definite Hermite
matrix

H2 = PX ∗ XP + (E − P )X ∗ X(E − P ).

Since P commutes with H2, then P commutes with H and H−1.
The matrix X(t) is continuously differentiable for t �= tk and with points of

discontinuity at the first kind at t= tk. Hence, the matricesH, XH−1, HX−1

enjoy the properties of X(t), and let {sn} be an arbitrary sequence of real
numbers. By a straightforward verification we establish that the matrixXn =
x(t+ sn)H

−1(sn) is a fundamental matrix of system (2.69).
On the other hand, the matrix H−1(sn) commutes with P , consequently,

from Lemma 2.20 it follows that the matrix Xn(t) satisfies inequalities (2.68).
Hence, the matrices Xn(0), X

−1
n (0) are bounded, and then there exists

a subsequence, common for both matrix sequences such that Xn(0) → Xs
0 ,

where Xs
0 is invertible. Then, from the continuous dependence of the solution

on initial condition and on parameter, it follows that Xn(t) tends, uniformly
on each compact interval, to the matrix solutionXs(t) of (2.69). Since n→∞,
we obtain that X(t) satisfies (2.68). �	
Theorem 2.18. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. For the system (2.67) there exists an exponential dichotomy with an

hermitian projector P and fundamental matrix X(t).

Then, the projector-valued function P (t) = X(t)X−1(t) is almost periodic.

Proof. Let {s′m} be an arbitrary sequence of real numbers, which moves the
system (2.67) to the system (2.69).

Since the function P (t) = X(t)X−1(t) is bounded and uniformly con-
tinuous in the intervals of the form (tk, tk+1], hence the sequence {P (t +
s′m)} is uniformly bounded and uniformly continuous on the intervals
(tk−s′m, tk+1−s′m]. From Ascoli’s diagonal process it follows that there exists
a subsequence {sn} of the sequence {s′m} such that the sequence {P (t+ sn)}
is convergent at each compact interval, and let we denote its limit by Y (t). If
{sn} is a subsequence of {s′m}, such that X(sn)H

−1(sn) → Xs
0 is invertible,

then from Theorem 2.17 it follows that the sequence {X(t + sn)H
−1(sn)}

tends uniformly in each compact interval to the fundamental matrix Xs(t)

of system (2.69) and Xs(t) satisfies Y (t) = Xs(t)P
(
Xs(t)

)−1

.
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From Theorem 2.17 it follows that each uniformly convergent in a compact
interval subsequences of {P (t+ sn)} tends to one and the same limit. Thus,
the sequence {P (t+ sn)} tends uniformly to Y (t) on each compact interval.

Further on, we shall show that this convergence is uniform in R. Suppose
that this is not true. Then, for some γ > 0 there exists a sequence {hn} of
real numbers and a subsequence {s′n} of {sn} such that

||P (hn + s′n)− Y (hn)|| ≥ γ, (2.71)

for each n. It is easily to verify that Ehn+s′n and Ehn are uniformly convergent
in H(A,Bk, tk). From the almost periodicity and from the process of the
construction of Es it follows that the limit of such system in H(A,Bk, tk) is
one and the same, and let we denote it by Er. Analogously, {P (t+hn+ s′n)}
tends uniformly on each compact interval to Z(t)PZ−1(t), where Z(t) is
the fundamental matrix of system Er, for which there exists an exponential
dichotomy with a projector P . Hence, Y (t+hn) tends to Z(t)PZ

−1(t). Then

||P (hn + s′n)− Y (hn)|| → 0,

which contradicts the assumption (2.71). �	

2.7 Separated Solutions and Almost Periodicity

In the present paragraph, by using the notion of separated solutions,
sufficient conditions for the existence of almost periodic solutions of impulsive
differential equations with variable impulsive perturbations are obtained.
Amerio, formulated in [12] the concept of separated solutions, in order to
give sufficient conditions for the existence of almost periodic solutions to
ordinary differential equations.

The objective of this section is to extend the notion of separated solutions
for impulsive differential equations.

Consider the system of impulsive differential equations with variable
impulsive perturbations

{
ẋ = f(t, x), t �= τk(x),

Δx = Ik(x), t = τk(x), k = ±1,±2, . . . ,
(2.72)

where t ∈ R, f : R×Ω → R
n, τk : Ω → R, and Ik : Ω → R

n, k = ±1,±2 . . ..
Introduce the following conditions:

H2.47. The function f ∈ C1[R×Ω,Rn].
H2.48. The functions Ik ∈ C1[Ω,Rn], k = ±1,±2 . . ..
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H2.49. If x ∈ Ω, then x+ Ik(x) ∈ Ω, Lk(x) = x+ Ik(x) are invertible on Ω
and L−1

k (x) ∈ Ω for k = ±1,±2 . . ..
H2.50. τk(x) ∈ C1(Ω,R) and lim

k→±∞
τk(x) = ±∞ uniformly on x ∈ Ω.

H2.51. The following inequalities hold:

sup
{
||f(t, x)|| : (t, x) ∈ R×Ω

}
≤ A <∞,

sup
{
‖∂τk(x)

∂x ‖ : x ∈ Ω, k = ±1,±2, . . .
}
≤ B <∞, AB < 1,

sup
{
〈∂τk∂x (x + sIk(x)), Ik(x)〉 : s ∈ [0, 1], x ∈ Ω, k = ±1,±2, . . .

}
≤0.

From Chap. 1, it follows that, if conditions H2.47–H2.51 are satisfied,
then system (2.72) has a unique solution x(t) = x(t; t0, x0) with the initial
condition

x(t+0 ) = x0.

Assuming that conditions H2.48–H2.51 are fulfilled, we consider the
hypersurfaces:

σk =
{
(t, x) : t = τk(x), x ∈ Ω

}
, k = ±1,±2, . . . .

Let tk be the moments in which the integral curve (t, x(t; t0, x0)) meets
the hypersurfaces σk, k = ±1,±2, . . . .

Introduce the following conditions:

H2.52. The function f(t, x) is almost periodic in t uniformly with respect to
x ∈ Ω .

H2.53. The sequences {Ik(x)} and {τk(x)}, k = ±1,±2, . . ., are almost
periodic uniformly with respect to x ∈ Ω.

H2.54. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

Let conditions H2.47–H2.54 hold, and let {s′m} be an arbitrary sequence
of real numbers. Then, there exists a subsequence {sn}, sn = s′mn

, so that
analogous to the process in Chap. 1, the system (2.72) moves to the system

{
ẋ = fs(t, x), t �= τsk ,

Δx = Ik(x), t = τsk , k = ±1,±2, . . . ,
(2.73)

and in this case, the set of systems in the form (2.73) we shall denote by
H(f, Ik, τk).

We shall introduce the following operator notation. Let α= {αn} be a
subsequence of the sequence α′ = {αn}∞n=0, and denote α ⊂ α′. Also with
α+ β we shall denote {αn + βn} of the sequences {αn} and {βn}.

By α > 0 we mean αn > 0 for each n. If α ⊂ α′ and β ⊂ β′, then α and β
are said to have matching subscripts, if α = {α′

nk
} and β = {β′

nk
}.
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Let we denote by Sα+βφ and SαSβφ the limits lim
n→∞ θαn+βn(φ) and

lim
n→∞ θαn( lim

m→∞ θβmφ), respectively, where the number θαn is defined in

Chap. 1, and φ =
(
ϕ(t), T

)
, φ ∈ PC[R, Ω]× UAPS.

Lemma 2.23. The function ϕ(t) is almost periodic if and only if from every
pair of sequences α′, β′ one can extracts common subsequences α ⊂ α′, β ⊂ β′

such that
Sα+βϕ = SαSβϕ, (2.74)

exists pointwise.

Proof. Let (2.74) exists pointwise, γ′ be a sequence, such that for γ ⊂ γ′,
Sγϕ exists. If Sγφ is uniform, we are done. If not, we can find ε > 0 and
sequences β ⊂ γ, β′ ⊂ γ such that

ρ(T β
n , T

β′
n ) < ε,

but
sup

t∈R\Fε(s(T
β
n∪Tβ′

n ))

||ϕ(t+ βn)− ϕ(t+ β′
n)|| ≥ ε > 0,

where T β
n and T β′

n are the points of discontinuity of functions ϕ(t + βn),
ϕ(t+ β′

n), n = 0, 1, 2, . . ., respectively.
From the intermediate value theorem for the common intervals of conti-

nuity of functions ϕ(t+ βn) and ϕ(t+ β′
n), and the fact that

lim
n→∞ ||ϕ(βn)− ϕ(β′

n)|| = 0,

it follows that there exists a sequence α such that

sup
t∈R\Fε(s(T

β
n ∪Tβ′

n ))

||ϕ(αn + βn)− ϕ(αn + β′
n)|| ≥ ε > 0. (2.75)

Then, for the sequence α there exist common subsequences α1 ⊂ α, β1 ⊂ β,
β2 ⊂ β such that

Sα1+β1φ = R1, Sα1+β2φ = R2,

where Rj = (rj(t), Pj), rj ∈ PC, Pj ∈ UAPS, j = 1, 2, exist pointwise.
From (2.74), we get

R1 = Sα1+β1φ = Sα1Sβ1φ = Sα1Sγφ

= Sα1Sβ2φ = Sα1+β2φ = R2, (2.76)

for t ∈ R \ Fε(s(P1 ∪ P2)).
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On the other hand, from (2.75) it follows that

||r1(0)− r2(0)|| > 0,

which is a contradiction of (2.76).
Let ϕ(t) be almost periodic and if α′ and β′ are given, we take subsequences

α ⊂ α′, β ⊂ β′ successively, such that they are common subsequences and
Sαφ = φ1, Sβφ1 = φ2 and Sα+βφ = φ3, where φj = (φj , Tj), φj ∈ PC[R, Ω]×
UAPS, j = 1, 2, 3, exist uniformly for t ∈ R \ Fε(s(T1 ∪ T2 ∪ T3)).

If ε > 0 is given, then

||ϕ(t+ αn + βn)− ϕ3(t)|| < ε

3
,

for n large and for all t ∈ R \ Fε(s(Tn,n ∪ T3)), where Tn,n is the set of points
of discontinuity of functions ϕ(t+ αn + βn).

Also,

||ϕ(t+ αn + βm)− ϕ1(t+ βn)|| < ε

3
,

for n, m large and for all t ∈ R \ Fε(s(Tn,m ∪ T1,n)), where Tn,m is the set
of points of discontinuity of functions ϕ(t+ αn + βm) and T1,n is formed by
the points of discontinuity of functions ϕ1(t+ βn).

Finally,

||ϕ1(t+ βm)− ϕ2(t)|| < ε

3
,

for m large and all t ∈ R \ Fε(s(T1,m ∪ T2)), where T1,m is the set of points
of discontinuity of functions ϕ1(t+ βm).

By the triangle inequality for n=m large, we have ||ϕ2(t)−ϕ3(t)|| < ε for
all t ∈ R \ Fε(s(T2 ∪ T3)).

Since ε is arbitrary, we get ϕ2(t) = ϕ3(t) for all t ∈ R \ Fε(s(T1,m ∪ T2)),
i.e. (2.74) holds. �	
Definition 2.16. The function ϕ(t), ϕ ∈ PC[R, Ω], is said to satisfy the
condition SG, if for a given sequence γ′, lim

n→∞ γ′n = ∞ there exist γ ⊂ γ′ and

a number d(γ) > 0 such that Sγφ, φ =
(
ϕ(t), T

)
, T ∈ UAPS exists pointwise

for each ε > 0. If α is a sequence with α > 0, β′ ⊂ γ and β′′ ⊂ γ are such
that Sα+β′φ = (r1(t), P1), Sα+β”φ = (r2(t), P2), then either r1(t) = r2(t) or
||r1(t)− r2(t)|| > d(γ) hold for t ∈ R \ Fε(s(P1 ∪ P2)).

Definition 2.17. Let K ⊂ Ω be a compact. The solution x(t) of system
(2.72) with points of discontinuity in the set T is said to be separated in K,
if for any other solution y(t) of (2.72) in Ω with points of discontinuity in
the set T there exists a number d(y(t)) such that ||x(t)− y(t)|| > d(y(t)) for
t ∈ R \ Fε(s(T )). The number d(y(t)) is said to be a separated constant.
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Theorem 2.19. The function ϕ(t), ϕ ∈ PC[R, Ω], is almost periodic if and
only if ϕ satisfies the condition SG.

Proof. Let ϕ satisfies the condition SG, and let γ′ be a sequence such that
lim
n→∞ γ′n = ∞. Then there exists γ ⊂ γ′ such that Sγφ, φ =

(
ϕ(t), T

)
exists

pointwise. If the convergence is not uniformly in R, then there exist sequences
δ′ > 0, α′ ⊂ γ, β′ ⊂ γ, and a number ε > 0 such that ||ϕ(α′

n + δ′n)− ϕ(β′
n +

δ′n)|| ≥ ε, where we may pick ε < d(γ). Since Sγ(ϕ(0), T ) exists, we have

||ϕ(α′
n)− ϕ(β′

n)|| < d(γ), (2.77)

for large n.
Consequently, k(t) = ϕ(t + α′

n) − ϕ(t + β′
n) satisfies ||k(0)|| < d(γ) and

||k(δ′n)|| ≥ ε for large n. Hence, there exists δ′′n such that δ′′n ⊂ δ′n and ε ≤
||k(δ′′n)|| < d(γ).

We shall consider the sequences α′ + δ′′ and β′ + δ′′. By SG there exist
sequences α + δ ⊂ α′ + δ′′ and β + δ ⊂ β′ + δ′′ with matching subscripts
such that Sα+δφ = φ1, Sα+δφ = φ2, φj = (ϕj , Tj) exist pointwise, and
ϕ1(t) = ϕ2(t) or ||ϕ1(t)− ϕ2(t)|| > 2d(γ), for t ∈ R \ Fε(s(T1 ∪ T2)).

On the other hand,

||ϕ1(0)− ϕ2(0)|| = lim
n→∞ ||ϕ(αn + δn)− ϕ(βn + δn)||,

and from (2.77), it follows that ||ϕ1(0) − ϕ2(0)|| ≤ d(γ). The contradiction
shows that Sγϕ exists uniformly on t ∈ R \ Fε(s(T )).

Conversely, if ϕ(t) is an almost periodic function, and γ′ be given with
lim
n→∞ γ′n = ∞ then, there exists γ ⊂ γ′ such that Sγφ exists uniformly on

t ∈ R \ Fε(s(T )) and Sγϕ = (k(t), Q), (k(t), Q) ∈ PC[R, Ω]× UAPS.
Let the subsequences β′ ⊂ γ, β′′ ⊂ γ, and α > 0 be such that Sα+β′φ =

(r1(t), P1), Sα+β′′φ = (r2(t), P2), (rj(t), Pj) ∈ PC[R, Ω]× UAPS.

From Lemma 2.23 it follows that there exist α′ ⊂ α, β
′ ⊂ β′, β

′′ ⊂ β′′

such that

(r1(t), P1) = Sα′+β′(p(t), T ) = Sα′Sβ′(p(t), T ) = Sα′Sγ(p(t), T )

= Sα′(k(t), Q) = Sα(k(t), Q), (2.78)

(r2(t), P2) = Sα′+β′′(p(t), T ) = Sα′Sβ′′(p(t), T ) = Sα′Sγ(p(t), T )

= Sα′(k(t), Q) = Sα(k(t), Q). (2.79)

Hence, from (2.78) and (2.79), we get r1(t) = r2(t) for t ∈ R\Fε(s(P1∪P2)).
Then, (ϕ(t), T ) satisfies SG. �	
Now, let K ⊂ Ω be a compact. We shall consider the system of impulsive

differential equations
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{
ẋ = g(t, x), t �= σk(x),

Δx = Gk(x), t = σk(x), k = ±1,±2, . . . ,
(2.80)

where (g,Gk, σk) ∈ H(f, Ik, τk).

Theorem 2.20. Let the following conditions hold:

1. Conditions H2.47–H2.54 are met.
2. Every solution of system (2.80) in K is separated.

Then every system in H(f, Ik, τk) has only a finite number of solutions
and the separated constant d may be picked to be independent of solutions.

Proof. The fact that each system has only a finite number solutions in K
is a consequence of a compactness of K and the resulting compactness
of the solutions in K. But no solution can be a limit of others by the
separated condition. Consequently, the number of solutions of any system
from H(f, Ik, τk) is finite and d may be picked as a function of the system.

Let (h, Lk, lk)∈H(f, Ik, τk) and Sα′(g,Gk, σk)= (h, Lk, lk), with lim
n→∞

α′
n = ∞.
Let (ϕ(t), T ), (ϕ0(t), T0) be two solutions in K, and let α ⊂ α′ be such

that Sα(ϕ(t), T ) and Sα(ϕ0(t), T0) exist uniformly on K, and are solutions
of (2.80).

Then,
||Sα(ϕ(t), T )− Sα(ϕ0(t), T0)|| ≥ d(g,Gk, σk).

So, if ϕ1, . . . , ϕn are solutions of (2.80) in K, then Sα(ϕj(t), Tj), j =
1, 2, . . . , n, are distinct solutions of (2.80) in K such that

||Sα(ϕj(t), Tj)− Sα(ϕi(t), Ti)|| ≥ d(g,Gk, σk), i �= j.

Hence, the number of solutions of (2.80) in K is greater or equal than n.
By “symmetry” arguments the reverse is true, hence each system has the
same number of solutions.

On the other hand, Sα(ϕi, Ti) exhaust the solutions of (2.80) in K, so that
d(g,Gk, σk) ≤ d(h, Lk, lk). Again by symmetry, d(h, Lk, lk) ≥ d(g,Gk, σk).

�	
Theorem 2.21. Let the following conditions hold:

1. Conditions H2.47–H2.54 are met.
2. For every system in H(f, Ik, τk) there exist only separated solutions on K.

Then:

1. If for some system in H(f, Ik, τk) there exists a solution in K, then for
every system in H(f, Ik, τk) there exists a solution in K.
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2. All such solutions in K are almost periodic and for every system in
H(f, Ik, τk) there exists an almost periodic solution in K.

Proof. The first statement has been proved in Theorem 2.20. Let ϕ(t) be a
solution of system (2.80) in K and δ be the separation constant.

Let γ′ be a sequence such that lim
n→∞ γ′ = ∞ and γ ⊂ γ′, Sγ(g,Gk, σk) =

(h, Lk, lk), and Sγ(ϕ(t), T ) exists.
Let β′ ⊂ γ, β′′ ⊂ γ and α > 0 are such that

Sα+β′(ϕ(t), T ) = (ϕ1(t), T1),

Sα+β′′(ϕ(t), T ) = (ϕ2(t), T2).

Again, take further subsequences with matching subscripts, so that
(without changing notations)

Sα+β′(g,Gk, σk) = SαSβ′(g,Gk, σk)

= SαSγ(g,Gk, σk) = Sα(h, Lk, lk),

and
Sα+β′′(g,Gk, σk) = Sα(h, Lk, lk).

Consequently, ϕ1(t) and ϕ2(t) are solutions of the same system and for
ε > 0, ϕ1 ≡ ϕ2, for R \ Fε(s(T1

⋃
T2)) or ||ϕ1(t) − ϕ2(t)|| ≥ δ=2d on

R \ Fε(s(T1
⋃
T2)).

Therefore, ϕ(t) satisfies the SG, and from Theorem 2.19 it follows that
ϕ(t) is an almost periodic function.

Let now ϕ(t) be a solution of (2.80) in K which by the above is an almost
periodic function, and let we choice α′

n = n. Then, there exists α ⊂ α′ such
that the limits Sα(g,Gk, σk) = (h, Lk, lk), S−α(h, Lk, lk) = (g,Gk, σk) exist
uniformly and Sα(ϕ(t), T ) = (r(t), P ), S−α(r(t), P ) exist uniformly on K,
where S−α(r(t), P ) is the solution of (2.80).

From condition 2 of Theorem 2.21 it is easy to see that (r(t), P ) =
Sα(ϕ(t), T ) and thus S−α(r(t), P ) exists uniformly and ϕ(t) is almost
periodic. �	

2.8 Impulsive Differential Equations in Banach Space

The abstract differential equations arise in many areas of applied mathe-
matics, and for this reason these equations have received much attention in
the resent years. Natural generalizations of the abstract differential equations
are impulsive differential equations in Banach space.

In this paragraph, we shall investigate the existence of almost periodic
solutions of these equations.
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Let (X, ||.||X) be an abstract Banach space.
Consider the impulsive differential equation

ẋ(t) = Ax+ F (t, x) +
∑

k=±1,±2,...

[
Bx+Hk(x)

]
δ(t− tk), (2.81)

where A : D(A) ⊂ X → X , B : D(B) ⊂ X → X are linear bounded
operators with domainsD(A) andD(B), respectively. The function F : D(R×
X) → X is continuous with respect to t ∈ R and with respect to x ∈ X ,
Hk : D(Hk) ⊂ X → X are continuous impulse operators, δ(.) is the Dirac’s
delta-function, {tk} ∈ B.

Denote by x(t)= x(t; t0, x0), the solution of (2.81) with the initial condition
x(t+0 ) = x0, t0 ∈ R, x0 ∈ X .

The solutions of (2.81) are piecewise continuous functions [16], with points
of discontinuity at the moments tk, k = ±1,±2, . . . at which they are
continuous from the left, i.e. the following relations are valid:

x(t−k ) = x(tk), x(t
+
k ) = x(tk) +Bx(tk) +Hk(x(tk)), k = ±1,±2, . . . .

Let PC[R, X ] = {ϕ : R → X, ϕ is a piecewise continuous function with
points of discontinuity of the first kind at the moments tk, {tk} ∈ B at which
ϕ(t−k ) and ϕ(t

+
k ) exist, and ϕ(t

−
k ) = ϕ(tk)}.

With respect to the norm ||ϕ||PC = sup
t∈R

||ϕ(t)||X , PC[R, X ] is a Banach

space [16].
Denote by PCB[R, X ] the subspace of PC[R, X ] of all bounded piecewise

continuous functions, and together with (2.81) we consider the respective
linear non-homogeneous impulsive differential equation

ẋ = Ax+ f(t) +
∑

k=±1,±2,...

[
Bx+ bk

]
δ(t− tk), (2.82)

where f ∈ PCB[R, X ], bk : D (bk) ⊂ X → X , and the homogeneous
impulsive differential equation

ẋ(t) = Ax+
∑

k=±1,±2,...

Bxδ(t − tk). (2.83)

Introduce the following conditions:

H2.55. The operators A and B commute with each other, and for the
operator I + B there exists a logarithm operator Ln(I + B), I is
the identity operator on the space X .

H2.56. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.
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Following [16], we denote by Φ(t, s), the Cauchy evolutionary operator for
(2.83),

Φ(t, s) = eΛ(t−s)(I +B)−p(t−s)+i(t,s),

where Λ = A+ pLn(I + B), i(t, s) is the number of points tk in the interval
(t, s), and p > 0 is defined in Lemma 1.1.

Lemma 2.24. Let conditions H2.55–H2.56 hold, and the spectrum σ(Λ) of
the operator Λ does not intersect the imaginary axis, and lying in the left
half-planes.

Then for the Cauchy evolutionary operator Φ(t, s) of (2.83) there exist
positive constants K1 and α such that

||Φ(t, s)||X ≤ K1e
−α(t−s), (2.84)

where t ≥ s, t, s ∈ R.

Proof. Let ε > 0 be arbitrary. Then

||(I +B)−p(t−s)+i(s,t)||X ≤ δ(ε)exp
{
ε||Ln(I +B)||X(t− s)

}
,

where δ(ε) > 0 is a constant.
On the other hand [50], if α1 > 0 and

δ1 ∈ (α1, λ
∗(α1)), λ

∗(α1) = inf
{|Reλ|, λ ∈ σ(Λ)

}
,

then,
||eΛ(t−s)||X ≤ K1e

−α1(t−s), t > s

and (2.84) follows immediately. �	
The next definition is for almost periodic functions in a Banach space of

the form PC[R, X ]. �	
Definition 2.18. The function ϕ ∈ PC[R, X ] is said to be almost peri-
odic, if:

(a) The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . , {tk} ∈ B is uniformly almost periodic.

(b) For any ε > 0 there exists a real number δ(ε) > 0 such that, if the points
t′ and t′′ belong to one and the same interval of continuity of ϕ(t) and
satisfy the inequality |t′ − t′′| < δ, then ||ϕ(t′)− ϕ(t′′)||X < ε.

(c) For any ε > 0 there exists a relatively dense set T such that, if τ ∈ T , then
||ϕ(t+ τ)−ϕ(t)||X < ε for all t ∈ R satisfying the condition |t− tk| > ε,
k = ±1,±2, . . ..

The elements of T are called ε− almost periods.
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Introduce the following conditions:

H2.57. The function f(t) is almost periodic.
H2.58. The sequence {bk}, k = ±1,±2, . . . is almost periodic.

We shall use the next lemma, similar to Lemma 1.7.

Lemma 2.25. Let conditions H2.56–H2.58 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense

set T of real numbers, and a set P of integer numbers such that the
following relations are fulfilled:

(a) ||f(t+ τ)− f(t)||X < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(b) ||bk+q − bk||X < ε, q ∈ P, k = ±1,±2, . . ..
(c) |τqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

We shall prove the next theorem.

Theorem 2.22. Let the following conditions hold:

1. Conditions H2.55–H2.58 are met.
2. The spectrum σ(Λ) of the operator Λ does not intersect the imaginary

axis, and lying in the left half-planes.

Then:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of
(2.82).

2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function

x(t) =

∫ t

−∞
Φ(t, s)f(s)ds +

∑
tk<t

Φ(t, tk)bk. (2.85)

It is immediately verified, that the function x(t) is a solution of (2.82).
From conditions H2.57 and H2.58, it follows that f(t) and {bk} are bounded
and let

max
{||f(t)||PC , ||bk||X

} ≤ C0, C0 > 0.

Using Lemmas 1.1 and 2.24, we obtain

||x(t)||PC =

∫ t

−∞
||Φ(t, s)||PC ||f(s)||PCds+

∑
tk<t

||Φ(t, tk)||PC ||bk||X

≤
∫ t

−∞
K1e

−α(t−s)||f(s)||PCds+
∑
tk<t

Ke−α(t−tk)||bk||X

≤ K1

(C0

α
+

C0N

1− e−α

)
= K. (2.86)
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From (2.86) it follows that x(t) ∈ PCB[R, X ].
Let ε > 0, τ ∈ T, q ∈ Q, where the sets T and P are from Lemma 2.25.
Then,

||x(t+ τ) − x(t)||PC

≤
∫ t

−∞
||Φ(t, s)||PC ||f(s+ τ)− f(s)||PCds

+
∑
tk<t

||Φ(t, tk)||PC ||bk+q − bk||X ≤Mε,

where |t− tk| > ε, M > 0.
The last inequality implies that the function x(t) is almost periodic. The

uniqueness of this solution follows from the fact that the (2.83) has only the
zero bounded solution under conditions H2.55 and H2.56.

Let x̃ ∈ PCB[R, X ] be an arbitrary solution of (2.82), and y = x̃ − x.
Then y ∈ PCB[R, X ] and

y = Φ(t, t0)y(t0). (2.87)

The proof that x(t) is asymptotically stable follows from (2.87), the estimates
from Lemma 2.24, and the fact that i(t0, t)− p(t− t0) = o(t) for t→ ∞. �	

Now, we shall investigate almost periodic solutions of (2.81).

Theorem 2.23. Let the following conditions hold:

1. Conditions H2.55–H2.58 are met.
2. The spectrum σ(Λ) of the operator Λ does not intersect the imaginary

axis, and lying in the left half-planes.
3. The function F (t, x) is almost periodic with respect to t ∈ R uniformly at

x ∈ Ω and the sequence {Hk(x)} is almost periodic uniformly at x ∈ Ω, Ω
is every compact from X, and

||x||X < h, h > 0.

4. The functions F (t, x) and Hk(x) are Lipschitz continuous with respect to
x ∈ Ω uniformly for t ∈ R with a Lipschitz constant L > 0,

||F (t, x)− F (t, y)||X ≤ L||x− y||X , ||Hk(x) −Hk(y)||X ≤ L||x− y||X .

5. The functions F (t, x) and Hk(x) are bounded,

max
{
||F (t, x)||X , ||Hk(x)||X

}
≤ C,

where C > 0, x ∈ Ω.
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Then, if:

KC < h and KL < 1,

where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of (2.81).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote byD∗ ⊂ PCB[R, X ] the set of all almost periodic functions
with points of discontinuity of the first kind tk, k = ±1,±2, . . ., satisfying
the inequality ||ϕ||PC < h.

In D∗, we define an operator S in the following way. If ϕ ∈ D∗, then
y = Sϕ(t) is the almost periodic solution of the system

ẏ(t) = Ay + F (t, ϕ(t)) +
∑

k=±1,±2,...

[
By +Hk(ϕ(tk))

]
δ(t− tk), (2.88)

determined by Theorem 2.22. Then, from (2.86) and the conditions of
Theorem 2.23, it follows that D (S) ⊂ D∗.

Let ϕ, ψ ∈ D∗. Then, we obtain

||Sϕ(t)− Sψ(t)||PC ≤ KL.

From the last inequality, and the conditions of the theorem, it follows that
the operator S is a contracting operator in D∗. �	
Example 2.4. In this example, we shall investigate materials with fading
memory with impulsive perturbations at fixed moments of time.

We shall investigate the existence of almost periodic solutions of the
following impulsive differential equation

⎧⎨
⎩
ẍ(t) + β(0)ẋ(t) = γ(0)Δx(t) + f1(t)f2(x(t)), t �= tk,

x(t+k ) = x(tk) + b1k,

ẋ(t+k ) = ẋ(tk) + b2k, k = ±1,±2, . . . ,

(2.89)

where tk = k + lk, lk = 1
4 |cosk − cosk

√
2|, k = ±1,±2, . . ..

If y(t) = ẋ(t) and

z(t) =

[
x(t)

y(t)

]
, A =

[
0 1

γ(0)Δ− β(0)

]
, ż(t) =

[
ẋ(t)

ẏ(t)

]
,

F (t, z) =

[
0

f1(t)f2(x)

]
, B =

[
0 1

1 0

]
, bk =

[
b1k
b2k

]
, k = ±1,±2, . . . ,
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then the (2.89) rewrites in the form

ż(t) = Az + F (t, z) +

∞∑
k=±1,±2,...

[
Bz + bk

]
δ(t− tk). (2.90)

From [138], it follows that the set of sequences {tjk}, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic and for the (2.90) the conditions of
Lemma 1.2 hold.

Let X = H1
0 (ω) × L2(ω), where ω ⊂ R3 is an open set with smooth

boundary of the class C∞, β(t), γ(t) are bounded and uniformly continuous
R valued functions of the class C2 on [0,∞), β(0) > 0, γ(0) > 0.

If A : D (A) = H2(ω) ∩H1
0 (ω)×H1

0 (ω) → X is the operator from (2.90)
and Δ is Laplacian on ω with boundary condition y|∂ω = 0, then it follows
that A is the infinitesimal generator of a C0-semigroup and the conditions of
Lemma 2.24 hold.

By Theorem 2.23 and similar arguments, we conclude with the following
theorem.

Theorem 2.24. Let for (2.89) the following conditions hold:

1. The sequences {bik}, k = ±1,±2, . . . , i = 1, 2, are almost periodic.
2. The function f1(t) is almost periodic in the sense of Bohr.
3. The function f2(x) is Lipschitz continuous with respect to ||x||X < h with

a Lipschitz constant L > 0,

||f2(x1)− f2(x2)||X ≤ L||x1 − x2||X , ||xi||X < h, i = 1, 2.

4. The function f2(x) is bounded, ||f2(x)||X ≤ C, where C > 0 and x ∈ ω.

Then, if
KC < h and KL < 1,

where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.89).
2. The almost periodic solution x(t) is asymptotically stable.

Now, we shall study the existence and uniqueness of almost periodic
solutions of impulsive abstract differential equations out by means of the
infinitesimal generator of an analytic semigroup and fractional powers of this
generator.

Let the operatorA in (2.81)–(2.83) be the infinitesimal operator of analytic
semigroup S(t) in Banach space X . For any α > 0, we define the fractional
power A−α of the operator A by

A−α =
1

Γ (α)

∫ ∞

0

tα−1S(t)dt,
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where Γ (α) is the Gamma function. The operators A−α are bounded,
bijective and Aα = (A−α)−1, is a closed linear operator such that D(Aα) =
R(A−α), where R(A−α) is the range of A−α. The operator A0 is the identity
operator in X and for 0 ≤ α ≤ 1, the space Xα = D(Aα) with norm
||x||α = ||Aαx||X is a Banach space [50, 58, 68, 115, 126].

We shall use the next lemmas.

Lemma 2.26 ([115, 126]). Let A be the infinitesimal operator of an
analytic semigroup S(t).

Then:

1. S(t) : X → D(Aα) for every t > 0 and α ≥ 0.
2. For every x ∈ D(Aα) it follows that S(t)Aαx = AαS(t)x.
3. For every t > 0 the operator AαS(t) is bounded, and

||AαS(t)||X ≤ Kαt
−αe−λt, Kα > 0, λ > 0.

4. For 0 < α ≤ 1 and x ∈ D(Aα), we have

||S(t)x− x||X ≤ Cαt
α||Aαx||X , Cα > 0.

Lemma 2.27. Let conditions H2.56–H2.58 hold, and A be the infinitesimal
operator of an analytic semigroup S(t).

Then:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of (2.82).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function

x(t) =

∫ t

−∞
S(t− s)f(s)ds+

∑
tk<t

S(t− tk)bk. (2.91)

First, we shall show that the right hand of (2.91) is well defined.
From H2.57 and H2.58, it follows that f(t) and {bk} are bounded, and let

max
{||f(t)||PC , ||bk||X

} ≤M0, M0 > 0.

Using Lemma 2.26 and the definition for the norm in Xα, from (2.91), we
obtain

||x(t)||α =

∫ t

−∞
||AαS(t− s)||X ||f(s)||PCds

+
∑
tk<t

||AαS(t− tk)||X ||bk||X
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≤
∫ t

−∞
Kα(t− s)−αe−λ(t−s)||f(s)||PCds

+
∑
tk<t

Kα(t− tk)
−αe−λ(t−tk)||bk||X . (2.92)

We can easy to verify, that

∫ t

−∞
Kα(t− s)−αe−λ(t−s)||f(s)||PCds

≤ KαM0

∫ t

−∞
(t− s)−αe−λ(t−s)ds

≤ KαM0
Γ (1− α)

λ1−α
. (2.93)

Let m = min{t− tk, 0 < t − tk ≤ 1}. Then from H2.58 and Lemma 1.2,
the sum of (2.92) can be estimated as follows

∑
tk<t

Kα(t− tk)
−αe−λ(t−tk)||bk||X

≤ KαM0

∑
tk<t

(t− tk)
−αe−λ(t−tk)

= KαM0

[ ∑
0<t−tk≤1

(t− tk)
−αe−λ(t−tk)

+

∞∑
j=1

∑
j<t−tk≤j+1

(t− tk)
−αe−λ(t−tk)

]

≤ 2KαM0N
(m−α

e−λ
+

1

eλ − 1

)
. (2.94)

From (2.93), (2.94), and equality

Γ (α)Γ (1− α) =
π

sinπα
, 0 < α < 1,

we have

||x(t)||α ≤ KαM0

[ π

Γ (α)sinπαλ1−α
+ 2N

(m−α

e−λ
+

1

eλ − 1

)]
,

and x ∈ PCB[R, X ].
On the other hand, it is easy to see that the function x(t) is a solution of

(2.82).
Let ε > 0, τ ∈ T, q ∈ P , where the sets T and P are from Lemma 2.25.
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Then,

||ϕ(t+ τ)− ϕ(t)||α = ||Aα(x(t + τ)− x(t))||PC

≤
∫ t

−∞
||AαS(t− s)||X ||f(s+ τ)− f(s)||PCds

+
∑
tk<t

||AαS(t− tk)||X ||bk+q − bk||X ≤Mαε,

where |t− tk| > ε, Mα > 0.
The last inequality implies, that the function x(t) is almost periodic. The

uniqueness of this solution follows from conditions H2.56–H2.58 [126].
Let now, x̃ ∈ PCB[R, X ] be an arbitrary solution of (2.82), and y = x̃−x.

Then, y ∈ PCB[R, X ] and

y = S(t− t0)y(t0). (2.95)

The proof that x(t) is asymptotically stable follows from (2.95), the
estimates from Lemma 2.26 and the fact that i(t0, t) − p(t − t0) = o(t) for
t→ ∞. �	

Now, we shall investigate the almost periodic solutions of (2.81).
Introduce the following conditions:

H2.59. The function F (t, x) is almost periodic with respect to t ∈ R

uniformly at x ∈ Ω, Ω is compact from X , and there exist constants
L1 > 0, 1 > κ > 0, 1 > α > 0 such that

||F (t1, x1)− F (t2, x2)||X ≤ L1(|t1 − t2|κ + ||x1 − x2||α),

where (ti, xi) ∈ R×Ω, i = 1, 2.
H2.60. The sequence of functions {Hk(x)}, k = ±1,±2, . . . is almost periodic

uniformly at x ∈ Ω, Ω is every compact from X , and there exist
constants L2 > 0, 1 > α > 0 such that

||Hk(x1)−Hk(x2)||X ≤ L2||x1 − x2||α ,

where x1, x2 ∈ Ω.

Theorem 2.25. Let the following conditions hold:

1. Conditions H2.58–H2.60 hold.
2. A is the infinitesimal generator of the analytic semigroup S(t).
3. The functions F (t, x) and Hk(x) are bounded:

max
{
||F (t, x)||X , ||Hk(x)||X

}
≤M,

where t ∈ R, k = ±1,±2, . . . , x ∈ Ω, M > 0.

Then if L = max{L1, L2}, L > 0 is sufficiently small it follows that:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.81).
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2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote byD∗ ⊂ PCB[R, X ] the set of all almost periodic functions
with points of discontinuity of the first kind tk, k = ±1,±2, . . ., satisfying
the inequality ||ϕ||PC < h, h > 0.

In D∗, we define the operator S∗ in the following way

S∗ϕ(t) =
∫ t

−∞
AαS(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

AαS(t− tk)Hk(A
−αϕ(tk)). (2.96)

The facts that S∗ is well defined, and S∗ϕ(t) is almost periodic function
follow in the same way as in the proof of Lemma 2.27. Now, we shall show,
that S∗ is a contracting operator in D∗.

Let ϕ, ψ ∈ D∗. Then, we obtain

||S∗ϕ(t)− S∗ψ(t)||X

≤
∫ t

−∞
||AαS(t− s)||X ||F (t, A−αϕ(t))− F (t, A−αψ(t))||Xds

+
∑
tk<t

||AαS(t− tk)||X ||Hk(A
−αϕ(tk))−Hk(A

−αψ(tk))||X

≤ LKα||ϕ(t)− ψ(t)||X
[ ∫ t

−∞
(t− s)−αe−λ(t−s)ds

+
∑
tk<t

(t− tk)
−αe−λ(t−tk)

]
.

With similar arguments like in (2.94), for the last inequality, we have

||S∗ϕ(t)− S∗ψ(t)||X ≤ LKα

[Γ (1− α)

λ1−α

+ 2N
(m−α

e−λ
+

1

eλ − 1

)]
||ϕ(t) − ψ(t)||X .

Then, if L is sufficiently small and

L ≤
(
Kα

[ π

Γ (α)sinπαλ1−α
+ 2N

(m−α

e−λ
+

1

eλ − 1

)])−1

,

it follows that the operator S∗ is a contracting operator in D∗.
Consequently, there exists ϕ ∈ D∗ such that



2.8 Impulsive Differential Equations in Banach Space 93

ϕ(t) =

∫ t

−∞
AαS(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

AαS(t− tk)Hk(A
−αϕ(tk)). (2.97)

On the other hand, since Aα is closed, we get

A−αϕ(t) =

∫ t

−∞
S(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

S(t− tk)Hk(A
−αϕ(tk)). (2.98)

Now, let h ∈ (0, θ), where θ is the constant from H2.56, and t ∈ (tk,
tk+1 − h].

Then,

||ϕ(t + h)− ϕ(t)||α

≤ ||
∫ t

−∞
(S(h)− I)AαS(t− s)F (t, A−αϕ(s))ds||α

+ ||
∫ t+h

t

AαS(t+ h− s)F (t, A−αϕ(s))ds||α. (2.99)

From Lemma 2.26 for (2.99), it follows that

||ϕ(t+ h)− ϕ(t)||α ≤ Kα+βMCβh
β +KαM

h1−α

1− α
.

Then, there exists a constant C > 0 such that

||ϕ(t+ h)− ϕ(t)||α ≤ Chβ .

On the other hand, from H2.59 it follows that F (t, A−αϕ(t)) is locally
Hölder continuous. From H2.60 and the conditions of the theorem,
Hk(A

−αϕ(tk)) is a bounded almost periodic sequence.
Let ϕ(t) be a solution of (2.97), and let consider the equation

ẋ(t) = Ax+ F (t, A−αϕ(t)) +
∞∑

k=−∞
Hk(A

−αϕ(tk))δ(t− tk). (2.100)

Using the condition H2.60 and Lemma 2.27, it follows that for (2.100)
there exists a unique asymptotically stable solution in the form



94 2 Almost Periodic Solutions

ψ(t) =

∫ t

−∞
S(t− s)F (s, A−αϕ(s))ds +

∑
tk<t

S(t− tk)Hk(A
−αϕ(tk)),

where ψ ∈ D(Aα).
Then,

Aαψ(t) =

∫ t

−∞
AαS(t− s)F (s, A−aϕ(s))ds

+
∑
tk<t

AαHk(A
−αϕ(tk)) = ϕ(t).

The last equality shows that ψ(t) = A−αϕ(t) is a solution of (2.81), and
the uniqueness follows from the uniqueness of the solution of (2.97), (2.100)
and Lemma 2.27. �	
Example 2.5. Here, we shall consider a two-dimensional impulsive predator–
prey system with diffusion, when biological parameters assumed to change in
almost periodical manner. The system is affected by impulses, which can be
considered as a control.

Assuming that the system is confined to a fixed bounded space domain
Ω ⊂ R

n with smooth boundary ∂Ω, non-uniformly distributed in the domain
Ω = Ω× ∂Ω and subjected to short-term external influence at fixed moment
of time. The functions u(t, x) and v(t, x) determine the densities of predator

and pray, respectively, Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . .+ ∂2

∂x2
n
is the Laplace operator and

∂
∂n is the outward normal derivative.

The system is written in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= μ1Δu+ u

[
a1(t, x) − b(t, x)u− c1(t, x)v

r(t, x)v + u

]
, t �= tk,

∂v

∂t
= μ2Δv + v

[
− a2(t, x) +

c2(t, x)u

r(t, x)u + v

]
, t �= tk,

u(t+k , x) = u(t−k , x)Ik(x, u(tk, x), v(tk, x)), k = ±1,±2, . . . ,

v(t+k , x) = v(t−k , x)Jk(x, u(tk, x), v(tk, x)), k = ±1,±2, . . . ,

∂u

∂n

∣∣∣∣∣
∂Ω

= 0,
∂v

∂n

∣∣∣∣∣
∂Ω

= 0.

(2.101)

The boundary condition characterize the absence of migration, μ1>0,
μ2 > 0 are diffusion coefficients. We assume that, the predator functional
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response has the form of the ratio function
c1v

rv + u
. The ratio function

c2u

rv + u
represents the conversion of prey to predator, a1, a2, c1 and c2 are positive
functions that stand for prey intrinsic growth rate, capturing rate of the

predator, death rate of the predator and conversion rate, respectively,
a1(t, x)

b(t, x)
gives the carrying capacity of the prey, and r(t, x) is the half saturation
function.

We note that the problems of existence, uniqueness, and continuability of
solutions of impulsive differential equations (2.101) have been investigated
in [7].

Introduce the following conditions:

H2.61. The functions ai(t, x), ci(t, x), i = 1, 2, b(t, x) and r(t, x) are almost
periodic with respect to t, uniformly at x ∈ Ω, positive-valued on
R × Ω and locally Hölder continuous with points of discontinuity at
the moments tk, k = ±1,±2, . . ., at which they are continuous from
the left.

H2.62. The sequences of functions {Ik(x, u, v)}, {Jk(x, u, v)}, k = ±1,±2, . . .
are almost periodic with respect to k, uniformly at x, u, v ∈ Ω.

Set w = (u, v), and

A =

⎡
⎣λ− μ1Δ 0

0 λ− μ2Δ

⎤
⎦ ,

F (t, w) =

⎡
⎢⎢⎣
u
[
a1(t, x)− b(t, x)u− c1(t, x)v

r(t, x)v + u

]
+ λu

v
[
− a2(t, x) +

c2(t, x)u

r(t, x)u + v

]
+ λv

⎤
⎥⎥⎦ ,

Hk(w(tk)) =

[
u(tk, x)Ik(x, u(tk, x), v(tk, x))− u(tk, x)

v(tk, x)Jk(x, u(tk, x), v(tk, x)) − v(tk, x)

]
,

where λ > 0.
Then, the system (2.101) moves to the equation

ẇ(t) = Aw + F (t, w) +
∑

k=±1,±2,...

Gk(w)δ(t − tk). (2.102)

It is well-known [68], that the operator A is sectorial, and Reσ(A) ≤ −λ,
where σ(A) is the spectrum of A. Now, the analytic semigroup of the operator
A is e−At, and

A−α =
1

Γ (α)

∫ ∞

0

tα−1e−Atdt.
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Theorem 2.26. Let for the equation (2.102) the following conditions hold:

1. Conditions H2.56, H2.61 and H2.62 are met.
2. For the functions F (t, w) there exist constants L1 > 0, 1 > κ > 0, 1 >

α > 0 such that

||F (t1, w1)− F (t2, w2)||X ≤ L1

(|t1 − t2|κ + ||w1 − w2||α
)
,

where (ti, wi) ∈ R×Xα, i = 1, 2.
3. For the set of functions {Hk(w)}, k = ±1,±2, . . . there exist constants

L2 > 0, 1 > α > 0 such that

||Hk(w1)−Hk(w2)||X ≤ L2||w1 − w2||α.

where w1, w2 ∈ Xα

4. The functions F (t, w) and Hk(w) are bounded for t ∈ R, w ∈ Xα and
k = ±1,±2, . . ..

Then, if L = max{L1, L2} is sufficiently small, it follows:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.101).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. From conditions H2.61, H2.62 and conditions of the theorem, it follows
that all conditions of Theorem 2.25 hold. Then, for (2.102) and consequently
for (2.101) there exists a unique almost periodic solution of (2.101), which is
asymptotically stable. �	
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