Chapter 1
Existence for Parabolic—Elliptic
Degenerate Diffusion Problems

In this chapter we are concerned with the study of some boundary value
problems with initial data formulated for parabolic—elliptic degenerate
diffusion equations with advection, focusing especially on the fast diffusion
case which involves a free boundary problem (case (a) in Introduction). After
setting an adequate functional framework for each situation we transpose
the boundary value problems into abstract formulations and study their
well-posedness with specific methods of the theory of nonlinear evolution
equations with m-accretive operators in Hilbert spaces. We investigate the
conditions under which particular properties of the solutions, like uniqueness
and time periodicity take place. We mention that the case without advection
was studied in [58]. Numerical simulations applied to problems arisen in soil
sciences complete the study and sustain the theoretical achievements.

Notation. We specify the functional spaces which will be further used.

Let 2 be a open bounded subset of RY (N € N* = {1,2,...}), with the
boundary I' := 02 sufficiently smooth. The space variable is denoted by
x:=(z1,...,2n) € £2 and the time by ¢t € (0,7, with T finite.

We shall work with the spaces LP(£2) (see [30], pp. 89), Sobolev spaces
WmP((2) (see [30], pp. 263, 271) and the vectorial spaces LP(0,T;X),
WmP(0,T; X) where X is a Banach space (see [14], pp. 21), m > 1 and
p € [1,00]. Briefly, we recall that

LP(2) ={f: 2 — R; f measurable, |f(z)|” integrable}, p € [1,00),

L(02) = f: 02— R; f measurable and there is a constant C'
| such that |f(z)] < C a.e. on 2
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2 1 Existence for Parabolic—Elliptic Degenerate Diffusion Problems

are Banach spaces with the norms

1/p
1l = ( / If(w)lpdw) ,

£l Loe () = f{C5 [f(2)] < C a.e. on 2},

respectively. For m > 1 and p € [1,00] the Sobolev space W"P((2) is
defined by

WmP(2) = {f € LP(2); f measurable and D“f € LP(2), with |a| <m}

N
where « is a multi-index and |a| = > a4, oy is a positive integer and D =
i=1
ol
5.1 o . ON *
éh‘fl ....8;ENN

The norm is defined by

1/p
||fHmeP(Q) = Z ||Daf||1£p(_o) ;11 <p<oo,
1<[a|<m
HfHmeOO(_Q) = lgrm@ém ||Daf||poo(g) , if p = oo0.

We still denote H™(£2) = W™2(2) which is a Hilbert space with the
scalar product

(u, U)Hm(_Q) = Z (Do‘u, Dav)Lz(Q).

1<]al<m
Let X be a Banach space. We denote

f:(0,7) — X; f measurable and
LP(0,T; X) = | £(t)||% is Lebesgue integrable over (0,7') for p € [1,00)

)

and ess sup || f(t)]|x < oo for p =00
te(0,T)

J
W0, 7] X) = {7 € D07 X); TL e 17(0,7:%), =1, m),
J

where D’(0,T; X) is the space of all continuous operators from D(0,T) to X.
These spaces are endowed with the norms
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T 1/p
||f|LP(O,T;X):</O |f(f)|§(dt> ,

£l oo 0,7,y = €55 sup [[f (D)l x s

te(0,T)
- 1/p
||f|| m, . = e 71§p<00,
Wwmp([0,T];:X) _]:ZI dxy Lr(0,T;X)
ks
. vy = max ||—= ) = 0.
”f”W (0.T]:X) ™ 1<<m ’ dxd L5 (0,T;X) b

By C(]0,T]; X ) we denote the space of continuous functions f : [0,7] — X.

For simplicity, throughout the book we shall denote by (-,-) and |[|-|| the
scalar product and the norm in L2({2), respectively.

For not overloading the notation, sometimes we do not indicate in the
integrands the function arguments which are the integration variables.

1.1 Well-Posedness for the Cauchy Problem
with Fast Diffusion

The first section is devoted to the study of a Cauchy problem for a fast
diffusion equation with transport written for the unknown function y(¢,x),
in which the degeneracy is induced by the vanishing of the time derivative
coefficient u(x), on a subset of nonzero measure of the space domain. The
equation is accompanied by Dirichlet boundary conditions and an initial
condition set for the function u(x)y(t, x).

The problem to be studied is

W—Aﬂ*(y)—i-v-[(o(x,y) > f in @ :=(0,T) x {2,
y(t,x) =0 on X :=(0,T)x I, (1.1)

(u(@)y(t,2)|,—o = fo(z) in 2.

1.1.1 Hypotheses for the Parabolic—FElliptic Case

Let p, ys and 8} be given positive constants.
In this section 8* : (—o0, ys] — R is a multivalued function defined as

e Jo BOdE, T <y,
B '_{[0:,+oo>, r=ys, (1.2)
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where 3 : (—00,ys) = (p, +0) is assumed of class C(—o0,ys) and mono-
tonically increasing on [0,y,). We also make the hypothesis that it has the
behavior

B(r) > ys|r|™ + p, for r <0, (1.3)
and the blow up property

Tli/(r;ls B(r) = 400, (1.4)

such that

lim/ B(r) = pBz. (1.5)
. Ys 0

The blow up property (1.4) together with (1.5) account for the fast diffusion
character of the first equation in (1.1). In (1.3) v > 0 and m > 0. For the
sake of simplicity we can take in the diffusion nondegenerate case yg = 0
and set

B(r) =p >0, for any r <0, (1.6)

without losing the generality. In fact in the nondegenerate diffusion case the
requirement is 3(r) > p > 0. The more general form (1.3) can be treated in
the same way. Consequently, 5* gets the properties

(C _Z) (T _?) 2 p(T _F)Qv VT,F € (—OO,yS], C € ﬂ*(T)a C € ﬂ*(F)v (17)

Jim_ (1) = o, (18)
Jim §°(r) = 57, (19)

The definition of the weak solution which we give a little later will specify
the exact meaning of the boundary value problem (1.1).

The function u is considered smooth enough, nonnegative and bounded
by the upper bound wys, that can be taken any positive constant. Hence we
assume

we WH(), 0 < u(x) < uar for any z € 2, (1.10)

revealing the degeneration of the equation at the points where u is zero. To
be more specific we assume that

u(z) = 0 on 2y, u(xr) >0 on 2, = 2\, (1.11)
where (2 is a fixed open bounded subset of 2 with meas(£25) > 0 and (2 is

strictly contained in (2, see Fig.1.1. The common boundary of {2y and (2, is
denoted 02y and is assumed to be regular enough.
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Qy

u(x)>0

Fig. 1.1 Geometry of the problem

We also specify that the domain where u vanishes can be formed by a
union of a finite number of subsets {2y with the properties specified before,
but we shall present the theory for only one subset.

Finally, the vector K : £2 X (—00,y;] is assumed of the form

_ Jalz)K(y), T € 2y,
Ko@,y) = {a(x), x € (D,

where a(z) = (a;(z))j=1,... N,

aj € Wh(92), aj(x) =0in 2y, |aj(z)| < aé‘/[, for z € 12, (1.12)

and K : (—o0,ys] — R is Lipschitz continuous, i.e., there exists My > 0 such
that

|K(r) — K(T)| < Mg |r — 7|, for any r,7 € (—00, ys]. (1.13)
Moreover, we assume that K is bounded
|K(r)| < K, for any r € R. (1.14)

The term V - Ko(z,y) includes both a nonlinear advection term with the
velocity a(x)K’(y) and a nonlinear decay or source term with the rate V - a.
1.1.2 Functional Framework

We begin by establishing some notation and giving a few definitions.
Let us consider the Hilbert space V = H{(£2) with the usual Hilbertian

norm
, 1/2
lolly = ( [ Iveto) d:c) |

and its dual V' = H~1(£2).
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The dual V’ will be endowed with the scalar product

YD)y = WD)y v s (1.15)

where ¥ € V is the solution to the elliptic problem

Aoy =7, (1.16)

with Ag : V — V' defined by
(Aov, @)y = / Vv - Vedz, for any ¢ € V. (1.17)
7

The notation (y,),, , represents the pairing between V' and V and it

reduces to the scalar product in L?($2) if y € L*(£2).

It is well known that Ag = —A with Dirichlet boundary conditions is the
canonical isomorphism between H}(§2) and H~1(£2). Moreover, it is isometric
because

[yl = [l - (1.18)
Indeed, by (1.15) and (1.16) we get

Iyll5 = (v, ¥y = (Ao, ¥y y = W13

where ¢ = Ao_ly.

We recall now the Poincaré inequality (see e.g., [30], pp. 290). Let 2 be
a bounded domain in RY with a sufficiently smooth boundary. For each
y € H}(2) we have

Iyl < cp Yl gy 0 (1.19)

with cp depending only on (2 and the dimension N.
We also recall that if § € L?(£2) we have

1011y, < cpllO]l . (1.20)

Indeed, by (1.15) and (1.18)
1611 = 0,9}y v = /Q Opda < (|0] 1] < cp 101 [¢lly = cp 10110l -

For 6(t) € V', we denote by 90(¢) the strong derivative of 6(t) in V", i.e.,

ﬁ(t) = lim ot +e) - 6(t) in V.
dt e—0 €



1.1 Well-Posedness for the Cauchy Problem with Fast Diffusion 7

Finally, we specify that v € W°(£2) is a multiplicator in V’. Let § € V.
Noticing that uy € V for ¢ € V, we define

<U‘95 1/}>V/7V = <95 U1/}>V/7V ) fOI' 311}’ 1/) € Va

and see by (1.15) that uf is well defined since

||UHH%// = <U97¢>V/,V = <9=m/’>v/,v < |0lly: lully < Clivolly = C lublly,

where Aot = uf and C includes the norm [[ul|; . = [[ullyy1.00 (-

Problem (1.1) will be approached under the following hypotheses for f and
the initial datum:

feL*0,T;V, (1.21)
0o € L*(£2), 6y = 0 a.e. on (2,

0 0
0o > 0 a.e. on 2, s L3(2,), L < Ys, €. T € 2. (1.22)
m m

We recall that 2, = (2\(2_0 and it is an open subset of (2. The non-
negativeness assumed for f is in agreement with the physical interpretation
of 6y, that of a density (in general) or a temperature. From the mathematical
point of view it does not diminish the generality.

We give now the definition of a weak solution to (1.1).

Definition 1.1. Let (1.21) and (1.22) hold. We call a weak solution to (1.1)
a pair (y, (),

y € L*(0,T;V),
¢Ce L*0,T;V), ((t,x) € B*(y(t,z)) a.e. (t,x) € Q, (1.23)

uy € C([0,T]; L*(£2)) nWH2([0, T]; V),

which satisfies

<%(t>”/’>w + /Q (VE(t) = Ko(w,y(1))) - Vibda
= (f),¥)y vy, ae. t €(0,T), for any ¢ €V, (1.24)

the initial condition (uy(t))|,_, = fo and the boundedness condition

y(t,z) < ys ae. (t,x) € Q. (1.25)
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It is easy to see that an equivalent form to (1.24), which will be used many
times in this book is

/OT <%(t)’ ¢(t)>v/,v dt + /Q (V¢ = Ko(z,y)) - Vodadt

T
= /0 (f(t), (1)) sy dt, for any ¢ € L*(0,T; V). (1.26)

A proof of the equivalence between (1.24) and (1.26) can be found in [84],
pp- 81.

We also specify that a weak solution is a solution in the sense of
distributions to (1.1). Indeed if we take ¢ € C§°(Q) in (1.26) we get after
some computations involving Green’s and Ostrogradski’s formulae (see [13],
pp. 13) that

/ (Mgty) CACH Y - Koz, y) — f) ¢dzdt = 0, Vo € C5°(Q),
Q

which means that

%—AC+V~KO(:E,y)—f:Oin D'(Q).

The boundary condition on X' is immediately implied by the fact that the
solution y(t) € V = H}(2) a.e. t € (0,T).
Now we pass to the abstract writing of our problem. We set

D(A) :={y € L*(2); 3¢ €V, ((x) € B*(y(x)) a.e. x € 2}

and introduce the multivalued operator A : D(A) C V' — V' by
A 0)yy = [ (V¢ Kole,y) - Tidn, ¥ € V. for some ¢ € ().
2

With all these considerations we write the abstract evolution problem

d(uy)
dt

(t) + Ay(t) 3 f(t), ae t€(0,T),
(uy(t)];—o = fo- (1.27)
We consider now the multiplication operator

M : D(A) — L*(2), My := uy, (1.28)



1.1 Well-Posedness for the Cauchy Problem with Fast Diffusion 9

whose inverse M ~! is multivalued. Denoting
0(t,x) == u(x)y(t, z) (1.29)
(and formally writing y = M 10 = £) we can rewrite (1.27) in terms of 6 as

%(t} + BO(t) > f(t), ae. t € (0,T),

0(0) = 6o, (1.30)

where B = AM~! and
D(B) := {9 € L*(0); g € L*(2), I €V, ((x) € B* (%(x)) a.e. x}

We see that 6 € D(B) implies § € L*(2) and y = ¢ € D(A). Conversely, if
y =2 € D(A) it follows that 6 = uy € D(B).

Besides the notion of weak solution previously given we recall the concepts
of strong and mild solutions (see e.g., [11,29]). Let H be a Hilbert space and
let us consider the problem

fl_j(t) + Az(t) > f(t) a.e. t € (0,T),

z(0) = zo, (1.31)

where A : D(A) C H — H is a nonlinear time-independent and possibly
multivalued operator. Let f € L'(0,T; H) be given, and zg € D(A).

A function z € C([0,T]; H) is said to be a strong solution to the Cauchy
problem (1.31) if z is absolutely continuous on any compact subinterval of
(0,T), satisfies (1.31) a.e. t € (0,T), 2(0) = zp and 2(t) € D(A) a.e. t € (0,T).

We remind that the absolute continuity on any compact subinterval of
(0,T) implies the a.e. differentiability on (0,7), because H is a Hilbert space
(generally this is true for a reflexive Banach space). Hence it is clear that a
strong solution z € Wht([a,b]; H), for all 0 < a < b < T.

In literature by a mild solution to (1.31) it is meant a continuous func-
tion which is the uniform limit of solutions to a finite difference scheme
corresponding to the problem (see [10,11]). We shall detail this definition
in Chap. 2.

For a later use we still define j : R — (—o0, +00] by

+00, > Ys.

Next, we recall the concepts of lower semicontinuity (l.s.c.) and weakly
lower semicontinuity and subdifferential.
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Let X be a Banach space and let ¢ : X — [—00,00]. The function ¢ is
proper if p(x) # 4o00. The function ¢ is convex if

p(Az1 + (1 = Nx2) < Ap(a1) + (1 = Np(22)

for A € [0,1] and any z1, x2 € X.
The function ¢ is said lower semicontinuous at xg € X if

lim inf p(z) > ©(xp).

Tr—rTo

If ¢ is l.s.c. at each point z¢p € X then it is l.s.c. on X.
A function ¢ is sequentially weakly lower semicontinuous on X if for any
sequence (Zp)n>1, Tn € X, such that x, — = we have

o(z) < liminf p(x,), Vo € X.

n—oo

Let ¢ be a proper convex lower semicontinuous function and let z € X.
The set

dp(e) = {a" € X'sp(a) - 9(2) < ("2~ 2)yu x . Vz € X}

is called the subdifferential of ¢ at z.

Lemma 1.2. The function j is proper, convez, lower semicontinuous and

B (r), r<ys
9j(r) = 1By, +00), r=1ys (1.33)
g, r>Ys.
Proof. First, we notice that
i = [ s = 5w <y (1.34)
0
Then, for r < yq,
J(r) <j(ys) = lim [ B*(§)dE < lim Bir = Blys, (1.35)
r s Jo . Ys

so j is proper. It is also obvious that j is convex.

We show now that j is lower semicontinuous. For r < y, the function j is
continuous, so we have only to study what happens at y,. Let us consider a
sequence (rp)n>1 C R, 7, <ys, such that r, — ys and write

J(r) = /0 " g (©)de = /0 O (©)de
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where

1if0<E<ry,,
0ifr, <& <uys.

Xn(§) :{

We have xa(€)8°(€) > 0 and x,(€)3*(€) = 5*(€) a.e. on (0,y,) as n — oc.
Using Fatou’s lemma (see e.g., [13], pp. 3) we have

Ys Ys
IMMNMJMMAX&WQME B*(€)dE = j(y2).

n—roo n—oo 0

Finally we have to prove that * = 9j. We begin with the inclusion 5* C 9j.
We have to prove that if v € §*(r) then v € 95(r), for any r < ys, i.e.,

j(r) —jy) <wv(r—y), foranyy e R and r < y;.

This inequality is obvious for r < y, and y < ys and for r = y = ys.
Let » = ys and y < ys. Then we have

) — i) = [ B ©de = tim [ B (E)de < B2 (e — y) < valys — u),

Yy T Ys Jy

where v, € [8%, +00) = 8*(ys). If r < ys and y = y5, we have

J(r) —i(ys) / B (

and this comes back to the previous situation. If » = ys and y > ys, then
j(y) = 400 and the inequality is verified.

Now we notice that the function §* is maximal monotone on R. Indeed,
the range R(I 4+ $*) = R, this being implied by the observation that the
equation r + 5*(r) = g € R has a unique solution in (—o0, y;]. In conclusion,
£* is maximal and satisfies the inclusion 8* C 07, hence it should coincide
with dj. So, we have proved (1.33) as claimed. O

1.1.3 Approxrimating Problem

The approach of the Cauchy problem (1.27), or equivalently (1.30) is based
on some preliminary results. Since A is multivalued due to both M~! and
[£* we introduce an approximating problem by regularizing both of them. In
this subsection we shall study the approximating problem while in the next
subsection we shall prove that it converges in some sense to (1.27).
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Thus, let € be positive and replace u by
ue(x) := u(x) + ¢,

and * by a regular single-valued function 87 : R — R. This can be defined
as a regularization of £* using mollifiers, or for convenience it can be taken
of the form

ey ) B, r<ys—e¢
Belr) = { B*(ys — ) + —B;_ﬂ*s(ys_a) [r—(ys —¢€)], r>ys—e. (1.36)

The function 8¥ is differentiable and has the derivative denoted S bounded
on R, for each € positive. Also, 5} is monotonically increasing on R,

(BX(r) = B2(F)) (r = 7) > p(r — 7)?, forr,7 € R, (1.37)

and

lim BI(r)=—o0, lim BI(r) = +oc.

r——00 r—400

The function K is extended for r > ys by its value K(y,) < K, but
for the sake of simplicity we denote this extension still by K. Consequently,
Ko(z,r) = a(x)K(r) will extend K¢ by a(x)K (ys) for r > ys.

Then we define the single-valued operator A, : D(A.) C V' — V', where

D(Ac) = {y € L*(2); B(y) € V'},

(A D)y y = / (VB:(y) — Koz, y)) - Vepde, for any ¢ € V,  (L38)

and we introduce the approximating Cauchy problem

%(U + Aoy (t) = f(t), ae. t € (0,T),
u:y=(0) = bo. (1.39)
Denoting now 6. := wu.y. we can write the equivalent approximating

Cauchy problem in terms of 6.,

dd_eta(t) + B.6.(t) = f(t), ae. t € (0,7),

0-(0) = 0. (1.40)
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The operator B. : D(B.) C V! — V" is single-valued, has the domain

o) = {oe @ o (L) ev}

€

and is defined by

(Bev,¥) )y, = / (Vﬁ: (i> — Ky (:v, i)) - Vipda, for any ¢ € V.
’ n Ue Ue
(1.41)
In fact we note that B.v = A, (u%) and v € D(B.) is equivalent to u% €
D(A,).
Also, it is easily seen that D(B.) = V. Indeed, if v € D(B;) it follows that
u% € V by the fact that the inverse of 7 is Lipschitz, and from here we get

that v € V, since u. € WH>(£2). Conversely, v € V implies -- € V and
taking into account that the derivative of 37 is bounded for each ¢ > 0 we

obtain that /37 (u%) € V. We recall that u. = u +¢ € W ().
Definition 1.3. Let (1.21) and (1.22) hold. We call a strong solution to
(1.40) a function

0. € C([0,T]; L*(2)) nW2([0, T); V'), B2 (Z—) € L*(0,T;V),

that satisfies (1.40), which can be still written

db. . [ 0 0.
<%<”’¢>w “, (Ws (u:) K (””’ui)) Vi

=(ft): )y vy, ae. t€(0,T), foranyy €V (1.42)

and 6.(0) = 6.

Since by 6. := u.y., problems (1.40) and (1.39) are equivalent, it means
that if 6. is a solution to (1.42) then y. is a solution to (1.39) and belongs to
the same spaces as ..

An equivalent form to (1.42) can be written as

T
/0 <d(1§ty5>(t),¢(t)>v/7vdt+/Q(Vﬂz(ys)—Ko(x,yJ)-Wdfvdt

T
= /0 (f(t),0(t))ys , for any ¢ € L*(0,T;V). (1.43)
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1.1.4 FExistence for the Approximating Problem

First we shall prove that, for each € > 0, (1.40) has a unique solution 6. and

consequently, (1.39) has a unique solution in their appropriate functional

spaces. The proof is essentially based on the quasi m-accretivity of the

operator B. on V'. Because we are working in Hilbert spaces, we recall the

celebrated theorem of Minty (see [79], or [14], pp. 34), by which the notion of

a maximal monotone operator is equivalent with that of m-accretive operator.
We say that B. is quasi m-accretive on V' if X + B is monotone,

(M + B2)0 — (M + B.)8,0 — )y >0, V0,0 € D(B.),

and surjective,
R\ + B.) =V,
for all A > Ag.
Lemma 1.4. The operator B. is quasi m-accretive on V.

Proof. Let 6, 6 € D(B.). We compute

V(5 () - () v
N Ug Ug

(B:6 —B.6,0—90),, = /

(o) - 2)) o

where ) € V is the solution to Agy) = 6 — . Recalling (1.12)—(1.13) and that
e < wue(x) < up + € we have

/rz (KO <x ui) — Ko <x g))  Vipda

N

0 81|
s;/mMij(xn e L
al yllo—a
< Majt || — IV9 220
Jj=1 € L2(~Qu)
M, Mo -
< — o8 lvly =—llo-ollle -9l (1.44)
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_ N

where we have denoted M = Mg > aéw . Next, taking into account (1.37)
j=1

we compute

(M + B.)0 — (\ + B.)8,0 — )y

+ (B0 — B-0,60 — ?)V,

of 2 ()= () oo

p H _gHz M up + €
2(upr + €) 2e2
_ M up + €
_<,\ PER ) m”e al°, (1.45)

so that B. is quasi-monotone for A > A\ = % We recall that ¢ is
positive fixed.
Next we have to prove that R(AI + B.) = V' for X large, i.e., to show that
the equation
M.+ BO. =g (1.46)

has a solution 6. € D(B.) for any g € V'. If we denote 8* (fﬁ =( eV,

due to the fact that 37 is continuous and monotonically increasing on R and
R(fZ) = (—o0,00) it follows that its inverse

G¢ = u(B)71() (1.47)
is continuous from V to L?(£2). Indeed, for ¢, { € V
|G¢ = G| = [Jue ((B2) () = (B)1(Q)) || (1.48)
< BEE o) < e ey,

where we used (1.37) and Poincaré’s inequality (with the constant cp).
So, (1.46) can be rewritten as

AGC+BoC =g (1.49)

with By : V — V' defined by

(BoG, )y y = /Q (V< — Ko (;v %)) - Vipdx, Y € V. (1.50)
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We shall show that AG + By is surjective. First we have

<()‘G + BO)C - ()‘G + BO)Z? C - Z>V’ v

=A/{)(G<—GZ><<—Z>dw+/ﬂ!wc—Z)} du

_/Qa(x) (K (%) _K <i_5>) V(¢ ~ Q)

/QUE(GC GQ) dx+/\v< <\ dx

M _ _
M ec -t c-zl,

-
> (- 3 ) oc-tl+ el

so A\G + By : V — V' is monotone and obviously coercive for A > Ag.
We recall that the operator T : V — V' is called coercive if

lim e lvey
n—0o0

= +OO
znlly

for any sequence (z,)n>1 with lim ||z, = +oo.
- n—oo

The inequality (1.48) implies also that the operator AG + By is continuous
from V to V' and since it is monotone it follows that it is m-accretive. Being
also coercive it is surjective (see [14], pp. 37). Therefore (1.49) has a solution
meaning in fact that we have proved that (1.46) has a solution 0. € D(B.),
i.e., that B is quasi m-accretive. a

Next we give an intermediate result that will be used in the existence proof
of the solution to the approximating problem.
First we define

0= [ B v er (151)

and notice that 9j.(r) = BZ(r), for any r € R.
Let

F:K (meas( 1/2211
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Proposition 1.5. Let f € L?(0,T;V’') and 6y € L*(§2). Then problem
(1.40) has a unique strong solution satisfying

(6. df. 1 (Y], (0 ?
[vcic (20 arsd [ %] ars [z (Z0)] o
0 T _
S/Qus(a:)js (u—0> dx+/0 IF@®)2, dt + KT, t € [0,T). (1.52)
Moreover,
o). + 5L [N~ ) ar

+Ava—7wﬁn

where 0, a_nd_gE are two solutions to (1.40) corresponding to the pairs of data
0o, f and Oy, f, respectively.
In addition, if f € W12([0,T); L*(£2)) and 0y € V, then

ge(ifz “M+s+1) (!\90—90 f/ dt) (1.53)

Oc,ye, B2 (ye) € L*(0, T3 H*(£2)). (1.54)
Proof. The proof is done in two steps. At the first step we take
0y € D(B.), f e W" (0, T];V").
Hence the existence of a unique solution to (1.40)
0. € C([0,T]; V') nWh>=([0,T]; V') N L>=(0,T; D(B.)),

@(%>eﬁﬂmﬂV>

Ue

follows from the general theorems for evolution equations with m-accretive
operators (see [14], pp. 141).
By the properties assumed for

*
)

Llpschltz with the constant 7, hence S (i( )) D(B

( ) € H(2), a.e. t. Since (ﬁ )~1(0) = 0 the trace of &= =(t) (see [13], pp. 122)
makes sense and vanishes on I'. Therefore € L*=(0, T V). For proving the

we deduce by (1.37) that its inverse is
.) = H(£2) implies
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estimate (1.52) we test (1.40) for 52 ( ) € V and integrate over (0,¢) x {2.

Taking into account the relation
L/ de. L [0
[ (G (F@))
0 T Ue VIV
i d 0.
= (@)— J- | —(¢ dzd
o Jyoriy (e (Ge0) e

[0 [0
— [ wetwric (%0} ao - [ wetoi (%) an
N Ue N Ue
we obtain that

| wetoi. (i—i@) dz + / s (Z—()) idr
< [ wetwrse (2) o [ 1| ()
[ (e ) o ()
From there, using (1.14) we get
[ wwic (L) ar+ g [ o (L) dr

T
< / e () e (9—0> dw—i—/ [FG]ES dt + KT, for t € [0,T]. (1.55)
2 Ue 0

dr
v

2

Next, we multiply (1.40) scalarly in V' by ddetf and integrate over (0,t).

By similar computations based on the definition of the scalar product in
V', we get

df.
dr

(1) 2V dr + /Q e (2)je (Z—Z(t)) dz (1.56)

. 6o r 2 T2
< [ ucaric (L) o+ [C1s1% ae+ K.

Adding the previous two inequalities we obtain (1.52).
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In the second step we take
0o € L*(2) = D(B.), f € L*(0,T;V").
Since WHL([0,T]; V') is dense in L2(0,T;V’) and D(B.) = V is dense in

L?(£2) we can take the sequences (fy,)n>1 C WH([0,T]; V') and (03)n>1 C
D(B.) such that

fn — f strongly in L*(0,T; V"),
0 — o strongly in L?(£2) as n — oo.
Then, for each € > 0, the problem

dor
dt

(t) + BOZ(t) = fu(t), ae. t € (0,T), (1.57)
02(0) = b

has, according to the first step, a unique solution 07 satisfying the estimate
(1.52), namely,

(o 1 [tder |17 1L, (o ?
/ﬂus(x)js (u_a(t)> dz + Z/o I (1) o dr + Z/o Bz (U_E(T)) VdT
(o T > =2
§/Qu5(:1:)]5 <u_€) da:—l—/o | fu()]y dt + KT, (1.58)

for any ¢ € [0,T]. We stress that ¢ is fixed.
We notice that j. is Lipschitz and by the definition of 3} and j. we have

2
n
5

. (0 By — B (ys —¢)
Z0 < - 7 7 .
[ ueonic () do < (a4 0 EEZLZ B 150)
whence
(o 1 [tder, |17 1L, (o ?
/ﬂus(x)js (u_a(t)> d$+1/0 I (1) o dT+Z/O Jo (U_E(T)) VdT
* Q% . — en 2 T .
S(uM—l—a)%iyE) % +/ a2, dt+ KT (160)
€ 0
* Q% . — 9 2 T -
< (i + o) EZ L= BN [Fy )R, e+ BT 42,
€ 0

due to the strong convergence 6 — 6y and f, — f as n — oo. Thus the
right-hand side in (1.60) is independent of n, since ¢ is small, fixed, e.g. ¢ < 1.
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Recalling (1.34), je(r) > §r? for any r € R, we can write by (1.60) that

g e
*_ Q% _ 2 T
< (uM+1)M b +/ FG]k2 dt + K- T+2, (1.61)
e Uge 0

for any t € [0, 7.
We deduce that (ﬁ;‘ (0_;‘)) lies in a bounded subset of L?(0,T;V) and

Ue

(dg;;) is in a bounded subset of L?(0,T;V’). Therefore we can select a

subsequence, denoted still by the subscript n, such that
doz  db.
dt dt

in L2(0,T;V’) as n — o0,

o’n,
B <u—€) — (. in L*(0,T; V) as n — oo.

€
€
The latter immediately implies that

£~y in L*(0,T;V) as n — oo.
Ue

n

But u. € Wh*°(£2) and the sequence (0.), = (us%”;) is bounded in
L?(0,T;V) so that we get

07 — 6. in L*(0,T;V) as n — oo.

At this point we recall the following theorem (see [7,77]).

Theorem (Aubin—Lions). Let X, X5, X3 be three Banach spaces, X1 and
X3 reflexive, X1 C Xo C X3 with dense and continuous inclusions and
the inclusion X1 C Xo is compact. Let (zp)n>1 be a bounded sequence in
LP1(0,T; X1) such that (d;—gl)nzl is bounded in LP3(0,T; X3). Then (2n)n>1
is compact in LP2(0,T; X2), where 1 < pq, pa, p3 < 00.

On the basis of the previous convergencies and since V' is compact in L?(2)
it follows by the above theorem that

0" — 0. in L*(0,T; L*(2)) as n — oo
and also (since us > €) that

0 0
£ — —= in L*(0,T; L*(£2)) as n — oc.
Ug Ue
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By (1.36) we have

= () - ()
Ug Uge

B = B*(ys — ) (9_2_9_5>

e

L2(Q) }

Ue Ue L2(Q)
and deduce that
* 9? * 95 . 2
il =) =81 —) in L7(Q), as n — o0,
Ue Ue
hence (. = ; (Zf) a.e. on Q.
Moreover, since K is Lipschitz it follows that
o O\ . ;o 2
K|—=)—=K|— ] in L°(0,T; L*(£2)) as n — o0.
Ue Ue
Finally, the Ascoli-Arzela theorem (see below) implies that
07 (t) — 0-(t) in V', as n — oo, uniformly in ¢ € [0, 77, (1.62)

as we further prove. First we recall this theorem.

Theorem (Ascoli-Arzeld). Let X be a Banach space and let M C
C([0,T]; X) be a family of functions such that

(1) llu@®)lx <C,vte[0,T], ue M,
(i) M is equi-uniformly continuous i.e., Ve, 30(g) such that
lut) — u(s)lx <& if It — 5| < 6(e), Vu € M,

(i1i) For each t € [0,T] the set {u(t);u € M} is compact in X.
Then, M is compact in C([0,T]; X).

Indeed, the family M = (62), C C([0,T];V’) is bounded (this follows
e.g., by (1.61)) and equi-uniformly continuous. To prove this, let ¢/ > 0 and
consider that o(¢’) exists such that |t — s| < o(¢’), for 0 < s < t < T. We have

t t
dey dey
||0?(t) — 0?(5)| v = H/ d; (r)dr < / d; () dr
s v s v
n 2
< |t— s|1/2 b <é, foro(e) < c VoL € M,
dt L2(0,T;V") ’70(6)

where vy(g) is the right-hand side in (1.60) which is independent of n. Still
by (1.61) we get that the sequence (67(t)), is bounded in L?({2) for any
t € [0,T] and since the injection of L?(£2) in V' is compact it follows that
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the sequence (07(t)), is compact in V’, for each ¢ € [0, 7). Hence the set M
is compact in C([0,T]; V'), i.e., we have (1.62).
From here we get that lim 67(0) = 6.(0), whence 6y = 6.(0).
n—oo

By (1.57) we have that

d@" do.
dt

B.0" = f, in L?(0,T;V’), as n — oo.

Since B. is quasi m-accretive on V', its realization on L?(0,7T;V’) is quasi
m-accretive too, hence it is demiclosed and the previous weak convergence
together with the strong convergence 67 — 6. leads to

do.

L*(0,T; V"),

(see [14], pp.100). We recall that a subset A of X x X is called demiclosed if
it is strongly—weakly closed in X x X i.e., z, — z, w,, — w where w, € Az,
imply w € Az. Thus, we have got (1.40), and proved that this problem has
the solution 6. € C([0,T], L?(£2)) N W2([0,T); V') N L?(0,T; V).

Finally, passing to limit in (1.58) as n — oo, and using the lower
semicontinuity property we get (1.52), as claimed.

Consider now two problems (1.40) corresponding to the pairs of data
0o, f and B, f. They have the solutions denoted 6. and ., respectively. We
subtract the equations and multiply the difference by (6. — 6.)(t), scalarly
in V/. Then we integrate it over (0,t¢). A few calculations on the basis of
(1.45) lead us to

l6-(5) - 9-(1)|I;

2 — 2
vt [ o) -0l ar < oo -l

o [l - >\V/dt+(M2<“M“ ! [le--2) 0,

which by the Gronwall’s lemma implies (1.53). This also implies the
uniqueness if the data are the same.

Finally, we give an idea for the proof of (1.54). Let f € W12([0,T]; L?(£2))
and 0y € V. A rigorous computation means to replace (1.40) by a time
ﬁ*(ys(“rh)}z*ﬁ*(ys(t)) which isin V

finite difference equation, to multiply it by
and to integrate with respect to ¢. For simplicity we present a more formal
computation. We multiply (1.40) by 8[38;(5/5) and integrate over (0,t) x 2.

We get

/Ot/Qusﬂs(ys) <Cily:>2dzdr+%/t6%||Vﬂ;(y5(7.))”2d7_
=/Ot/9a<w>K<ya>-v(dﬁ*$ja )d ar +//fdﬁ* v |
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After the integration with respect to 7 in the second term on the left-hand
side, we obtain

‘ dye ? 1 * 1 *
[ webetve) (S5 dmar -+ 5 1821 - 5 182 elOD1E

= [ @) Kw0)- 980~ [ a)K (5:(0) - VB (v (0))o

[0}
-/ / a(x)al;—iy”~vz3:<y5(r>>dzdr
— : T — t o7 g xdT
+ [ 10s o - [ roswoye— [ [ Lotwisar

Next we have

[ [ et () e+ L1t
o Jo ePe\Ye dr ) e\Je \4

< Cole) + T (Ol 182 (e () A

o 18zt ar

of

+ep |[F@l IIB;“(ys(t))||v+CP/O 3, (D) 182 (e (M)l dr,

where

bo

Ug

00(5): +M

v

+cp|[£(0)

v

@) el (2
By B:(y:) > p and (1.52) we deduce
o [ [ (2) doar 2ot
+g/0t/95 (%f)%w% (?— +1> / 182 (ye () 2 dr

of
87( 7)

o ()
ue /||y

(1.63)

1
2

F2TT° ||y (0))12 + 263 || £ (1) +CP

dT,

whence we get < dy € L*(Q), B:(y-) € L>=(0,T; V) for each £ > 0.
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We continue with some other computations based on the arguments
developed in [84], Theorem 2.6, pp. 156. These are very long and technical
so we do no longer provide them. We obtain an estimate of the form

* 2 * 2 * 2
182 (Y)llwrz o, 22(0)) + 182 Wellzoe 0,7y + 188 Wellz2(0,7: 12 (2))

<m By — ﬂ*g(ys - 5)

(1= (%)

where 71 is a constant depending on the problem data. Since 6y € V it

follows that 22 € V and j. (ueﬁa) € L'(92), so that by (1.64) we get

that B*(y.) € L?(0,T; H*(£2)). By a direct computation we also get that
a;K(y.) € L*(0,T; H(£2)), j=1,...,N.

For a later use we specify that these imply the flux continuity across a
surface, i.e.,

2
. o 2
. + /Q]a (m) dx + Hf(t)HWL?([O,T];L?(Q)) + 1) )

(1.64)

(Ko(x,ye(t)) — VBZ(ye(t))) - v is continuous across I, a.e. t € (0,7,
(1.65)

where [, is any surface included in {2 and v is the outer normal to I.
Indeed, since each component 7;(#) of the flux vector belongs to H*(£2), a.e.
t it follows that its trace on any line crossing the surface I, is continuous.
Therefore the normal component of the gradient is continuous across any I,
and in particular across 92. O

1.1.5 Convergence of the Approximating Problem

Theorem 1.6. Let (1.21) and (1.22) hold. Then, the Cauchy problem (1.27)
has at least a weak solution (y*,().

Proof. Let us assume (1.21) and (1.22), i.e.,

0o € L*(£2), 6y = 0 a.e. on (2,

0 0
0o > 0 a.e. on 2, 2 e L*(2,), 2 < Ys, a.€. T € 2.
m m
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According to Proposition 1.5 there exists a unique solution to (1.40), with
the properties (1.52), (1.53). Then, it follows that

0 0 0 0
/j5<0)d:1;_/ j5<0)da:+/ j5<—0>daz—/ j5<—0>daz
0 Ug 2 Ug 2. Ue 2. (5

since Z—“ = 0 a.e. on 2. Using (1.35) and the fact that u. = u +e > u on
2,, we still obtain

90/“5
/ ] ( ) dr = / / r)drdz
2u
90/71,
/ / r)drdz < [iysmeas(2),
2u

and so the right-hand side in (1.52) becomes essentially independent of ¢,

/ng 2)je (G—E(t)>dw+ Ot y / B*( u()>

T
<4(up+e) (Bzysmeas(9)+/ RGIES dt—f—sz), t€10,7]. (1.66)
0

2

dr
14

do.
dr (T)

—

Then, using (1.34) we get

0 2

Nell

T
< %(UJM +€) (ﬁ:ysme%(ﬁ) +/ 1F @)1 dt+F2T> , te[0,T].
0

(1.67)
Next, we write again
0<
0. = (Ve ) vz
€
and obtain
2_ 8 2 * T 2 72
1= = ~(unr+e)™ | Biyomeas(2) + | - |If )l dt + KT |, ¢ € [0, T].
0
(1.68)

Therefore, the right-hand side terms in the estimates (1.66)—(1.68) are
bounded by constants (since € is small, e.g., ¢ << 1).
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1.1.5.1 Passing to the Limit as ¢ — 0

On the basis of these estimates we can select a subsequence denoted still by

the subscript €, such that

B (9—€> — Cin L*(0,T;V), as e — 0,
u

€
€

6
Y. = — —yin L*(0,T;V), ase — 0,
Ue

0 Wk
Vie— 2 x in L®(0,T; L*(R2)), as e — 0.
Ue

But
0

0: = u.—
Ue

and since v, — u uniformly on 2 and u € WH°(£2) we have that
10cl| 120,71y < constant independent of e,

and so
0. — 0 in L*(0,T;V), as € — 0.
By (1.66) we still deduce that

do-  do ., o
o ElnL(O,T,V), as e — 0,

and by (1.40) we have

0

* £ Ade . 2 Ry
ApBE (%) dt_me(O’T’V)’ as e — 0.

Also, by (1.70), (1.72), (1.74) and u. — w uniformly we deduce that

0 = uy a.e. on @,

and obviously

0 =0 a.e. on Qo,

where Qo := (0,7) x £2y. Using (1.71) and (1.70) we still obtain that

Viteye = x = vuy in L®(0,T; L*(02)).

(1.69)
(1.70)

(1.71)

(1.72)

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)

(1.78)

(1.79)
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Again, by the Ascoli-Arzela theorem we deduce that
0-(t) = 6(t) in V', as € — 0, uniformly in ¢ € [0,7]. (1.80)
Thus,
b0 = lim 0.(0) = B(0) = (uy(t))],—,
By the Aubin-Lions theorem (6. ). is compact in L2(0,T; L?(£2)), i.e.,
0. — 0 in L*(0,T; L*(2)) as € — 0. (1.81)
We set now for § > 0 arbitrarily small
25 :={x e 2; ulx) >0}, Qs:=(0,T) x £2s. (1.82)
We recall that
02, :={z € 2; ulx) >0}, Qu:=(0,T)x 2, (1.83)
and notice that {25 and {2, are open. We have

1 1 1
= Zon
Ug u+5<50n o

so that, by (1.81) and (1.70) we can conclude that

1 0
ye = —0. — —i=yin L*(0,T; L*(§25)), (1.84)

Ug

and a.e. in Qs, V6 > 0. Still by (1.70) we have that

0
ye = — —yin L*(0,T; L*(2.)). (1.85)

Ue

1.1.5.2 Convergence of 3¥(y.) on Q.
Let (t,z) € Qs. First, we shall prove that
C(t,x) € B*(y(t,x)) a.e. on Qs, (1.86)

where ¢ is given by (1.69). This will be proved using the fact that j is the
potential of 8*, i.e., B* = 0.
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To this end we establish some relations. We note that
Je(2) = j(2), ase — 0, for any z € R. (1.87)

This assertion is clear for z < ys — €, where j.(z) = j(2).
For ys — ¢ < 2z < ys we compute

Je(2) = (=) =

JCGE B*(&))dé‘ <28 5 0ase 0,
Yy

s—€

where we recall that 8} = lim, », 5*(r) (see (1.5)).
For z > y, we have

i = [ " e+ / T (e = / " e

s—€

B —B"(ys —¢)

+ﬁ*(ys_5)[z_(ys_5)]+ % [Z_(ys_g)]z'
Therefore, we have lim._,0 j-(2) = j(ys) for z =y, and
lim j.(2) = +o00 = j(z) for z > ys,.
e—0
Now, we are going to show that
/ J(y)dzdt < lim inf/ Je (ye)dxdt. (1.88)
Qs =0 JQs
Let € be small, e.g., € < y—; We can write
/ Je(ye(t, z))dxdt (1.89)
Qs

y

where

Je(ye (t, x))dadt + /

ja(yg(t,x))dxdt—i—/ Je(ye (t, x))dxdt,
Qs

Q3

£
1

Qi = {(t,fb) S Q(;; yé(tax) <Ys — 6}5
Q3 ={(t,z) € Qs; ys —€ < y(t,7) < ys},
Q5 ={(t,x) € Qs; ys < ye(t, o)}
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We compute each term apart. For (¢, z) € Q5 we have

ys(t@) (t m)
e (ye(t, 2) = / €)d = / €)de = j(ye(t, z)).

For (t,z) € Q5 we write

ye (t,2)

ey (t,2)) = / " e + [ sriegae

= e =€)+ B~ D 2) — (e — )]
BB =D 1) — (g - )
> ](ys - 5)

s—€

because the last two terms in the sum are positive on Q5 (5* is positive for

a positive argument and so 8*(ys — ) > 0).
Next, if (¢, z) € QF, taking into account that 8% (r) > 5*(r) for r < ys and

B2 (ys) = B we have
Ys ys(t,w)
’a atu = : d : d
jelwetta)) = [ ﬁ(§)£+/ys B(€)de

> / " B () + B (s — ) (et 2) — )
0

Bs — B*(ys —€)
2¢e

+ (ys(t, 513) - yS)2
> j(ys)-
We resume (1.89), writing
/Qé Je(ye(t, x))dzdt > /ij(yg(t,x))d:rdt—k/gj(ys —es)dxdt—|—/Qg J(ys)dzdt
— [ itutandaar+ [ Ge(t.o) - ilota)dsat
Qs H
+ [ Gn =)~ sutdode+ [ () = ilota))dsdr - (1.90)
5 Q3

and we treat again each term apart.

Since y. — y in L?(Qs) it follows that on a subsequence y. — y a.e. on Qs,
and in particular this is true on Q5 and Q5. Moreover, y — j(y) is continuous
if y <ys and so we have

Jlye(t,x)) — j(y(t,z)) — 0 a.e. on QF, as ¢ — 0.
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Then j(ye(t, 2)) < j(ys—e) <j(ys) if (t,2) € QF and so (e (¢, ) — j(y(t, 2))|
< 25(ys)- In conclusion by the Lebesgue dominated convergence theorem we
deduce that

[ Gttt ~ itote.0))dsas

= [ 16tae) = sttt s .| e 0

where xqs is the characteristic function of the set Q7. For the second term
in the sum (1.90) we write

[ Gt =)~ styte. oy
Q

= [ (G =) = dluta)dode + [ (Gluelt0) = sy(t.0)dod

The last term on the right-hand side converges to 0 by a similar argument
as before, using the Lebesgue dominated convergence theorem. For the first
term we recall that y — j(y) is Lipschitz if y < ys and we have

/ (3(ys =€) = j(ye(t, 2)))dzdt

< ] [ Gl =) =500 t.2)was byt
Qs

<B: | lys —e— ye(t, )| dodt
Qs

< Bimeas(Qs)e — 0 as e — 0,

where X ¢ is the characteristic function of the set Q5.
For the third term in (1.90) we write

J.

3

((ys) — 3 (y(t, 2)))dwdt = /Q (4(ys) — 3 (y(t, ) xqs (¢, x)dwdt

where X is the characteristic function of the set Q5.
We are going to show that

y(t,z) < ys a.e. on Qs

which will imply that the integral on (5 is nonnegative.
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Thus, on the basis of these results coming back to (1.90) we deduce

e—0

liminf/ js(ys(t,x))dzdtz/ Jly(t, z))dxdt
Qs Qs

+liminf (/Q Gye(t,2)) — j(y(t, 2))) dudt

e—0 e
1

o,
Qs

- / J(y(t,2))dadt
Qs

((ys —) = J(y(t, w)))du’cdt>

and so (1.88) is proved.
It remains to prove the assertion that y(¢,z) < y, a.e. on Q5. We recall
(1.66) which implies in particular

t
18 ey am < 0

that can be still written

t t
0B oD ar + [ 182 0D gurp d < €

The second term is positive and bounded, 87 (y-(7,z)) < 5% on Qs\Q5 =
{(t,); y(t,x) < ys}, and replacing the expression of 5} we obtain

*

* _c 2
/ {ﬁ*(ys - 5) + L@S)[?Ja - (ys - E)]} XQg(t,!E)dxdt S C.
Qs

€

Further we have

* * 2
/ (L@s—f)) (- — o) v (t, @)dadt < C
Qs

3

because 5*(ys — ) > 0. We recall that 5* is convex, which implies that

B — B (ys —¢)

- > Bys —¢€)

and so we get

C
2 +12
Ye — Ys) XQs (t, x)dzdt = Ye — Ys dzdt <
/Qé( )" xqs (L, @) Q5{( )"} By — o)
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where (y. — ys)* represents the positive part of (y. — ys). Now we pass to
the limit (recalling that y. — y in L?(Qs) by (1.84)) and take into account
that 8 blows up at ys, getting

/ {(y —ys) T} dzdt <0
Qs

whence we deduce that y(¢,z) < ys a.e. on Q5.
Now we resume the proof of the convergence of 3} on @)5. Since

ja(r) < ]a(z) + B;(’I‘)(T - Z)u for any r,z € R,

we can write the inequality in particular for z : (0,7) x 25 — R, z € L*(Q5)
and r = y.. We have

/ jo(ye)dadt < / jeo)dzdt + [ By e — 2)dedt.  (1.91)
Qs Qs Qs

Assume z < y,. Then j.(z) < B¥ys and using (1.87) we deduce by the
Lebesgue dominated convergence theorem (see [13], pp. 3) that

lim ja(z)d:vdtz/ j(2)dzdt.
=0JQs Qs

Next, we remind that B7(y.) — (¢ in L%*(0,7;V) and y. — y in
L?(0,T; L*(£25)). By passing to limit as e — 0 in (1.91) and taking into
account (1.88) we obtain that

/ Jly)dzdt < / j(z)dxdt + C(y — 2)dxdt, ¥z € L*(Qs), 2 < ys.
Qs Qs Qs

(1.92)

This implies that 95 = (. Here is the argument. Let us fix (¢tg9,x0) € Qs,
choose w arbitrary in R, w < y,, and define

2(t, ) == { u(t, ), (F) & B (io, xo)

w, aI) (tO;IO)v

(t
(t
Ehere B, (tg, zo) is the ball of centre (g, x0) and radius r > 0. We denote
B, (to, o) = Qs\By(to, xo). Then, (1.92) yields

/ jly)dzdt + /7 j(y)dxdt
Br(to,mo) Br(t[),m[))

S/ j(z)dzdt+/ J(z)dxdt
BT(t(),LE()) Er(to,wo)

~ #)dwd — 2)dadt.
+~/BT(to,wo)<(y z)xt+L Cly — 2)dudt

B (to,z0)
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Taking into account the choice of z(t,z) we have

/ jly)dzdt + /7 Jly)dzdt
B.(to,xo0) B (to,z0)

< / J(w)dzdt + / J(y)dxdt
By (to,zo0)

B (to,z0)

+ /Br(tO,zo) C(y — w)dzdt + /7 C(y — y)dadt

B, (to,0)

from where it remains

/ Jjly)dzdt < / j(w)dxdt + / C(y — w)dzdt.
BT(to,Io) BT(to,LE()) BT(to,Io)

We recall the following definition. Let [ be a Lebesgue measurable function
on a set S and let zg € S. The point zq is called a Lebesgue point for [ if

1
lim ———— l(z)dx = 1(20).
0 meas(B,(z0)) /BT(Z()) (z)dz = 1(z0)

The set of the points at which the previous relation holds is called the set
of Lebesgue points. We also recall that the set of Lebesgue points for an
integrable function [ on a set S has the Lebesgue measure equal to that of S,
namely almost all points in S are Lebesgue for [.

Thus, let us assume now that (¢g, xo) considered before is a Lebesgue point
for j. Dividing the inequality by meas(B,(zo,to)) and letting r — 0 we get

J(y(to, z0)) < j(w) + ((to, zo) (y(to, v0) — w), Yw € R, w < ys.

By the definition of j we get ((t,z) € 8*(y(t,x)) a.e. (t,z) € Qs. Then,
since ¢ is arbitrary and Q. = (Js- o @s, we infer that

C(t,z) € B (y(t,x)) a.e. on Qu,
and we deduce that
y(t,z) < ys a.e. on Q.
Finally, since (K (%)) is bounded in L?(Q) we have
€ €
0c o
K|—)—krinL¥Q), ase =0
Ue
and we assert that kK = K(y). Indeed,

K (E) — kin L?(Q,), as e — 0,
u

€
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too. On the other hand, K being Lipschitz it follows by (1.84) that
(K (94)) is strongly convergent on each subset @y,
e>0

Ue

K <&) — K (y) in L*(Qs), as e — 0.

Ug

By the uniqueness of the limit the restriction of the weak limit function x to
Qs must coincide with K (y) and this also implies that

k(t,z) = K(y(t,z)) a.e. on Q.

On the subset Qg the function a(z)K (1%) = 0, so by the definition of Ky
we get

€

Ky (:E, %) — Ko(z,y) in L*(Q), as ¢ — 0.

Finally, we derive a relation which will serve a little later. Assume first
that f € WbH2([0,T); L*(£2)) and 6, € V.

We recall that ((t) € V a.e. t € (0,T). Since this regularity is not sufficient
to define its normal derivative to a surface I, C 2, we define a generalized

normal derivative of it 825}5), as an element of a distribution space on I'.. As

a matter of fact 8g_$/t) € H~Y2(T.) which is the dual of HY?(I.) (see the
definitions of these spaces in [78]).

Assume that I, is a smooth surface surrounding the domain 2. C (2,
ie., I = 0. It n € H'(2.) and Ay € (H'(£2.))" then we define 92 ¢
H~Y2(I.) by

0
(Gotr))
14 H—l/z(rc)7Hl/2(I’c)

= (A0, 9) (i1 20y, m (o) + /Q Vi - Vipdo, Vi € H' (). (1.93)

In particular, for n = ((t), £2. = {2y with the boundary Iy = 92 we define
the outward normal derivative g—ZC(t) a.e. t € (0,T), by

OT¢(t
< ;“,tr(w>>

v H=1/2(Ty),H/2(I}y)
= (AC), ) (111 (20))7, 10 (20)

+ [ VC() - Vdr, Vi € HY (£), ae. t € (0,T),  (1.94)
20

where tr(1) is the trace of ¢ € H*(£29) on I%.
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In a similar way, considering (2, = £\ 2y which has the common boundary
Iy = 9129 with 2y, we define %—;C(t) on I by the relation

O C(t
(T )
v H=1/2(Iy),H/2(I)

= <A<(t)7¢>(H1(Qu))’,H1(Qu) + ‘/.Q VC(t) -Vibdx, V) €V, ae. t e (O,T),
(1.95)

where tr(1) is the trace of ¢p € V on I.
Thus we can obtain the continuity of the generalized normal derivative
across the surface I, in particular across I'y. Indeed by (1.65) we have

/F (K3 (2. e(1)) — VCE (1)) - v o
= /F (Ky (2,y:(t) = V¢ (1) - v obdo, Vi €V, ae. t € (0,T),

where (. = 8% (y.) and the superscripts + and — denote the restrictions of the
functions on {2y and §2,, respectively. Also, v and v~ are the outer normal
derivatives to Iy from 2y and (2, respectively. Since V(. (¢) is bounded in
L?(02) independently on €, a.e. t (see (1.52)) we can pass to the limit and get

<(K8L(a y(t)) - V<+(t)) : V+, w>H*1/2(F0),H1/2(F0)

- <K(;(ay(t)) - VC_(t) ! V_’¢>H*1/2(F0),H1/2(F0) ) VU) € V, a.e. t € (OaT)
(1.96)

where the normal derivatives % =V(H(t)-vT and 8?3—41/(” =V( () v
are considered in the generalized sense (1.94) and (1.95). For simplicity, here

we denoted tr(v) still by .
Now we can pass to limit as e — 0 in (1.43) and obtain

T
:/ / fodxdt, for any ¢ € L*(0,T;V), (1.97)
0 2

where ( is given by (1.69), ¢ = ili% B2 (ye)-
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In particular if ¢ € C§°(Q.,) we get

/OT <%(”’ ¢(t)>v/)v dt + / (V¢ — Kolx,y)) - Vodadt

T
= /0 | fodadt, (1.98)

where ¢ € 5*(y) a.e. on Q,. We have taken into account that

Ouy)

d(uy) _ 5L '1f uy >0 (1.99)

dt 0, ifuy=20

where a(gty) is the derivative in the sense of distributions.
If we take ¢ € C§°(Qo) we obtain
T

/ (V¢ — Ko(z,y)) - Vodadt = / fodxdt, (1.100)

u 0 QO

where ( is given by (1.69).

1.1.6 Construction of the Solution

Now we consider the following equations in the sense of distributions

¥_AC+VKO(Iay) 9f iHQ,

(=0 on X, (1.101)
obtained from (1.97) for ¢ € C§°(Q), where ¢ is given by (1.69),

¢=0 onX, (1.102)
with ¢(t,z) € B*(y(t,z)) a.e. (t,2) € Q, and
—AC3f inQo=(0,T)x 2 (1.103)
with ¢ given again by (1.69).

The common boundary 92y of the domains (2, and 2y is regular. Since
¢ € L?(0,T;V) we deduce that for a.e. t € (0,T) the trace of the function
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¢(t) on any line Ly C 2 crossing the boundary 92, belongs to V, so that it
is continuous across Lg. Thus if we take zg € 92y then

()= lim ()= lim (@)= CH(t) ae. t € (0,7T).
zGﬁom?Qu Iga)}%(bo

We take into account that (~(¢) € 5*(y(t)) a.e. t € (0,T'), hence ¢ turns out
to be the solution to the elliptic problem

— AL(t) = f(t) in 29, a.e. t € (0,7) (1.104)
C(t) =¢ (t) € B*(y(t)) on A, ae. t e (0,T),

where y is the solution to (1.102) in Q.
Now we can construct the function

v fult0) i (1,2) € Q.
vhe): {w*)l(c(t,x», it (t,2) € Qo (1.105)

and show that it is the solution to (1.27). Since ¢ € L?(0,T;V) it follows
that y* € L?(0,T; D(A)), whence y* < ys a.e. on Q. This function belongs
also to the spaces specified in (1.23) (for the derivative we take into account
(1.99)).

We have to check that y* satisfies (1.26). If we plug y* given by (1.105) in
(1.26) and we take into account (1.99), (1.96) we obtain

/OT (T, ¢<t>>w i+ [ (V¢ Kolay)) - Vodade

_ /OT <d(’$*) (t), ¢(t)>V/1V dt + / (V¢ — Kolz,y)) - Vodadt

u

+/ (V¢ — Ko(z,y")) - Vodadt

_ /0 ! /Q u fodrdt + /0 ! . fodudt = /0 ! | fodudt,

for any ¢ € L?(0,T;V), ¢ € B*(y*) a.e. on Q. Here we used (1.98) and
(1.100).

Now, let f € L?(0,T;V’) and 6y € L?(£2). The previous relation remains
true, by density, but we do not provide all arguments because they are similar
with those given up to now. So, we obtain (1.26) as claimed and this ends
the existence proof. O
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Now we are going to specify a physical interpretation of the solution,
stating that the previous proof also implies

Corollary 1.7. The solution y* to problem (1.1) given by Theorem 1.6 is
the solution to the transmission problem

%—Aﬁ*(ty*)—i—v-l{o(m,y*) > f in Qu,
—AB*(y") > f in Qo,
Ch=¢ onXo=(0,T) x 082,
(KJ(I,y*)—VC-i_)yJ’_ = (K(;(I,y*)—vc_)u"' on 20,
y*(t,x) =0 on X :=(0,T) x I,

(w(x)y™(t,2))|,—o = Oo(x) in £2. (1.106)

Proof. Let f € WH2([0,T]; L?(£2)). Let us write that y* is a solution to (1.1)

/OT <d(1;i/*) (v, ¢(t)>vw dit [ (V¢ Kolawy) - Vodsds

u

+/ (V¢ = Ko(z,y")) - Vodadt

= /0 ' /Q Fodudt,

whence, expressing the integrals on @, and @) in another way, we get

T *
/ <M<t> A + V- a(@) Kol g (8) — £(0), ¢><t>> dt
0 dt (H(2.)) HY(24)
T
- /O (K (o™ ) = VO v 00),

T
+/0 (=ACE) = f() () (11 (20)), 1 (520) O

- (K 0) - Ve ot 60)

=0,

dt
H71/2(690),H1/2(690)

for any ¢ € C§°(Q). Using (1.102) and (1.103) we get
(Ko (™ (1) =V (1)) v + (K (y" (1) =V () vT =0 ae. t, on 05

where v~ = —vT. The result remains true for f € L2(0,T;V’), by density. O
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This means that the flux is conserved across the boundary X, which
from the physical point of view is natural. As a matter of fact (1.106) is an
equivalent form of (1.27).

Finally, we mention that the presence of the advection term in nonlinear
degenerate diffusion problems, as well as in periodic problems as we shall
see, may induce difficulties in proving the solution uniqueness, especially
when using energetic relations. This is not a singular situation, because as
it is well known there are many nonlinear problems in which uniqueness has
remained an open problem (e.g. Navier—Stokes equation in 3D, nonlinear wave
equation). In general uniqueness follows under restrictive assumptions and in
diffusion with transport problems one can observe that it is ensured when the
diffusion dominates the advection. In media with low porosity it can also be
shown that a small enough velocity of the fluid is a condition guaranteeing
the flow uniqueness. So, we give next a uniqueness result, establishing in fact
a sufficient condition in (1.107) below. Its interpretation is that the advection
vector in absolute value is of the same order of magnitude as the square root
of the porosity. For the case when (1.107) is not obeyed one can accept that
the approximating solution (which is unique) is an appropriate candidate for
the solution to the physical model (1.1).

Proposition 1.8. Under the hypotheses of Theorem 1.6 assume in addition
that there exists k, > 0 such that

la(z)| < ky/u(x) for any x € 2. (1.107)
Then the solution to (1.1) is unique a.e. on Q.

Proof. Assume that we have two solutions (y*,¢) and (7*,¢) to (1.27)
corresponding to the same data f and 6. We subtract (1.27) written for y*
and 7*, multiply the difference scalarly in V' by u(y* —7")(t), and integrate
over (0,t). We get

/Ot (W(T%u@*_ﬂ*)(T)>V,dT+/Ot/QV(§—Z)'de:ch

= / (K(y*) — K(¥"))a(z) - Vipdadr, (1.108)
0 Jo

where Aoy = u(y* —7*). Next we have
1 _ 2 K - _
Sl =70+ [ [ €=t~ g)daar
0 (7]
t
< NMgh, / /Q Valy* —7%)| V| dudr

< NMxk, / IVat* = 7)) luly* = 7))y dr
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whence, recalling (1.7) we obtain

Sy =7l + / / Vdadr

14 * 1 ! *
<2 / / w(y* — §°)2dadr + = (NMick,)® / luy” — 7°)(r)]1%0 dr.
2Jo Jao 2p 0

Therefore, by Gronwall lemma (see [29]), [Ju(y* —y*)(t)”%/, < 0 and we
deduce that uy*(t) = uy*(¢) for any ¢t € [0,7T]. It follows that the solution
is unique a.e. on the set @, where u(z) > 0. Therefore, using (1.104) which
is satisfied by ¢(t) € B*(y*(t)) and ((t) € B*(y*(t)) we write the problem
satisfied by their difference

AlC—
(S

)(t) = 0in 2, ae. t € (0,T),

¢
¢)(t) = 0 on 012, ae. t € (0,T).

This implies that ((t) = ((t) a.e. t and since (8*)~! is single valued we get
that y*(t) = 7* () a.e. on £2p.Then the solution uniqueness follows a.e. on Q. O

Finally we would like to make a short comment about the continuity of
the solution with respect to the nonlinear functions, without entering into
details. We recall that such a property has been studied in [25] in the case of
Richards’ equation.

First we focus on the approximating problem (1.40). Let (K;); be such
that K;(r) — K(r) as j — oo, and (f;); be a family of graphs such that
(87); converges to 3* in the sense of the resolvent, that is

(1+/\ﬂ;)71 = (14+XB")"'2, as j — 00, VA >0, Vz € R.

Then _
(I4+AB)™'g— (I+)B.) 'gasj— o0, forge V',

where B are the quasi m-accretive operators in (1.40) corresponding to ().
Then by Trotter-Kato theorem for nonlinear semigroups (see [14], pp. 168)
it follows that the corresponding sequence of solutions (6;). is convergent to
0 as j — oo in C([0,T]; V'). This continuity result can be further used to
get the continuity for the solution to the limit equation when ¢ — 0.

1.1.7 Numerical Results

We end this chapter with numerical simulations for the solution to (1.1). We
imagine some scenarios for a real-world model of water infiltration into a
nonhomogeneous porous medium (soil) in which a solid intrusion with zero
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porosity (a rock) is present. Assuming that the model (1.1) is already written
in a dimensionless form, let us consider the expressions

forr€10,1), ¢>1, (1.109)

given by the parametric model of Broadbridge and White (see [33]). These
functions characterize the water infiltration into a soil whose properties are
strongly nonlinear when ¢ is in a neighborhood of 1 and weakly nonlinear for
larger values of ¢ (e.g., ¢ > 1.2).

We see that here lim,_,, =1 8(r) is finite. This may be obtained by a jump
of the function C' (defined in Introduction) at r = ry = 0 from a positive
value at the left to 0 at the right (see case (a) in Introduction), such that
the function 8* is multivalued at r = 1. All the results proved in this section
apply to this case as well.

The computations are done in the 2D case in the domain

2 ={(z1,22);21 € (0,5), z2 € (0,5)},
with (29 the circle with center in (2,3) and radius 6 = 0.1,
20 = {(z1,22); (x1 — 2)* + (32 — 3)> < 0.1%}
and the function u (expressing the porosity of the soil) is chosen of the form

O, in QO
u(l‘l,l'g) = { (1172)2Jr(19%20*3)270.127 in 0, (1110)

In the computations we take u.(z1,z2) = u(z1,x2) + 1077.
The functions 8* and Ky with the properties considered in this section are

(c—1)r?
= e 0,1 a(z) er "€ [0,1) in £2
=g o T g = LT °
[1,00), r =1, 0 in 0

The other data are: Op(z1,22) = 0, a(zr1,x2) = (1,1), meaning that the
initial soil is dry and the advection is along both directions, and

t2, in 02,

fmx“”):{a in 2.
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x1 Min: 0
Fig. 1.2 Contour plot of the function u given by (1.110)
a b
Contour uy at t=0.5, c=1.02 Max: 0.0695 Contour uy at t=2, c=1.02 Max: 0.150
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Fig. 1.3 Solution # = uy in the parabolic-elliptic degenerate case for u given by (1.110)
and ¢ = 1.02

The algorithm is adapted from [39] for this degenerate case and the
computations are done by using the software package Comsol Multiphysics
(see [40]).

In Fig. 1.2 it is represented the contour plot of the function x5 = u(z1, x2),
i.e., the projection of this surface on the plane z1Oxs.

We are interested in some comparisons. In Fig. 1.3a, b we see the evolution
of §=uy (representing the volumetric water content or soil moisture)
computed for ¢ = 1.02 (a strongly nonlinear soil) at two moments of time
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a b
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Fig. 1.4 Solution # = uy in the parabolic—elliptic degenerate case for u given by (1.110)
and ¢ = 1.5

a b
Contour uy at t=0.5, c=1.5 for unon Max: 0.0413 Contour uy at t=2, c=1.5 for unon Max: 0.432
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Fig. 1.5 Solution 6 in the parabolic-elliptic nondegenerate case for u given by (1.111)
and c = 1.5

t = 0.5 (Fig.1.3a) and t = 2 (Fig.1.3b), while in Fig.1.4a, b we see the
evolution of § computed for ¢ = 1.5 (a weakly nonlinear soil).
Then we compare the graphics in Fig. 1.4a, b with those drawn in Fig. 1.5a,
b corresponding to the nondegenerate case with u positive given by the
relation
unon(xy,x2) = u(x1,x2) + 0.3 (1.111)

and ¢ = 1.5. This describes a porous medium with a higher porosity which
does not vanish, in which we see that the volumetric water content 6 can
reach higher values than in porosity vanishing case.
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1.2 Well-Posedness for the Cauchy Problem
with Very Fast Diffusion

Let us consider the problem

O(u(x)y)

y(t,z) =0 on Y, (1.112)
(w(@)y(t,x))],—g = Oo(x)  in £2,

in which 8* is a single valued function, $ and g* blow-up at r = y;,

lim f(r) = +o0, hm p*(r) = hm/ B(s)ds = +oo (1.113)
T Ys AYs T Ys

(see case (b) in Introduction) and
B(r)=p>0, for any r < 0.
The functions u, a; and K are assumed to be as in the fast diffusion case,

i.e., obeying (1.10)—(1.14).
In this case we introduce the function j : R — (—o0, +00] by

oy {70 7 <o

—"_w? r 2 yS?

and specify that j is proper, convex, l.s.c. and

i = {710 7 <

00, 2 Ys,

(see the proof in [84], pp. 74).
Let us assume that

feL*0,T;V"), (1.114)
0o € L*(£2), 6y =0 a.e. on £y, (1.115)

0o > 0 a.e. on (2, b € L*(2,), j (@) € LY(N).
u u
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Definition 1.9. Let (1.114) and (1.115) hold. We call a weak solution to
(1.112) a function y such that

y € L*(0,T;V), B*(y) € L*(0,T; V),
uy € C([0,T]; L*(£2)) nWH2([0, T); V'),

which satisfies

(TFew) s [0 - K)o

=(f),¥)y v, ae t€(0,T), forany ¢ €V,

the initial condition (uy(t))|,_, = fo and the boundedness condition

y(t,x) < ys a.e. (t,z) € Q.

In the same way as in the previous section we can write the abstract
Cauchy problem

d(uy)
dt

(t) + Ay(t) = f(t), a.e. t € (0,T), (1.116)
(uy(t)];=o = o,

where
D(A) = {y € L*(12); B (y) €V}
and V = Hi(£2), with the dual V' = H=1(02).
Then we pass to (1.30) by denoting 0(¢t, z) = u(z)y(t, x).
Next we shall prove that (1.116) has a weak solution.

Theorem 1.10. Let us assume (1.114) and (1.115). Then, the Cauchy
problem (1.116) has at least a weak solution y*. In addition, if (1.107) holds,
then the solution is unique.

Proof. The proofis led as in the case of fast diffusion, with some modifications
imposed by the blowing-up of g*. First, we introduce the approximating
functions g, and 37 by

. ﬂ(r)v T<y5—€
ﬁa(r) o { ﬂ(ys - 5), r>ys — &, (1.117)
() = ﬂ*(r)v r<ys—e¢
p(r): { B (ys —e)+ Blys —e)[r— (ys —e)], r>ys—e (1.118)
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and the approximating problem (1.40). It has a unique strong solution
satisfying estimate (1.52), by using the same arguments as in Proposition 1.5.
Then, if j ((1—0) € L'(£2) one can see that the upper bound of this estimate
does not depend on ¢ and the proof can be continued as in Theorem 1.6.
The delicate point is to show the convergence of BX(y.) to S*(y) in
L2(0,T; L*($2,)). This is implied by the convergencies (1.84), (1.85)
y. — y in L*(0,T; L*(£2s)) as € — 0,

y. — yin L*(0,T; L*(2,)) as € = 0

and (1.69)
0
B (u—5> — ¢in L*(0,T;V), as € — 0. (1.119)

€

We claim that ¢ = 8*(y) a.e. on Q. For this we set

Qss = {(t,l‘) € Qs; y(t,l‘) = ys}7 Qsn = {(t,l‘) € Qs; y(f,,f) < ys}'

Then, if (t,x) € Qs, we have .(r) = B(r) (for € small enough) and we
can write

ye (t,x) ye (t,x)
@@ww»—A &WM—A B(r)dr

y(t,z)
— / B(r)dr = B*(y(t,x)) a.e. on Qspn, as e — 0.
0

If (t,2) € Qss, then two situations may arise:

(p1) there is a sequence € — 0 such that y., (¢, ) > ys — k.
(p2) for all € < g we have y(t,z) < ys — €.

In the case (p2) the previous argument for (¢,2) € Qs, applies and
B (ye) = B*(y) ae. for (t,2) € Qss.

In the case (p1) we have
Yep (t,x)

Yep (t,z)fsk
BM%N@D—A ﬂmw+/ B (ys — ex) dr
Y

€l (tvz)f‘fk

Yoy, (t,2) —ek
=A B(r)dr + xB(ys — e) = +00 = B*(ys),

as € — 0,
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because foys B(r)dr = + oo, pursuant to (1.113). Hence, selecting a subse-
quence (denoted still by the subscript ), we have that

B;(ys) — ﬁ*(y) a.e. on Q(; as € — 0.

But (82(ye))eso is bounded in L?(Qs) by (1.66) and since it converges a.e.
on Qs, it follows that 87 (y.) — 8*(y) in L*(Qs). Then we get that ( = 5*(y)
a.e. on @5 and since ¢ is arbitrarily small we obtain { = *(y) a.e. on Q.
Here we have applied a consequence of Mazur theorem saying that if O is
a bounded open set of finite measure and (f,,)n>1 is a sequence bounded in
L?(0) such that f,, — f a.e. on O, then f, — f in L?(0) as n — oo.
The proof is continued as in Theorem 1.6 and Proposition 1.8. a

1.3 Existence of Periodic Solutions
in the Parabolic—Elliptic Degenerate Case

In this section we deal with the study of periodic solutions to the degenerate
fast diffusion equation introduced in Sect.1.1, under the hypothesis of a
T-periodic function f. To this end, we first investigate the existence of a
periodic solution to an intermediate problem restraint to a period T and
extend then the result by periodicity to the time space Ry = (0, 00). The proof
involves an appropriate approximating periodic problem and the existence of
a solution is shown via a fixed point theorem on the basis of the results for the
approximating problem (1.40). This result will also allow to characterize the
behavior at large time of the solution to a Cauchy problem with periodic data.

We recall some previous papers dealing with periodic problems for
degenerate linear equations. In [16] a problem of the type

& (My() + Ay(t) = 7(1), 0< <1,

with the periodic condition (My)(0) = (My)(1) has been studied. Here M
and A are two closed linear operators from a complex Banach space into itself,
under the assumptions that the domain D(A) of A is continuously embedded
in D(M) and A has a bounded inverse. Assuming suitable hypotheses on
the modified resolvent (AM + A)~1, it has been proved that problem admits
one l-periodic solution. Some examples of applications to partial differential
equations and ordinary differential equations have been given. The latter case
has been studied in the paper [17].



48 1 Existence for Parabolic—Elliptic Degenerate Diffusion Problems

The nondegenerate fast diffusion case with a nonlinear transport term
has been approached in the paper [87], while the degenerate case without
advection has been studied in [59).

As in Sect.1.1, 2 is an open bounded subset of RY and T is finite.
We consider the problem

O(u(x)y)

ot _Aﬂ*(y)+VK0(x7y) B f in R+ X Qa

y(t,z) =0on Ry x I, (1.120)
(u(@)y(r, )| = — (W@)y (7, 2))| ;=4 p = 0 in Ry x 2,
under the assumption of the T-periodicity of the function f,
flt,z) = f(t+T,x) ae. (t,x) € Ry x £2. (1.121)

The hypotheses made for 8*, Ky and u are preserved as they were
presented in Sect. 1.1 and we assume that f € LS (Ry; V).

loc

We begin with the study of the existence for the solution to the problem
on a time period

—8(U(§f)y) —AB*(y) + V- Ko(z,y) > finQ=(0,T) x £,
y(t,@) = 0on X = (0,T) x I, (1.122)

(u(@)y(t, )l = — (u(@)y(t, )], = 0 in 2.

Then, this solution will be extended by periodicity to all ¢t € R;.

1.3.1 Solution Existence on the Time Period (0,T)

The functional framework for this problem is the same as in Sect. 1.1.
Definition 1.11. Let f € L>°(0,7;V"). We call a weak solution to (1.122)
a pair (y, () such that
y € L2(0,T;V), y(t,z) < ys ae. (t,z) €Q,
uy € C([0,T]; L*(2)) nWH([0,T; V'),
C e L*0,T;V), ¢(t,x) € B*(y(t,x)) a.e. (t,z) € Q,
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satisfying the equation

/OT <%(t)’ ¢(t)>vuv dt + /Q(VC — Ko(z,y)) - Vodzdt

T
= /0 (f(t), (1)) y dt, for any ¢ € L*(0,T;V)

and the condition (u(x)y(t,))|,_, — (w(x)y(t,z))|,_p = 0in £2.
With the same notation and definitions as in Sect.1.1. we consider the
periodic approximating problem
d(ueye)
dt
e (ye(0) —y=(T)) =0

(t) + Acus(t) = f(t) ae. t € (0,7T), (1.123)

which is equivalent with

dd_ﬁta(t) + B.0.(t) = f(t) a.e. t € (0,T), (1.124)

by the function replacement 6. = u.y., with A. and B. given by (1.38) and
(1.41), respectively.
Let us denote

2 2 —2
Cr == (HfHLoo(mT;vq e ) : (1.125)
— N
where K = K, (meas(£2))'/? 3 a}! was defined in Proposition 1.5. We also
j=1

_ N
recall that p was specified in (1.6), M = Mg Y a}' and by cp we have
j=1

denoted the constant in the Poincaré inequality.
We are going to prove the following existence result.

Theorem 1.12. Let f € L>(0,T;V’). Then, the periodic approximating
problem (1.124) has a unique solution

6. € C([0,T); L*(2)) nWh2([0,T]; V') N L*(0, T; V), (1.126)

B <&) € L*0,T;V). (1.127)

Ug
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Moreover, the solution satisfies the estimate
T 2 T 0
[ [l o [ ()
0 v 0 Ue
T
s4</ wum%dr+?%>-
0

Proof. We apply a fixed point result and start this by fixing in (1.124) 6-(0)
in L?(£2) and denoting it by v, i.e.,

2

dr (1.128)
.

do.
dr

(1)

0-(0) := v € L*(92).
Hence we have to deal with the Cauchy problem

dd_ﬁta(t) + B.0:(t) = f(t) a.e. t € (0,T), (1.129)

whose well-posedness for v € L2({2) has already been studied in Sect. 1.1,
Proposition 1.5. Thus, (1.129) has a unique solution (1.126)—(1.127).
Let us consider the set

z
V Ue

where R is a positive constant for each £ > 0. We define the mapping

5= {ze oy |

< R.ae zx¢€ Q} (1.130)

U, : 8. =S, U.(v) =0.(T), for any v € Sc

where 0. (¢) is the solution to (1.129).

Since (1.129) has a unique solution for v € S, the mapping ¥, is single-
valued and we are going to show that it has a fixed point by the Schauder—
Tychonoff theorem (see e.g., [67], pp. 148), working in the weak topology.
We begin by checking the conditions of this theorem.

(i1) Tt is obvious that S is a convex, bounded and strongly closed subset of
L?(£2). Hence it is weakly compact in L?(£2).
(i2) Next, we have to show the inclusion ¥.(S.) C S..
The solution 6. € C([0,7T]; L*(£2)) and so 0-(T) = u.y-(T) € L*(£2).
We test (1.129) for Zf € V and recalling (1.37) and (1.14) we get

2 2

1d| 6. 0. 0. 6.
- — t —(t < t | — (T + K ||—(t
si | =] o] <ion |Eo| +7|Eo|
oo S| 2
<D= - ? N+ K.
<5le® V+p(||f||L o +E)
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Next, applying the Poincaré inequality we have

2 2

[

di || iz

dt
and using the relation u.(z) < upr +¢ < upr + 1 (since € is arbitrarily
small) we obtain

ch || ue

2 2

0
=+ po -

IR e

with pg = m. Integrating on (0,¢) with ¢ € [0,T] we get

t) < Cy

2

(t)

0. 2 v
<
v Ol = e

Now if RZ > G (and this is true since R. is large enough) and v € S
it follows that

c
exp(—pot) + p—g(l — exp(—pot))-

0
Z (t)H < R., forany t € [0,T].
€

=

Thus, we have obtained that 0.(T) = ¥, (v) € S, and therefore, it follows
that ¥.(S:) is weakly compact, too.
(i3) Finally, we have to prove that the mapping ¥, is weakly continuous.

For that we consider a sequence
{v"}51 CSe, 0" — v in L%(£2) as n — oo,
and will show that
W (v™) = W (v) in L*(£2) as n — oo.
We introduce the approximating problem

dor

o (t) + BOZ(t) = f(t), ae. t € (0,T),

07(0) =v".
This has a unique solution

07 € C([0,T; V') nWh([0,T]; V') N L*(0,T; V), B (9—) € L*(0,T;V)

Ue
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satisfying the estimate (1.52). Now, by (1.59)

971 * 0% s — n |2
/ Usje (_s) dr < (upy +a)—65 ﬁ2(y &) |[v"
2 € 9 Ue
o™ 1 o™ 1
— — < —R
us || = VE|Vue || T vE T

due to the fact that v™ € S.. Therefore (1.52) written for 7 is bounded
independently of n, and we can proceed like in Proposition 1.5 to show that
07 tends in some appropriate space to §. which turns out to be the solution
to (1.129). This implies also the convergence

07 (T) — 0-(T) in V', as n — oo
due to the Ascoli-Arzela theorem (see (1.62)). Hence
. (v™) = 0(T) — 0.(T) = W.(v) in L*(£2),

and because S is weakly closed it follows that 0.(T) € S-.
Now the Schauder—Tychonoff theorem ensures that ¥, has a fixed point,
implying that
0-(0) = 0(T) or u0:(0) = ub-(T).

Consequently, (1.124) has at least a solution.

The estimate (1.128) follows immediately by (1.52) in Proposition 1.5, for
t="T.

Uniqueness is proved as in Proposition 1.5, taking the same data in (1.53).
This ends the proof of Theorem 1.12. O

Theorem 1.13. Let f € L*°(0,T;V’). Then, the periodic problem (1.122)
has at least a solution (y*,() such that

y* € L*(0,T;V),
uy* € O([0,T]; L*(£2)) nWH2([0, T]; V'),
(€ L*(0,T;V), ((t,x) € B*(y*(t,x)) a.e. (t,2) € Q,
Yy (t,x) <ys ae. (t,z) € Q.

If (1.107) and
p > NMgkycp\/up (1131)

are satisfied the solution is unique a.e. on Q.
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Proof. The proof of the existence is based on the same arguments and is led
in the same way as in Theorem 1.6, including the construction of y*, with
the corresponding modifications due to the periodicity condition. Thus in the
approximating problem in Theorem 1.6, 6.(0) = u.y:(0) = u.y:(T) = 6-(T)
and by (1.80) we get (uy)|,_, = (uy)|,_r property which is inherited by uy*.
Obviously, uy™ =0 in Qg.
Assume now (1.107) and that there exist two solutions (y*,{) and
@*,Z) to (1.122) corresponding to the same periodic data f. We subtract
1.122) written for y* and 7* and multiply the difference scalarly in V' by

(0 -300) + [ 90 ~T0) - Tetoys
= [ (R 0) - K@ @)ato) - 9001

where Aogy(t) = u(y* — 7*)(t), a.e. t, (where we recall that Ag = —A
with Dirichlet boundary conditions (see (1.17)). Integrating over (0,7") and
proceeding as in Proposition 1.8 we get

1 * —x 1 *
" -7 - = luly” — 7)), + / RO AR

T
< 2ip<NMKku>2 / luy® — 7)), dr
< L (N Myckaep/am)? / Valy™ — 7)) dr
— 2p b

where cp is the constant in the Poincaré inequality. We apply the solution
periodicity and it remains that ||\/ﬂ(y*—y*)||i2(Q) =0. This implies
that wy*=wugy* a.e. on @@ and then we continue as in Proposition 1.8.

O

1.3.2 Solution Existence on R

Now we can extend the previous result to t € Ry. We resume problem (1.120)
and prove

Theorem 1.14. Let us assume

fe LRy V), ft,a)=ft+T,x) ae. (t,x) € Ry x 2.
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Then problem (1.120) has at least a solution y € L? (Ry;V) satisfying

loc
6 = uy € C(Ry; L*(2)) NW2 (R V),

y(t,x) <ys ae. (t,x) € Ry x 2,
¢ e Li (Ry; V), where ((t,x) € B*(y(t,x)) a.e. (t,x) € Ry x L.

If (1.107) and (1.131) are satisfied then the solution is unique.

Proof. We consider first (1.120) on (0,7) with f|, ). We obtain (1.122)
which has a periodic solution with (u(z)y(t,z))|,_, = (w(@)y(t,z))|,_p
in 2. Then we consider (1.120) on (7,2T) with the periodicity condition
(w(@)y(t,z))|,_p = (w(@)y(t,z))|,_op in 2. We make the transformation
t" = ¢t — T and denote y(t',x) = y(t' + T,x) with ¢’ € [0,T]. Using
now the periodicity of the function f we find again problem (1.122) which
has a periodic solution () with § = uy € C([0,T]; L*(£2)), such that
(w(x)y(t',z))|, o = (u(@)y(t',x))|,_p. Coming back to the variable ¢ we
obtain that (1.120) has a periodic solution such that u(z)y(t, z) is continuous
on [T, 2T] and this extends by continuity the solution obtained on [0, T]. The
procedure is continued in this way on each time period. Moreover, if a satisfies
(1.107) and (1.131) the solution is unique on each period. O

1.3.3 Longtime Behavior of the Solution
to a Cauchy Problem with Periodic Data

Finally we are going to characterize the longtime behavior of the solution y to
problem (1.1) with a T-periodic function f. The domain @ is taken R x (2,
and we assume that the solution starts from the initial condition 6y. Let

f S L?(?C(RJHV/)) f(tv'r) = f(t+ Tv 'r) a.c. (t,ZC) S RJr X Qa (1132)
6o € L*(2), 6y = 0 a.e. on £,

0 0
fp > 0 a.e. on {2, 2 e LQ(QU), —O(x) <ys a.e. T € (2
U U

and we recall that u,; is the maximum of u and cp is the constant in Poincaré
inequality (1.19).

Proposition 1.15. Let us assume (1.107) and (1.131). Then, the solution
to the Cauchy problem (1.1) with f periodic of period T satisfies

Jim [y — uo) (1) = 0 (1.133)
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exponentially, where w is the unique periodic solution to (1.120) and y is the
unique solution to (1.1).

Proof. By Theorem 1.14 the solution to (1.120) is unique and let us denote
it by w. We multiply the difference of (1.1) and (1.120) by u(y(¢) — w(t))
scalarly in V’, and we get

335 10— O+ [ aty—wP (O

< NMgkycpy/uns ||ﬁ(y - w)(t)||2 .
Therefore, applying (1.131) we obtain

4
— U
dt

with § = P — NMKkuCP./’U,M.
We have that

(y— )OIy + 8 |[Valy — w)(@)]* <0

/Q uy(t) - w(®)de = — [ w(y(t) - w(t)?de > luly — w)(®)I5

2
UM Jo UMCp

hence p
72 16 = )5 + 0o luly =), <0

with §g = ﬁg. We deduce that

uly —w)(®)]3 < e 60 — (uw)(0)]|7

and this implies (1.133). O

Referring to applications in real-world problems we remark that the
behavior (1.133) of the solution to the Cauchy problem (1.1) with a periodic
f is possible only if the advection is done with a velocity in absolute value
lower than the porosity u and the diffusion processes has a sufficient high
diffusion coefficient. This means that the velocity must be sufficient small in
comparison with the pore dimension and that the diffusivity should dominate
the advection.

1.3.4 Numerical Results

We shall provide some simulations intended to show the behavior at large
time of the solution to (1.1) with a periodic f.



56 1 Existence for Parabolic—Elliptic Degenerate Diffusion Problems

a b
Solution uy(t,x1,4) for theta0=0.01*x2*x2*u Solution uy(t,x1,1) for theta0=0.1*x1*(6-x1)*u
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Fig. 1.6 Asymptotic behavior of § = uy solution to (1.1) in the periodic parabolic—elliptic
degenerate case

The computations are done in 2D with 2 = (0,5) x (0,5), with the same
data for 29, u, f* and K as in Sect. 1.1, (1.110), (1.109), a = (1,1), c = 1.5
(a weakly nonlinear porous medium),

(|sin Q’T—Ot| + ’cos ;—Ot|) , T €8,

Flt 21, 22) = {O, x € ()

and two different initial data. In Fig. 1.6a the values 0(t, z) = u(z)y(t, z) are
computed for
0o (1, 22) = 0.0123u(21, 22)

and represented at x = (r1,4), 1 =1, 2, 4.
In Fig.1.6b there are the graphics 0(t,z) = u(x)y(t,x) at © = (z1,1),
r1 =1, 2, 4, computed for

6‘0(1‘1,5[:2) = 0.15[,'1(6 — ;vl)u(xl,xg). (1134)

We can see that after some time the solutions to (1.1) become periodic.
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