Chapter 2
Finite Element in Manufacturing
Processes

Abstract This chapter explains the basis of the finite element method, highlighting
the application for manufacturing modeling problems. A review of the principles of
plasticity, as used in modeling of machining and forming processes is presented,
including the most frequently used constitutive models. The key issues of the finite
element method modeling of these mechanical processes are also explained
according with the last researches in this field.

2.1 Basis of the Finite Element Method

The finite element method (FEM) has gained popularity in the last years as a
powerful numeric method for finding good approximate solutions for systems of
partial differential equations. This method is especially suitable when the problem
is defined over geometrically complex spatial domains. For this reason, the FEM
has been successfully applied to a wide field of engineering problems, such as
mechanics of materials (elastic and non-elastic), fluid dynamics, heat transfer and
electromagnetism.
The FEM aims to solve a differential equation set:

A(u) = [A;(u), Ay(u), ..]" =0; (2.1a)

in a domain Q (see Fig. 2.1), being u the unknown state variable; together with the
boundary conditions:

B(u) = [B(u), By(u), ...]" = 0; (2.1b)

on the boundary, I', of the domain. In these equations, A;(¢) and B,(e) are differ-
ential operators.
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Fig. 2.1 Domain and
boundary of a problem r

Fig. 2.2 Element domain
and boundary

The central idea of the FEM is to replace the exact solution, u, by an
approximation, u*, of the form:

u~ru =) Na; = Na; (2.2)

where N; are the shape functions, predefined in terms of the independent variables
(usually, the coordinates, x) and a; are parameters, initially unknown, which
should be determined as a result of the application of the method.

In order to obtain this solution, the Egs. (2.1a, b) must be combined in the so-
called weak form:

/Gj(u*)dQJr/gj(u*)dF:O j=1..m (2.3)
Q r

which permits the approximation to be obtained for every portion of the domain
and assembled (Fig. 2.2):

3 [ Gilw)dQ+ /r(e) gu)dl =0 j=1..n (2.4)
e=1

(e) (e)

where Q' is the domain of the eth portion and I
(Zienkiewicz and Taylor 2000).

These portions are known as elements and usually have a simple geometric
shape. Depending on the domain, there are elements with different dimensionality.
For example, a bar (Fig. 2.3a) is a typical one-dimensional element; triangles

its part of the boundary
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Fig. 2.3 Types of elements a Bar element. b Triangular element. ¢ Quadrangular element.
d Tetrahedral element. e Hexahedral (brick) element. f Pentahedral (wedge) element

(Fig. 2.3b) and quadrilaterals (Fig. 2.3c) are the most common two-dimensional
elements; and, finally, tetrahedrons (Fig. 2.3d), hexahedrons (Fig. 2.3e) and
wedges (Fig. 2.3f) are widely used for meshing three-dimensional domains.

If the differential equations are linear, that is, if the Eq. (2.1a, b) can be written
in the form:

Au)=Lu+p=0 inQ,
B(uy=Mu+q=0 onl; (2.5)

then, the approximating equation system (2.4) yields a set of linear algebraic
equations of the form:

Ka+f=0; (2.6)
with

K;=> K and f;= Zlfgje); (2.7)

e=1

which can be numerically solved.
There are two main approaches for obtaining the weak formulation in the FEM;
they are the functional variational principle and the weighted residual method.
The essence of the variational method is to calculate the total potential, I1, also
known as the functional of the system and, then, to consider the stationarity of this
total potential:

8T = 0; (2.8)

as an equilibrium condition (Bathe 1996).
On the other hand, the weighted residual method is based on considering that
from the (Eq. 2.1a, b) it follows that:

/Q v/ A(Na) dQ + /r wiB(Na)dl' =0, j=1...n; (2.9)
where A(Na) and B(Na) represent the residual errors of replace the approximate
solution in the differential equation set and in the boundary conditions, respec-
tively, and v; and w; are some weighting functions. In the Galerkin method,
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v; = w; = N, i.e., the original shape functions are used as weighting (Zienkiewicz
and Taylor 2000).

2.2 FEM for Linear Elastostatic Problems

The basic application of the FEM in structural mechanics is in linear elastostatic
problems, where on the domain, Q, there are three unknown fields: the displace-
ment field, u = [u,, u,, uZ]T; the strains field, & = [y, &y, €225 &yzs Exzs sxy]T; and the
stress field, 6 = [0y, Gyy, 0,7, Oy, O, axy]T. As result of the load conditions of the
domain, the body force, b = [b,, b, bz]T, is known on the entire domain. Moreover,
at some portion, I',, of the boundary, the values of the displacements are pre-
scribed as equal to [u], and, at other portion, I';, the values of the tractions are also
prescribed as equal to [t] (see Fig. 2.4). These relationships are known as boundary
conditions. The boundary portions must fulfill the conditions:

LUl =T and T,NT, =g (2.10)

A set of equations establishes the relationships between the different variables
defined for the problem. The first one is the cinematic equation, which relates the
displacements and strains in the entire domain:

e = Vu (2.11a)
where V represents the symmetric matrix gradient operator:
o/ox 0 0 0 0/0z 0/dy

Ve=1] 0 9/dy 0 9/oz 0 d/ox (2.11b)
0 0 0/0z 0/dy 9/ax O

On the other hand, the equilibrium equation:
Vie + pb = 0; (2.12)

establishes the relationships between the body force and the stress field, and it is
the application of the principle of conservation of lineal momentum. Finally, the
constitutive equation relates the strain and stress fields. This is particular of every
material at every specific condition. For linear elastic materials, this constitutive
equation is given by the generalized Hooke’s law:

o = CFe; (2.13a)

where CF is the tensor of elasticity, which can be written in matrix form as:
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Fig. 2.4 Domain and
boundary definitions

C11 C12 C13 Cia Ci15 Ci6
Cp €3 C4 C25 C26
CE — €33 C34 C35 C36 (2.13b)
Caq  C45 C46
Sym. C55 €56
Ce6

In the special case of homogeneous and isotropic materials, the matrix of
elasticity can be reduced to:

I—v v v 0 0 0
1—v v 0 0 0
CE— E 1—v 0 0 0 ]
(I=2v)(1+v) 1-2v 0 0o |’
sym. 1 —2v 0
1—2v
(2.13¢)

being E, the Young’s modulus and v, the Poisson’s ratio of the material.

Additionally, from the definition of stress tensor is obtained the relationship that
links the stress fields and the prescribed tractions, on the portion of the boundary,
I',, where these tractions act:

no = [t]; (2.14a)
where

n,. 0 0 0 n, n
n=|0 n, 0 n, 0 n (2.14b)
0 0 n, nyp no O

and n,, n, and n, are the components of the outward normal on the boundary.

This set of equations form the so-called strong formulation of the linear elas-
tostatics, and can be represented, in a very convenient way by using the popular
Tonti diagram, as shown in Fig. 2.5.
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Fig. 2.5 Tonti diagram for the strong form of linear elastostatics

In order to solve this kind of problem by applying the FEM, the strong for-
mulation is replaced by the weak formulation. This enforces the relationships in an
integral sense rather than point by point. In elastostatics applications, this weak
formulation is given by the Hamilton’s principle:

5]
5/ L dr = 0; (2.15)
Al

where the Lagrangian functional, L, is computed as:
L=T-U+W, (2.16)

and the kinetic energy, 7, the internal energy (here, the elastic strain energy), U,
and the work done by the external forces, W, can be defined in the integral forms
(Liu and Quek 2003):

1
T:f/pilTl'l dQ; (2.17a)
2Ja
1 1
U:—/sTa dQ:—/sTCEs dQ; (2.17b)
2 /o 2 Ja
W:/uTb dQ+/ u'tdr. (2.17¢)
Q t

As the problem is static, the Hamilton principle can be written as:

1
5(/ u'b dQ+/ u't dF——/sTCEs dQ) =0. (2.18)
Q T, 2 Ja

As it remains being valid for every element in the discretization, Eq. (2.20) can
be rewritten in the form:

1
5(/ u'b dQ+/ u't dF——/ e'Che dQ) =0. (2.19)
Q© 1"59) 2 Q)
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Fig. 2.6 Stress versus strain in a typical tension test

In every element, there are N points (Fig. 2.6), known as nodes, where the
displacements, U® = [tx1, Uyt Uzsen s U, U, uzN]T, can be computed and, then,
the displacements in other points, u, can be interpolated from them:

u=NU, (2.20)

where N is the matrix of shape functions, depending on the coordinates, x:

N= 0 MN(x) 0 . 0 Ny (x) 0
0 0 MK ... 0 0  Nv(x)

By substituting (2.20) in the weak formulation for an element (2.19), and
defining the strain-displacement matrix, B = VN, it is obtained the expression:

5< / UCN©Db dQ + / UON@ar -1 / U“TBTCEBU® dQ) =0;
Q© re 2 Jaw

which is transformed, after applying the rules of variational calculus, in:

N©b dQ + / NOtdr — (1 / B'CFB dQ |U® = 0. (2.21)
Q) rt 2 Q©

t

If the stiffness matrix, K(e), and the nodal force vector, F(e), are defined for the
element e, as follows:

F) = / N©b dQ + / Nt dr, (2.22a)
o 1—(?)

t

KO = (1 / B'CEB dQ ); (2.22b)
2 Q)
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the expression (2.21) can be rewritten as:
KU®© =F, (2.23a)

The Eq. (2.23a) for all the elements can be assembled together, by considering
the equality of displacement in nodes belonging to different elements, and the
action-reaction forces on these nodes, giving a global equation involving all the
nodal displacement, U, and forces, F:

KU=F (2.23b)

which is an algebraic equation set of the form (2.6).

By considering the essential boundary conditions at nodes belonging to I'y, and
natural boundary conditions nodes belonging at I';, the system (2.23b) can be
simplified, usually by deleting rows and columns corresponding to null degrees of
freedom. Then, the obtained system:

KU =F; (2.24a)
can be numerically solved in order to determine the nodal displacements:

U=K F. (2.24b)

2.3 FEM for Plasticity
2.3.1 Plasticity Fundamentals

As the most important manufacturing processes, such as machining and forming,
involves plastic deformations, modeling the plasticity and solving the obtaining
models by using numeric methods play a key role in simulation of these processes.

Plasticity can be broadly classified in two types: rate-independent plasticity,
where the strain rate has no influence in the strain—stress relationship, and vis-
coplaticity, where the strain rate has a non-negligible influence. The first one is a
good approximation when low strain rates take place in the deformation process;
on the contrary, when the strain rates are high, viscoplasticity offers better results.

The behavior of the materials in rate-independent plasticity can be studied
through a standard tension test (see Fig. 2.6), where the values of the true stress, o:

o =oao(l +¢); (2.25)
are plotted versus the logarithmic strain, &:
¢=1In(1+e); (2.26)

where go = F/A is the engineering stress applied in the test and e = (L—Lg)/Ly is
the infinitesimal linear strain.



2.3 FEM for Plasticity 21

Fig. 2.7 Elastic and plastic c
components of the strain A

In Fig. 2.6 it is represented a typical experimental stress—strain curve, corre-
sponding to a mild steel (Han and Reddy 1999). Some different regions can be iden-
tified in this curve. In portion OA, there is a linear proportionality between the strain
and stress (which is given by the Young’s modulus, E), and when the load is retired, the
material return to the unloaded initial condition (point O). This kind of deformation is
known as linear elastic, and follows the previously mentioned Hooke’s law (2.6).

When the stress surpasses some value (called yield stress, oy, there is a sharp
sudden drop in the stress value (region AB). The region BC is characterized for a
near zero slope in the curve, that is to say that increments in the strain take place
without any rise in the stress value. The region CD is known as the hardening
region, because the stress increases with the strain, although not with linear
relationship, until achieving the ultimate strength, oy, at point D. On the contrary,
in region DE (softening region) increments in strain cause a decrease in the stress
until the final failure at point E.

Even though this curve is representative, actual behavior can strongly change
from one material to another one. Even, heat treatments can change the form of
this curve for the same material.

In spite of the complexity of the material behavior, two well defined zones can
be identified: an elastic region, where deformations disappear after removing the
load, and a plastic region, where some deformations stay after removing the load
(see Fig. 2.7). Therefore, every strain, ¢, at the plastic zone can be considered as
composed by an elastic strain, %, and a plastic strain, ¢":

e=¢" 46 (2.27)

2.3.2 Material Behavior Models

Due to the complexity of the experimental plastic behavior of engineering mate-
rials it has been idealized by using simpler models (see Fig. 2.8).
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(b)

Fig. 2.8 Idealized plastic behavior of materials a Elastic-perfectly plastic. b Linear work-
hardening. ¢ Nonlinear work-hardening

In the elastic-perfectly plastic idealization (Fig. 2.8a), there is not further
increment in the stress after surpassing the yield point. On the contrary, in the
elastic-work-hardening idealization (Fig. 2.8b, c), the stress continues rising with
strain increments after the yield point. This increment is modeled by the material
hardening function, H:

o =H(). (2.28)

For linear work-hardening (Fig. 2.8b), the plastic behavior is represented by a
straight line with a constant slope H’, while in the nonlinear work-hardening
(Fig. 2.8¢), the curve changes its slope H' = dH/deP.

Several models have been proposed for the material hardening deformation.
The simplest consider that stress is only a function of the strain and not of the
strain rate. They are called strain rate-independent plastic models, and include,
among others, (Dixit et al. 2011), the Hollomon’s law:

o= K()"; (2.29a)
that does not fit the stress—strain relationship at low strains; the Ludwik’s law:
oc=oy+K()"; (2.29b)

that does not reflect property the constant slope of the stress—strain curve of metals
at large strain; the Swift’s law:

o =oy(l + K" (2.29¢)

which fits better the behavior of the stress—strain curve of metal at large strain; and
the Voce’s law:

o = oy + K[1 — mexp(—ne®)]; (2.29d)

that is more suitable for moderate strain values. In all of these expressions, K and
n are experimental constants describing the plastic behavior of the material.

In some circumstances, the effect of the strain-rate cannot be neglected, for
example, in cutting processes where high values of strain rates take place. This
cases, which include the plastic strain rate term, &7, in the material hardening
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function are known as viscoplastic models. If the expression also includes the
temperature, 7, then is it called thermo-viscoplastic model.

Determination of viscoplastic and thermo-viscoplastic models cannot be carried
out through single tension test. It requires more complex methods such as the split
Hopkinson pressure bar (Jasper and Dautzenberg 2002). An example of thermo-
viscoplastic model is the generalized Oxley’s equation (Lalwani et al. 2009):

0 = 61(Tmoa) (&7)" T, (2.30a)

where the coefficient g, and the exponent n are polynomial functions of the strain-
modified temperature, Toq:

oP
Tod = T(l - Vlogm iTg), (230b)
“0

which depends on the material temperature, 7, the plastic strain rate, &P, the
reference plastic strain rate, ég, and the strain rate sensitivity constant, v.

The Johnson—Cook’s model, also referred as J-C law, is other of the frequently
used empirical approaches for modeling the thermo-viscoplastic behavior of
materials. It is described by the expression (Ozel and Zeren 2004):

o= [A+B(")"] [1 +Cln (%)} [1 - (%) m} ; (2.30c)

where the ¢ is the plastic strain, &° is the plastic strain rate, & is the reference
strain rate, T is the absolute temperature of the material, Ty, is the melting tem-
perature, T is the reference temperature and A, B, C, n and m are material con-
stants (A is the yield strength at Ty, B is the hardening modulus, C is the strain rate
sensitivity, n is the strain-hardening exponent, and m the thermal softening
exponent). In spite of some limitations with regard to dynamics train aging, i.e.
blue-brittleness effect during a certain range of temperature variations in the
plastic deformation of carbon steels, the J-C law is very often used to represent the
thermo-viscoplastic behavior of workpiece material in manufacturing process
modeling, especially in cutting processes (Arrazola and Ozel 2010).

Sometimes, the so-called power law (Dixit et al. 2011) is also used for
describing the behavior of materials at thermo-viscoplastic state:

where the terms has the same meaning than in the previous expressions. As in the
J-C model, in the power low the effects of strain, strain rate and temperature are
considered independent.

Applying the dislocation mechanics theory, Zerilli and Armstrong (Jasper and
Dautzenberg 2002) derived other more complex constitutive models for body-
centered cubic metals:
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a=Cy+ Crexp <—C3T + C4T1n;> + Cs&"; (2.30e)
0

and for face-centered cubic metal:

o= Cy+ Cre'?exp (—CgT + CJlni); (2.30f)
&
where Cy, Cy, ..., Cs are material properties. These models has the advantage of a

strong theoretical component, however, they have not been as widely applied in
FEM-based modeling of manufacturing process as J-C model or Oxley’s equation.

2.3.3 Yielding Criteria

Another important aspect, in the theory of plasticity is the initial yielding criterion,
that is, the point at which the yield process starts, As follows from Fig. 2.6, the
criterion for initial yielding in simple tension is given by:

g—ay =0; (2.31)

where o is the tensile stress and ov, the yield stress of the material. However, more
complex stress states require more elaborated criteria. One of the most used criteria for
defining the beginning of the yielding process in a material is the Von Mises’ criterion,
which established that the yield begins when resultant deviatoric stress reaches a
critical value. In terms of the principal stresses, ¢, , and a3, this can be written as:

(01 — 02)* + (62 — 63)* + (03 — 01)*] — 205 = 0. (2.32)

On the other hand, the so-called Tresca’s criterion, defines the initial yielding
from the maximum shear stress, and can be expressed by the equation:

(01 = 02)* = 33y ][(02 — 03)* = 3 ][(03 — 31)* — 03] = 0. (2.33)

2.3.4 Governing Equations

Contrary to what happens in elasticity, in plasticity the stress depends on the
history of deformation. Mathematically, this can be expressed by using either the
incremental form or the rate form (Shabana 2008).

The rate form is used in the so-called Eulerian formulation of the continuum,
which considers that the reference coordinate system is fixed and the material
moves through it (Fig. 2.9). This approach is very convenient when the material
flows through a fixed region of the space, known as control volume, which is used
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Fig. 2.9 Eulerian e —~— Control volume
formulation of the continuum : ~—
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as the problem domain. This Eulerian formulation is frequently applied in extru-
sion, rolling and other cold forming processes. It is also used in metal cutting, if
the shape of the chip is previously known.

There are three main governing equation sets in the Eulerian formulation (Dixit
and Dixit 2008). The first one is the kinematic relationship between the velocity
vector, v;, and the strain rate tensor, &;, which provides six scalar equationslz

. 1 6v,» an

== [ — + 2. 2.34
&y 2 <8xj + 6x,»> ( )

and the velocity is defined as the rate of change of the material position, x;:

T

The constitutive relation links the elastic—plastic stress and the strain rate and
provides other six scalar equations:

(2.35)

Vi

Skk

1 3sP
o ./ eq /.
& = —ZGskk + 20 s (2.36b)

where G and K are the shear modulus and the bulk modulus of the material, 9:1 is
the deviatoric part of the strain rate tensor:

1
8:1 = 811 — géijékld (237)

5,,- is the Kronecker delta; g4 is the Von Mises equivalent stress:

Oeq = \| 5 05073 (2.38)

I
2

' For an explanation of the index notation and summation convention used in this section, see
Dixit and Dixit (2008, §2.2 ) or Shabana (2008, §1.3).
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o', is the deviatoric part of the stress tensor:

/

1
0 = 0jj — géijokk; (2.39)

équ is the equivalent plastic strain tensor:

& = %é?:sli (2.40)

5y is the Jaumann stress rate tensor, which is related with the Cauchy stress rate
tensor, ¢;;, by the expressions:

. . . . T

Skk = Okk — (a)kla;k —+ lewlk); (241&)

5 = 6 — (aoy; + ahooy); (2.41b)

and wj; is the spin tensor:
. 1 aV,' an
i==l=—=). 242
@i 2 <6xj 6x,-> ( )

The value of the equivalent stress is related with the equivalent strain by the
material hardening function:

Oeq = H(eE)); (2.43a)

€q

which can also include the strain rate and temperature term, in the general case of
thermo-viscoplastic behavior:

Oeq = H(eb &0\ T). (2.43b)

eq’ “eq’

The third set is given by the motion equation, which consist on three scalar
equations:

Ox; Oy 0o
V) = by 2.44
”(az+axjvf> POt oy (2.44)

where p is the material density and b; the body force vector.
Additionally, the boundary conditions must be considered. On one hand, the
velocity components, [v];, must be known at some sections of the boundary, I',:

vi=[, onT,. (2.45a)

i’

On the other hand, the values of tension vector, [¢'];, along the normal to the
surface, n;, must be prescribed on some part of the boundary, I';:

ogn; = [t"];,, onI,. (2.45b)
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Reference frame at 1,

Reference frame at 1,

Fig. 2.10 Lagrangian formulation of the continuum

Finally, when dealing with a transient problem, the initial values of the
velocities, and hydrostatic and deviatoric par of the stress must be known at every
point of the domain, Q:

— 0 0 /10 tt= v . Q 2 46
Vi = Vi, Op = Oy, Oy =0y, att=ty, Vx; € Q. (2.46)

In steady-state problems, these initial conditions are not need.

If the behavior of the material is considered as rigid-plastic (i.e., the elastic part
of the strain is neglected), an interesting simplification takes place. In this case, the
constitutive relation take the form:

& = 0; (2.47a)
3éP
-/ eq
SU 20'eq GU’ ( )

This change is not trivial because the time derivative of the stress tensor
disappears from the constitutive relations (2.47a, b). Thence, although still being
nonlinear and, therefore, requiring an iterative solving scheme, the solution of the
problem is easier than in the elastic—plastic formulation. Furthermore, only the
velocities at the start time are needed as initial conditions.

Nevertheless, the rigid-plastic formulation has some shortcomings related with
the neglect of the elastic component of the strain. For example, neither the stress
distribution in the non-plastic region nor the residual stresses can be computed by
using this approach.

The Lagrangian formulation uses a reference frame which is attached to the
material and moves together with it (Fig. 2.10). It is very convenient when the
space occupied by the material is not previously known as in free forging or
transient cutting analysis.

The Lagrangian approach uses the incremental form which is based on the use
of the incremental strain tensor, de; (Dixit and Dixit 2008):

1 F(d”i) @(duj)} ; (2.48)

d ==
&y 2 ij + 6x,»
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defined from the incremental displacement vector, du;:
du; = x;(t + dt) — x(1); (2.49)

where x;(f) is the position of a particle at instant ¢, and dr is the differential
increment of time.

In the incremental strain tensor, the component dg;; represents the change in
current length per unit of current length along the current i-axis direction. The
component de; represents half the change in angle between the current i- and j-
axes directions.

Both, the incremental strain tensor and the strain rate tensor are related by:

de = dt. (2.50)

The constitutive relation links the incremental strain tensor with the increment
Jaumann stress tensor, ds;;, or the stress rate tensor. After yielding, i.e., for the
elastic—plastic behavior, this constitutive relation can be expressed as:

dsyj = Ciydew; (2.51)
where Cﬁ}; is the fourth order elasticity—plasticity tensor:

9G O'UO'U

CEP — 2G Ty 00+ Sudy — = o B
ijkl % Ot = = (H' +3G)o2,

(2.52)

G is the shear modulus; v is the Poisson’s ratio; and H', is the slope of the hardening
function of the material (Eq. 2.41a, b); 0.4 is the equivalent stress (Eq. 2.38), and is
the deviatoric part of the stress tensor (Eq. 2.39).

Before yielding and after uploading, i.e., when material is behaving elastically,
the constitutive equation takes the form:

l]’

ds;j = gkldgkﬁ (2.53)
being:
Ciu = G<1 . 0;j0x + O J; 1)- (2.54)

The incremental Jaumann stress tensor is related with the incremental Cauchy
stress tensor by the equation:

ds;; = sydt = doy; — (dwyoy; + GildwlTj); (2.55)

where the incremental infinitesimal rotation tensor, dw;;, is defined as:

b)) e
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The incremental equation of motion states that:

pda; = pdb; + d(aalj); (2.57)

where db; is the incremental body force and dg; is the incremental acceleration.
For the Lagrangian formulation, the required boundary conditions are defined
by the prescribed incremental displacements, [du];, at some region I',:

du; = [du;, onT, (2.58a)
and the prescribed tension vectors [¢"]; along the normal, n;, on some region I';:
dO','jl”lj = [dtn]ia on I[,. (258b)

The initial conditions include values of the incremental displacements, du;, and
incremental velocities, dv;, at time f,, in every point of the problem domain, Q:

du; = du?, dv; = dv?, att=ty, Vx; €Q. (2.59)

2.3.5 FEM Formulation

In the Eulerian finite element formulation, for elastic—plasticity is based in the
equation:

KOvE =g, (2.60)

where V© = [Viis Vyls Vals oes Vs Vo va]T is the vector of nodal velocities;

- ety Fots Fis - - o fons fomvs fv,]" is the vector of nodal forces; K is the
element stiffness matrix, given by:

Ko -1 / B'C**BdQ; (2.61)
2 Jql

and C®* is the elastic—plastic matrix:

G\ 0\, 0L, 2, 2.0, 20,0,

. a%xa;y J;ya;y a;za;,y Za;ya;y ZU;VZJ;), 20'%(;;}.
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In the former equation, CF represents the elasticity matrix (Eq. 2.13b), G is the
shear modulus; H' is the slope of the material hardening function; and Ocq 18 the
equivalent stress, determined from the hardening function (Eq. 2.43a, b).

The Lagrangian finite element formulation is based on the equation:

K©du'© = dF©); (2.63)

where dU = [du,,, duyy, dugy, ..., duyy, duyy, du,y]" is the vector of incremental
nodal displacements; and dF© = [dfs1, dfyis dfas ... dfans dfyns dsz]T is the vector
of incremental nodal forces. K is the element stiffness matrix, given by (2.61).

As the stiffness matrix involves the components of the deviatoric part of the
stress tensor, equations (2.60) and (2.63) are nonlinear and cannot be solved
straightforwardly but numerically integrated. This integration is usually performed
by a generalized midpoint rule (Wriggers 2008):

Upr1 = Uy + Atf (U 40); (2.64a)
Unig = (1 — Ouy + Oupyy, 0<0<1. (2.64b)

For 6 = 0, this equations lead to the explicit Euler scheme; for 6 = 1, they lead
to the implicit Euler scheme; finally, for 6 = %, they lead to the midpoint rule.

There is, also, a mixed approach, known as arbitrary Lagrangian—Eulerian
(ALE) formulation, which has been widely used in recent years especially in
modeling of cutting processes. It combines the features of pure Lagrangian anal-
ysis in which the mesh follows the material and Eulerian analysis where the mesh
is fixed, when is needed as part of the adaptive remeshing.

In an ALE approach the process starts with an initial formed chip geometry,
which is iteratively modified as the analysis proceeds until converging to the final
shape of the chip (Vaziri et al. 2011).

Other approach in the ALE formulation allows the simulation of the chi for-
mation, starting from zero, through a transient analysis. This method requires
kinematic penalty contact conditions between the tool and the workpiece (Arrazola
and Ozel 2010).

A more detailed explanation on the ALE formulation, including the used
algorithms and equations can be found in (Pantalé et al. 2004 and Olovsson et al.
1999).

2.4 Thermal Analysis

Thermal phenomena must be taken into account in FEM-based modeling of
manufacturing processes, especially in machining and hot forming. Not only in the
chip, but also in the tool, temperature, 7, behavior is governed by the so-called
Fourier’s law (Li et al. 2002):
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k2T — pcT + Q = 0; (2.65)

where V? is the Laplace’s operator; k and ¢ are the thermal conductivity and
specific heat of the material; and Q is the rate of generated heat.

There are two main sources of heat generation in processes involving metal
working: plastic deformation and friction. The heat generated by plastic defor-
mation can be computed by:

Op = npo (2.66)
being #p the fraction of plastic work transformed into heat (usually np ~ 0.9); ¢

the Cauchy stress tensor and ¢° the plastic strain tensor.
The heat generated by friction is given by:

Or = 1ypvs; (2.67)

where #¢ is the fraction of friction work transformed into heat (for machining
applications 5y ~ 1), t¢ is the friction shear stress and vy is the sliding velocity.

The heat flux, g, to the environment, from the free surfaces of the tool and part
can be computed by the Newton’s law of cooling (Grzesik 2006):

q = h(Tw — To); (2.68)

where & is the convection heat transfer, Ty is the wall temperature and Ty, is the
room temperature.

For computational efficiency, temperature discretization and computation are
carried out together with the solution of the plasticity problem, in the so-called
coupled formulation.

2.5 Friction Models

Friction is very important factor in most of the machining processes. Friction
between the tool and chip, in cutting processes, has a strong influence on the forces
and temperature and, consequently, on the operation economy. In forming pro-
cesses, friction also plays a crucial role.

The simplest friction law is the so-called Coulomb’s law, which considers a
constant friction factor, p, relating the friction shear stress, 7y, and the normal
stress acting on the surface, o,

Tf = UOy. (2.69)

Although in concordance with empirical data, this expression fails matching the
friction behavior ah high pressures and sliding velocities, such as those taking place
in cutting processes. Therefore, other more complex models have been proposed.

Coulomb’s law sometimes contains a term, b, representing the cohesion sliding
resistance (i.e., sliding resistance with zero normal pressure) (Pramanik et al. 2007):
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Fig. 2.11 Stress distribution o, T

at the tool rake face o=
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Tf = Uoy + by (2.70)

although this parameter is usually neglected in machining simulations.

A modified Coulomb’s law, proposed by Zorev (Vaziri et al. 2011) considers
two different regions from the friction point of view. In the sliding region, where
elastic contact exists, the value of the friction shear stress is proportional to the
normal stress. In the sticking region, where plastic friction takes place, it is con-
stant and equal to the average shear flow stress of the chip material on the chip-tool
interface, T.y:

. { Uoy o <ten (0<x<Lp) (slidingregion) (2.71)

Teh  : O > Ten (Lp<x<Lc) (stickingregion)’

The average shear flow stress in the sticking region can be considered as equal
to the material yield shear stress, Ty (Zhang et al. 2011):
o
Tch = Ty = 7% (272)
The distribution of the normal stress through the rake face (Fig. 2.11) can be
approximately modeled by the following empirical relationship (Mohammadpour

et al. 2010):
X a
C

max

where Lc is the chip-tool contact length, ¢, is the maximum normal stress and
a is an empirical constant.

The Usui and Shirakashi’s model (Filice et al. 2007) relates the friction shear
stress with the normal stress and the flow shear stress by using a more complex
expression:
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T¢ = Ten {1 — exp (— 'lw")} . (2.74a)
Tch

which has been modified by Childs and coworkers by adding a proportionality
term, m (0 < m < 1) (Filice et al. 2007):

o {1 —exp <— ’w“ﬂ . (2.74b)

Tch

Other interesting approach is the cohesive model (Mamalis et al. 2002), which
constitutes an idealized model of the influence of the elastic-plastic deformation of
the asperities at the metal surface at microscopic scale (cold weld phenomenon).
This model establishes that:

2
= —m ¢4 tan~1 (E); (2.75)
c

where m is the shear friction factor; o4 is the equivalent stress, v, is the sliding
velocity and c¢ is a constant representing the value of sliding velocity at which
sliding occurs.

Sometimes, it results more convenient to obtain empirical expressions relation
the friction factor with other parameters. For example, Rech et al. (2009) divide
the apparent friction factor, u,pp, into a component due to the plastic deformation,
Uplasi» and another one due to adhesive phenomena, pqn:

Happ = Hplast + Hadn’ (2.76)

having the adhesive component a linear dependency with the average local sliding
velocity for a combination of annealed AISI 1045 steel and TiN-coated carbide.

Also for AISI 1045 steel and uncoated carbide, Brocail et al. (2010) have
obtained, through FEM simulation, the exponential model:

n= 0.9190;0'2511/;0463TS{:‘80; (2.77)

relating the friction factor, p, with the normal stress, a,,, the sliding velocity, vy,
and the temperature at the interface, Tjy.

In spite of the success of these models in some cases, more experimental and
theoretical research is required in this field, in other to obtain actually reliable and
flexible friction models.

2.6 Fracture

In Lagrangian and ALE formulation there is a need of use some fracture criterion
which allows evaluating the state of damage of the elements and carries out the
separation of the chip in cutting processes and the breakage of the workpiece in
forming.
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Nearly all the strain—stress based fracture criteria came from the Freudenthal’s
criterion, which considers that fracture takes place when the plastic work per unit
volume reaches some critical value, C; (Gouveia et al. 2000):

F
l,sq

/ Oeqdéeq = Ci; (2.78)
0

where 0.4 and &4 are the equivalent stress and strain, respectively, and sf:q is the
value of equivalent strain at which the fracture take place.

The normalized Cockcroft-Latham criterion uses the relation between the
largest principal stress, ¢y, and the equivalent stress, g.q (Umbrello 2008):

eq

/ L ey = Co; (2.79)

Oeq

while the Brozzo’s equation combines the effects of the principal stress, g, and the
hydrostatic stress, p (Gouveia et al. 2000):

F
eq

20’1
————deeq = Cs. 2.80
/3(61—17) fea ’ ( )

&,

Another approach (Rosa et al. 2007), which is based on the specific distortion

energy, states that the ductile damage takes place when:
F

y

/rdy = Cy; (2.81)

0

where 7 and y are the shear stress and the distortion of the element, and y* is the
level of material distortion at the onset of cracking.
The stress index parameter is also used as a fracture criterion (Shet and Deng

2003). It is defined as:
o\ 2 T\’
f= (_"> +<_> : (2.82a)
OF TF

where of and 7 are the failure stresses of the material under pure tensile and shear
loading conditions. The fracture starts when the stress index parameter reaches the
value of one:

f=L (2.83b)
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A more elaborated damage approach is the Johnson—Cook’s shear failure model

(Zhang et al. 2011) with damage starting at point B (see Fig. 2.12), where the

cumulative scalar parameter:

exceeds 1. In Eq. (2.84) Assq is the increment of equivalent plastic strain in the

ﬂ; (2.84)

computation step j, and:

82% = {dl +d> exp(

P
Agg,

O
Seq

5

j=1

;
dsp)} I+ dyin(
Ocq l("eq

(2.84)

T—-Ty

a0
M — 1o

is the equivalent strain at the damage initiation, p is the hydrostatic pressure, .4 is
the equivalent stress, &.q is the equivalent strain rate, égq is the reference strain rate,
T is the material temperature, T is the reference temperature, Ty is the material

melting temperature, and d; (i = 1, ..., 5) are material constants.

The damage evolution (line B-F) can be characterized by the scalar stiffness
degradation, D, which is equal to zero at the damage initiation (point B) and is
equal to one at the theoretical final fracture (point F). This parameter can be

computed by the expression:

P

eq P

J Teqdutg,
0

u

D =

)

Gy

for the exponential damage zone, and by the expression:

(2.85a)
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q

D=1—exp /Geqdf’ : (2.85b)

for the linear damage zone. In both equations, ugq is the equivalent plastic dis-
placement and Gy is the Hillerborg’s fracture energy:

P
Meq

Gi = / Teqditgy. (2.86)

0

The effectiveness of all these models varies notably under different conditions
and depends on empirical constant whose experimental determination imposes
serious constraints to their use. However, successful application of these approa-
ches has been done in the area of manufacturing FEM-based processes modeling.
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