
Chapter 2
Finite Element in Manufacturing
Processes

Abstract This chapter explains the basis of the finite element method, highlighting
the application for manufacturing modeling problems. A review of the principles of
plasticity, as used in modeling of machining and forming processes is presented,
including the most frequently used constitutive models. The key issues of the finite
element method modeling of these mechanical processes are also explained
according with the last researches in this field.

2.1 Basis of the Finite Element Method

The finite element method (FEM) has gained popularity in the last years as a
powerful numeric method for finding good approximate solutions for systems of
partial differential equations. This method is especially suitable when the problem
is defined over geometrically complex spatial domains. For this reason, the FEM
has been successfully applied to a wide field of engineering problems, such as
mechanics of materials (elastic and non-elastic), fluid dynamics, heat transfer and
electromagnetism.

The FEM aims to solve a differential equation set:

AðuÞ ¼ ½A1ðuÞ; A2ðuÞ; . . .�T ¼ 0; ð2:1aÞ

in a domain X (see Fig. 2.1), being u the unknown state variable; together with the
boundary conditions:

BðuÞ ¼ ½B1ðuÞ; B2ðuÞ; . . .�T ¼ 0; ð2:1bÞ

on the boundary, C, of the domain. In these equations, Ai(•) and Bi(•) are differ-
ential operators.
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The central idea of the FEM is to replace the exact solution, u, by an
approximation, u*, of the form:

u � u� ¼
Xn

i¼1

Niai ¼ Na; ð2:2Þ

where Ni are the shape functions, predefined in terms of the independent variables
(usually, the coordinates, x) and ai are parameters, initially unknown, which
should be determined as a result of the application of the method.

In order to obtain this solution, the Eqs. (2.1a, b) must be combined in the so-
called weak form:

Z

X
Gjðu�ÞdXþ

Z

C
gjðu�ÞdC ¼ 0 j ¼ 1. . .n; ð2:3Þ

which permits the approximation to be obtained for every portion of the domain
and assembled (Fig. 2.2):

Xm

e¼1

Z

XðeÞ
Gjðu�ÞdXþ

Z

CðeÞ
gjðu�ÞdC ¼ 0 j ¼ 1. . .n; ð2:4Þ

where X(e) is the domain of the eth portion and C(e) its part of the boundary
(Zienkiewicz and Taylor 2000).

These portions are known as elements and usually have a simple geometric
shape. Depending on the domain, there are elements with different dimensionality.
For example, a bar (Fig. 2.3a) is a typical one-dimensional element; triangles

Fig. 2.1 Domain and
boundary of a problem

Fig. 2.2 Element domain
and boundary
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(Fig. 2.3b) and quadrilaterals (Fig. 2.3c) are the most common two-dimensional
elements; and, finally, tetrahedrons (Fig. 2.3d), hexahedrons (Fig. 2.3e) and
wedges (Fig. 2.3f) are widely used for meshing three-dimensional domains.

If the differential equations are linear, that is, if the Eq. (2.1a, b) can be written
in the form:

AðuÞ ¼ Luþ p ¼ 0 in X;

BðuÞ ¼Muþ q ¼ 0 on C; ð2:5Þ

then, the approximating equation system (2.4) yields a set of linear algebraic
equations of the form:

Kaþ f ¼ 0; ð2:6Þ

with

Kij ¼
Xm

e¼1

K
ðeÞ
ij and f ij ¼

Xm

e¼1

f
ðeÞ
ij ; ð2:7Þ

which can be numerically solved.
There are two main approaches for obtaining the weak formulation in the FEM;

they are the functional variational principle and the weighted residual method.
The essence of the variational method is to calculate the total potential, P, also

known as the functional of the system and, then, to consider the stationarity of this
total potential:

dP ¼ 0; ð2:8Þ

as an equilibrium condition (Bathe 1996).
On the other hand, the weighted residual method is based on considering that

from the (Eq. 2.1a, b) it follows that:
Z

X
vT

j AðNaÞ dXþ
Z

C
wT

j BðNaÞ dC ¼ 0; j ¼ 1. . .n; ð2:9Þ

where A(Na) and B(Na) represent the residual errors of replace the approximate
solution in the differential equation set and in the boundary conditions, respec-
tively, and vj and wj are some weighting functions. In the Galerkin method,

Fig. 2.3 Types of elements a Bar element. b Triangular element. c Quadrangular element.
d Tetrahedral element. e Hexahedral (brick) element. f Pentahedral (wedge) element
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vj = wj = Nj, i.e., the original shape functions are used as weighting (Zienkiewicz
and Taylor 2000).

2.2 FEM for Linear Elastostatic Problems

The basic application of the FEM in structural mechanics is in linear elastostatic
problems, where on the domain, X, there are three unknown fields: the displace-
ment field, u = [ux, uy, uz]

T; the strains field, e = [exx, eyy, ezz, eyz, exz, exy]
T; and the

stress field, r = [rxx, ryy, rzz, ryz, rxz, rxy]
T. As result of the load conditions of the

domain, the body force, b = [bx, by, bz]
T, is known on the entire domain. Moreover,

at some portion, Cu, of the boundary, the values of the displacements are pre-
scribed as equal to [u], and, at other portion, Ct, the values of the tractions are also
prescribed as equal to [t] (see Fig. 2.4). These relationships are known as boundary
conditions. The boundary portions must fulfill the conditions:

Cu [ Ct ¼ C and Cu \ Ct ¼£ ð2:10Þ

A set of equations establishes the relationships between the different variables
defined for the problem. The first one is the cinematic equation, which relates the
displacements and strains in the entire domain:

e ¼ rsu; ð2:11aÞ

where rs represents the symmetric matrix gradient operator:

rs ¼
o=ox 0 0 0 o=oz o=oy

0 o=oy 0 o=oz 0 o=ox
0 0 o=oz o=oy o=ox 0

2
4

3
5

T

ð2:11bÞ

On the other hand, the equilibrium equation:

rT
s rþ qb ¼ 0; ð2:12Þ

establishes the relationships between the body force and the stress field, and it is
the application of the principle of conservation of lineal momentum. Finally, the
constitutive equation relates the strain and stress fields. This is particular of every
material at every specific condition. For linear elastic materials, this constitutive
equation is given by the generalized Hooke’s law:

r ¼ CEe; ð2:13aÞ
where CE is the tensor of elasticity, which can be written in matrix form as:
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CE ¼

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym: c55 c56

c66

2

6666664

3

7777775
ð2:13bÞ

In the special case of homogeneous and isotropic materials, the matrix of
elasticity can be reduced to:

CE ¼ E

ð1� 2mÞð1þ mÞ

1� m m m 0 0 0
1� m m 0 0 0

1� m 0 0 0
1� 2m 0 0

sym: 1� 2m 0
1� 2m

2

6666664

3

7777775
;

ð2:13cÞ

being E, the Young’s modulus and m, the Poisson’s ratio of the material.
Additionally, from the definition of stress tensor is obtained the relationship that

links the stress fields and the prescribed tractions, on the portion of the boundary,
Cu, where these tractions act:

nr ¼ ½t�; ð2:14aÞ

where

n ¼
nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

2
4

3
5 ð2:14bÞ

and nx, ny and nz are the components of the outward normal on the boundary.
This set of equations form the so-called strong formulation of the linear elas-

tostatics, and can be represented, in a very convenient way by using the popular
Tonti diagram, as shown in Fig. 2.5.

Fig. 2.4 Domain and
boundary definitions
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In order to solve this kind of problem by applying the FEM, the strong for-
mulation is replaced by the weak formulation. This enforces the relationships in an
integral sense rather than point by point. In elastostatics applications, this weak
formulation is given by the Hamilton’s principle:

d
Z t2

t1

L dt ¼ 0; ð2:15Þ

where the Lagrangian functional, L, is computed as:

L ¼ T � U þW ; ð2:16Þ

and the kinetic energy, T, the internal energy (here, the elastic strain energy), U,
and the work done by the external forces, W, can be defined in the integral forms
(Liu and Quek 2003):

T ¼ 1
2

Z

X
q _uT _u dX; ð2:17aÞ

U ¼ 1
2

Z

X
eTr dX ¼ 1

2

Z

X
eTCEe dX; ð2:17bÞ

W ¼
Z

X
uTb dXþ

Z

Ct

uTt dC: ð2:17cÞ

As the problem is static, the Hamilton principle can be written as:

d
Z

X
uTb dXþ

Z

Ct

uTt dC� 1
2

Z

X
eTCEe dX

� �
¼ 0: ð2:18Þ

As it remains being valid for every element in the discretization, Eq. (2.20) can
be rewritten in the form:

d
Z

XðeÞ
uTb dXþ

Z

CðeÞt

uTt dC� 1
2

Z

XðeÞ
eTCEe dX

 !
¼ 0: ð2:19Þ

Fig. 2.5 Tonti diagram for the strong form of linear elastostatics
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In every element, there are N points (Fig. 2.6), known as nodes, where the
displacements, U(e) = [ux1, uy1, uz1,…, uxN, uyN, uzN]T, can be computed and, then,
the displacements in other points, u, can be interpolated from them:

u ¼ NUðeÞ; ð2:20Þ

where N is the matrix of shape functions, depending on the coordinates, x:

N ¼
N1ðxÞ 0 0 . . . NNðxÞ 0 0

0 N1ðxÞ 0 . . . 0 NNðxÞ 0
0 0 N1ðxÞ . . . 0 0 NNðxÞ

2
4

3
5

By substituting (2.20) in the weak formulation for an element (2.19), and
defining the strain-displacement matrix, B = rsN

(e), it is obtained the expression:

d
Z

XðeÞ
UðeÞNðeÞb dXþ

Z

CðeÞt

UðeÞNðeÞt dC� 1
2

Z

XðeÞ
UðeÞTBTCEBUðeÞ dX

 !
¼ 0;

which is transformed, after applying the rules of variational calculus, in:
Z

XðeÞ
NðeÞb dXþ

Z

CðeÞt

NðeÞt dC� 1
2

Z

XðeÞ
BTCEB dX

� �
UðeÞ ¼ 0: ð2:21Þ

If the stiffness matrix, K(e), and the nodal force vector, F(e), are defined for the
element e, as follows:

FðeÞ ¼
Z

XðeÞ
NðeÞb dXþ

Z

CðeÞt

NðeÞt dC; ð2:22aÞ

KðeÞ ¼ 1
2

Z

XðeÞ
BTCEB dX

� �
; ð2:22bÞ

Fig. 2.6 Stress versus strain in a typical tension test
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the expression (2.21) can be rewritten as:

KðeÞUðeÞ ¼ FðeÞ: ð2:23aÞ

The Eq. (2.23a) for all the elements can be assembled together, by considering
the equality of displacement in nodes belonging to different elements, and the
action-reaction forces on these nodes, giving a global equation involving all the
nodal displacement, U, and forces, F:

KU ¼ F ð2:23bÞ

which is an algebraic equation set of the form (2.6).
By considering the essential boundary conditions at nodes belonging to Cu, and

natural boundary conditions nodes belonging at Ct, the system (2.23b) can be
simplified, usually by deleting rows and columns corresponding to null degrees of
freedom. Then, the obtained system:

~K~U ¼ ~F; ð2:24aÞ

can be numerically solved in order to determine the nodal displacements:

~U ¼ ~K
�1~F: ð2:24bÞ

2.3 FEM for Plasticity

2.3.1 Plasticity Fundamentals

As the most important manufacturing processes, such as machining and forming,
involves plastic deformations, modeling the plasticity and solving the obtaining
models by using numeric methods play a key role in simulation of these processes.

Plasticity can be broadly classified in two types: rate-independent plasticity,
where the strain rate has no influence in the strain–stress relationship, and vis-
coplaticity, where the strain rate has a non-negligible influence. The first one is a
good approximation when low strain rates take place in the deformation process;
on the contrary, when the strain rates are high, viscoplasticity offers better results.

The behavior of the materials in rate-independent plasticity can be studied
through a standard tension test (see Fig. 2.6), where the values of the true stress, r:

r ¼ r0ð1þ eÞ; ð2:25Þ

are plotted versus the logarithmic strain, e:

e ¼ lnð1þ eÞ; ð2:26Þ

where r0 = F/A0 is the engineering stress applied in the test and e = (L-L0)/L0 is
the infinitesimal linear strain.
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In Fig. 2.6 it is represented a typical experimental stress–strain curve, corre-
sponding to a mild steel (Han and Reddy 1999). Some different regions can be iden-
tified in this curve. In portion OA, there is a linear proportionality between the strain
and stress (which is given by the Young’s modulus, E), and when the load is retired, the
material return to the unloaded initial condition (point O). This kind of deformation is
known as linear elastic, and follows the previously mentioned Hooke’s law (2.6).

When the stress surpasses some value (called yield stress, rY), there is a sharp
sudden drop in the stress value (region AB). The region BC is characterized for a
near zero slope in the curve, that is to say that increments in the strain take place
without any rise in the stress value. The region CD is known as the hardening
region, because the stress increases with the strain, although not with linear
relationship, until achieving the ultimate strength, rU, at point D. On the contrary,
in region DE (softening region) increments in strain cause a decrease in the stress
until the final failure at point E.

Even though this curve is representative, actual behavior can strongly change
from one material to another one. Even, heat treatments can change the form of
this curve for the same material.

In spite of the complexity of the material behavior, two well defined zones can
be identified: an elastic region, where deformations disappear after removing the
load, and a plastic region, where some deformations stay after removing the load
(see Fig. 2.7). Therefore, every strain, e, at the plastic zone can be considered as
composed by an elastic strain, eE, and a plastic strain, eP:

e ¼ eE þ eP: ð2:27Þ

2.3.2 Material Behavior Models

Due to the complexity of the experimental plastic behavior of engineering mate-
rials it has been idealized by using simpler models (see Fig. 2.8).

Fig. 2.7 Elastic and plastic
components of the strain
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In the elastic-perfectly plastic idealization (Fig. 2.8a), there is not further
increment in the stress after surpassing the yield point. On the contrary, in the
elastic-work-hardening idealization (Fig. 2.8b, c), the stress continues rising with
strain increments after the yield point. This increment is modeled by the material
hardening function, H:

r ¼ HðePÞ: ð2:28Þ

For linear work-hardening (Fig. 2.8b), the plastic behavior is represented by a
straight line with a constant slope H0; while in the nonlinear work-hardening
(Fig. 2.8c), the curve changes its slope H0 ¼ dH=dep:

Several models have been proposed for the material hardening deformation.
The simplest consider that stress is only a function of the strain and not of the
strain rate. They are called strain rate-independent plastic models, and include,
among others, (Dixit et al. 2011), the Hollomon’s law:

r ¼ KðePÞn; ð2:29aÞ

that does not fit the stress–strain relationship at low strains; the Ludwik’s law:

r ¼ rY þ KðePÞn; ð2:29bÞ

that does not reflect property the constant slope of the stress–strain curve of metals
at large strain; the Swift’s law:

r ¼ rYð1þ KePÞn; ð2:29cÞ

which fits better the behavior of the stress–strain curve of metal at large strain; and
the Voce’s law:

r ¼ rY þ K½1� m expð�nePÞ�; ð2:29dÞ

that is more suitable for moderate strain values. In all of these expressions, K and
n are experimental constants describing the plastic behavior of the material.

In some circumstances, the effect of the strain-rate cannot be neglected, for
example, in cutting processes where high values of strain rates take place. This
cases, which include the plastic strain rate term, _eP; in the material hardening

Fig. 2.8 Idealized plastic behavior of materials a Elastic-perfectly plastic. b Linear work-
hardening. c Nonlinear work-hardening
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function are known as viscoplastic models. If the expression also includes the
temperature, T, then is it called thermo-viscoplastic model.

Determination of viscoplastic and thermo-viscoplastic models cannot be carried
out through single tension test. It requires more complex methods such as the split
Hopkinson pressure bar (Jasper and Dautzenberg 2002). An example of thermo-
viscoplastic model is the generalized Oxley’s equation (Lalwani et al. 2009):

r ¼ r1ðTmodÞðePÞn Tmodð Þ; ð2:30aÞ

where the coefficient r1 and the exponent n are polynomial functions of the strain-
modified temperature, Tmod:

Tmod ¼ T 1� m log10
_eP

_eP
0

� �
; ð2:30bÞ

which depends on the material temperature, T, the plastic strain rate, _eP; the
reference plastic strain rate, _eP

0 ; and the strain rate sensitivity constant, m.
The Johnson–Cook’s model, also referred as J–C law, is other of the frequently

used empirical approaches for modeling the thermo-viscoplastic behavior of
materials. It is described by the expression (Özel and Zeren 2004):

r ¼ Aþ BðePÞn
� �

1þ C ln
_eP

_eP
0

� �� �
1� T � T0

TM � T0

� �m� �
; ð2:30cÞ

where the e is the plastic strain, _eP is the plastic strain rate, _e0 is the reference
strain rate, T is the absolute temperature of the material, TM is the melting tem-
perature, T0 is the reference temperature and A, B, C, n and m are material con-
stants (A is the yield strength at T0, B is the hardening modulus, C is the strain rate
sensitivity, n is the strain-hardening exponent, and m the thermal softening
exponent). In spite of some limitations with regard to dynamics train aging, i.e.
blue-brittleness effect during a certain range of temperature variations in the
plastic deformation of carbon steels, the J–C law is very often used to represent the
thermo-viscoplastic behavior of workpiece material in manufacturing process
modeling, especially in cutting processes (Arrazola and Özel 2010).

Sometimes, the so-called power law (Dixit et al. 2011) is also used for
describing the behavior of materials at thermo-viscoplastic state:

r ¼ r0ðePÞn _eP

_eP
0

� �m
T

T0

� ��r

; ð2:30dÞ

where the terms has the same meaning than in the previous expressions. As in the
J-C model, in the power low the effects of strain, strain rate and temperature are
considered independent.

Applying the dislocation mechanics theory, Zerilli and Armstrong (Jasper and
Dautzenberg 2002) derived other more complex constitutive models for body-
centered cubic metals:
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r ¼ C0 þ C1 exp �C3T þ C4T ln
_e
_e0

� �
þ C5e

n; ð2:30eÞ

and for face-centered cubic metal:

r ¼ C0 þ C2e
1=2 exp �C3T þ C4T ln

_e
_e0

� �
; ð2:30fÞ

where C0, C1, …, C5 are material properties. These models has the advantage of a
strong theoretical component, however, they have not been as widely applied in
FEM-based modeling of manufacturing process as J-C model or Oxley’s equation.

2.3.3 Yielding Criteria

Another important aspect, in the theory of plasticity is the initial yielding criterion,
that is, the point at which the yield process starts, As follows from Fig. 2.6, the
criterion for initial yielding in simple tension is given by:

r� rY ¼ 0; ð2:31Þ

where r is the tensile stress and rY, the yield stress of the material. However, more
complexstress states require more elaborated criteria.One of the mostused criteria for
defining the beginning of the yielding process in a material is the Von Mises’ criterion,
which established that the yield begins when resultant deviatoric stress reaches a
critical value. In terms of the principal stresses, r1, r2 and r3, this can be written as:

½ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2� � 2r2
Y ¼ 0: ð2:32Þ

On the other hand, the so-called Tresca’s criterion, defines the initial yielding
from the maximum shear stress, and can be expressed by the equation:

½ðr1 � r2Þ2 � r2
Y�½ðr2 � r3Þ2 � r2

Y�½ðr3 � r1Þ2 � r2
Y� ¼ 0: ð2:33Þ

2.3.4 Governing Equations

Contrary to what happens in elasticity, in plasticity the stress depends on the
history of deformation. Mathematically, this can be expressed by using either the
incremental form or the rate form (Shabana 2008).

The rate form is used in the so-called Eulerian formulation of the continuum,
which considers that the reference coordinate system is fixed and the material
moves through it (Fig. 2.9). This approach is very convenient when the material
flows through a fixed region of the space, known as control volume, which is used
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as the problem domain. This Eulerian formulation is frequently applied in extru-
sion, rolling and other cold forming processes. It is also used in metal cutting, if
the shape of the chip is previously known.

There are three main governing equation sets in the Eulerian formulation (Dixit
and Dixit 2008). The first one is the kinematic relationship between the velocity
vector, vi, and the strain rate tensor, _eij; which provides six scalar equations1:

_eij ¼
1
2

ovi

oxj
þ ovj

oxi

� �
: ð2:34Þ

and the velocity is defined as the rate of change of the material position, xi:

vi ¼
dxi

dt
: ð2:35Þ

The constitutive relation links the elastic–plastic stress and the strain rate and
provides other six scalar equations:

_ekk ¼
_skk

3K
; ð2:36aÞ

_e0ij ¼
1

2G
_s0kk þ

3_eP
eq

2req

r0ij; ð2:36bÞ

where G and K are the shear modulus and the bulk modulus of the material; _e0ij is
the deviatoric part of the strain rate tensor:

_e0ij ¼ _eij �
1
3

dij _ekk; ð2:37Þ

dij is the Kronecker delta; req is the Von Mises equivalent stress:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

r0ijr
0
ij

r
; ð2:38Þ

Fig. 2.9 Eulerian
formulation of the continuum

1 For an explanation of the index notation and summation convention used in this section, see
Dixit and Dixit (2008, §2.2 ) or Shabana (2008, §1.3).
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r0ij is the deviatoric part of the stress tensor:

r0ij ¼ rij �
1
3
dijrkk; ð2:39Þ

_eP
eq is the equivalent plastic strain tensor:

_eP
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_eP
ij _e

P
ij

r
; ð2:40Þ

_sij is the Jaumann stress rate tensor, which is related with the Cauchy stress rate
tensor, _rij; by the expressions:

_skk ¼ _rkk � ð _xklrlk þ rkl _xT
lkÞ; ð2:41aÞ

_s0ij ¼ _r0ij � ð _xilr
0
lj þ r0il _xT

ljÞ; ð2:41bÞ

and _xij is the spin tensor:

_xij ¼
1
2

ovi

oxj
� ovj

oxi

� �
: ð2:42Þ

The value of the equivalent stress is related with the equivalent strain by the
material hardening function:

req ¼ HðeP
eqÞ; ð2:43aÞ

which can also include the strain rate and temperature term, in the general case of
thermo-viscoplastic behavior:

req ¼ HðeP
eq; _e

P
eq; TÞ: ð2:43bÞ

The third set is given by the motion equation, which consist on three scalar
equations:

q
oxi

ot
þ ovi

oxj
vj

� �
¼ qbi þ

orij

oxj
; ð2:44Þ

where q is the material density and bi the body force vector.
Additionally, the boundary conditions must be considered. On one hand, the

velocity components, [v]i, must be known at some sections of the boundary, Cv:

vi ¼ ½v�i; on Cv: ð2:45aÞ

On the other hand, the values of tension vector, [tn]i, along the normal to the
surface, ni, must be prescribed on some part of the boundary, Ct:

rijnj ¼ ½tn�i; on Ct: ð2:45bÞ
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Finally, when dealing with a transient problem, the initial values of the
velocities, and hydrostatic and deviatoric par of the stress must be known at every
point of the domain, X:

vi ¼ v0
i ; rkk ¼ r0

kk; r0ij ¼ r0 0ij ; at t ¼ t0; 8xi 2 X: ð2:46Þ

In steady-state problems, these initial conditions are not need.
If the behavior of the material is considered as rigid-plastic (i.e., the elastic part

of the strain is neglected), an interesting simplification takes place. In this case, the
constitutive relation take the form:

_ekk ¼ 0; ð2:47aÞ

_e0ij ¼
3_eP

eq

2req

r0ij; ð2:47bÞ

This change is not trivial because the time derivative of the stress tensor
disappears from the constitutive relations (2.47a, b). Thence, although still being
nonlinear and, therefore, requiring an iterative solving scheme, the solution of the
problem is easier than in the elastic–plastic formulation. Furthermore, only the
velocities at the start time are needed as initial conditions.

Nevertheless, the rigid-plastic formulation has some shortcomings related with
the neglect of the elastic component of the strain. For example, neither the stress
distribution in the non-plastic region nor the residual stresses can be computed by
using this approach.

The Lagrangian formulation uses a reference frame which is attached to the
material and moves together with it (Fig. 2.10). It is very convenient when the
space occupied by the material is not previously known as in free forging or
transient cutting analysis.

The Lagrangian approach uses the incremental form which is based on the use
of the incremental strain tensor, deij (Dixit and Dixit 2008):

deij ¼
1
2

oðduiÞ
oxj

þ oðdujÞ
oxi

� �
; ð2:48Þ

Fig. 2.10 Lagrangian formulation of the continuum
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defined from the incremental displacement vector, dui:

dui ¼ xiðt þ dtÞ � xiðtÞ; ð2:49Þ

where xi(t) is the position of a particle at instant t, and dt is the differential
increment of time.

In the incremental strain tensor, the component deii represents the change in
current length per unit of current length along the current i-axis direction. The
component deij represents half the change in angle between the current i- and j-
axes directions.

Both, the incremental strain tensor and the strain rate tensor are related by:

de ¼ _edt: ð2:50Þ

The constitutive relation links the incremental strain tensor with the increment
Jaumann stress tensor, dsij, or the stress rate tensor. After yielding, i.e., for the
elastic–plastic behavior, this constitutive relation can be expressed as:

dsij ¼ CEP
ijkldekl; ð2:51Þ

where CEP
ijkl is the fourth order elasticity–plasticity tensor:

CEP
ijkl ¼ 2G

m
1� 2m

dijdkl þ dikdjl �
9G

2

r0ijr
0
ij

ðH0 þ 3GÞr2
eq

" #
; ð2:52Þ

G is the shear modulus; m is the Poisson’s ratio; and H0; is the slope of the hardening
function of the material (Eq. 2.41a, b); req is the equivalent stress (Eq. 2.38), and is
r0ij; the deviatoric part of the stress tensor (Eq. 2.39).

Before yielding and after uploading, i.e., when material is behaving elastically,
the constitutive equation takes the form:

dsij ¼ CE
ijkldekl; ð2:53Þ

being:

CE
ijkl ¼ 2G

m
1� 2m

dijdkl þ dikdjl

	 

: ð2:54Þ

The incremental Jaumann stress tensor is related with the incremental Cauchy
stress tensor by the equation:

dsij ¼ sijdt ¼ drij � ðdxilrlj þ rildxT
ljÞ; ð2:55Þ

where the incremental infinitesimal rotation tensor, dxij, is defined as:

dxij ¼
1
2

d
oui

oxj

� �
� d

ouj

oxi

� �� �
: ð2:56Þ
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The incremental equation of motion states that:

qdai ¼ qdbi þ d
orij

oxj

� �
; ð2:57Þ

where dbi is the incremental body force and dai is the incremental acceleration.
For the Lagrangian formulation, the required boundary conditions are defined

by the prescribed incremental displacements, [du]i, at some region Cu:

dui ¼ ½du�i; on Cu ð2:58aÞ

and the prescribed tension vectors [tn]i along the normal, ni, on some region Ct:

drijnj ¼ ½dtn�i; on Cu: ð2:58bÞ

The initial conditions include values of the incremental displacements, dui, and
incremental velocities, dvi, at time t0, in every point of the problem domain, X:

dui ¼ du0
i ; dvi ¼ dv0

i ; at t ¼ t0; 8xi 2 X: ð2:59Þ

2.3.5 FEM Formulation

In the Eulerian finite element formulation, for elastic–plasticity is based in the
equation:

KðeÞVðeÞ ¼ _F
ðeÞ

; ð2:60Þ

where V(e) = [vx1, vy1, vz1, …, vxN, vyN, vzN]T is the vector of nodal velocities;
_F
ðeÞ ¼ ½_fx1; _fy1; _fz1; . . .; _fxN ; _fyN ; _fzN ; �T is the vector of nodal forces; K(e) is the

element stiffness matrix, given by:

KðeÞ ¼ 1
2

Z

XðeÞ
BTCEPBdX; ð2:61Þ

and CEP is the elastic–plastic matrix:

CEP ¼ CE � 9G2

ðH0 þ 3GÞr2
eq
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In the former equation, CE represents the elasticity matrix (Eq. 2.13b), G is the
shear modulus; H0 is the slope of the material hardening function; and req is the
equivalent stress, determined from the hardening function (Eq. 2.43a, b).

The Lagrangian finite element formulation is based on the equation:

KðeÞdUðeÞ ¼ dFðeÞ; ð2:63Þ

where dU(e) = [dux1, duy1, duz1, …, duxN, duyN, duzN]T is the vector of incremental
nodal displacements; and dF(e) = [dfx1, dfy1, dfz1, …, dfxN, dfyN, dfzN]T is the vector
of incremental nodal forces. K(e) is the element stiffness matrix, given by (2.61).

As the stiffness matrix involves the components of the deviatoric part of the
stress tensor, equations (2.60) and (2.63) are nonlinear and cannot be solved
straightforwardly but numerically integrated. This integration is usually performed
by a generalized midpoint rule (Wriggers 2008):

unþ1 ¼ un þ Dtf ðunþhÞ; ð2:64aÞ

unþh ¼ ð1� hÞun þ hunþ1; 0� h� 1: ð2:64bÞ

For h = 0, this equations lead to the explicit Euler scheme; for h = 1, they lead
to the implicit Euler scheme; finally, for h = �, they lead to the midpoint rule.

There is, also, a mixed approach, known as arbitrary Lagrangian–Eulerian
(ALE) formulation, which has been widely used in recent years especially in
modeling of cutting processes. It combines the features of pure Lagrangian anal-
ysis in which the mesh follows the material and Eulerian analysis where the mesh
is fixed, when is needed as part of the adaptive remeshing.

In an ALE approach the process starts with an initial formed chip geometry,
which is iteratively modified as the analysis proceeds until converging to the final
shape of the chip (Vaziri et al. 2011).

Other approach in the ALE formulation allows the simulation of the chi for-
mation, starting from zero, through a transient analysis. This method requires
kinematic penalty contact conditions between the tool and the workpiece (Arrazola
and Özel 2010).

A more detailed explanation on the ALE formulation, including the used
algorithms and equations can be found in (Pantalé et al. 2004 and Olovsson et al.
1999).

2.4 Thermal Analysis

Thermal phenomena must be taken into account in FEM-based modeling of
manufacturing processes, especially in machining and hot forming. Not only in the
chip, but also in the tool, temperature, T, behavior is governed by the so-called
Fourier’s law (Li et al. 2002):
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jr2T � qc _T þ _Q ¼ 0; ð2:65Þ

where r2 is the Laplace’s operator; j and c are the thermal conductivity and
specific heat of the material; and _Q is the rate of generated heat.

There are two main sources of heat generation in processes involving metal
working: plastic deformation and friction. The heat generated by plastic defor-
mation can be computed by:

_QP ¼ gPr : _eP; ð2:66Þ

being gP the fraction of plastic work transformed into heat (usually gP & 0.9); r

the Cauchy stress tensor and _εP the plastic strain tensor.
The heat generated by friction is given by:

_Qf ¼ gfsfvs; ð2:67Þ

where gf is the fraction of friction work transformed into heat (for machining
applications gf & 1), sf is the friction shear stress and vs is the sliding velocity.

The heat flux, q, to the environment, from the free surfaces of the tool and part
can be computed by the Newton’s law of cooling (Grzesik 2006):

q ¼ hðTW � T0Þ; ð2:68Þ

where h is the convection heat transfer, TW is the wall temperature and T0 is the
room temperature.

For computational efficiency, temperature discretization and computation are
carried out together with the solution of the plasticity problem, in the so-called
coupled formulation.

2.5 Friction Models

Friction is very important factor in most of the machining processes. Friction
between the tool and chip, in cutting processes, has a strong influence on the forces
and temperature and, consequently, on the operation economy. In forming pro-
cesses, friction also plays a crucial role.

The simplest friction law is the so-called Coulomb’s law, which considers a
constant friction factor, l, relating the friction shear stress, sf, and the normal
stress acting on the surface, rn:

sf ¼ lrn: ð2:69Þ

Although in concordance with empirical data, this expression fails matching the
friction behavior ah high pressures and sliding velocities, such as those taking place
in cutting processes. Therefore, other more complex models have been proposed.

Coulomb’s law sometimes contains a term, b, representing the cohesion sliding
resistance (i.e., sliding resistance with zero normal pressure) (Pramanik et al. 2007):
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sf ¼ lrn þ b; ð2:70Þ

although this parameter is usually neglected in machining simulations.
A modified Coulomb’s law, proposed by Zorev (Vaziri et al. 2011) considers

two different regions from the friction point of view. In the sliding region, where
elastic contact exists, the value of the friction shear stress is proportional to the
normal stress. In the sticking region, where plastic friction takes place, it is con-
stant and equal to the average shear flow stress of the chip material on the chip-tool
interface, sch:

sf ¼
lrn : lrn\sch ð0� x� LPÞ ðsliding regionÞ
sch : lrn� sch ðLP\x� LCÞ ðsticking regionÞ

�
: ð2:71Þ

The average shear flow stress in the sticking region can be considered as equal
to the material yield shear stress, sY (Zhang et al. 2011):

sch ¼ sY ¼
rYffiffiffi

3
p : ð2:72Þ

The distribution of the normal stress through the rake face (Fig. 2.11) can be
approximately modeled by the following empirical relationship (Mohammadpour
et al. 2010):

rn ¼ rmax
n 1� x

LC

� �a� �
; ð2:73Þ

where LC is the chip-tool contact length, rn
max is the maximum normal stress and

a is an empirical constant.
The Usui and Shirakashi’s model (Filice et al. 2007) relates the friction shear

stress with the normal stress and the flow shear stress by using a more complex
expression:

Fig. 2.11 Stress distribution
at the tool rake face
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sf ¼ sch 1� exp � lrn

sch

� �� �
: ð2:74aÞ

which has been modified by Childs and coworkers by adding a proportionality
term, m (0 \ m \ 1) (Filice et al. 2007):

sf ¼ msch 1� exp � lrn

sch

� �� �
: ð2:74bÞ

Other interesting approach is the cohesive model (Mamalis et al. 2002), which
constitutes an idealized model of the influence of the elastic-plastic deformation of
the asperities at the metal surface at microscopic scale (cold weld phenomenon).
This model establishes that:

sf ¼ �m
2req

3
ffiffiffi
3
p tan�1 vs

c

	 

; ð2:75Þ

where m is the shear friction factor; req is the equivalent stress, vs is the sliding
velocity and c is a constant representing the value of sliding velocity at which
sliding occurs.

Sometimes, it results more convenient to obtain empirical expressions relation
the friction factor with other parameters. For example, Rech et al. (2009) divide
the apparent friction factor, lapp, into a component due to the plastic deformation,
lplast, and another one due to adhesive phenomena, ladh:

lapp ¼ lplast þ ladh; ð2:76Þ

having the adhesive component a linear dependency with the average local sliding
velocity for a combination of annealed AISI 1045 steel and TiN-coated carbide.

Also for AISI 1045 steel and uncoated carbide, Brocail et al. (2010) have
obtained, through FEM simulation, the exponential model:

l ¼ 0:919r�0:251
n v�0463

s T0:480
int ; ð2:77Þ

relating the friction factor, l, with the normal stress, rn, the sliding velocity, vs,
and the temperature at the interface, Tint.

In spite of the success of these models in some cases, more experimental and
theoretical research is required in this field, in other to obtain actually reliable and
flexible friction models.

2.6 Fracture

In Lagrangian and ALE formulation there is a need of use some fracture criterion
which allows evaluating the state of damage of the elements and carries out the
separation of the chip in cutting processes and the breakage of the workpiece in
forming.
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Nearly all the strain–stress based fracture criteria came from the Freudenthal’s
criterion, which considers that fracture takes place when the plastic work per unit
volume reaches some critical value, C1 (Gouveia et al. 2000):

ZeF
eq

0

reqdeeq ¼ C1; ð2:78Þ

where req and eeq are the equivalent stress and strain, respectively, and eF
eq is the

value of equivalent strain at which the fracture take place.
The normalized Cockcroft-Latham criterion uses the relation between the

largest principal stress, r1, and the equivalent stress, req (Umbrello 2008):

ZeF
eq

0

r1

req

deeq ¼ C2; ð2:79Þ

while the Brozzo’s equation combines the effects of the principal stress, r1, and the
hydrostatic stress, p (Gouveia et al. 2000):

ZeF
eq

0

2r1

3ðr1 � pÞ deeq ¼ C3: ð2:80Þ

Another approach (Rosa et al. 2007), which is based on the specific distortion
energy, states that the ductile damage takes place when:

ZcF

0

sdc ¼ C4; ð2:81Þ

where s and c are the shear stress and the distortion of the element, and cF is the
level of material distortion at the onset of cracking.

The stress index parameter is also used as a fracture criterion (Shet and Deng
2003). It is defined as:

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn

rF

� �2

þ s
sF

� �2
s

; ð2:82aÞ

where rF and sF are the failure stresses of the material under pure tensile and shear
loading conditions. The fracture starts when the stress index parameter reaches the
value of one:

f � 1: ð2:83bÞ
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A more elaborated damage approach is the Johnson–Cook’s shear failure model
(Zhang et al. 2011) with damage starting at point B (see Fig. 2.12), where the
cumulative scalar parameter:

x ¼
Xn

j¼1

DeP
eq

ef0
eq

 !

j

; ð2:84Þ

exceeds 1. In Eq. (2.84) DeP
eq is the increment of equivalent plastic strain in the

computation step j, and:

ef0
eq ¼ d1 þ d2 exp d3

p

req

� �� �
1þ d4 ln

_eeq

_e0
eq

 !" #
1� d5

T � T0

TM � T0

� �� �
; ð2:84Þ

is the equivalent strain at the damage initiation, p is the hydrostatic pressure, req is
the equivalent stress, _eeq is the equivalent strain rate, _e0

eq is the reference strain rate,
T is the material temperature, T0 is the reference temperature, TM is the material
melting temperature, and di (i = 1, …, 5) are material constants.

The damage evolution (line B–F) can be characterized by the scalar stiffness
degradation, D, which is equal to zero at the damage initiation (point B) and is
equal to one at the theoretical final fracture (point F). This parameter can be
computed by the expression:

D ¼

RuP
eq

0
reqduP

eq

Gf

; ð2:85aÞ

for the exponential damage zone, and by the expression:

Fig. 2.12 Typical stress–
strain material response with
damage
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D ¼ 1� exp �
ZuP

eq

0

req

Gf

duP
eq

0

B@

1

CA; ð2:85bÞ

for the linear damage zone. In both equations, uP
eq is the equivalent plastic dis-

placement and Gf is the Hillerborg’s fracture energy:

Gf ¼
ZuP

eq

0

reqduP
eq: ð2:86Þ

The effectiveness of all these models varies notably under different conditions
and depends on empirical constant whose experimental determination imposes
serious constraints to their use. However, successful application of these approa-
ches has been done in the area of manufacturing FEM-based processes modeling.
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