Chapter 2
Notes on the Control of the Liouville Equation

Roger Brockett

Abstract In these notes we motive the study of Liouville equations having
control terms using examples from problem areas as diverse as atomic physics
(NMR), biological motion control and minimum attention control. On one hand,
the Liouville model is interpreted as applying to multiple trials involving a single
system and on the other, as applying to the control of many identical copies
of a single system; e.g., control of a flock. We illustrate the important role the
Liouville formulation has in distinguishing between open loop and feedback control.
Mathematical results involving controllability and optimization are discussed along
with a theorem establishing the controllability of multiple moments associated with
linear models. The methods used succeed by relating the behavior of the solutions
of the Liouville equation to the behavior of the underlying ordinary differential
equation, the related stochastic differential equation, and the consideration of the
related moment equations.

2.1 Introduction

In these notes we describe a number of problems in automatic control related to the
Liouville equation and various approximations of it. Some of these problems can
be cast either in terms of designing a single feedback controller which effectively
controls a particular system over repeated trials corresponding to different initial
conditions or, alternatively, using a broadcast signal to simultaneously control many
copies of a particular system. Sometimes these different points of view lead to
problems that are identical from the mathematical point of view. In many cases a
certain continuum limit can be formulated, either by considering an infinity of trials
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102 R. Brockett

or an infinity of copies. In this situation we are often led to problems involving the
control of an associated Liouville equation.

The use of feedback as part of a regulatory mechanism is a standard idea in
engineering, biology, and even economics. This stands in contrast to the many other
uses of feedback in communication, adaptive sensing, learning algorithms and, more
typically in engineering, tracking problems where it is used to improve the speed and
accuracy of the response of servomechanisms. Its main virtue is that it is a single
mechanism capable of dealing with a great variety of disturbances.

Before introducing the controlled Liouville equation and some mathematical
problems that go along with it, we will discuss some additional motivation.

2.2 Some Limitations on Optimal Control Theory

An optimal control problem, as usually formulated, assumes that one has exact
knowledge of the equations of evolution. The problem is posed as that of finding
a control that transfers the state of the system from a given initial condition to a
final one, or possibly a manifold of final states, while minimizing some performance
measure. This formulation fits well a number of real-world problems, such as finding
the minimum fuel trajectory for getting a payload from the earth to Mars. On the
other hand it is less useful as a tool for designing feedback compensators for tracking
servomechanisms, a typical problem in robotics, and other path following problems.
In these situations there is no fixed initial state and no fixed final state. We do not
know what the initial condition will be at a particular time; it is as if the system
needs to be ready for a wide variety of challenges.

The development of the various least squares methods for linear systems has
led to tools that address more directly the issues raised by such tracking problems.
By exploiting the linear structure and by assuming that the desired end state is the
point 0, least squares theory produces a feedback control rule that is simultaneously
optimal for all initial conditions. Of course the fact that the control can be expressed
in feedback form is the key to the invariance with respect to initial conditions.
However, the assumptions include the fact that there is a fixed desired steady state
and this is a strong limitation.

Moreover, and here we are beginning to discuss a second major point, there are a
great many applications in which the payoff for implementing a linear relationship
between sensed signals and control variables does not justify the cost of the
equipment needed to achieve it. For example, in high volume consumer goods, such
as dish washers and clothes dryers, it is inexpensive to sense the temperature of
the water or air but the benefits associated with implementing a linear relationship
between the temperature of the mixed water and the flow from the hot and cold
water lines do not justify the cost. Acceptable performance is obtainable using
on-off control which can be implemented much more cheaply. Even in the case
of audio equipment, where there is a significant payoff for building systems that
are very close to linear, the benefits of linearity are confined to finite range of
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amplitudes and a subset of frequencies. Standard optimal control theory provides
no mechanisms to incorporate implementation costs. This is a major reason why
we can not consider the usual optimal control formulation, even when robustness is
taken into account, to be completely satisfactory.

Finally, we might ask why optimal control theory has not been more useful in
understanding the control mechanisms found in biology. The questions there range
from understanding control of the operation of an individual cell to the motor control
of the complete organism. In particular, given that evolution has had as long as it
has to optimize the neuroanatomy and the muscle/skeletal structures, why is that we
don’t find optimal control theory to be more effective in explaining these structures?

2.3 Measuring Implementation Cost

The expense required to implement a control policy in an industrial setting where
each control signal is generated by a box requiring both a capital investment
and continuing maintenance cost, can be accounted in a straightforward way.
Unfortunately, such costs are strongly dependent of the technology being used.
We wish to focus instead on measures which are intrinsic in the sense that they might
apply, at least to some degree, to a range of situations including both those found in
engineering and those found in biology. Some considerations that are relevant here
have been discussed in our paper [1] which we now paraphrase.

Our point of view is that the easiest control law to implement is a constant input.
Anything else requires some attention. The more frequently the control changes,
the more effort it takes to implement it. Because the control law will depend on the
state x and the time ¢, it can be argued that the cost of implementation is linked
to the rate at which the control changes with changing values of x and ¢. This
rate of change may also affect the effort required to compute the desired control or
some suitable approximation to it. In any case, solutions that require less frequent
adjustments as x and ¢ change are to be preferred over those that require more
frequent adjustments. From the point of view of an animal controlling its body, or a
systems engineer allocating the cpu cycles of a computer controlling a machine
tool, control laws with small values of ||du/d¢| and ||0u/0x|| require less frequent
updating and will be more robust with respect to small changes in the data. These
considerations suggest that a suitable quantification of what is meant by “attention”
might include a measure of the size of the partial derivatives, du/dx and du/dx. For
example, the numerical measure of the attention of a given control law might be
might be a weighted Sobolev norm of u(z, x).

This reasoning suggests a class of optimization problems associated with select-
ing the architecture of a control system. The general structure of the optimization
problem will involve minimizing functionals of the form

du Ju
Na —Qf ¢(x,t,$,§) dxdt
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subject to constraints on u such as will insure that the performance is adequate
for the task. We can think of n as an atfention functional and use it as a guide
to suggest which control laws might be more or less expensive to implement. To
this we may add the observation that although textbooks on control often discuss
the difference between open-loop and closed-loop control, the distinction is either
vague or applicable only in highly restrictive situations. In many cases, e.g., fixed
end-point linear-quadratic optimal control on finite time intervals, it is unclear what
might be meant by a closed-loop solution. This makes it difficult for researchers
in other fields to discuss the distinction in a precise way. At an intuitive level,
it seems that biological motor control involves not only “pure” open-loop control but
also a gradation of modalities spanning a range between open-loop and closed-loop
operation. Intuitively, one thinks that large values of ||du/0dx| indicate closed-loop
control and that large values of ||du/0d¢| indicate open-loop control. By modifying
the attention functional we can change the ratio of the penalty put on the closed-loop
|[0u/dx|| terms relative to the penalty put on the open-loop ||du/0d¢| terms. In this
way we create a continuum and arrive at a characterization which makes possible a
quantitative study of the trade-offs between open-loop and closed-loop control.

Example 2.3.1. To give some indication about where these ideas can lead it may
be helpful to have an example. Consider the scalar control problem X = u with the
distribution of initial conditions given by a density po(x). Our goal is to minimize

i ou\?
1=/ f pt.x)ax’dxdt + [ (_) dx
0 R R ox

where p(¢, x) denotes the density at time 7. To avoid complication, we constrain u
to be a function of x alone. The calculations leading to a characterization of # now
follow.

We rewrite the equation of motion as dx/u=dt. Using this we see that if
£ %° x2dt is finite then

oo X(0) _y2 0 x(0)
[ x¥t= [ ——dx and [ uPdt = [ —u(x)dx
0 o u(x) 0 0
Thus
00 x(0) 42
1 ot vyaxidxde =  poo) | 1 a2 + bu(x) | dxo
0R R o u(x)

and the functional to be minimized can be written as

xow? du\?

n:fpo(x)(fa dw)dx+f(—) dx
R o u(w) r \0x

If py is a delta function this expression can be further simplified. Let p(0, x) be a

delta function centered at xp > 0. In this case the term involving py can be simplified

giving
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Fig. 2.1 The graph of the optimal gain function for x > 0
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The indicated partial derivative is actually a total derivative and so an application of
the Euler-Lagrange operator gives

d’uv  x*
W + a; =0
Because the solution should remain at zero when reaching zero, it is necessary
that u(0) = 0. Because the support of the density will be confined to the interval
[0, xo], and because we are minimizing the square of du/dx, the optimal u will
have du/dx = 0 at x = x(. A numerical solution of these equations corresponding
toa = 1 and xo = 1 is shown in Fig. 2.1.

This control law is nearly linear near 0 and approaches saturation as x
approaches 1, reflecting the fact that we are putting a penalty on the derivative.

2.4 Ensemble Control

There are several areas of work that have been called “ensemble control” but
generally this term applies to problems involving a large number of more or less
identical subsystems which are being manipulated by a single source of command
signals. (See [2-4].)
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A finite number of copies of a system, controlled by an #-dependent function
of time can be investigated both as an approximation to the Liouville equation
and as something of interest in its own right. Such collections are of interest as
models for flocks, swarms, and ensembles of various kinds. Their study gives rise
a number of interesting questions, centering around the topics of controllability and
stabilizability, but also the control of various averages.

Special aspects of the replicated systems include the degeneracy that will occur
when two or more elemental systems are in the same state. In addition, a direct
application of Lie algebraic controllability conditions, while in principle quite
routine, can be tedious because of the large number of subsystems.

Example 2.4.1. Consider k copies of the scalar system x = —x* + u and note that
the lie bracket of two power law vector fields is given by

0 0

" ,x"a] =n-—m)x

ax

m—+n—1 i

¥ ox

Thus the Lie algebra generated by the drift vector field and the control vector field
is infinite dimensional and contains all polynomial vector fields. To investigate the
controllability of k copies of the scalar system we need to look at the distribution
generated by bracketing

d d d
3 2
R —1=-3 2_—
[Z i axi Z 8x,-] sz axi
In this case the Lie algebra contains all the vector fields of the form
L1=iji' j=0,1,2,... .k
i ax1 ’ ’ ’

The distribution generated by these vector fields at the point x; = py, x2 = pa, ...,
Xr = pr 1s the range space of the Vandermonde matrix

1 p1 p}-- pi!
1 pyp3-- p5!
V: 1 p3 p?z)p];_I
1 px p} - pi!

Because the Vandermonde matrix is nonsingular if and only if the p; are distinct,
we see that this distribution spans RF at all points corresponding to unrepeated
values of the p;.

Any given ordering of the x;, for example x; <x; < .-+ < Xy, defines a
connected, open subset of R¥ in which the Vandermonde matrix does not vanish.
Each of the n — 1 co-dimension one planar subsets of the boundary is an integral
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manifold for both the control vector field and the drift and so these can not
be crossed. Natural questions then arise about the reachable set in such a cone.
In particular, can any point in the cone be reached from any other point in it,
independent of the value of k?

Example 2.4.2. Consider a system consisting of a pair of identical second order
systems with nonlinear restoring forces.

F+x+x’=u j+y+y =u
Clearly the set {(x,y,X,y) | x = y ; X = y}is an invariant set. We may ask if

there are other invariant sets and, if not, can we drive an arbitrary initial state to this
invariant set. Rewriting the system as

d
dt

LR
|
=
=
=
—_ O = o

¥ —y =y
we see that in addition to the vector fields defined by f and g the Lie algebra
contains
0 —1—-2x

—1-2x | _ 0
0 S VAVAVS S “1—2y

—1-2y 0

[f.¢] = VAV IS

S = O =

Thus the distribution associated with the vector fields in the Lie algebra generated
by drift and the control vector field spans a four-dimensional space at all points
except those on the co-dimension one hyperplane defined by x = y.

Our language will be to call the overall system “the system” and to refer to the
individual subsystems as being “the elemental systems”. Examples of what we have
in mind can be found in the literature the on the following topics:

A. Classical thermodynamics deals with the control of ensembles, usually modeled
as collections of identical particles. Viewed as a control problem, the conversion
of heat into work concerns the control of various averages such as temperature
and pressure (the intensive variables) using heat flow and adjustable volume.
Here the elemental systems consist, for example, of gas molecules; the over
all system would be described by a combination of intensive and extensive
variables. One might take the controls to be heat flow and volume. Formulated
as a control problem, a possible goal is to extract as much mechanical work
as possible given constraints on the path. In elementary thermodynamics the
system is described in terms of the thermodynamic “state”. It is typical to
assume that the controls are applied in such a way as to keep the system in
thermodynamic equilibrium; which is to say, all paths are adiabatic.
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B. Quantum control of ensembles of identical, weakly interacting, particles. This
arises in the model used in many discussions of nuclear magnetic resonance
(NMR) problems. The control is an electromagnetic field consisting of short
bursts, or pulses, consisting of different frequencies of controlled duration.
The goal is usually to manipulate the orientation of a collection of quantum
mechanical spins, say those of the hydrogen ions coming from water molecules,
such that the majority of the elemental systems align in a particular nonequilib-
rium configuration.

C. Quantum control of a parameterized family of nearly identical systems using a
common control. Here again, a well studied model comes from NMR. Because
of slight variations in the magnetic field the resonant frequencies of the
individual hydrogen ions differ over the ensemble. Because of this, the control
has a different effect on the various elemental systems. Consequently, even if
the elemental systems were to start from the same state it requires great care to
steer the largest possible fraction of them to a desired end state.

D. Control of flocks: 1t is of interest to understand the extent to which a leader can
shape and stabilize the motion of the elemental systems comprising a flock using
a broadcast signal. A natural constraint would be to ask that any feedback signal
be based on a symmetric function of the states of the elemental systems, for
example on the average velocity of the elemental systems.

These applications have in common the goal of controlling a (large) number
of weakly interacting individual systems with a single, or perhaps small number,
of control inputs. In some quantum mechanical applications the Liouville—von
Neumann density equation is appropriate to describe the situation; in other situations
the Fokker—Planck equation, or even many copies of a finite state model may serve
better.

2.5 The Liouville Equation

Given an ordinary differential equation, x(#) = f(x(¢)) defined on a manifold X,
and having the property that there exists a unique solution through each point, there
is an associated partial differential equation which describes the evolution of an
initial density of points. Let p(0, -) be the initial density, thought of as a probability
density for x(0). As such it is nonnegative and normalized

J p0,x)dx =1
X

Let ¥ be a smooth function ¥ : X — R™ having compact support. The expected
value of ¥ at some future time is

EY(x(1)) =){ Y (xX)p(, x) dx
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The time derivative of this expression can be expressed in two ways. It is expressible
in terms of dp/d¢ but also in terms of (dy/dx, f(x))p(t, x). These possibilities are
the basis for the expression

0
[ V0T dx = [ (w/ox. f(0)p(t.x) dx
X X
Integrating the right-hand side by parts we have
0
S w(x)a—p dx = — [ ¥ (x){(9/0x, f(x)p(t. x)) dx
X t X

Because ¥ is arbitrary this implies, subject to mild additional assumptions, that

dp(t, x)
a

—<ai f(x)p(r,x)>
X

We can think of this as a Cauchy problem to be solved, subject to an initial condition
p(0,x) = po(x). It describes how the density evolves in time under the flow defined
by the given deterministic equation. It is easy to verify that if p(¢, x) is nonnegative
and satisfies this equation then

d
— [ p(t.x)dx =0
dtR{p( x)dx

The solution of the Liouville equation can be expressed in terms of the general
solution of X = f(x, ). If the solution of X = f(x, ) is such that the initial value
Xo goes to ¢ (¢, xo) at time ¢ then the solution of the Liouville equation is

p(t,x) = po(¢~" (1. x))/det/y(x)

where ¢! denotes the result of solving x = ¢ (¢, xo) for xo and J is the Jacobian of
this map; its determinant is necessarily positive. Thus the properties of the Liouville
equation reflect quite closely the properties of the underlying ordinary differential
equation. The example that follows uses a special case of the fact that detdf/dx is
the exponential of an integral of the trace of a Jacobian.

Example 2.5.1. Using the fact that the solution of X = Ax + f(¢) can be written as

x(t) = e x(0) + fl e f(0) do
0

For the corresponding Liouville equation and initial density po the solution is

0.0 = s (e (v [ 4 70 av ) )
e 0
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If we have a control present, as in X = f(x,u), the Liouville equation keeps
this same form but because the control is now operated on by the partial derivative
operator, feedback controls and open loop controls lead to different solutions.

Example 2.5.2. Consider the scalar equation x = u ; x(0) = 1. If we let
u(t,x) = —x then of course x = ¢~ and u(t) = —e™". We get the same solution
if we set u(¢,x) = —e™". On the other hand, if we have an initial density p, the
solution of the Liouville equation corresponding u(t) = —e ™" is

p(t,x) = po(x —e')

whereas the solution corresponding to u(x) = —x is

p(t,x) = e'po(e”"x)

2.6 Comparison with the Fokker Planck Equation

We have suggested that one interpretation of the Liouville equation is that it provides
a description of the evolution of a probability density under the deterministic flow
defined by X = f(x, u). Of course there is also an evolution equation for the density
associated with stochastic equations containing Wiener processes, such as those of
the It6 form

dx = f(x.wydt + ) gi(x)dw
The effect of the g;dw; terms is to introduce a diffusion, something completely

absent in the model provided by the Liouville equation. For the scalar equation
dx = axdt 4+ cdw the Fokker—Planck equation is

dp(t,x) _ daxp N lcz 9%p(t, x)
a Ox 2 0x2

If the initial density is Gaussian, po(x) = (1 / ,/ZJrs(O)) eC=30)/250) thep the
solution of this equation remains Gaussian for all time

e (—X)2/2s(t)

1
plt.x) = ———=
V2ms(t)
where X is e?’x(0) and s(7) is the solution of the variance equation given s(0)

§=2as +c?
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This can be compared with the solution of the Liouville equation corresponding to
¢ = 0 which, for the same initial condition, is

1 )2 at
3 — (x—X)~/2e
ol %) N 2mteat ¢
2.7 Sample Problems Involving the Liouville Equation

In the case where
x(1) = f(x) + Zui(t)gi (x(2))

the Liouville equation is

Ap(t. 9 !
pgt X) _ _<$, f(x)p(l,x)> - Z<$ u; (t, x)gi (X)p(f,x)>

When solving a standard control problem modeled as X = f(x, u) one seeks a
control u defined on the interval of interest. Often u will be found through the use
of variational principles and may be found as a function of ¢ or as a function of the
optimal trajectory x. Whether u is expressed as a function of ¢ alone or as some
combination of ¢ and x is regarded as being of secondary importance. However,
the situation is quite different for the Liouville equation because now f(x,u) is
acted on by the partial derivatives with respect to x. The value of p(¢, x) depends
on whether u is expressed as an open loop function (u = u(t) or as a closed loop
function (u = u(z, x).

We now briefly describe a number of problems which can be phrased in terms
of the Liouville equation even though they fall outside the usual theory of optimal
control.

Problem 2.7.1. The regulator in a box: Just as one of the basic examples in
quantum mechanics is the charged particle in a square well potential, we can
consider control problems where the domain of interest is limited for technological
reasons to a sharply defined interval. Suppose that there exist limitations such that
values of x and u that lie outside a certain range are of no interest. We seek a
control that has good performance and is easy to implement. Building on our earlier
example, we consider the scalar control problem x = u with the distribution of
initial conditions given by a density po(x) which is uniform on [—1, 1] and zero
outside that interval. Find u as a function of x such as to minimize

oo 1

2
n=[ [ pt,x)ax’dxdt + [ (@) dx
0l R \0x
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Problem 2.7.2. Maximizing the Domain of Attraction: Consider the system x =
f(x,u) with £(0,0) = 0 having the property that the solution (x,u) = (0,0) is
unstable. It is often of interest to determine u# so as to make the null solution of
X = f(x,u(x)) asymptotically stable and to make its domain of attraction as large
as possible. We can formulate this in terms of a controlled Liouville equation in the
following way. For the equation

ap(t, x)
a

—<ai f(x,u)p(r,x)>
X

Find u as a function of x so as to minimize

oo

n=J [ tanh(k|x|)p(z, x) dxdt
0 R

n

Notice that for large positive values of k this assigns zero cost to trajectories that go
to zero as ¢ goes to infinity.

Problem 2.7.3. Trajectory Confinement: In most models concerned with dis-
cretized control signals, asymptotic stability is not possible. In [5] we discussed the
possibility of confinement to a region about the target value. This can be restated as
requiring that the support of the density should be limited to some neighborhood of
the target. If the target is x = 0 we might also reformulate the problem in terms of
minimizing a measure such as

n=Jx’p(T.x) dx
X

Problem 2.7.4. Enhancing Controllability: As we have seen, identical linear sys-
tems are not ensemble controllable in any reasonable sense. Yet with nonlinear
feedback they can become so. We can ask about the nonlinearities that make the
linear system ensemble controllable. Of course we need the Lie algebra generated
by Ax + bg(x),b to have enough independent components so as to achieve
controllability. Moreover, we would like [Ax, b(g - b)] to be “strongly independent”
in some sense, probably involving an average over the domain of interest. As noted
in the example above, replicated systems are not controllable along the walls of the
cone defined by the planes characterizing equality of components, but in the interior
they can be.

Problem 2.7.5. Restricted Range Feedback: In our paper [5] we discussed the
possibility of controlling a linear system with outputs that are generated by a finite
state machine. The idea was to model the feedback controller as a Markov process
and to adjust the transition rates of the Markov process in such a way as to achieve
control. This can be contrasted with the older idea of pulse-width modulated control,
commonly used in less sophisticated control systems, which operates in an on-off
mode, with the switching times synchronized with a clock.
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2.8 Controllability

Suppose that X = f(x, u) and that there is a density of initial conditions for x with
support of py being the set Xy. Suppose, further, that we would like to find u(¢, x)
so as to steer p from its initial value to p; (x) whose support is X . For example, if,
in fact, we have a regulator problem then X; could be a small set containing 0. If we
have a cost function involving u# we could arrive at a problem of the form

Ipt.x) _
a

ad
<5, f(x,u)p(l,X)>; p(0,x) = po; Supp p(T, x) € X,

T
n= of){ Lu(x))p(t,x)dxdt

with the goal of minimizing 7.

In other situations the final density might be completely specified or it might be
that certain linear functionals of it are to satisfy some inequalities. It might happen
that L depends on x as well as u, etc. Some concrete examples appear elsewhere in
these notes.

Let X be an oriented differentiable manifold with a fixed, nondegenerate, volume
form dv. Let ¢ : X — X be a diffeomorphism. If pd v is a nonnegative measure on
X and if ¢ is orientation preserving, then ¢ acts on densities according to

() = p(@ ' ()/detly

where Jy is the Jacobian of ¢. In this sense Diffo(X), the set of orientation
preserving diffeomorphisms, generates an orbit through a given p.

If the manifold is compact and we restricted discussion to strictly positive
densities then this action is transitive, see Moser [6] and Dacorogna and Moser
[7]. If the densities are only assumed to be nonnegative the situation is much more
complicated.

A natural question to ask is then, given two nonnegative densities, pp and p;, each
of which integrates to one, does there exist a control vector u(z, x) defined on [0, T']
that steers py to p;? From the point of view that the Liouville equation defines an
evolution equation on L (R"), It might be expected that in considering this question
the Lie algebra generated by the first order linear operators

7 = |- @n.0) . (e ngonen |
pe pe

LA

should play a role. However, because the bracket

d d
Rg,u,«z,x)gi (x)p(t,x)>,<a,uj .2z, <x)p<z,x>ﬂ
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involves the partial derivatives of u(x), and deeper brackets involve successively
higher partial derivatives, this line of attack leads to complications.
Of course the set of operators of the form

L= <i,u,-(t,x)gi (x)>
ox

as u varies over the set of ¥ functions of x is an infinite dimensional set. We

could reformulate the problem in this way. Let ¥;(x) € ¥°°(R") be a basis for
some subset of " and consider vector fields of the form

d
L = <a—, N (x)>
x
This is to be compared with the controllability of the system
F= )+ Y g )
for which the relevant Lie algebra is
L = {fsglngs cee ng}LA
In our paper [8] we studied the problem of controllability of the density
equation associated with linear systems. More recently Agrachev and Caponigro [9]

published a study phrased in terms of controlling diffeomorphisms, not restricted to
linear systems.

2.9 Optimization with Implementation Costs

Not surprisingly, the addition of an implementation term usually complicates the
mathematics required to solve a trajectory optimization problem.

Example 2.9.1. Consider the problem of minimizing the quantity
o0
n=[ x>+ uldt
0

while steering the solution of X = —x + u from x(0) = 10 to x(1) = 0. Of course
a variational argument implies immediately that

X—2x=0
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and together with the boundary conditions on x this determines the optimal
trajectory. But another way to solve this problem is to find a solution of the Riccati
equation

k=2k—1+k?

on the interval [0, 1] and to make the substitution # = v—kx. It then follows that the
original trajectory optimization problem is equivalent to a modified one for which
the evolution equation is

1
Y=(-l—kx+v: n= [ Vdt
0
and the performance measure is
1
n=[vdt
0

The optimal v is then expressible in terms of the controllability Gramian W
associated with the new system. Matters being so, optimizing v leads to an
expression for u. In more detail,

v(r) = e RO, — = k(1)x (1) 4 v(1)

This solution has both open loop, and closed loop terms. Their relative size depends
on which solution of the Riccati equation is chosen. The above construction works
for any solution of the Riccati equation and includes the possibility that we choose
an equilibrium solution. This choice could be made with the goal of minimizing
some functional of the form

1 .
n=[ Lk, v dt
0

such as
1

n=/[(0u/dt)? dt

0

Example 2.9.2. As an example of a problem in this setting that is solvable in special
cases, consider

X = f(x) +glx)u
For this system

ap(t,x)
a

(50 7@ + 2mpte.0)
X
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with a given initial probability density po(x). Suppose we consider a trajectory term
o0
=/ (xTLx +u"u)p(t, x)dxdt
0 R
and an implementation penalty that favors a linear control.

2
p(t,x) dxdt

o ou
m=Jf o= u)
0 R" X

It is obvious that in the special case where f(x) = Ax and g(x) = b the optimal
solution is

u=—-BTKx

where K satisfies A7 K+ KA—L+KBBT K = 0. More interesting is the suggestion
that if || f(x) — Ax|| and ||g(x) — b|| are not too large in the region of interest then
we can use the known solution as the initial guess in a successive approximation
scheme.

In the context of this example there are three distinct aspects of the linear case are
worth noting. i) The pure trajectory optimization is solvable in feedback form, ii) the
implementation term adds no additional cost at precisely at the optimal feedback
control, and iii) the form of the initial distribution is irrelevant. Generalizing the
problem in such a way as to take away any of these will yield more interesting
solutions.

2.10 Controlling the Variance

We now turn our attention to questions involving the simultaneous use of open loop
and closed loop terms to shape the first and second moments of the density. This can
be thought of as part of the larger problem of controlling the Liouville equation. For
linear stochastic systems this amounts to controlling the mean and the variance and
represents a compromise between controlling one individual trajectory associated
with X = f(x,u) and controlling the entire density. It is, perhaps, the simplest
set of problems illustrating how the parametrization of the control as a sum of an
open loop part plus a closed loop part can provide additional controllability beyond
what is available using open loop control alone. For simplicity, we suppose that the
uncontrolled system is linear and time invariant; the extension to the time varying
case presents little additional difficulty.
Consider the stochastic system

dx = Axdt + Budt + Gdw
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Let x and X' denote the corresponding mean and variance so that with the control
law u(t) = K(t)x(t) + uo(t) we have

d _ B}
Ex = (A + BK)X + Buy
Y =(A+BK@t)Y +2(A+ BK@®)" + 0

with Q = GGT. We now investigate the set of reachable values for X and X,
considering K and u, to be controls.

In thinking about controlling the variance, it is helpful to keep in mind that the
set of positive semidefinite matrices is both a cone and an additive semigroup and
that any vector field of the form F(X) = AX + Y AT maps this cone into itself.
Moreover, the general linear group acts transitively on the set of positive definite
matrices in accordance with the group action

(T.Q) = TQT"

Of course there is a large literature devoted to the steady state solution of the
variance equation, going back to Wiener’s work on filtering and continuing with
the celebrated linear-quadratic-Gaussian theory developed in the context of modern
control theory . Much of this work is devoted to questions about how to minimize
the variance through the choice of constant K. Here we are interested in treating
K(t) as a control and focusing on the transient behavior.

Remark 2.10.1. As motivation consider the following type of problem. Suppose
that an athlete has an objective such as placing the ball with a tennis serve or gaining
a certain height as a pole vaulter. The penalty for missing the objective may be
highly nonlinear and the number of tries limited. Thus the best policy typically
involves a tradeoff between controlling the mean and controlling the variance. If the
only uncertainty enters through the initial state, the problem can be phrased in the
terms described above.

The feedback gains K enter the variance equation multiplicatively and hence this
is an example of what has come to be called bilinear control. The presence of the
bias term Q and the constraint imposed by the fact that the variance is automatically
positive semidefinite sets this problem apart from much of the literature. In the
appendix we give some results on the general bilinear problem but here we focus
on the variance equation itself. We will make use of the idea that when studying
controllability for systems with a drift term, if the drift vector field generates a
periodic motion then the effect of moving backwards along the drift vector field can
be achieved by letting the system flow along the drift vector field for something
less than a full period. This idea was used by Jurdjevic and Sussmann [10] in
the context of control on Lie groups and later, without the Lie group hypothesis,
in [11].
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Lemma 2.10.2. Let A be a real n-by-n matrix and let B be n-by-m. If A, B is
a controllable pair in the sense that the rank of [B, AB, ..., A" 'B] is n then,
considering K as a time varying control, the system

Y =(A+BK(t)Y + X(A+ BK1t)" + Q: £(0)>0

has the property that the reachable set from any X (0) > 0 has nonempty interior in
the space of symmetric positive definite matrices.

Proof. Step 1: Clearly the Lie algebra generated by the matrices A and BK for
all possible constant K, contains A and every matrix whose range space
is contained in the range space of B. It also contains all matrices of the
form ABK — BKA. However, the range space of BKA is contained in
the range space of B and so we see that the Lie algebra in question contains
all matrices of the form ABK. It also contains all matrices whose range
space is AB as well as those whose range space is contained in the range
space of B. Continuing with [A, ABK] = A’BK — ABKA, etc. we see
the Lie algebra contains all matrices whose range space is contained in
the sum of the ranges of B, AB, ..., A" B which is the entire Lie algebra of
n-by-n matrices.

Step 2: In the case where Q = 0 and K is piecewise constant on [0, #] we have

T(t)=MEOMT

where

M — e(A+BKr)fre(A+Kr—l)tr—l .. .eA+BK1)t1

Thus with Q =0 the given equation is controllable on the space of
symmetric matrices with rank and a signature matching that of X(0),
provided that the matrix equation X = (A+ BK)X (1) is controllable on the
space of nonsingular matrices. In particular, it is controllable on the space
of symmetric, positive definite matrices.

Step 3: The effect of Q is simply to offset the solution in accordance with the
variation of constants formula

(1) = &(t,0)Z(0)@7 (£,0) + ft &(t, 1) 0P (1, 1)dt
0

and thus even with Q # 0 the reachable set retains the property of contain-
ing an open set. O

Remark 2.10.3. Theorem 1 of [12] provides a complete characterization of the Lie
algebra generated by 4 and hc”, under the assumption that (4, b, ¢) is controllable
and observable. In particular, it is established there that if the trace of 4 + abc is
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nonzero for some « and if ¢” (1 (s+a)—A)~' B is notequal to ¢’ (—1(s+a)—A)~'b
for any a then the Lie algebra generated by 4 and bcT is the set of all of n-by-n
matrices. Observe that in the present situation we can choose K such that the trace of
BK is nonzero and by virtue of the controllability assumption we can select a rank
one matrix K such that BK = bc” meets these requirements. We give a general
result later (Theorem 2.10.6) but perhaps a concrete example will be helpful at this
point.

Example 2.10.4. Consider the two-by-two variance equation associated with

)=o) [ (e ]

If we let u = kyx; + kyx; the corresponding variance equation is

d|onon| |01 o1 012 | | 01 0o 0 ky n 00
di | oy om ki ky || 021 022 o1 o || 1k 01

We want to show that this equation is controllable on ¥ > 0.

Write the equations in component form
611 = 2012
612 = k1011 + k2012 + 022

G2 = 2k1012 + 2k209 + 1

Positive definiteness can be characterized by o1, > 0 and 01,02, > 0122. Observe
that given (u;, uy), the simultaneous equations

u 011 012 kl 022
= dt
[V} u[2012 2022“’@} +[ 0 ]
can be solved for (k;, k) in the set ¥ > 0 and if we make the corresponding
replacements we have

o1 = 2012
C'le =Uu
C'Tzz =V

Now the first two of these equations depend on u alone; 61, = 2u and 01, = 611/2.
It is clear, for example from the classical treatment of the time-optimal control of
X = u, the point (071 (0), 012(0)) can be steered to any point in the half-plane o, > 0
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Fig. 2.2 Showing possible
trajectories respecting
o011 > 01in the (071, 012)-plane

without leaving that half-plane. Suppose we select some u that accomplishes this
transfer in 7" units of time (Fig. 2.2). Define / by

opp(T) _ 05, (0) _
o1 (T) o011(0)

h/T
Finally choose v to be the time derivative of

05,(0) L (0122(1) B 0122(0))
011(0)) T \onu@) 011(0)

oxn(t) = 022(0) +

More generally, consider the variance equation associated with an n'” order
system with scalar control. Let e; denote the standard basis vectors in R" dx =
(A + e,kT)xdt + e,dw. If we partition the variance in terms of blocks compatible
with e, and its complement we have

d | ZuZn| | S 0% Zn| | Zn ST k L |00

dt 217; 022 kT k, 217; 022 217; 022 0 k, 01

Using a linear transformation and a suitable offset for k£ we can arrange matters
so that 4 and e, kT take the form

0 1 0 -0 000 -0
00 1.0 00 0 -0
4|00 00 0000
00 0 -1 00 0 -0
00 0 -0 | ki ko ks e Ky |

Observe that if X is positive definite then the equation

u=2Xk+5b



2 Notes on the Control of the Liouville Equation 121

can be solved for k and that in terms of u the variance equation can be written as

Yi=8Zn+ZnST
212 = S212+M
On =1u

This is a more general formulation of the example. In this notation the problem is
that of showing that for

Y =AY 4 YAT +equ” + uel

it is possible to steer X' from ¥y > 0to X > 0.
The proof of the following theorem shows that this is possible for a general
controllable linear system.

Theorem 2.10.5. Let (A, B) be a controllable pair and let X satisfy
Y=(A+BKt) X +Z(A+BK1t) +Q; Z0)>0; 0>0

Considering K to be a control, any X1 > 0 can be reached from any ¥ (0) > 0.
Proof. Clearly the variance equation is linear and the operator mapping real
symmetric matrices into real symmetric matrices defined by

L(¥)=(A+ BK)X + Y(A+ BK)T

has eigenvalues which are all possible pairs of the form A; +A; where A; and A;
are eigenvalues of 4 + BK. Thus if there exists a K such that the eigenvalues of
(A + BK) are integer multiples of jt+/—1 then expL is periodic and Theorem A1 of
the appendix applies, provided that ¢4+ 8K0C) ig periodic for some choice of Ky I

Theorem 2.10.6. Assume that (A, B) is a controllable pair. The system of
equations

X(t) = (A+ BK(t))x + Bu(t)

Y()=(A+ BK(1))X(t) + Z(t)(A + BK(t))"
is controllable in the sense that given any two pairs (xo, Xo) and (xy, X1) with

Yo = EOT >0and ¥ = EIT > 0 and given any time T > 0 there exists a control
(u, K) defined on [0, T steering the system from (xo, Xo) to (x1, X1).

Proof. Select K in accordance with Theorem 1 so as to steer X' to the desired state.
Having selected K, select u by standard controllability arguments to steer x.
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Going beyond controllability, there are a variety of optimization questions that
arise this context. The most basic are the extensions of the problem considered in
the previous section involving the minimization of

T .
n=[ L(uo, k,k)dt
0

while using the control law u = uy + kx to force the solution of X = f(x,u) to
move from x(0) = xo to x(7') = x;. Extending this idea to a stochastic setting,
we can, for example, consider controlling the mean and variance equation as in
Theorem 2.10.6, while minimizing

T .
=/ Liup, K, K) dt O
0

2.11 Ensembles, Symmetric Functions and Thermodynamics

This section is adapted from our paper [2]. It can be seen as taking the idea of
simultaneous control of the mean and variance in a new direction.

Let u be a m-dimensional vector, let x; fori = 1,2,...,k be a n-dimensional
vector, and let y be a p-dimensional vector. Consider a system consisting of k copies
of a first order model, each with the same input

)'ci:f(xi,u); i:1,2,...,k
We limit our attention to outputs of the form
y=c(x1,Xx2,...,Xk)

with ¢ being a symmetric function in the sense that for any permutation of the
index set {1,2,...,k} — {n(1),7(2),...,7w(k)} we have c(x1,x2,...,xXr) =
¢(Xx(1)s Xx(2), - - - » Xx(ky)- If the system is stochastic we replace this model with a
family of It6 equations of the form

dx; = f(x;,w)dt + g(x;,wydw;; i =1,2,...k

with the Wiener processes wy, wy, . .., wi being independent.

Of course there are significant limitations that arise in the control of such systems
because u# acts on each system in the same way and y is constrained to be a
symmetric function. In particular, linear systems of this type are never controllable
or observable if k > 1.

If the elemental systems are linear then the overall system obtained by applying
feedback u = ) Cx; is described by
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X1 A+BC BC --- BC X1
)'62 _ BC A+BC BC X2
Xk BC BC ---A+ BC Xk

The matrix on the left is similar to a block triangular matrix with n — 1 diagonal
blocks of the form A + BC and hence can not be controllable. A similar limitations
apply to stochastic models of the form

dx; = Ax;dt + Budt + Gdw;; dy = C(x1 + x2 + -+ xp)dt + dv

We discuss these in Theorem 2.11.1 after giving a few additional definitions. In a
probabilistic setting it is meaningful to discuss statistical properties such as the mean
and variance. In the case of many copies of a given system we can consider various
averages taken over the ensemble. Of course the sample statistics, as opposed
to the statistics themselves, are random variables. In the present situation, with
X1, X2,...,Xr being described by identical probability laws, we have an interest
in a particular type of sampling leading to what can be termed ensemble sample-
statistics. This refers to averages over the variables xi, X3, ... x;. For example, we
refer to the random variable

x1 (1) + x2(2) + - -+ + xi (2)
k

a(t) =

as the ensemble sample-mean.
We say that a homogeneous function ¢ (xy, X2, ... x;) is centered if the sum of
its partial derivatives vanishes, i.e.,

. . d¢p/0xi1
ap _ 0p/0xin |
Lo = ; U
ap/0x;y

Theorem 2.11.1. Consider the linear stochastic ensemble
dx; = Ax;dt + Budt + Gdw;; i =1,2,...,k

The application of feedback in the form u = o(x) does not change the evolution
equation of any centered homogeneous function of X1, X2, . . . Xk.

Proof. Let ¢ be homogeneous and centered. Applying the Itd rule to ¢ we see that

1 0%¢
do(x) = Z(V¢,Adel + Budt + Gde) + 5 Z<E,GGT>

Clearly under the given hypothesis the effect of u disappears. |
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Corollary. The ensemble sample variance

1 1 1 ’
sy = —Z(xi——(xl +xZ+---+xk)) (x,-——(xl +xZ+---+xk))
n n n

associated with the system
dx; = Ax;dt + Budt + Gdw;; i =1,2,...k

is not altered by feedback of the form u = ¢ (x).

Proof. It is easy to see that each term in the sum defining ¥, is homogenous and
centered and therefore the sum is as well.

These results show that it is necessary to go beyond linear theory if we are to find
any benefit from the use of control in the ensemble setting. The following theorem
applies to multiplicative control. O

Theorem 2.11.2. Consider the ensemble
dx; = Ax; +uBx;dt + Gdw;; i =1,2,....k
1
y = ;(xlTLxl +x2Tsz +---+kaka)
with L = LT > 0. If there exists a symmetric matrix Q such that QB + BT Q is
negative definite and the eigenvalues of Q all have the same sign, then there exists

B > 0 such that for any real ¢ between 0 and B there is a feedback control law
u = ¢ (y) which stabilizes the trace of the variance of the sample variance at c.

Proof. The variance of the sample variance, i.e.

1 1 ’
Eesv:Z Xi——(x1+ x4+ x) ) (i — = F x4+ 4+ xg)
n n

satisfies the equation
ey = (A +uB)Zegy + (A +uB)" + GGT

Let OB+BTQ = R < 0.Then Q(A+uB)+ (A+uB)” Q is negative definite for
suitable choice of u. Thus we see that for a semi-infinite range of u the eigenvalues
of A 4+ uB have negative real parts. In fact, Q(A + uB) + (A + uB)” Q can be
made more negative definite than —«/ for any o and so the eigenvalues of A + uB
can be placed to the left of any vertical line in the complex plane. This means that a
steady state variance exists and satisfies

0= (A +uB)Zey, + Zegu(A+uB) + GG”
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Over the range of u for which the system is stable let / yﬁ_u 5(GG) denote the
solution of this equation. Clearly tr(/ yﬁ_u 5(GG)) goes to zero as the eigenvalues of
A + uB go to minus infinity and so, as u varies tr X, sweeps out a range of values
of the form (0, ¢) as required. We can let the feedback control law be a constant,
independent of y. O

The control of heat engines and provides a good example of ensemble control.
The mathematical description consists of a family of identical scalar linear systems
with multiplicative control driven by independent Brownian motion terms.

dx; = (uy —up)x; (t)dt +usdw;; i =1,2,...,k

k
y=0x

i=1

In this case the ensemble equations are supplemented by two auxiliary equations
which complete the description and serve to distinguish u; from u,. These are

Xk+1 = Uy
Xk4+2 = Uy

The physical interpretation is as follows. The x’s represent (one dimensional)
velocities of individual particles in the ensemble. The controls represent the time
rate of change of the volume occupied by the gas (u;), the type of contact the gas
has with the available heat sources (u,), and the selection of a heat source with a
particular temperature (3). Further details will emerge from the discussion. If we
had the services of a Maxwell demon we could observe each of the x; individually
but in reality only certain ensemble averages are observable. Likewise, if we had
access to a demon we could generate individual controls for each of the state
variables but in reality we can only apply controls which influence all elements
of the ensemble in the same way. In the context of the elementary thermodynamics
of gases, we are able to change the volume of the gas by moving a piston and to alter
the internal energy of the gas by adding or removing heat. Such actions translate into
choices of uy, u», u3 in the above model. The objective of the control action might
be, for example, to cause the development of a given quantity of work over a period
[0, P]. Here work corresponds to the integral

w= OfPul(I)y(Z)dt

The relevant summary of the behavior of the population is, in this case, provided by
the ensemble sample variance. From the equations for xy, X, . .., X; we see that the
ensemble sample variance satisfies the stochastic differential equation

1
d0eqy = 2(u1 — ) Oesndlt + 113~ > dw; +13dt
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Because we have assumed that the w; are independent the sum appearing here may
be replaced by dw/ Vk without changing the statistical properties of the solution.
That is, we may as well adopt the model

1
desy = 2(u1 — up) 0 dt + u3—=dw + uidt

vk

This stochastic differential equation represents a sample statistic obtained from k
samples. If we are dealing with a mole of gas then k ~ 6 x 10! If we assume
that the Brownian motion term is insignificant we are led to the set of deterministic
equations

d
Eaesv(t) = 2(”1 - uz)aesv(t) + “%

Xkr1 = Uy
Xk42 = U1y
as a reduced model for the stochastic ensemble.
For the sake of simplicity we rename the variables (05, Xk+1,Xk+2) as

(x1,x2,x3). The control terms enter these equations in such a way as to define
three vector fields as brought out by the notation

X1 2x1 2x1 1
Y l=uw| 1 |—w| 0 [+4]|0
X3 2x1 0 0

subject to the constraint that u, should be nonnegative. The three vector fields
appearing here are

d d d d d
A=2x—+ —+2x;—; B=-2x—; C=—
e 8x1 + 8x2 +en 8x3 e 8x1 8x1
Together with the pair
d d
D = —_— E = —
i 8X3 8x3

they obey the commutation relations
[A,B]=4D; [A,C]=-2C —-2E; [B,C]=-2C
[A,D]=—[B,D] =2D; [A,E]=0

and these five vector fields define a basis for a Lie algebra. This algebra is a solvable
subalgebra of the algebra corresponding to the three dimensional affine group. One
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might say that it is the Lie algebra of the Carnot cycle. Constraining u,(?) to be
nonnegative, this system generates admissible flows.

Appendix

We collect here a few results on the bilinear controllability putting in a larger context
the result of Sect.2.10 on the control of the mean and variance. There is a large
literature on this subject and we only touch a few points. References [10-15] are
relevant.

As is well known, if the off-diagonal elements of A(¢) are nonnegative for all ¢
then the solutions of the system X (¢) = A(t)x(¢) leave the positive orthant invariant.
Thus if b is a vector with nonnegative entries and x(¢) = (A(t) + U(t))x(t) + b(t)
with U diagonal but otherwise unconstrained, and A(¢) is nonnegative off the
diagonal then the positive orthant is an invariant set. This can be seen as a being
a consequence of the direction of the vector field along the boundary of the positive
orthant. In a similar way, if a symmetric matrix X satisfies X = A(1)X(r) +
X(t)AT(t) + B(t) with B(t) = BT(t) nonnegative definite then the cone of
nonnegative definite matrices is an invariant set.

Thus, in the case of the scalar system X = (a +k)x +b with b >0 the set
{x]x >0} is positively invariant and x cannot leave the positive half-line. It is
controllable there in the sense that any point in {x|x > 0} can be steered in positive
time to any other point in the set. In higher dimensions the situation is more
complicated. For example, if »; and b, are positive then solutions of the system

i X1 | _ a+k1 1 X1 + bl
dt | x| 1 b4+ky][x by

can never leave the first orthant regardless of the choice of (k1, k) but if b # O the

system
i X1 | _ 0 a—+ k X1 + bl
dt | x, |l —a—k 0 X2 b,
can be steered from any initial state in R? to any final state.
In studying the controllability of an n-dimensional system

% = (A + BK(1)C)x(1)

it is natural to appeal to Lie algebraic methods. In [12] it is shown that if (A4, b, ¢) is
a minimal triple in the sense that [b, Ab, ..., A"~'b)] and [c; cA;---c A"~ '] are both
of rank n then the Lie algebra generated by A and bc is either gl (n), sl(n), sp(n/2)
orsp(n/2)®1,andis gl(n) unless g(s) = c¢(Is— A)~'b has areflection symmetry
in the form g(s + o) = g(—s — o) for some real number ¢ and tr4 = ¢b = 0.
Adapting that result to the present situation, we see that the Lie algebra generated
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by A and matrices of the form BE;;C is gl(n) unless CB = 0, trA = 0, and
C(Is—A—0ol)"'B =C(—Is— A+ ol)~'B for some real number o. However,
because the system has an irreversible drift term X = Ax the Lie algebra does not
tell the whole story.

Theorem Al. Let A, B, C be constant matrices with A, B) being controllable and
(A, C) being observable. Consider the system evolving in the space of n-by-n
nonsingular matrices with positive determinant.

X = (A+ BKC)X

with B, K,C being n-bym, m-by-p and p-by-n, respectively. Assume that the
solution of X = (A + BKC)X: X(0) = I is periodic for some K = K(-).
Then given any pair of nonsingular matrices with positive determinant there exists
a K that steers one to the other provided that CB and trA are not both zero and
C(Is — A)"' B does not have the reflection symmetry described above.

Proof. First of all the system is controllable in the sense that it is possible to reach
an open set of nonsingular matrices because A and the possible values of BKC
generate the entire Lie algebra g/(n). Second, as is well known, form early work
on controllability on Lie groups, if X = (4 + BKC)X has a periodic solution
with X nonsingular periodic and we have local controllability then we have global
controllability. |

Remark Al. Let A be n-by-n and b be 1-by-n. Observe that

At bt oAl oh' (T doyy
M(t) = =
® eXP[ 0 0} [ 0 1

If e is periodic with period 7T then its eigenvalues lie on the imaginary axis. If none
are zero then A is invertible and

R A (e VI

Thus M is periodic. If O is in the spectrum of A then the explicit form of the
integration is not available. However, if b lies in the range space of A then we can
write b as Av so that

1 ,A(t—o) I ,A(l—0) —
el e T dopy — Gl T 4, — (I—-e"Tbh=0
and M is periodic. When restricted to evolution equations on R” the conditions for
controllability simplify because sp(n/2) acts transitively on R”.

Theorem A2. Let A, B, C be constant matrices with A, B) being controllable and
(A, C) being observable. Consider the system evolving in R"

X =(A+BKC)x+b
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with B, K, C being n-bym, m-by-p and p-by-n, respectively. Assume that the
solution of X = (A + BKC)X ; X(0) = I is periodic for some K = Ko(-).
Then the system is controllable in the sense that any pair xy # 0 and x| # 0 can be
Jjoined by a solution of the given equation.

References

1.

2

3.

10.

11.

12.

13.

14.

15.

R.W. Brockett, Minimum Attention Control, in Proceedings of the 36th IEEE Conference on
Decision and Control (1997), pp. 2628-2632

. R. Brockett, Control of Stochastic Ensembles, ed. by B. Wittenmark, A. Rantzer. Astrom

Symposium on Control (Studentlitteratur, Lund, 1999), pp. 199-216

R. Brockett, N. Khaneja, in System Theory Modeling, Analysis, and Control ed. by T. Djaferis,
I. Schick. On the Stochastic Control of Quantum Ensembles (Kluwer Academic, Norwell,
1999), pp. 75-96

. R. Brockett, On the control of a Flock by a leader. Proc. Skeklov Inst. Math. 268(1), 49-57

(2010)

. R-W. Brockett, Reduced Complexity Control Systems, in Proceedings of the 17th World

Congress, The International Federation of Automatic Control, Seoul, 2008

. J. Moser, On the volume elements of a manifold. Trans. Am. Math. Soc. 120, 286-294 (1965)
. B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant.

Ann. Inst. Henri Poincare C 7(1), 1-26 (1990)

. R. Brockett, in Proceedings of the International Conference on Complex Geometry and

Related Fields, ed. by Z. Chen et al. Optimal Control of the Liouville Equation (American
Mathematical Society, Providence, 2007), pp. 23-35

. A.A. Agrachev, M. Caponigro, Controllability on the group of diffeomorphisms. Ann. Inst.

Henri Poincare C Non Lin. Anal. 26(6), 2503-2509 (2009)

V. Jurdjevic, H.J. Sussmann, Control systems on Lie groups, J. Differ. Equat. 12(2), 313-329
(1972)

R. Brockett, Nonlinear Systems and Differential Geometry, in Proceedings of the IEEE, vol 64
(1976), pp. 61-72

R.W. Brockett, Linear feedback systems and the groups of Lie and Galois. Lin. Algebra Appl.
50, 45-60 (1983)

Yu.L. Sachkov, in Positive orthant scalar controllability of bilinear systems. Springer Mathe-
matical Notes, Mat. Zametki, 58(3), pp. 666669 (1995)

Y.L. Sachkov, On positive orthant controllability of bilinear systems in small codimensions.
SIAM J. Contr. Optim. 35(1), 29-35, (1997)

W.M. Boothby, Some comments on positive orthant controllability of bilinear systems. SIAM
J. Contr. Optim. 20(5), 634-644 (1982)



2 Springer
http://www.springer.com/978-3-642-27892-1

Control of Partial Differential Equations

Cetraro, Italy 2010, Editors: Piermarco Cannarsa,
lean-Michel Coron

Alabau-Boussouira, F.; Brockett, R.; Glass, 0. Le
Roussead, J.; Zuazua, E. - Cannarsa, F.; Coron, J.-M.
(Eds.)

2012, X, 344 p. 66 illus., 49 illus. in color., Softcover
ISEM: 978-3-642-27892-1



	2 Notes on the Control of the Liouville Equation
	2.1 Introduction
	2.2 Some Limitations on Optimal Control Theory
	2.3 Measuring Implementation Cost
	2.4 Ensemble Control
	2.5 The Liouville Equation
	2.6 Comparison with the Fokker Planck Equation
	2.7 Sample Problems Involving the Liouville Equation
	2.8 Controllability
	2.9 Optimization with Implementation Costs
	2.10 Controlling the Variance
	2.11 Ensembles, Symmetric Functions and Thermodynamics
	References


