
Chapter 1
Existence for Parabolic–Elliptic
Degenerate Diffusion Problems

In this chapter we are concerned with the study of some boundary value
problems with initial data formulated for parabolic–elliptic degenerate
diffusion equations with advection, focusing especially on the fast diffusion
case which involves a free boundary problem (case (a) in Introduction). After
setting an adequate functional framework for each situation we transpose
the boundary value problems into abstract formulations and study their
well-posedness with specific methods of the theory of nonlinear evolution
equations with m-accretive operators in Hilbert spaces. We investigate the
conditions under which particular properties of the solutions, like uniqueness
and time periodicity take place. We mention that the case without advection
was studied in [58]. Numerical simulations applied to problems arisen in soil
sciences complete the study and sustain the theoretical achievements.

Notation. We specify the functional spaces which will be further used.
Let Ω be a open bounded subset of RN (N ∈ N

∗ = {1, 2, . . .}), with the
boundary Γ := ∂Ω sufficiently smooth. The space variable is denoted by
x := (x1, . . . , xN ) ∈ Ω and the time by t ∈ (0, T ), with T finite.

We shall work with the spaces Lp(Ω) (see [30], pp. 89), Sobolev spaces
Wm,p(Ω) (see [30], pp. 263, 271) and the vectorial spaces Lp(0, T ;X),
Wm,p(0, T ;X) where X is a Banach space (see [14], pp. 21), m ≥ 1 and
p ∈ [1,∞]. Briefly, we recall that

Lp(Ω) = {f : Ω → R; f measurable, |f(x)|p integrable}, p ∈ [1,∞),

L∞(Ω) =

{
f : Ω → R; f measurable and there is a constant C

such that |f(x)| ≤ C a.e. on Ω

}
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are Banach spaces with the norms

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|p dx
)1/p

,

‖f‖L∞(Ω) = inf{C; |f(x)| ≤ C a.e. on Ω},

respectively. For m ≥ 1 and p ∈ [1,∞] the Sobolev space Wm,p(Ω) is
defined by

Wm,p(Ω) = {f ∈ Lp(Ω); f measurable and Dαf ∈ Lp(Ω), with |α| ≤ m}

where α is a multi-index and |α| =
N∑
i=1

αi, αi is a positive integer and Dα =

∂|α|ϕ
∂x

α1
1 ....∂x

αN
N

.

The norm is defined by

‖f‖Wm,p(Ω) =

⎛
⎝ ∑

1≤|α|≤m

‖Dαf‖pLp(Ω)

⎞
⎠

1/p

, if 1 ≤ p <∞,

‖f‖Wm,∞(Ω) = max
1≤|α|≤m

‖Dαf‖pL∞(Ω) , if p = ∞.

We still denote Hm(Ω) = Wm,2(Ω) which is a Hilbert space with the
scalar product

(u, v)Hm(Ω) =
∑

1≤|α|≤m

(Dαu,Dαv)L2(Ω).

Let X be a Banach space. We denote

Lp(0, T ;X) =

⎧⎪⎪⎨
⎪⎪⎩

f : (0, T ) → X; f measurable and

‖f(t)‖pX is Lebesgue integrable over (0, T ) for p ∈ [1,∞)

and ess sup
t∈(0,T )

‖f(t)‖X < ∞ for p = ∞

⎫⎪⎪⎬
⎪⎪⎭

,

Wm,p([0, T ];X) = {f ∈ D′(0, T ;X);
djf

dxj
∈ Lp(0, T ;X), j = 1, . . . ,m},

where D′(0, T ;X) is the space of all continuous operators from D(0, T ) to X.
These spaces are endowed with the norms
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‖f‖Lp(0,T ;X) =

(∫ T

0

‖f(t)‖pX dt

)1/p

,

‖f‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖f(t)‖X ,

‖f‖Wm,p([0,T ];X) =

⎛
⎝ m∑

j=1

∥∥∥∥d
jf

dxj

∥∥∥∥
p

Lp(0,T ;X)

⎞
⎠

1/p

, 1 ≤ p <∞,

‖f‖Wm,∞([0,T ];X) = max
1≤j≤m

∥∥∥∥d
jf

dxj

∥∥∥∥
p

L∞(0,T ;X)

, p = ∞.

By C([0, T ];X) we denote the space of continuous functions f : [0, T ] → X .
For simplicity, throughout the book we shall denote by (·, ·) and ‖·‖ the

scalar product and the norm in L2(Ω), respectively.
For not overloading the notation, sometimes we do not indicate in the

integrands the function arguments which are the integration variables.

1.1 Well-Posedness for the Cauchy Problem
with Fast Diffusion

The first section is devoted to the study of a Cauchy problem for a fast
diffusion equation with transport written for the unknown function y(t, x),
in which the degeneracy is induced by the vanishing of the time derivative
coefficient u(x), on a subset of nonzero measure of the space domain. The
equation is accompanied by Dirichlet boundary conditions and an initial
condition set for the function u(x)y(t, x).

The problem to be studied is

∂(u(x)y)

∂t
−Δβ∗(y) +∇ ·K0(x, y) 	 f in Q := (0, T )×Ω,

y(t, x) = 0 on Σ := (0, T )× Γ, (1.1)

(u(x)y(t, x))|t=0 = θ0(x) in Ω.

1.1.1 Hypotheses for the Parabolic–Elliptic Case

Let ρ, ys and β∗
s be given positive constants.

In this section β∗ : (−∞, ys] → R is a multivalued function defined as

β∗(r) :=
{∫ r

0
β(ξ)dξ, r < ys,

[β∗
s ,+∞), r = ys,

(1.2)
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where β : (−∞, ys)→ (ρ,+∞) is assumed of class C1(−∞, ys) and mono-
tonically increasing on [0, ys). We also make the hypothesis that it has the
behavior

β(r) ≥ γβ |r|m + ρ, for r ≤ 0, (1.3)

and the blow up property

lim
r↗ys

β(r) = +∞, (1.4)

such that

lim
r↗ys

∫ r

0

β(r) = β∗
s . (1.5)

The blow up property (1.4) together with (1.5) account for the fast diffusion
character of the first equation in (1.1). In (1.3) γβ ≥ 0 and m ≥ 0. For the
sake of simplicity we can take in the diffusion nondegenerate case γβ = 0
and set

β(r) = ρ > 0, for any r ≤ 0, (1.6)

without losing the generality. In fact in the nondegenerate diffusion case the
requirement is β(r) ≥ ρ > 0. The more general form (1.3) can be treated in
the same way. Consequently, β∗ gets the properties

(
ζ − ζ

)
(r − r) ≥ ρ(r − r)2, ∀r, r ∈ (−∞, ys], ζ ∈ β∗(r), ζ ∈ β∗(r), (1.7)

lim
r→−∞β∗(r) = −∞, (1.8)

lim
r↗ys

β∗(r) = β∗
s . (1.9)

The definition of the weak solution which we give a little later will specify
the exact meaning of the boundary value problem (1.1).

The function u is considered smooth enough, nonnegative and bounded
by the upper bound uM , that can be taken any positive constant. Hence we
assume

u ∈W 1,∞(Ω), 0 ≤ u(x) ≤ uM for any x ∈ Ω, (1.10)

revealing the degeneration of the equation at the points where u is zero. To
be more specific we assume that

u(x) = 0 on Ω0, u(x) > 0 on Ωu = Ω\Ω0, (1.11)

where Ω0 is a fixed open bounded subset of Ω with meas(Ω0) > 0 and Ω0 is
strictly contained in Ω, see Fig. 1.1. The common boundary of Ω0 and Ωu is
denoted ∂Ω0 and is assumed to be regular enough.
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Wu

W0
u(x )>0

u(x )=0

Fig. 1.1 Geometry of the problem

We also specify that the domain where u vanishes can be formed by a
union of a finite number of subsets Ω0 with the properties specified before,
but we shall present the theory for only one subset.

Finally, the vector K0 : Ω × (−∞, ys] is assumed of the form

K0(x, y) =

{
a(x)K(y), x ∈ Ωu,

a(x), x ∈ Ω0,

where a(x) = (aj(x))j=1,...,N ,

aj ∈W 1,∞(Ω), aj(x) = 0 in Ω0, |aj(x)| ≤ aMj , for x ∈ Ω, (1.12)

and K : (−∞, ys] → R is Lipschitz continuous, i.e., there existsMK > 0 such
that

|K(r)−K(r)| ≤MK |r − r| , for any r, r ∈ (−∞, ys]. (1.13)

Moreover, we assume that K is bounded

|K(r)| ≤ Ks, for any r ∈ R. (1.14)

The term ∇ · K0(x, y) includes both a nonlinear advection term with the
velocity a(x)K ′(y) and a nonlinear decay or source term with the rate ∇ · a.

1.1.2 Functional Framework

We begin by establishing some notation and giving a few definitions.
Let us consider the Hilbert space V = H1

0 (Ω) with the usual Hilbertian
norm

‖v‖V =

(∫
Ω

|∇v(x)|2 dx
)1/2

,

and its dual V ′ = H−1(Ω).
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The dual V ′ will be endowed with the scalar product

(y, y)V ′ := 〈y, ψ〉V ′,V , (1.15)

where ψ ∈ V is the solution to the elliptic problem

A0ψ = y, (1.16)

with A0 : V → V ′ defined by

〈A0v, φ〉V ′,V :=

∫
Ω

∇v · ∇φdx, for any φ ∈ V. (1.17)

The notation 〈y, ψ〉V ′,V represents the pairing between V ′ and V and it

reduces to the scalar product in L2(Ω) if y ∈ L2(Ω).
It is well known that A0 = −Δ with Dirichlet boundary conditions is the

canonical isomorphism betweenH1
0 (Ω) andH−1(Ω).Moreover, it is isometric

because

‖y‖V ′ = ‖ψ‖V . (1.18)

Indeed, by (1.15) and (1.16) we get

‖y‖2V ′ = 〈y, ψ〉V ′,V = 〈A0ψ, ψ〉V ′,V = ‖ψ‖2V ,

where ψ = A−1
0 y.

We recall now the Poincaré inequality (see e.g., [30], pp. 290). Let Ω be
a bounded domain in R

N with a sufficiently smooth boundary. For each
y ∈ H1

0 (Ω) we have

‖y‖ ≤ cP ‖y‖H1
0 (Ω) (1.19)

with cP depending only on Ω and the dimension N .
We also recall that if θ ∈ L2(Ω) we have

‖θ‖V ′ ≤ cP ‖θ‖ . (1.20)

Indeed, by (1.15) and (1.18)

‖θ‖2V ′ = 〈θ, ψ〉V ′,V =

∫
Ω

θψdx ≤ ‖θ‖ ‖ψ‖ ≤ cP ‖θ‖ ‖ψ‖V = cP ‖θ‖ ‖θ‖V ′ .

For θ(t) ∈ V ′, we denote by dθ
dt (t) the strong derivative of θ(t) in V ′, i.e.,

dθ

dt
(t) = lim

ε→0

θ(t+ ε)− θ(t)

ε
in V ′.
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Finally, we specify that u ∈ W 1,∞(Ω) is a multiplicator in V ′. Let θ ∈ V ′.
Noticing that uψ ∈ V for ψ ∈ V, we define

〈uθ, ψ〉V ′,V := 〈θ, uψ〉V ′,V , for any ψ ∈ V,

and see by (1.15) that uθ is well defined since

‖uθ‖2V ′ = 〈uθ, ψ〉V ′,V = 〈θ, uψ〉V ′,V ≤ ‖θ‖V ′ ‖uψ‖V ≤ C ‖ψ‖V = C ‖uθ‖V ′ ,

where A0ψ = uθ and C includes the norm ‖u‖1,∞ := ‖u‖W 1,∞(Ω).

Problem (1.1) will be approached under the following hypotheses for f and
the initial datum:

f ∈ L2(0, T ;V ′), (1.21)

θ0 ∈ L2(Ω), θ0 = 0 a.e. on Ω0,

θ0 ≥ 0 a.e. on Ωu,
θ0
u

∈ L2(Ωu),
θ0
u

≤ ys, a.e. x ∈ Ωu. (1.22)

We recall that Ωu = Ω\Ω0 and it is an open subset of Ω. The non-
negativeness assumed for θ0 is in agreement with the physical interpretation
of θ0, that of a density (in general) or a temperature. From the mathematical
point of view it does not diminish the generality.

We give now the definition of a weak solution to (1.1).

Definition 1.1. Let (1.21) and (1.22) hold. We call a weak solution to (1.1)
a pair (y, ζ),

y ∈ L2(0, T ;V ),

ζ ∈ L2(0, T ;V ), ζ(t, x) ∈ β∗(y(t, x)) a.e. (t, x) ∈ Q, (1.23)

uy ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′),

which satisfies

〈
d(uy)

dt
(t), ψ

〉
V ′,V

+

∫
Ω

(∇ζ(t) −K0(x, y(t))) · ∇ψdx

= 〈f(t), ψ〉V ′,V , a.e. t ∈ (0, T ), for any ψ ∈ V, (1.24)

the initial condition (uy(t))|t=0 = θ0 and the boundedness condition

y(t, x) ≤ ys a.e. (t, x) ∈ Q. (1.25)
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It is easy to see that an equivalent form to (1.24), which will be used many
times in this book is

∫ T

0

〈
d(uy)

dt
(t), φ(t)

〉
V ′,V

dt+

∫
Q

(∇ζ −K0(x, y)) · ∇φdxdt

=

∫ T

0

〈f(t), φ(t)〉V ′,V dt, for any φ ∈ L2(0, T ;V ). (1.26)

A proof of the equivalence between (1.24) and (1.26) can be found in [84],
pp. 81.

We also specify that a weak solution is a solution in the sense of
distributions to (1.1). Indeed if we take φ ∈ C∞

0 (Q) in (1.26) we get after
some computations involving Green’s and Ostrogradski’s formulae (see [13],
pp. 13) that

∫
Q

(
∂(uy)

∂t
−Δζ +∇ ·K0(x, y)− f

)
φdxdt = 0, ∀φ ∈ C∞

0 (Q),

which means that

∂(uy)

∂t
−Δζ +∇ ·K0(x, y)− f = 0 in D′(Q).

The boundary condition on Σ is immediately implied by the fact that the
solution y(t) ∈ V = H1

0 (Ω) a.e. t ∈ (0, T ).
Now we pass to the abstract writing of our problem. We set

D(A) := {y ∈ L2(Ω); ∃ζ ∈ V, ζ(x) ∈ β∗(y(x)) a.e. x ∈ Ω}

and introduce the multivalued operator A : D(A) ⊂ V ′ → V ′ by

〈Ay, ψ〉V ′,V :=

∫
Ω

(∇ζ −K0(x, y)) · ∇ψdx, ∀ψ ∈ V, for some ζ ∈ β∗(y).

With all these considerations we write the abstract evolution problem

d(uy)

dt
(t) +Ay(t) 	 f(t), a.e. t ∈ (0, T ),

(uy(t))|t=0 = θ0. (1.27)

We consider now the multiplication operator

M : D(A) → L2(Ω), My := uy, (1.28)
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whose inverse M−1 is multivalued. Denoting

θ(t, x) := u(x)y(t, x) (1.29)

(and formally writing y =M−1θ = θ
u ) we can rewrite (1.27) in terms of θ as

dθ

dt
(t) +Bθ(t) 	 f(t), a.e. t ∈ (0, T ),

θ(0) = θ0, (1.30)

where B = AM−1 and

D(B) :=

{
θ ∈ L2(Ω);

θ

u
∈ L2(Ω), ∃ζ ∈ V, ζ(x) ∈ β∗

(
θ

u
(x)

)
a.e. x

}
.

We see that θ ∈ D(B) implies θ ∈ L2(Ω) and y = θ
u ∈ D(A). Conversely, if

y = θ
u ∈ D(A) it follows that θ = uy ∈ D(B).

Besides the notion of weak solution previously given we recall the concepts
of strong and mild solutions (see e.g., [11,29]). Let H be a Hilbert space and
let us consider the problem

dz

dt
(t) +Az(t) 	 f(t) a.e. t ∈ (0, T ),

z(0) = z0, (1.31)

where A : D(A) ⊂ H → H is a nonlinear time-independent and possibly
multivalued operator. Let f ∈ L1(0, T ;H) be given, and z0 ∈ D(A).

A function z ∈ C([0, T ];H) is said to be a strong solution to the Cauchy
problem (1.31) if z is absolutely continuous on any compact subinterval of
(0, T ), satisfies (1.31) a.e. t ∈ (0, T ), z(0) = z0 and z(t) ∈ D(A) a.e. t ∈ (0, T ).

We remind that the absolute continuity on any compact subinterval of
(0, T ) implies the a.e. differentiability on (0, T ), because H is a Hilbert space
(generally this is true for a reflexive Banach space). Hence it is clear that a
strong solution z ∈W 1,1([a, b];H), for all 0 < a < b < T.

In literature by a mild solution to (1.31) it is meant a continuous func-
tion which is the uniform limit of solutions to a finite difference scheme
corresponding to the problem (see [10, 11]). We shall detail this definition
in Chap. 2.

For a later use we still define j : R → (−∞,+∞] by

j(r) :=

{∫ r

0
β∗(ξ)dξ, r ≤ ys,

+∞, r > ys.
(1.32)

Next, we recall the concepts of lower semicontinuity (l.s.c.) and weakly
lower semicontinuity and subdifferential.
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Let X be a Banach space and let ϕ : X → [−∞,∞]. The function ϕ is
proper if ϕ(x) �= +∞. The function ϕ is convex if

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2)

for λ ∈ [0, 1] and any x1, x2 ∈ X.
The function ϕ is said lower semicontinuous at x0 ∈ X if

lim inf
x→x0

ϕ(x) ≥ ϕ(x0).

If ϕ is l.s.c. at each point x0 ∈ X then it is l.s.c. on X.
A function ϕ is sequentially weakly lower semicontinuous on X if for any

sequence (xn)n≥1, xn ∈ X, such that xn ⇀ x we have

ϕ(x) ≤ lim inf
n→∞ ϕ(xn), ∀x ∈ X.

Let ϕ be a proper convex lower semicontinuous function and let x ∈ X.
The set

∂ϕ(x) := {x∗ ∈ X ′;ϕ(x)− ϕ(z) ≤ 〈x∗, x− z〉X′,X , ∀z ∈ X}

is called the subdifferential of ϕ at x.

Lemma 1.2. The function j is proper, convex, lower semicontinuous and

∂j(r) =

⎧⎨
⎩
β∗(r), r < ys
[β∗

s ,+∞), r = ys
∅, r > ys.

(1.33)

Proof. First, we notice that

j(r) =

∫ r

0

β∗(ξ)dξ ≥ ρ

2
r2, ∀r ≤ ys. (1.34)

Then, for r ≤ ys,

j(r) ≤ j(ys) = lim
r↗ys

∫ r

0

β∗(ξ)dξ ≤ lim
r↗ys

β∗
sr = β∗

sys, (1.35)

so j is proper. It is also obvious that j is convex.
We show now that j is lower semicontinuous. For r < ys the function j is

continuous, so we have only to study what happens at ys. Let us consider a
sequence (rn)n≥1 ⊂ R, rn ≤ ys, such that rn → ys and write

j(rn) =

∫ rn

0

β∗(ξ)dξ =
∫ ys

0

χn(ξ)β
∗(ξ)dξ
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where

χn(ξ) =

{
1 if 0 ≤ ξ ≤ rn,

0 if rn < ξ ≤ ys.

We have χn(ξ)β
∗(ξ) ≥ 0 and χn(ξ)β

∗(ξ) → β∗(ξ) a.e. on (0, ys) as n → ∞.
Using Fatou’s lemma (see e.g., [13], pp. 3) we have

lim inf
n→∞ j(rn) = lim inf

n→∞

∫ ys

0

χn(ξ)β
∗(ξ)dξ ≥

∫ ys

0

β∗(ξ)dξ = j(ys).

Finally we have to prove that β∗ = ∂j.We begin with the inclusion β∗ ⊂ ∂j.
We have to prove that if v ∈ β∗(r) then v ∈ ∂j(r), for any r ≤ ys, i.e.,

j(r) − j(y) ≤ v(r − y), for any y ∈ R and r ≤ ys.

This inequality is obvious for r < ys and y < ys and for r = y = ys.
Let r = ys and y < ys. Then we have

j(ys)− j(y) =

∫ ys

y

β∗(ξ)dξ = lim
r↗ys

∫ r

y

β∗(ξ)dξ ≤ β∗
s (ys − y) ≤ vs(ys − y),

where vs ∈ [β∗
s ,+∞) = β∗(ys). If r < ys and y = ys, we have

j(r) − j(ys) = −
∫ ys

r

β∗(ξ)dξ

and this comes back to the previous situation. If r = ys and y > ys, then
j(y) = +∞ and the inequality is verified.

Now we notice that the function β∗ is maximal monotone on R. Indeed,
the range R(I + β∗) = R, this being implied by the observation that the
equation r+ β∗(r) = g ∈ R has a unique solution in (−∞, ys]. In conclusion,
β∗ is maximal and satisfies the inclusion β∗ ⊂ ∂j, hence it should coincide
with ∂j. So, we have proved (1.33) as claimed. ��

1.1.3 Approximating Problem

The approach of the Cauchy problem (1.27), or equivalently (1.30) is based
on some preliminary results. Since A is multivalued due to both M−1 and
β∗ we introduce an approximating problem by regularizing both of them. In
this subsection we shall study the approximating problem while in the next
subsection we shall prove that it converges in some sense to (1.27).



12 1 Existence for Parabolic–Elliptic Degenerate Diffusion Problems

Thus, let ε be positive and replace u by

uε(x) := u(x) + ε,

and β∗ by a regular single-valued function β∗
ε : R → R. This can be defined

as a regularization of β∗ using mollifiers, or for convenience it can be taken
of the form

β∗
ε (r) :=

{
β∗(r), r < ys − ε

β∗(ys − ε) +
β∗
s−β∗(ys−ε)

ε [r − (ys − ε)], r ≥ ys − ε.
(1.36)

The function β∗
ε is differentiable and has the derivative denoted βε bounded

on R, for each ε positive. Also, β∗
ε is monotonically increasing on R,

(β∗
ε (r) − β∗

ε (r)) (r − r) ≥ ρ(r − r)2, for r, r ∈ R, (1.37)

and

lim
r→−∞β∗

ε (r) = −∞, lim
r→+∞β∗

ε (r) = +∞.

The function K is extended for r ≥ ys by its value K(ys) ≤ Ks, but
for the sake of simplicity we denote this extension still by K. Consequently,
K0(x, r) = a(x)K(r) will extend K0 by a(x)K(ys) for r ≥ ys.

Then we define the single-valued operator Aε : D(Aε) ⊂ V ′ → V ′, where

D(Aε) := {y ∈ L2(Ω); β∗
ε (y) ∈ V },

〈Aεy, ψ〉V ′,V :=

∫
Ω

(∇β∗
ε (y)−K0(x, y)) · ∇ψdx, for any ψ ∈ V, (1.38)

and we introduce the approximating Cauchy problem

d(uεyε)

dt
(t) +Aεyε(t) = f(t), a.e. t ∈ (0, T ),

uεyε(0) = θ0. (1.39)

Denoting now θε := uεyε we can write the equivalent approximating
Cauchy problem in terms of θε,

dθε
dt

(t) +Bεθε(t) = f(t), a.e. t ∈ (0, T ),

θε(0) = θ0. (1.40)
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The operator Bε : D(Bε) ⊂ V ′ → V ′ is single-valued, has the domain

D(Bε) :=

{
v ∈ L2(Ω); β∗

ε

(
v

uε

)
∈ V

}

and is defined by

〈Bεv, ψ〉V ′,V :=

∫
Ω

(
∇β∗

ε

(
v

uε

)
−K0

(
x,

v

uε

))
· ∇ψdx, for any ψ ∈ V.

(1.41)

In fact we note that Bεv = Aε

(
v
uε

)
and v ∈ D(Bε) is equivalent to v

uε
∈

D(Aε).
Also, it is easily seen that D(Bε) = V. Indeed, if v ∈ D(Bε) it follows that

v
uε

∈ V by the fact that the inverse of β∗
ε is Lipschitz, and from here we get

that v ∈ V, since uε ∈ W 1,∞(Ω). Conversely, v ∈ V implies v
uε

∈ V and
taking into account that the derivative of β∗

ε is bounded for each ε > 0 we

obtain that β∗
ε

(
v
uε

)
∈ V. We recall that uε = u+ ε ∈W 1,∞(Ω).

Definition 1.3. Let (1.21) and (1.22) hold. We call a strong solution to
(1.40) a function

θε ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′), β∗
ε

(
θε
uε

)
∈ L2(0, T ;V ),

that satisfies (1.40), which can be still written

〈
dθε
dt

(t), ψ

〉
V ′,V

+

∫
Ω

(
∇β∗

ε

(
θε
uε

)
−K0

(
x,
θε
uε

))
· ∇ψdx

= 〈f(t), ψ〉V ′,V , a.e. t ∈ (0, T ), for any ψ ∈ V (1.42)

and θε(0) = θ0.

Since by θε := uεyε, problems (1.40) and (1.39) are equivalent, it means
that if θε is a solution to (1.42) then yε is a solution to (1.39) and belongs to
the same spaces as θε.

An equivalent form to (1.42) can be written as

∫ T

0

〈
d(uεyε)

dt
(t), φ(t)

〉
V ′,V

dt+

∫
Q

(∇β∗
ε (yε)−K0(x, yε)) · ∇φdxdt

=

∫ T

0

〈f(t), φ(t)〉V ′,V , for any φ ∈ L2(0, T ;V ). (1.43)
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1.1.4 Existence for the Approximating Problem

First we shall prove that, for each ε > 0, (1.40) has a unique solution θε and
consequently, (1.39) has a unique solution in their appropriate functional
spaces. The proof is essentially based on the quasi m-accretivity of the
operator Bε on V ′. Because we are working in Hilbert spaces, we recall the
celebrated theorem of Minty (see [79], or [14], pp. 34), by which the notion of
a maximal monotone operator is equivalent with that ofm-accretive operator.

We say that Bε is quasi m-accretive on V ′ if λI +Bε is monotone,

((λI +Bε)θ − (λI +Bε)θ, θ − θ)V ′ ≥ 0, ∀θ, θ ∈ D(Bε),

and surjective,

R(λI +Bε) = V ′,

for all λ > λ0.

Lemma 1.4. The operator Bε is quasi m-accretive on V ′.

Proof. Let θ, θ ∈ D(Bε). We compute

(
Bεθ −Bεθ, θ − θ

)
V ′ =

∫
Ω

∇
(
β∗
ε

(
θ

uε

)
− β∗

ε

(
θ

uε

))
· ∇ψdx

−
∫
Ω

(
K0

(
x,

θ

uε

)
−K0

(
x,

θ

uε

))
· ∇ψdx

where ψ ∈ V is the solution to A0ψ = θ− θ. Recalling (1.12)–(1.13) and that
ε ≤ uε(x) ≤ uM + ε we have

∫
Ω

(
K0

(
x,

θ

uε

)
−K0

(
x,

θ

uε

))
· ∇ψdx

≤
N∑
j=1

∫
Ωu

MK |aj(x)|
∣∣∣∣ θuε − θ

uε

∣∣∣∣
∣∣∣∣ ∂ψ∂xj

∣∣∣∣ dx

≤
N∑
j=1

MKa
M
j

∥∥∥∥θ − θ

uε

∥∥∥∥
L2(Ωu)

‖∇ψ‖L2(Ωu)

≤ M

ε

∥∥θ − θ
∥∥ ‖ψ‖V =

M

ε

∥∥θ − θ
∥∥ ∥∥θ − θ

∥∥
V ′ , (1.44)
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where we have denoted M = MK

N∑
j=1

aMj . Next, taking into account (1.37)

we compute

((λI + Bε)θ − (λI +Bε)θ, θ − θ)V ′

= λ
∥∥θ − θ

∥∥2
V ′ +

(
Bεθ −Bεθ, θ − θ

)
V ′

≥ λ
∥∥θ − θ

∥∥2
V ′ +

∫
Ω

(
β∗
ε

(
θ

uε

)
− β∗

ε

(
θ

uε

))
(θ − θ)dx

−M
ε

∥∥θ − θ
∥∥ ∥∥θ − θ

∥∥
V ′

≥ λ
∥∥θ − θ

∥∥2
V ′ +

ρ

2(uM + ε)

∥∥θ − θ
∥∥2 − M

2

2ε2
uM + ε

ρ

∥∥θ − θ
∥∥2
V ′

=

(
λ− M

2

2ε2
uM + ε

ρ

)∥∥θ − θ
∥∥2
V ′ +

ρ

2(uM + ε)

∥∥θ − θ
∥∥2 , (1.45)

so that Bε is quasi-monotone for λ ≥ λ0 = M
2
(uM+ε)
2ρε2 . We recall that ε is

positive fixed.
Next we have to prove that R(λI +Bε) = V ′ for λ large, i.e., to show that

the equation
λθε +Bεθε = g (1.46)

has a solution θε ∈ D(Bε) for any g ∈ V ′. If we denote β∗
ε

(
θε
uε

)
= ζ ∈ V,

due to the fact that β∗
ε is continuous and monotonically increasing on R and

R(β∗
ε ) = (−∞,∞) it follows that its inverse

Gζ := uε(β
∗
ε )

−1(ζ) (1.47)

is continuous from V to L2(Ω). Indeed, for ζ, ζ ∈ V

∥∥Gζ −Gζ
∥∥ =

∥∥uε ((β∗
ε )

−1(ζ) − (β∗
ε )

−1(ζ)
)∥∥ (1.48)

≤ uM + ε

ρ

∥∥ζ − ζ
∥∥ ≤ (uM + ε)cP

ρ

∥∥ζ − ζ
∥∥
V
,

where we used (1.37) and Poincaré’s inequality (with the constant cP ).
So, (1.46) can be rewritten as

λGζ +B0ζ = g (1.49)

with B0 : V → V
′
defined by

〈B0ζ, ψ〉V ′,V :=

∫
Ω

(
∇ζ −K0

(
x,
Gζ

uε

))
· ∇ψdx, ∀ψ ∈ V. (1.50)
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We shall show that λG+B0 is surjective. First we have

〈
(λG +B0)ζ − (λG +B0)ζ, ζ − ζ

〉
V ′,V

= λ

∫
Ω

(Gζ −Gζ)(ζ − ζ)dx +

∫
Ω

∣∣∇(ζ − ζ)
∣∣2 dx

−
∫
Ω

a(x)

(
K

(
Gζ

uε

)
−K

(
Gζ

uε

))
· ∇(ζ − ζ)dx

≥
∫
Ω

λρ

uε
(Gζ −Gζ)2dx+

∫
Ω

∣∣∇(ζ − ζ)
∣∣2 dx

−M
ε

∥∥Gζ −Gζ
∥∥ ∥∥ζ − ζ

∥∥
V

≥
(

λρ

uM + ε
− M

2

2ε2

)∥∥Gζ −Gζ
∥∥2 + 1

2

∥∥ζ − ζ
∥∥2
V
,

so λG+B0 : V → V ′ is monotone and obviously coercive for λ > λ0.
We recall that the operator T : V → V ′ is called coercive if

lim
n→∞

〈Tzn, zn〉V ′,V

‖zn‖V
= +∞

for any sequence (zn)n≥1 with lim
n→∞ ‖zn‖V = +∞.

The inequality (1.48) implies also that the operator λG+B0 is continuous
from V to V

′
and since it is monotone it follows that it is m-accretive. Being

also coercive it is surjective (see [14], pp. 37). Therefore (1.49) has a solution
meaning in fact that we have proved that (1.46) has a solution θε ∈ D(Bε),
i.e., that Bε is quasi m-accretive. ��

Next we give an intermediate result that will be used in the existence proof
of the solution to the approximating problem.

First we define

jε(r) :=

∫ r

0

β∗
ε (ξ)dξ, ∀r ∈ R, (1.51)

and notice that ∂jε(r) = β∗
ε (r), for any r ∈ R.

Let

K = Ks(meas(Ω))1/2
N∑
j=1

aMj .
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Proposition 1.5. Let f ∈ L2(0, T ;V ′) and θ0 ∈ L2(Ω). Then problem
(1.40) has a unique strong solution satisfying

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx+

1

4

∫ t

0

∥∥∥∥dθεdτ (τ)

∥∥∥∥
2

V ′
dτ +

1

4

∫ t

0

∥∥∥∥β∗
ε

(
θε
uε

(τ)

)∥∥∥∥
2

V

dτ

≤
∫
Ω

uε(x)jε

(
θ0
uε

)
dx+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T, t ∈ [0, T ]. (1.52)

Moreover,

∥∥θε(t)− θε(t)
∥∥2

V ′ +
ρ

uM + ε

∫ t

0

∥∥(θε − θε
)
(τ)

∥∥2
dτ

≤ e

(
M2

ε2
uM+ε

ρ +1
)
T

(∥∥θ0 − θ0
∥∥2
V ′ +

∫ T

0

∥∥f(t)− f(t)
∥∥2

V ′ dt

)
(1.53)

where θε and θε are two solutions to (1.40) corresponding to the pairs of data
θ0, f and θ0, f , respectively.

In addition, if f ∈ W 1,2([0, T ];L2(Ω)) and θ0 ∈ V, then

θε, yε, β
∗
ε (yε) ∈ L2(0, T ;H2(Ω)). (1.54)

Proof. The proof is done in two steps. At the first step we take

θ0 ∈ D(Bε), f ∈ W 1,1([0, T ];V ′).

Hence the existence of a unique solution to (1.40)

θε ∈ C([0, T ];V ′) ∩W 1,∞([0, T ];V ′) ∩ L∞(0, T ;D(Bε)),

β∗
ε

(
θε
uε

)
∈ L∞(0, T ;V )

follows from the general theorems for evolution equations with m-accretive
operators (see [14], pp. 141).

By the properties assumed for β∗
ε , we deduce by (1.37) that its inverse is

Lipschitz with the constant 1
ρ , hence β

∗
ε

(
θε
uε
(t)

)
∈ D(Bε) = H1

0 (Ω) implies
θε
uε
(t) ∈ H1(Ω), a.e. t. Since (β∗

ε )
−1(0) = 0 the trace of θε

uε
(t) (see [13], pp. 122)

makes sense and vanishes on Γ. Therefore θε
uε

∈ L∞(0, T ;V ). For proving the
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estimate (1.52) we test (1.40) for β∗
ε

(
θε
uε

)
∈ V and integrate over (0, t)×Ω.

Taking into account the relation

∫ t

0

〈
dθε
dτ

(τ), β∗
ε

(
θε
uε

(τ)

)〉
V ′,V

dτ

=

∫ t

0

∫
Ω

uε(x)
d

dτ

(
jε

(
θε
uε

(t)

))
dxdτ

=

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx−

∫
Ω

uε(x)jε

(
θ0
uε

)
dx,

we obtain that

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx +

∫ t

0

∥∥∥∥β∗
ε

(
θε
uε

(τ)

)∥∥∥∥
2

V

dτ

≤
∫
Ω

uε(x)jε

(
θ0
uε

)
dx+

∫ t

0

‖f(τ)‖V ′

∥∥∥∥β∗
ε

(
θε
uε

(τ)

)∥∥∥∥
V

dτ

−
∫ t

0

∫
Ω

K0

(
x,
θε
uε

(τ)

)
· ∇β∗

ε

(
θε
uε

(τ)

)
dxdτ.

From there, using (1.14) we get

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx+

1

2

∫ t

0

∥∥∥∥β∗
ε

(
θε
uε

(τ)

)∥∥∥∥
2

V

dτ

≤
∫
Ω

uε(x)jε

(
θ0
uε

)
dx+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T, for t ∈ [0, T ]. (1.55)

Next, we multiply (1.40) scalarly in V ′ by dθε
dt and integrate over (0, t).

By similar computations based on the definition of the scalar product in
V ′, we get

1

2

∫ t

0

∥∥∥∥dθεdτ (τ)

∥∥∥∥
2

V ′
dτ +

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx (1.56)

≤
∫
Ω

uε(x)jε

(
θ0
uε

)
dx+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T.

Adding the previous two inequalities we obtain (1.52).
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In the second step we take

θ0 ∈ L2(Ω) = D(Bε), f ∈ L2(0, T ;V ′).

Since W 1,1([0, T ];V ′) is dense in L2(0, T ;V ′) and D(Bε) = V is dense in
L2(Ω) we can take the sequences (fn)n≥1 ⊂ W 1,1([0, T ];V ′) and (θn0 )n≥1 ⊂
D(Bε) such that

fn → f strongly in L2(0, T ;V ′),

θn0 → θ0 strongly in L2(Ω) as n→ ∞.

Then, for each ε > 0, the problem

dθnε
dt

(t) +Bεθ
n
ε (t) = fn(t), a.e. t ∈ (0, T ), (1.57)

θnε (0) = θn0

has, according to the first step, a unique solution θnε satisfying the estimate
(1.52), namely,

∫
Ω

uε(x)jε

(
θnε
uε

(t)

)
dx+

1

4

∫ t

0

∥∥∥∥dθ
n
ε

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

1

4

∫ t

0

∥∥∥∥β∗
ε

(
θnε
uε

(τ)

)∥∥∥∥
2

V

dτ

≤
∫
Ω

uε(x)jε

(
θn0
uε

)
dx +

∫ T

0

‖fn(t)‖2V ′ dt+K
2
T, (1.58)

for any t ∈ [0, T ]. We stress that ε is fixed.
We notice that jε is Lipschitz and by the definition of β∗

ε and jε we have

∫
Ω

uε(x)jε

(
θn0
uε

)
dx ≤ (uM + ε)

β∗
s − β∗(ys − ε)

2ε

∥∥∥∥θ
n
0

uε

∥∥∥∥
2

, (1.59)

whence

∫
Ω

uε(x)jε

(
θnε
uε

(t)

)
dx+

1

4

∫ t

0

∥∥∥∥dθ
n
ε

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

1

4

∫ t

0

∥∥∥∥β∗
ε

(
θnε
uε

(τ)

)∥∥∥∥
2

V

dτ

≤ (uM + ε)
β∗
s − β∗(ys − ε)

2ε

∥∥∥∥θ
n
0

uε

∥∥∥∥
2

+

∫ T

0

‖fn(t)‖2V ′ dt+K
2
T (1.60)

≤ (uM + ε)
β∗
s − β∗(ys − ε)

ε

∥∥∥∥ θ0uε
∥∥∥∥
2

+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T + 2ε,

due to the strong convergence θn0 → θ0 and fn → f as n → ∞. Thus the
right-hand side in (1.60) is independent of n, since ε is small, fixed, e.g. ε� 1.
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Recalling (1.34), jε(r) ≥ ρ
2r

2 for any r ∈ R, we can write by (1.60) that

ρ

(uM + ε)
‖θnε (t)‖2

≤ (uM+1)
β∗
s−β∗(ys − ε)

ε

∥∥∥∥ θ0uε
∥∥∥∥
2

+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T+2, (1.61)

for any t ∈ [0, T ].

We deduce that
(
β∗
ε

(
θn
ε

uε

))
n
lies in a bounded subset of L2(0, T ;V ) and(

dθn
ε

dt

)
n
is in a bounded subset of L2(0, T ;V ′). Therefore we can select a

subsequence, denoted still by the subscript n, such that

dθnε
dt

⇀
dθε
dt

in L2(0, T ;V ′) as n→ ∞,

β∗
ε

(
θnε
uε

)
⇀ ζε in L2(0, T ;V ) as n→ ∞.

The latter immediately implies that

θnε
uε

⇀ yε in L2(0, T ;V ) as n→ ∞.

But uε ∈ W 1,∞(Ω) and the sequence (θε)n =
(
uε

θn
ε

uε

)
n

is bounded in

L2(0, T ;V ) so that we get

θnε ⇀ θε in L2(0, T ;V ) as n→ ∞.

At this point we recall the following theorem (see [7, 77]).

Theorem (Aubin–Lions). Let X1, X2, X3 be three Banach spaces, X1 and
X3 reflexive, X1 ⊂ X2 ⊂ X3 with dense and continuous inclusions and
the inclusion X1 ⊂ X2 is compact. Let (zn)n≥1 be a bounded sequence in
Lp1(0, T ;X1) such that (dzndt )n≥1 is bounded in Lp3(0, T ;X3). Then (zn)n≥1

is compact in Lp2(0, T ;X2), where 1 ≤ p1, p2, p3 <∞.

On the basis of the previous convergencies and since V is compact in L2(Ω)
it follows by the above theorem that

θnε → θε in L2(0, T ;L2(Ω)) as n→ ∞

and also (since uε ≥ ε) that

θnε
uε

→ θε
uε

in L2(0, T ;L2(Ω)) as n→ ∞.
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By (1.36) we have

∥∥∥∥β∗
ε

(
θnε
uε

)
− β∗

ε

(
θε
uε

)∥∥∥∥
L2(Q)

=

∥∥∥∥β
∗
s − β∗(ys − ε)

ε

(
θnε
uε

− θε
uε

)∥∥∥∥
L2(Q)

and deduce that

β∗
ε

(
θnε
uε

)
→ β∗

ε

(
θε
uε

)
in L2(Q), as n→ ∞,

hence ζε = β∗
ε

(
θε
uε

)
a.e. on Q.

Moreover, since K is Lipschitz it follows that

K

(
θnε
uε

)
→ K

(
θε
uε

)
in L2(0, T ;L2(Ω)) as n→ ∞.

Finally, the Ascoli–Arzelà theorem (see below) implies that

θnε (t) → θε(t) in V
′, as n→ ∞, uniformly in t ∈ [0, T ], (1.62)

as we further prove. First we recall this theorem.

Theorem (Ascoli–Arzelà). Let X be a Banach space and let M ⊂
C([0, T ];X) be a family of functions such that

(i) ‖u(t)‖X ≤ C, ∀t ∈ [0, T ], u ∈ M,
(ii) M is equi-uniformly continuous i.e., ∀ε, ∃δ(ε) such that

‖u(t)− u(s)‖X ≤ ε if |t− s| ≤ δ(ε), ∀u ∈ M,

(iii) For each t ∈ [0, T ] the set {u(t);u ∈ M} is compact in X.

Then, M is compact in C([0, T ];X).

Indeed, the family M = (θnε )n ⊂ C([0, T ];V ′) is bounded (this follows
e.g., by (1.61)) and equi-uniformly continuous. To prove this, let ε′ > 0 and
consider that σ(ε′) exists such that |t− s| ≤ σ(ε′), for 0 ≤ s < t ≤ T.We have

∥∥θnε (t)− θnε (s)
∥∥
V ′ =

∥∥∥∥
∫ t

s

dθnε
dt

(τ )dτ

∥∥∥∥
V ′

≤
∫ t

s

∥∥∥∥dθ
n
ε

dt
(τ )

∥∥∥∥
V ′

dτ

≤ |t− s|1/2
∥∥∥∥dθ

n
ε

dt

∥∥∥∥
L2(0,T ;V ′)

≤ ε′, for σ(ε′) ≤ ε′2

γ0(ε)
, ∀θnε ∈M,

where γ0(ε) is the right-hand side in (1.60) which is independent of n. Still
by (1.61) we get that the sequence (θnε (t))n is bounded in L2(Ω) for any
t ∈ [0, T ] and since the injection of L2(Ω) in V ′ is compact it follows that
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the sequence (θnε (t))n is compact in V ′, for each t ∈ [0, T ]. Hence the set M
is compact in C([0, T ];V ′), i.e., we have (1.62).

From here we get that lim
n→∞ θnε (0) = θε(0), whence θ0 = θε(0).

By (1.57) we have that

Bεθ
n
ε = fn − dθnε

dt
⇀ f − dθε

dt
in L2(0, T ;V ′), as n→ ∞.

Since Bε is quasi m-accretive on V ′, its realization on L2(0, T ;V ′) is quasi
m-accretive too, hence it is demiclosed and the previous weak convergence
together with the strong convergence θnε → θε leads to

Bεθε = f − dθε
dt

in L2(0, T ;V ′),

(see [14], pp.100). We recall that a subset A of X ×X is called demiclosed if
it is strongly–weakly closed in X ×X, i.e., zn → z, wn ⇀ w where wn ∈ Azn
imply w ∈ Az. Thus, we have got (1.40), and proved that this problem has
the solution θε ∈ C([0, T ], L2(Ω)) ∩W 1,2([0, T ];V ′) ∩ L2(0, T ;V ).

Finally, passing to limit in (1.58) as n → ∞, and using the lower
semicontinuity property we get (1.52), as claimed.

Consider now two problems (1.40) corresponding to the pairs of data
θ0, f and θ0, f . They have the solutions denoted θε and θε, respectively. We
subtract the equations and multiply the difference by (θε − θε)(t), scalarly
in V ′. Then we integrate it over (0, t). A few calculations on the basis of
(1.45) lead us to

∥∥θε(t)− θε(t)
∥∥2

V ′ +
ρ

uM + ε

∫ t

0

∥∥θε(τ) − θε(τ)
∥∥2
dτ ≤ ∥∥θ0 − θ0

∥∥2
V ′

+

∫ T

0

∥∥f(t)− f(t)
∥∥2

V ′ dt+

(
M

2
(uM + ε)

ε2ρ
+ 1

)∫ t

0

∥∥(θε − θε
)
(τ)

∥∥2

V ′ dτ

which by the Gronwall’s lemma implies (1.53). This also implies the
uniqueness if the data are the same.

Finally, we give an idea for the proof of (1.54). Let f ∈W 1,2([0, T ];L2(Ω))
and θ0 ∈ V . A rigorous computation means to replace (1.40) by a time

finite difference equation, to multiply it by
β∗
ε (yε(t+h))−β∗

ε (yε(t))
h which is in V

and to integrate with respect to t. For simplicity we present a more formal

computation. We multiply (1.40) by
∂β∗

ε (yε)
∂t and integrate over (0, t) × Ω.

We get

∫ t

0

∫
Ω

uεβε(yε)

(
dyε
dτ

)2

dxdτ +
1

2

∫ t

0

d

dτ
‖∇β∗

ε (yε(τ))‖2 dτ

=

∫ t

0

∫
Ω

a(x)K(yε) · ∇
(
dβ∗

ε (yε(τ))

dτ

)
dxdτ +

∫ t

0

∫
Ω

f
dβ∗

ε (yε)

dτ
dxdτ.
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After the integration with respect to τ in the second term on the left-hand
side, we obtain

∫ t

0

∫
Ω

uεβε(yε)

(
dyε
dτ

)2

dxdτ +
1

2
‖β∗

ε (yε(t))‖2V − 1

2
‖β∗

ε (yε(0))‖2V

=

∫
Ω

a(x)K(yε(t)) · ∇β∗
ε (yε(t))dx −

∫
Ω

a(x)K(yε(0)) · ∇β∗
ε (yε(0))dx

−
∫ t

0

∫
Ω

a(x)
∂K(yε)

∂τ
· ∇β∗

ε (yε(τ))dxdτ

+

∫
Ω

f(t)β∗
ε (yε(t))dx −

∫
Ω

f(0)β∗
ε (yε(0))dx−

∫ t

0

∫
Ω

∂f

∂τ
β∗
ε (yε)dxdτ.

Next we have

∫ t

0

∫
Ω

uεβε(yε)

(
dyε
dτ

)2

dτdx +
1

2
‖β∗

ε (yε(t))‖2V

≤ C0(ε) +M ‖yε(t)‖ ‖β∗
ε (yε(t))‖V +M

∫ t

0

∥∥∥∥dyεdτ (τ)

∥∥∥∥ ‖β∗
ε (yε(τ))‖V dτ

+ cP ‖f(t)‖ ‖β∗
ε (yε(t))‖V + cP

∫ t

0

∥∥∥∥∂f∂τ (τ)
∥∥∥∥ ‖β∗

ε (yε(τ))‖V dτ,

where

C0(ε) =
1

2

∥∥∥∥β∗
ε

(
θ0
uε

)∥∥∥∥
2

V

+M

∥∥∥∥ θ0uε
∥∥∥∥
∥∥∥∥β∗

ε

(
θ0
uε

)∥∥∥∥
V

+ cP ‖f(0)‖
∥∥∥∥β∗

ε

(
θ0
uε

)∥∥∥∥
V

.

(1.63)

By βε(yε) ≥ ρ and (1.52) we deduce

ρε

∫ t

0

∫
Ω

(
∂yε
∂τ

)2

dxdτ +
1

4
‖β∗

ε (yε)‖2V

≤ C0(ε) +
ρ

2

∫ t

0

∫
Ω

ε

(
∂yε
∂τ

)2

dxdτ +
1

2

(
M

2

ρε
+ 1

)∫ t

0

‖β∗
ε (yε(τ))‖2V dτ

+2M
2 ‖yε(t)‖2 + 2c2P ‖f(t)‖2 + c2P

2

∫ t

0

∥∥∥∥∂f∂τ (τ)
∥∥∥∥
2

dτ,

whence we get dyε

dt ∈ L2(Q), β∗
ε (yε) ∈ L∞(0, T ;V ) for each ε > 0.
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We continue with some other computations based on the arguments
developed in [84], Theorem 2.6, pp. 156. These are very long and technical
so we do no longer provide them. We obtain an estimate of the form

‖β∗
ε (yε)‖2W 1,2([0,T ];L2(Ω)) + ‖β∗

ε (yε)‖2L∞(0,T ;V ) + ‖β∗
ε (yε)‖2L2(0,T ;H2(Ω))

≤ γ1
β∗
s − β∗(ys − ε)

ε

×
(∥∥∥∥β∗

ε

(
θ0

u+ ε

)∥∥∥∥
2

V

+

∫
Ω

jε

(
θ0

u+ ε

)
dx+ ‖f(t)‖2W 1,2([0,T ];L2(Ω)) + 1

)
,

(1.64)

where γ1 is a constant depending on the problem data. Since θ0 ∈ V it

follows that θ0
u+ε ∈ V and jε

(
θ0
u+ε

)
∈ L1(Ω), so that by (1.64) we get

that β∗
ε (yε) ∈ L2(0, T ;H2(Ω)). By a direct computation we also get that

ajK(yε) ∈ L2(0, T ;H1(Ω)), j = 1, . . . , N.
For a later use we specify that these imply the flux continuity across a

surface, i.e.,

(K0(x, yε(t))−∇β∗
ε (yε(t))) · ν is continuous across Γc, a.e. t ∈ (0, T ),

(1.65)

where Γc is any surface included in Ω and ν is the outer normal to Γc.
Indeed, since each component ηi(t) of the flux vector belongs to H1(Ω), a.e.
t it follows that its trace on any line crossing the surface Γc is continuous.
Therefore the normal component of the gradient is continuous across any Γc

and in particular across ∂Ω0. ��

1.1.5 Convergence of the Approximating Problem

Theorem 1.6. Let (1.21) and (1.22) hold. Then, the Cauchy problem (1.27)
has at least a weak solution (y∗, ζ).

Proof. Let us assume (1.21) and (1.22), i.e.,

θ0 ∈ L2(Ω), θ0 = 0 a.e. on Ω0,

θ0 ≥ 0 a.e. on Ωu,
θ0
u

∈ L2(Ωu),
θ0
u

≤ ys, a.e. x ∈ Ωu.
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According to Proposition 1.5 there exists a unique solution to (1.40), with
the properties (1.52), (1.53). Then, it follows that

∫
Ω

jε

(
θ0
uε

)
dx =

∫
Ω0

jε

(
θ0
uε

)
dx+

∫
Ωu

jε

(
θ0
uε

)
dx =

∫
Ωu

jε

(
θ0
uε

)
dx

since θ0
uε

= 0 a.e. on Ω0. Using (1.35) and the fact that uε = u + ε > u on
Ωu, we still obtain

∫
Ω

jε

(
θ0
uε

)
dx =

∫
Ωu

∫ θ0/uε

0

β∗
ε (r)drdx

≤
∫
Ωu

∫ θ0/u

0

β∗
ε (r)drdx ≤ β∗

sysmeas(Ω),

and so the right-hand side in (1.52) becomes essentially independent of ε,

∫
Ω

uε(x)jε

(
θε
uε

(t)

)
dx+

∫ t

0

∥∥∥∥dθεdτ (τ)

∥∥∥∥
2

V ′
dτ +

∫ t

0

∥∥∥∥β∗
ε

(
θε(τ)

uε

)∥∥∥∥
2

V

dτ

≤4(uM+ ε)

(
β∗
sysmeas(Ω)+

∫ T

0

‖f(t)‖2V ′ dt+K
2
T

)
, t ∈ [0, T ]. (1.66)

Then, using (1.34) we get

∥∥∥∥√uε θεuε (t)
∥∥∥∥
2

≤ 8

ρ
(uM + ε)

(
β∗
sysmeas(Ω) +

∫ T

0

‖f(t)‖2V ′ dt+K
2
T

)
, t ∈ [0, T ].

(1.67)

Next, we write again

θε =

(√
uε
θε
uε

)√
uε

and obtain

‖θε(t)‖2 ≤ 8

ρ
(uM+ε)2

(
β∗
sysmeas(Ω) +

∫ T

0

‖f(t)‖2V ′ dt+K
2
T

)
, t ∈ [0, T ].

(1.68)

Therefore, the right-hand side terms in the estimates (1.66)–(1.68) are
bounded by constants (since ε is small, e.g., ε << 1).
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1.1.5.1 Passing to the Limit as ε → 0

On the basis of these estimates we can select a subsequence denoted still by
the subscript ε, such that

β∗
ε

(
θε
uε

)
⇀ ζ in L2(0, T ;V ), as ε→ 0, (1.69)

yε =
θε
uε

⇀ y in L2(0, T ;V ), as ε→ 0, (1.70)

√
uε
θε
uε

w∗→ χ in L∞(0, T ;L2(Ω)), as ε→ 0. (1.71)

But

θε = uε
θε
uε

(1.72)

and since uε → u uniformly on Ω and u ∈W 1,∞(Ω) we have that

‖θε‖L2(0,T ;V ) ≤ constant independent of ε, (1.73)

and so

θε ⇀ θ in L2(0, T ;V ), as ε→ 0. (1.74)

By (1.66) we still deduce that

dθε
dt

⇀
dθ

dt
in L2(0, T ;V ′), as ε→ 0, (1.75)

and by (1.40) we have

Δβ∗
ε

(
θε
uε

)
⇀

dθ

dt
− f in L2(0, T ;V ′), as ε→ 0. (1.76)

Also, by (1.70), (1.72), (1.74) and uε → u uniformly we deduce that

θ = uy a.e. on Q, (1.77)

and obviously

θ = 0 a.e. on Q0, (1.78)

where Q0 := (0, T )×Ω0. Using (1.71) and (1.70) we still obtain that

√
uεyε

w∗→ χ =
√
uy in L∞(0, T ;L2(Ω)). (1.79)
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Again, by the Ascoli–Arzelà theorem we deduce that

θε(t) → θ(t) in V ′, as ε→ 0, uniformly in t ∈ [0, T ]. (1.80)

Thus,

θ0 = lim
ε→0

θε(0) = θ(0) = (uy(t))|t=0 .

By the Aubin–Lions theorem (θε)ε is compact in L2(0, T ;L2(Ω)), i.e.,

θε → θ in L2(0, T ;L2(Ω)) as ε→ 0. (1.81)

We set now for δ > 0 arbitrarily small

Ωδ := {x ∈ Ω; u(x) > δ}, Qδ := (0, T )×Ωδ. (1.82)

We recall that

Ωu := {x ∈ Ω; u(x) > 0}, Qu := (0, T )×Ωu (1.83)

and notice that Ωδ and Ωu are open. We have

1

uε
=

1

u+ ε
<

1

δ
on Ωδ,

so that, by (1.81) and (1.70) we can conclude that

yε =
1

uε
θε → θ

u
:= y in L2(0, T ;L2(Ωδ)), (1.84)

and a.e. in Qδ, ∀δ > 0. Still by (1.70) we have that

yε =
θε
uε

⇀ y in L2(0, T ;L2(Ωu)). (1.85)

1.1.5.2 Convergence of β∗
ε(yε) on Qu

Let (t, x) ∈ Qδ. First, we shall prove that

ζ(t, x) ∈ β∗(y(t, x)) a.e. on Qδ, (1.86)

where ζ is given by (1.69). This will be proved using the fact that j is the
potential of β∗, i.e., β∗ = ∂j.
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To this end we establish some relations. We note that

jε(z) → j(z), as ε→ 0, for any z ∈ R. (1.87)

This assertion is clear for z < ys − ε, where jε(z) ≡ j(z).
For ys − ε ≤ z < ys we compute

|jε(z)− j(z)| =
∣∣∣∣
∫ z

ys−ε

(β∗
ε (ξ)− β∗(ξ))dξ

∣∣∣∣ ≤ 2β∗
sε→ 0 as ε→ 0,

where we recall that β∗
s = limr↗ys β

∗(r) (see (1.5)).
For z ≥ ys we have

jε(z) =

∫ ys−ε

0

β∗
ε (ξ)dξ +

∫ z

ys−ε

β∗
ε (ξ)dξ =

∫ ys−ε

0

β∗(ξ)dξ

+ β∗(ys − ε)[z − (ys − ε)] +
β∗
s − β∗(ys − ε)

2ε
[z − (ys − ε)]2.

Therefore, we have limε→0 jε(z) = j(ys) for z = ys and

lim
ε→0

jε(z) = +∞ = j(z) for z > ys.

Now, we are going to show that

∫
Qδ

j(y)dxdt ≤ lim inf
ε→0

∫
Qδ

jε(yε)dxdt. (1.88)

Let ε be small, e.g., ε < ys

2 . We can write

∫
Qδ

jε(yε(t, x))dxdt (1.89)

=

∫
Qε

1

jε(yε(t, x))dxdt +

∫
Qε

2

jε(yε(t, x))dxdt +

∫
Qε

3

jε(yε(t, x))dxdt,

where

Qε
1 = {(t, x) ∈ Qδ; yε(t, x) < ys − ε},

Qε
2 = {(t, x) ∈ Qδ; ys − ε ≤ yε(t, x) ≤ ys},

Qε
3 = {(t, x) ∈ Qδ; ys < yε(t, x)}.
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We compute each term apart. For (t, x) ∈ Qε
1 we have

jε(yε(t, x)) =

∫ yε(t,x)

0

β∗
ε (ξ)dξ =

∫ yε(t,x)

0

β∗(ξ)dξ = j(yε(t, x)).

For (t, x) ∈ Qε
2 we write

jε(yε(t, x)) =

∫ ys−ε

0

β∗
ε (ξ)dξ +

∫ yε(t,x)

ys−ε

β∗
ε (ξ)dξ

= j(ys − ε) + β∗(ys − ε)[yε(t, x)− (ys − ε)]

+
β∗
s − β∗(ys − ε)

2ε
[yε(t, x)− (ys − ε)]2

≥ j(ys − ε)

because the last two terms in the sum are positive on Qε
2 (β∗ is positive for

a positive argument and so β∗(ys − ε) > 0).
Next, if (t, x) ∈ Qε

3, taking into account that β∗
ε (r) ≥ β∗(r) for r < ys and

β∗
ε (ys) = β∗

s we have

jε(yε(t, x)) =

∫ ys

0

β∗
ε (ξ)dξ +

∫ yε(t,x)

ys

β∗
ε (ξ)dξ

≥
∫ ys

0

β∗(ξ)dξ + β∗(ys − ε)(yε(t, x)− ys)

+
β∗
s − β∗(ys − ε)

2ε
(yε(t, x) − ys)

2

≥ j(ys).

We resume (1.89), writing

∫
Qδ

jε(yε(t, x))dxdt ≥
∫
Qε

1

j(yε(t, x))dxdt+

∫
Qε

2

j(ys − ε)dxdt+

∫
Qε

3

j(ys)dxdt

=

∫
Qδ

j(y(t, x))dxdt+

∫
Qε

1

(j(yε(t, x))− j(y(t, x)))dxdt

+

∫
Qε

2

(j(ys − ε)− j(y(t, x)))dxdt+

∫
Qε

3

(j(ys)− j(y(t, x)))dxdt (1.90)

and we treat again each term apart.
Since yε → y in L2(Qδ) it follows that on a subsequence yε → y a.e. on Qδ,

and in particular this is true on Qε
1 and Q

ε
2. Moreover, y → j(y) is continuous

if y ≤ ys and so we have

j(yε(t, x)) − j(y(t, x)) → 0 a.e. on Qε
1, as ε→ 0.
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Then j(yε(t, x))≤ j(ys−ε)≤ j(ys) if (t, x)∈Qε
1 and so |j(yε(t, x))− j(y(t, x))|

≤ 2j(ys). In conclusion by the Lebesgue dominated convergence theorem we
deduce that

∣∣∣∣∣
∫
Qε

1

(j(yε(t, x))− j(y(t, x)))dxdt

∣∣∣∣∣
=

∫
Qδ

∣∣(j(yε(t, x)) − j(y(t, x)))χQε
1
(t, x)

∣∣ dxdt→ 0,

where χQε
1
is the characteristic function of the set Qε

1. For the second term
in the sum (1.90) we write

∫
Qε

2

(j(ys − ε)− j(y(t, x)))dxdt

=

∫
Qε

2

(j(ys − ε)− j(yε(t, x)))dxdt +

∫
Qε

2

(j(yε(t, x)− j(y(t, x)))dxdt.

The last term on the right-hand side converges to 0 by a similar argument
as before, using the Lebesgue dominated convergence theorem. For the first
term we recall that y → j(y) is Lipschitz if y ≤ ys and we have

∣∣∣∣∣
∫
Qε

2

(j(ys − ε)− j(yε(t, x)))dxdt

∣∣∣∣∣≤
∣∣∣∣
∫
Qδ

(j(ys − ε)− j(yε(t, x)))χQε
2
(t, x)dxdt

∣∣∣∣

≤ β∗
s

∫
Qδ

|ys − ε− yε(t, x)| dxdt

≤ β∗
smeas(Qδ)ε→ 0 as ε→ 0,

where χQε
2
is the characteristic function of the set Qε

2.
For the third term in (1.90) we write

∫
Qε

3

(j(ys)− j(y(t, x)))dxdt =

∫
Qδ

(j(ys)− j(y(t, x)))χQε
3
(t, x)dxdt

where χQε
3
is the characteristic function of the set Qε

3.
We are going to show that

y(t, x) ≤ ys a.e. on Qδ

which will imply that the integral on Qε
3 is nonnegative.



1.1 Well-Posedness for the Cauchy Problem with Fast Diffusion 31

Thus, on the basis of these results coming back to (1.90) we deduce

lim inf
ε→0

∫
Qδ

jε(yε(t, x))dxdt ≥
∫
Qδ

j(y(t, x))dxdt

+ lim inf
ε→0

(∫
Qε

1

(j(yε(t, x)) − j(y(t, x))) dxdt

+

∫
Qε

2

(j(ys − ε)− j(y(t, x)))dxdt

)

=

∫
Qδ

j(y(t, x))dxdt

and so (1.88) is proved.
It remains to prove the assertion that y(t, x) ≤ ys a.e. on Qδ. We recall

(1.66) which implies in particular

∫ t

0

‖β∗
ε (yε(τ))‖2L2(Qδ)

dτ ≤ C

that can be still written

∫ t

0

‖β∗
ε (yε(τ))‖2L2(Qε

3)
dτ +

∫ t

0

‖β∗
ε (yε(τ))‖2L2(Qδ\Qε

3)
dτ ≤ C.

The second term is positive and bounded, β∗
ε (yε(τ, x)) ≤ β∗

s on Qδ\Qε
3 =

{(t, x); yε(t, x) ≤ ys}, and replacing the expression of β∗
ε we obtain

∫
Qδ

{
β∗(ys − ε) +

β∗
s − β∗(ys − ε)

ε
[yε − (ys − ε)]

}2

χQε
3
(t, x)dxdt ≤ C.

Further we have

∫
Qδ

(
β∗
s − β∗(ys − ε)

ε

)2

(yε − ys)
2χQε

3
(t, x)dxdt ≤ C

because β∗(ys − ε) > 0. We recall that β∗ is convex, which implies that

β∗
s − β∗(ys − ε)

ε
> β(ys − ε)

and so we get

∫
Qδ

(yε − ys)
2χQε

3
(t, x)dxdt =

∫
Qδ

{(yε − ys)
+}2dxdt ≤ C

β2(ys − ε)
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where (yε − ys)
+ represents the positive part of (yε − ys). Now we pass to

the limit (recalling that yε → y in L2(Qδ) by (1.84)) and take into account
that β blows up at ys, getting∫

Qδ

{(y − ys)
+}2dxdt ≤ 0

whence we deduce that y(t, x) ≤ ys a.e. on Qδ.
Now we resume the proof of the convergence of β∗

ε on Qδ. Since

jε(r) ≤ jε(z) + β∗
ε (r)(r − z), for any r, z ∈ R,

we can write the inequality in particular for z : (0, T )×Ωδ → R, z ∈ L2(Qδ)
and r = yε. We have

∫
Qδ

jε(yε)dxdt ≤
∫
Qδ

jε(z)dxdt +

∫
Qδ

β∗
ε (yε)(yε − z)dxdt. (1.91)

Assume z ≤ ys. Then jε(z) ≤ β∗
sys and using (1.87) we deduce by the

Lebesgue dominated convergence theorem (see [13], pp. 3) that

lim
ε→0

∫
Qδ

jε(z)dxdt =

∫
Qδ

j(z)dxdt.

Next, we remind that β∗
ε (yε) ⇀ ζ in L2(0, T ;V ) and yε → y in

L2(0, T ;L2(Ωδ)). By passing to limit as ε → 0 in (1.91) and taking into
account (1.88) we obtain that

∫
Qδ

j(y)dxdt ≤
∫
Qδ

j(z)dxdt+

∫
Qδ

ζ(y − z)dxdt, ∀z ∈ L2(Qδ), z ≤ ys.

(1.92)

This implies that ∂j = ζ. Here is the argument. Let us fix (t0, x0) ∈ Qδ,
choose w arbitrary in R, w ≤ ys, and define

z(t, x) :=

{
y(t, x), (t, x) /∈ Br(t0, x0)

w, (t, x) ∈ Br(t0, x0),

where Br(t0, x0) is the ball of centre (t0, x0) and radius r > 0. We denote
Br(t0, x0) = Qδ\Br(t0, x0). Then, (1.92) yields∫

Br(t0,x0)

j(y)dxdt +

∫
Br(t0,x0)

j(y)dxdt

≤
∫
Br(t0,x0)

j(z)dxdt+

∫
Br(t0,x0)

j(z)dxdt

+

∫
Br(t0,x0)

ζ(y − z)dxdt+

∫
Br(t0,x0)

ζ(y − z)dxdt.
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Taking into account the choice of z(t, x) we have

∫
Br(t0,x0)

j(y)dxdt+

∫
Br(t0,x0)

j(y)dxdt

≤
∫
Br(t0,x0)

j(w)dxdt +

∫
Br(t0,x0)

j(y)dxdt

+

∫
Br(t0,x0)

ζ(y − w)dxdt +

∫
Br(t0,x0)

ζ(y − y)dxdt

from where it remains∫
Br(t0,x0)

j(y)dxdt ≤
∫
Br(t0,x0)

j(w)dxdt +

∫
Br(t0,x0)

ζ(y − w)dxdt.

We recall the following definition. Let l be a Lebesgue measurable function
on a set S and let z0 ∈ S. The point z0 is called a Lebesgue point for l if

lim
r→0

1

meas(Br(z0))

∫
Br(z0)

l(x)dx = l(z0).

The set of the points at which the previous relation holds is called the set
of Lebesgue points. We also recall that the set of Lebesgue points for an
integrable function l on a set S has the Lebesgue measure equal to that of S,
namely almost all points in S are Lebesgue for l.

Thus, let us assume now that (t0, x0) considered before is a Lebesgue point
for j. Dividing the inequality by meas(Br(x0, t0)) and letting r → 0 we get

j(y(t0, x0)) ≤ j(w) + ζ(t0, x0) (y(t0, x0)− w) , ∀w ∈ R, w ≤ ys.

By the definition of j we get ζ(t, x) ∈ β∗(y(t, x)) a.e. (t, x) ∈ Qδ. Then,
since δ is arbitrary and Qu =

⋃
δ>0Qδ, we infer that

ζ(t, x) ∈ β∗(y(t, x)) a.e. on Qu,

and we deduce that

y(t, x) ≤ ys a.e. on Qu.

Finally, since
(
K

(
θε
uε

))
ε
is bounded in L2(Q) we have

K

(
θε
uε

)
⇀ κ in L2(Q), as ε→ 0

and we assert that κ = K(y). Indeed,

K

(
θε
uε

)
⇀ κ in L2(Qu), as ε→ 0,
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too. On the other hand, K being Lipschitz it follows by (1.84) that(
K

(
θε
uε

))
ε>0

is strongly convergent on each subset Qδ,

K

(
θε
uε

)
→ K (y) in L2(Qδ), as ε→ 0.

By the uniqueness of the limit the restriction of the weak limit function κ to
Qδ must coincide with K(y) and this also implies that

κ(t, x) = K(y(t, x)) a.e. on Qu.

On the subset Q0 the function a(x)K
(

θε
uε

)
= 0, so by the definition of K0

we get

K0

(
x,
θε
uε

)
⇀K0(x, y) in L

2(Q), as ε→ 0.

Finally, we derive a relation which will serve a little later. Assume first
that f ∈ W 1,2([0, T ];L2(Ω)) and θ0 ∈ V.

We recall that ζ(t) ∈ V a.e. t ∈ (0, T ). Since this regularity is not sufficient
to define its normal derivative to a surface Γc ⊂ Ω, we define a generalized
normal derivative of it ∂ζ(t)

∂ν , as an element of a distribution space on Γc. As

a matter of fact ∂ζ(t)
∂ν ∈ H−1/2(Γc) which is the dual of H1/2(Γc) (see the

definitions of these spaces in [78]).
Assume that Γc is a smooth surface surrounding the domain Ωc ⊂ Ω,

i.e., Γc = ∂Ωc. If η ∈ H1(Ωc) and Δη ∈ (H1(Ωc))
′ then we define ∂η

∂ν ∈
H−1/2(Γc) by

〈
∂η

∂ν
, tr(ψ)

〉
H−1/2(Γc),H1/2(Γc)

= 〈Δη, ψ〉(H1(Ωc))′,H1(Ωc)
+

∫
Ωc

∇η · ∇ψdx, ∀ψ ∈ H1(Ωc). (1.93)

In particular, for η = ζ(t), Ωc = Ω0 with the boundary Γ0 = ∂Ω0 we define

the outward normal derivative ∂+

∂ν ζ(t) a.e. t ∈ (0, T ), by

〈
∂+ζ(t)

∂ν
, tr(ψ)

〉
H−1/2(Γ0),H1/2(Γ0)

= 〈Δζ(t), ψ〉(H1(Ω0))′,H1(Ω0)

+

∫
Ω0

∇ζ(t) · ∇ψdx, ∀ψ ∈ H1(Ω0), a.e. t ∈ (0, T ), (1.94)

where tr(ψ) is the trace of ψ ∈ H1(Ω0) on Γ0.
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In a similar way, considering Ωu = Ω\Ω0 which has the common boundary

Γ0 = ∂Ω0 with Ω0, we define ∂−
∂ν ζ(t) on Γ0 by the relation

〈
∂−ζ(t)
∂ν

, tr(ψ)

〉
H−1/2(Γ0),H1/2(Γ0)

= 〈Δζ(t), ψ〉(H1(Ωu))′,H1(Ωu)
+

∫
Ωu

∇ζ(t) · ∇ψdx, ∀ψ ∈ V, a.e. t ∈ (0, T ),

(1.95)

where tr(ψ) is the trace of ψ ∈ V on Γ0.
Thus we can obtain the continuity of the generalized normal derivative

across the surface Γc, in particular across Γ0. Indeed by (1.65) we have

∫
Γ0

(K+
0 (x, yε(t))−∇ζ+ε (t)) · ν+ψdσ

=

∫
Γ0

(K−
0 (x, yε(t)) −∇ζ−ε (t)) · ν−ψdσ, ∀ψ ∈ V, a.e. t ∈ (0, T ),

where ζε = β∗
ε (yε) and the superscripts + and − denote the restrictions of the

functions on Ω0 and Ωu, respectively. Also, ν+ and ν− are the outer normal
derivatives to Γ0 from Ω0 and Ωu, respectively. Since ∇ζε(t) is bounded in
L2(Ω) independently on ε, a.e. t (see (1.52)) we can pass to the limit and get

〈
(K+

0 (·, y(t))−∇ζ+(t)) · ν+, ψ〉
H−1/2(Γ0),H1/2(Γ0)

=
〈
K−

0 (·, y(t)) −∇ζ−(t) · ν−, ψ〉
H−1/2(Γ0),H1/2(Γ0)

, ∀ψ ∈ V, a.e. t ∈ (0, T )

(1.96)

where the normal derivatives ∂+ζ(t)
∂ν = ∇ζ+(t) · ν+ and ∂−ζ(t)

∂ν = ∇ζ−(t) · ν−
are considered in the generalized sense (1.94) and (1.95). For simplicity, here
we denoted tr(ψ) still by ψ.

Now we can pass to limit as ε→ 0 in (1.43) and obtain

∫ T

0

〈
d(uy)

dt
(t), φ(t)

〉
V ′,V

dt+

∫
Q

(∇ζ −K0(x, y)) · ∇φdxdt

=

∫ T

0

∫
Ω

fφdxdt, for any φ ∈ L2(0, T ;V ), (1.97)

where ζ is given by (1.69), ζ = lim
ε→0

β∗
ε (yε).
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In particular if φ ∈ C∞
0 (Qu) we get

∫ T

0

〈
d(uy)

dt
(t), φ(t)

〉
V ′,V

dt+

∫
Qu

(∇ζ −K0(x, y)) · ∇φdxdt

=

∫ T

0

∫
Ωu

fφdxdt, (1.98)

where ζ ∈ β∗(y) a.e. on Qu. We have taken into account that

d(uy)

dt
=

{
∂(uy)
∂t , if uy > 0

0, if uy = 0
(1.99)

where ∂(uy)
∂t is the derivative in the sense of distributions.

If we take φ ∈ C∞
0 (Q0) we obtain

∫
Qu

(∇ζ −K0(x, y)) · ∇φdxdt =
∫ T

0

∫
Ω0

fφdxdt, (1.100)

where ζ is given by (1.69).

1.1.6 Construction of the Solution

Now we consider the following equations in the sense of distributions

∂(uy)

∂t
−Δζ +∇ ·K0(x, y) 	 f in Q,

ζ = 0 on Σ, (1.101)

obtained from (1.97) for φ ∈ C∞
0 (Q), where ζ is given by (1.69),

∂(uy)

∂t
−Δζ +∇ ·K0(x, y) 	 f in Qu = (0, T )×Ωu,

ζ = 0 on Σ, (1.102)

with ζ(t, x) ∈ β∗(y(t, x)) a.e. (t, x) ∈ Qu and

−Δζ 	 f in Q0 = (0, T )×Ω0 (1.103)

with ζ given again by (1.69).
The common boundary ∂Ω0 of the domains Ωu and Ω0 is regular. Since

ζ ∈ L2(0, T ;V ) we deduce that for a.e. t ∈ (0, T ) the trace of the function
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ζ(t) on any line L0 ⊂ Ω crossing the boundary ∂Ω0 belongs to V, so that it
is continuous across L0. Thus if we take x0 ∈ ∂Ω0 then

ζ−(t) := lim
x→x0

x∈L0∩Ωu

ζ(t) = lim
x→x0

x∈L0∩Ω0

ζ(t) = ζ+(t) a.e. t ∈ (0, T ).

We take into account that ζ−(t) ∈ β∗(y(t)) a.e. t ∈ (0, T ), hence ζ turns out
to be the solution to the elliptic problem

−Δζ(t) = f(t) in Ω0, a.e. t ∈ (0, T ) (1.104)

ζ(t) = ζ−(t) ∈ β∗(y(t)) on ∂Ω0, a.e. t ∈ (0, T ),

where y is the solution to (1.102) in Qu.
Now we can construct the function

y∗(t, x) :=
{
y(t, x), if (t, x) ∈ Qu

(β∗)−1(ζ(t, x)), if (t, x) ∈ Q0
(1.105)

and show that it is the solution to (1.27). Since ζ ∈ L2(0, T ;V ) it follows
that y∗ ∈ L2(0, T ;D(A)), whence y∗ ≤ ys a.e. on Q. This function belongs
also to the spaces specified in (1.23) (for the derivative we take into account
(1.99)).

We have to check that y∗ satisfies (1.26). If we plug y∗ given by (1.105) in
(1.26) and we take into account (1.99), (1.96) we obtain

∫ T

0

〈
d(uy∗)
dt

(t), φ(t)

〉
V ′,V

dt+

∫
Q

(∇ζ −K0(x, y
∗)) · ∇φdxdt

=

∫ T

0

〈
d(uy∗)
dt

(t), φ(t)

〉
V ′,V

dt+

∫
Qu

(∇ζ −K0(x, y)) · ∇φdxdt

+

∫
Q0

(∇ζ −K0(x, y
∗)) · ∇φdxdt

=

∫ T

0

∫
Ωu

fφdxdt+

∫ T

0

∫
Ω0

fφdxdt =

∫ T

0

∫
Ω

fφdxdt,

for any φ ∈ L2(0, T ;V ), ζ ∈ β∗(y∗) a.e. on Q. Here we used (1.98) and
(1.100).

Now, let f ∈ L2(0, T ;V ′) and θ0 ∈ L2(Ω). The previous relation remains
true, by density, but we do not provide all arguments because they are similar
with those given up to now. So, we obtain (1.26) as claimed and this ends
the existence proof. ��
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Now we are going to specify a physical interpretation of the solution,
stating that the previous proof also implies

Corollary 1.7. The solution y∗ to problem (1.1) given by Theorem 1.6 is
the solution to the transmission problem

∂(u(x)y∗)
∂t

−Δβ∗(y∗) +∇ ·K0(x, y
∗) 	 f in Qu,

−Δβ∗(y∗) 	 f in Q0,

ζ+ = ζ− on Σ0 = (0, T )× ∂Ω0,

(K+
0 (x, y∗)−∇ζ+) · ν+ = (K−

0 (x, y∗)−∇ζ−) · ν+ on Σ0,

y∗(t, x) = 0 on Σ := (0, T )× Γ,

(u(x)y∗(t, x))|t=0 = θ0(x) in Ω. (1.106)

Proof. Let f ∈W 1,2([0, T ];L2(Ω)). Let us write that y∗ is a solution to (1.1)

∫ T

0

〈
d(uy∗)
dt

(t), φ(t)

〉
V ′,V

dt+

∫
Qu

(∇ζ −K0(x, y)) · ∇φdxdt

+

∫
Q0

(∇ζ −K0(x, y
∗)) · ∇φdxdt

=

∫ T

0

∫
Ω

fφdxdt,

whence, expressing the integrals on Qu and Q0 in another way, we get

∫ T

0

〈
d(uy∗)

dt
(t)−Δζ(t) +∇ · a(x)K0(x, y

∗(t))− f(t), φ(t)

〉
(H1(Ωu))′,H1(Ωu)

dt

−
∫ T

0

〈
(K−

0 (·, y∗(t))−∇ζ−(t)) · ν−, φ(t)
〉
H−1/2(∂Ω0),H1/2(∂Ω0)

dt

+

∫ T

0

〈−Δζ(t)− f(t), φ(t)〉(H1(Ω0))′,H1(Ω0)
dt

−
∫ T

0

〈
K+

0 (·, y∗(t))−∇ζ+(t) · ν+, φ(t)
〉
H−1/2(∂Ω0),H1/2(∂Ω0)

dt

= 0,

for any φ ∈ C∞
0 (Q). Using (1.102) and (1.103) we get

(K−
0 (·, y∗(t))−∇ζ−(t))) ·ν−+(K+

0 (·, y∗(t))−∇ζ+(t)) ·ν+ = 0 a.e. t, on ∂Ω0

where ν− = −ν+. The result remains true for f ∈ L2(0, T ;V ′), by density. ��
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This means that the flux is conserved across the boundary Σ0, which
from the physical point of view is natural. As a matter of fact (1.106) is an
equivalent form of (1.27).

Finally, we mention that the presence of the advection term in nonlinear
degenerate diffusion problems, as well as in periodic problems as we shall
see, may induce difficulties in proving the solution uniqueness, especially
when using energetic relations. This is not a singular situation, because as
it is well known there are many nonlinear problems in which uniqueness has
remained an open problem (e.g. Navier–Stokes equation in 3D, nonlinear wave
equation). In general uniqueness follows under restrictive assumptions and in
diffusion with transport problems one can observe that it is ensured when the
diffusion dominates the advection. In media with low porosity it can also be
shown that a small enough velocity of the fluid is a condition guaranteeing
the flow uniqueness. So, we give next a uniqueness result, establishing in fact
a sufficient condition in (1.107) below. Its interpretation is that the advection
vector in absolute value is of the same order of magnitude as the square root
of the porosity. For the case when (1.107) is not obeyed one can accept that
the approximating solution (which is unique) is an appropriate candidate for
the solution to the physical model (1.1).

Proposition 1.8. Under the hypotheses of Theorem 1.6 assume in addition
that there exists ku > 0 such that

|a(x)| ≤ ku
√
u(x) for any x ∈ Ω. (1.107)

Then the solution to (1.1) is unique a.e. on Q.

Proof. Assume that we have two solutions (y∗, ζ) and (y∗, ζ) to (1.27)
corresponding to the same data f and θ0. We subtract (1.27) written for y∗

and y∗, multiply the difference scalarly in V ′ by u(y∗ − y∗)(t), and integrate
over (0, t). We get

∫ t

0

(
d(u(y∗ − y∗))

dτ
(τ), u(y∗ − y∗)(τ)

)
V ′
dτ +

∫ t

0

∫
Ω

∇(ζ − ζ) · ∇ψdxdτ

=

∫ t

0

∫
Ω

(K(y∗)−K(y∗))a(x) · ∇ψdxdτ, (1.108)

where A0ψ = u(y∗ − y∗). Next we have

1

2
‖u(y∗ − y∗)(t)‖2V ′ +

∫ t

0

∫
Ω

(ζ − ζ)u(y∗ − y∗)dxdτ

≤ NMKku

∫ t

0

∫
Ω

∣∣√u(y∗ − y∗)
∣∣ |∇ψ| dxdτ

≤ NMKku

∫ t

0

∥∥√u(y∗ − y∗)(τ)
∥∥ ‖u(y∗ − y∗)(τ)‖V ′ dτ
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whence, recalling (1.7) we obtain

1

2
‖u(y∗ − y∗)(t)‖2V ′ + ρ

∫ t

0

∫
Ω

u(y∗ − y∗)2dxdτ

≤ ρ

2

∫ t

0

∫
Ω

u(y∗ − y∗)2dxdτ +
1

2ρ
(NMKku)

2

∫ t

0

‖u(y∗ − y∗)(τ)‖2V ′ dτ.

Therefore, by Gronwall lemma (see [29]), ‖u(y∗ − y∗)(t)‖2V ′ ≤ 0 and we
deduce that uy∗(t) = uy∗(t) for any t ∈ [0, T ]. It follows that the solution
is unique a.e. on the set Qu where u(x) > 0. Therefore, using (1.104) which
is satisfied by ζ(t) ∈ β∗(y∗(t)) and ζ(t) ∈ β∗(y∗(t)) we write the problem
satisfied by their difference

Δ(ζ − ζ)(t) = 0 in Ω0, a.e. t ∈ (0, T ),

(ζ − ζ)(t) = 0 on ∂Ω0, a.e. t ∈ (0, T ).

This implies that ζ(t) = ζ(t) a.e. t and since (β∗)−1 is single valued we get
that y∗(t) = y∗(t) a.e. onΩ0.Then the solution uniqueness follows a.e. onQ. ��

Finally we would like to make a short comment about the continuity of
the solution with respect to the nonlinear functions, without entering into
details. We recall that such a property has been studied in [25] in the case of
Richards’ equation.

First we focus on the approximating problem (1.40). Let (Kj)j be such
that Kj(r) → K(r) as j → ∞, and (β∗

j )j be a family of graphs such that
(β∗

j )j converges to β∗ in the sense of the resolvent, that is

(1 + λβ∗
j )

−1z → (1 + λβ∗)−1z, as j → ∞, ∀λ > 0, ∀z ∈ R.

Then
(I + λBj

ε)
−1g → (I + λBε)

−1g as j → ∞, for g ∈ V ′,

whereBj
ε are the quasim-accretive operators in (1.40) corresponding to (β∗

j )ε.
Then by Trotter–Kato theorem for nonlinear semigroups (see [14], pp. 168)
it follows that the corresponding sequence of solutions (θj)ε is convergent to
θε as j → ∞ in C([0, T ];V ′). This continuity result can be further used to
get the continuity for the solution to the limit equation when ε→ 0.

1.1.7 Numerical Results

We end this chapter with numerical simulations for the solution to (1.1). We
imagine some scenarios for a real-world model of water infiltration into a
nonhomogeneous porous medium (soil) in which a solid intrusion with zero
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porosity (a rock) is present. Assuming that the model (1.1) is already written
in a dimensionless form, let us consider the expressions

β(r) =
c(c− 1)

(c− r)2
, K(r) =

(c− 1)r2

c− r
for r ∈ [0, 1), c > 1, (1.109)

given by the parametric model of Broadbridge and White (see [33]). These
functions characterize the water infiltration into a soil whose properties are
strongly nonlinear when c is in a neighborhood of 1 and weakly nonlinear for
larger values of c (e.g., c ≥ 1.2).

We see that here limr→ys=1 β(r) is finite. This may be obtained by a jump
of the function C (defined in Introduction) at r = rs = 0 from a positive
value at the left to 0 at the right (see case (a) in Introduction), such that
the function β∗ is multivalued at r = 1. All the results proved in this section
apply to this case as well.

The computations are done in the 2D case in the domain

Ω = {(x1, x2);x1 ∈ (0, 5), x2 ∈ (0, 5)},

with Ω0 the circle with center in (2, 3) and radius δ = 0.1,

Ω0 = {(x1, x2); (x1 − 2)2 + (x2 − 3)2 ≤ 0.12}

and the function u (expressing the porosity of the soil) is chosen of the form

u(x1, x2) :=

{
0, in Ω0
(x1−2)2+(x2−3)2−0.12

100 , in Ωu.
(1.110)

In the computations we take uε(x1, x2) = u(x1, x2) + 10−9.
The functions β∗ and K0 with the properties considered in this section are

β∗(r) =

{
(c−1)r
c−r , r ∈ [0, 1)

[1,∞), r = 1,
K0(x, r) =

⎧⎪⎨
⎪⎩
a(x)

{
(c−1)r2

c−r , r ∈ [0, 1)

1, r ≥ 1
in Ω0

0, in Ωu.

The other data are: θ0(x1, x2) = 0, a(x1, x2) = (1, 1), meaning that the
initial soil is dry and the advection is along both directions, and

f(t, x1, x2) =

{
t2, in Ωu

0, in Ω0.
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Fig. 1.2 Contour plot of the function u given by (1.110)

a b

Fig. 1.3 Solution θ = uy in the parabolic–elliptic degenerate case for u given by (1.110)
and c = 1.02

The algorithm is adapted from [39] for this degenerate case and the
computations are done by using the software package Comsol Multiphysics
(see [40]).

In Fig. 1.2 it is represented the contour plot of the function x3 = u(x1, x2),
i.e., the projection of this surface on the plane x1Ox2.

We are interested in some comparisons. In Fig. 1.3a, b we see the evolution
of θ= uy (representing the volumetric water content or soil moisture)
computed for c = 1.02 (a strongly nonlinear soil) at two moments of time
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a b

Fig. 1.4 Solution θ = uy in the parabolic–elliptic degenerate case for u given by (1.110)
and c = 1.5

a b

Fig. 1.5 Solution θ in the parabolic–elliptic nondegenerate case for u given by (1.111)
and c = 1.5

t = 0.5 (Fig. 1.3a) and t = 2 (Fig. 1.3b), while in Fig. 1.4a, b we see the
evolution of θ computed for c = 1.5 (a weakly nonlinear soil).

Then we compare the graphics in Fig. 1.4a, b with those drawn in Fig. 1.5a,
b corresponding to the nondegenerate case with u positive given by the
relation

unon(x1, x2) = u(x1, x2) + 0.3 (1.111)

and c = 1.5. This describes a porous medium with a higher porosity which
does not vanish, in which we see that the volumetric water content θ can
reach higher values than in porosity vanishing case.
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1.2 Well-Posedness for the Cauchy Problem
with Very Fast Diffusion

Let us consider the problem

∂(u(x)y)

∂t
−Δβ∗(y) +∇ ·K0(x, y) = f(t, x) in Q,

y(t, x) = 0 on Σ, (1.112)

(u(x)y(t, x))|t=0 = θ0(x) in Ω,

in which β∗ is a single valued function, β and β∗ blow-up at r = ys,

lim
r↗ys

β(r) = +∞, lim
r↗ys

β∗(r) = lim
r↗ys

∫ r

0

β(s)ds = +∞ (1.113)

(see case (b) in Introduction) and

β(r) = ρ > 0, for any r ≤ 0.

The functions u, ai and K are assumed to be as in the fast diffusion case,
i.e., obeying (1.10)–(1.14).

In this case we introduce the function j : R → (−∞,+∞] by

j(r) :=

{∫ r

0
β∗(ξ)dξ, r < ys,

+∞, r ≥ ys,

and specify that j is proper, convex, l.s.c. and

∂j(r) =

{
β∗(r), r < ys,

+∞, r ≥ ys,

(see the proof in [84], pp. 74).
Let us assume that

f ∈ L2(0, T ;V ′), (1.114)

θ0 ∈ L2(Ω), θ0 = 0 a.e. on Ω0, (1.115)

θ0 ≥ 0 a.e. on Ωu,
θ0
u

∈ L2(Ωu), j

(
θ0
u

)
∈ L1(Ω).
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Definition 1.9. Let (1.114) and (1.115) hold. We call a weak solution to
(1.112) a function y such that

y ∈ L2(0, T ;V ), β∗(y) ∈ L2(0, T ;V ),

uy ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′),

which satisfies

〈
d(uy)

dt
(t), ψ

〉
V ′,V

+

∫
Ω

(∇β∗(y)(t) −K0(x, y(t))) · ∇ψdx

= 〈f(t), ψ〉V ′,V , a.e. t ∈ (0, T ), for any ψ ∈ V,

the initial condition (uy(t))|t=0 = θ0 and the boundedness condition

y(t, x) < ys a.e. (t, x) ∈ Q.

In the same way as in the previous section we can write the abstract
Cauchy problem

d(uy)

dt
(t) +Ay(t) = f(t), a.e. t ∈ (0, T ), (1.116)

(uy(t))|t=0 = θ0,

where
D(A) :=

{
y ∈ L2(Ω); β∗ (y) ∈ V

}
and V = H1

0 (Ω), with the dual V ′ = H−1(Ω).
Then we pass to (1.30) by denoting θ(t, x) = u(x)y(t, x).
Next we shall prove that (1.116) has a weak solution.

Theorem 1.10. Let us assume (1.114) and (1.115). Then, the Cauchy
problem (1.116) has at least a weak solution y∗. In addition, if (1.107) holds,
then the solution is unique.

Proof. The proof is led as in the case of fast diffusion, with some modifications
imposed by the blowing-up of β∗. First, we introduce the approximating
functions βε and β∗

ε by

βε(r) :=

{
β(r), r < ys − ε

β(ys − ε), r ≥ ys − ε,
(1.117)

β∗
ε (r) :=

{
β∗(r), r < ys − ε

β∗(ys − ε) + β(ys − ε)[r − (ys − ε)], r ≥ ys − ε
(1.118)
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and the approximating problem (1.40). It has a unique strong solution
satisfying estimate (1.52), by using the same arguments as in Proposition 1.5.
Then, if j

(
θ0
u

) ∈ L1(Ω) one can see that the upper bound of this estimate
does not depend on ε and the proof can be continued as in Theorem 1.6.

The delicate point is to show the convergence of β∗
ε (yε) to β∗(y) in

L2(0, T ;L2(Ωu)). This is implied by the convergencies (1.84), (1.85)

yε → y in L2(0, T ;L2(Ωδ)) as ε→ 0,

yε ⇀ y in L2(0, T ;L2(Ωu)) as ε→ 0

and (1.69)

β∗
ε

(
θε
uε

)
⇀ ζ in L2(0, T ;V ), as ε→ 0. (1.119)

We claim that ζ = β∗(y) a.e. on Qu. For this we set

Qδs := {(t, x) ∈ Qδ; y(t, x) = ys}, Qδn := {(t, x) ∈ Qδ; y(t, x) < ys}.

Then, if (t, x) ∈ Qδn we have βε(r) = β(r) (for ε small enough) and we
can write

β∗
ε (yε(t, x)) =

∫ yε(t,x)

0

βε(r)dr =

∫ yε(t,x)

0

β(r)dr

→
∫ y(t,x)

0

β(r)dr = β∗(y(t, x)) a.e. on Qδn, as ε→ 0.

If (t, x) ∈ Qδs, then two situations may arise:

(p1) there is a sequence εk → 0 such that yεk(t, x) ≥ ys − εk.
(p2) for all ε < ε0 we have yε(t, x) < ys − ε.

In the case (p2) the previous argument for (t, x) ∈ Qδn applies and
β∗
ε (yε) → β∗(y) a.e. for (t, x) ∈ Qδs.
In the case (p1) we have

β∗
εk
(yεk(t, x)) =

∫ yεk
(t,x)−εk

0

β(r)dr +

∫ yεk
(t,x)

yεk
(t,x)−εk

β (ys − εk) dr

=

∫ yεk
(t,x)−εk

0

β(r)dr + εkβ(ys − εk) → +∞ = β∗(ys),

as εk → 0,
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because
∫ ys

0
β(r)dr= + ∞, pursuant to (1.113). Hence, selecting a subse-

quence (denoted still by the subscript ε), we have that

β∗
ε (yε) → β∗(y) a.e. on Qδ as ε→ 0.

But (β∗
ε (yε))ε>0 is bounded in L2(Qδ) by (1.66) and since it converges a.e.

on Qδ, it follows that β
∗
ε (yε)⇀ β∗(y) in L2(Qδ). Then we get that ζ = β∗(y)

a.e. on Qδ and since δ is arbitrarily small we obtain ζ = β∗(y) a.e. on Qu.
Here we have applied a consequence of Mazur theorem saying that if O is

a bounded open set of finite measure and (fn)n≥1 is a sequence bounded in
L2(O) such that fn → f a.e. on O, then fn ⇀ f in L2(O) as n→ ∞.

The proof is continued as in Theorem 1.6 and Proposition 1.8. ��

1.3 Existence of Periodic Solutions
in the Parabolic–Elliptic Degenerate Case

In this section we deal with the study of periodic solutions to the degenerate
fast diffusion equation introduced in Sect. 1.1, under the hypothesis of a
T -periodic function f . To this end, we first investigate the existence of a
periodic solution to an intermediate problem restraint to a period T and
extend then the result by periodicity to the time space R+ =(0,∞). The proof
involves an appropriate approximating periodic problem and the existence of
a solution is shown via a fixed point theorem on the basis of the results for the
approximating problem (1.40). This result will also allow to characterize the
behavior at large time of the solution to a Cauchy problem with periodic data.

We recall some previous papers dealing with periodic problems for
degenerate linear equations. In [16] a problem of the type

d

dt
(My(t)) +Ay(t) = f(t), 0 ≤ t ≤ 1,

with the periodic condition (My)(0) = (My)(1) has been studied. Here M
and A are two closed linear operators from a complex Banach space into itself,
under the assumptions that the domain D(A) of A is continuously embedded
in D(M) and A has a bounded inverse. Assuming suitable hypotheses on
the modified resolvent (λM +A)−1, it has been proved that problem admits
one 1-periodic solution. Some examples of applications to partial differential
equations and ordinary differential equations have been given. The latter case
has been studied in the paper [17].
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The nondegenerate fast diffusion case with a nonlinear transport term
has been approached in the paper [87], while the degenerate case without
advection has been studied in [59].

As in Sect. 1.1, Ω is an open bounded subset of R
N and T is finite.

We consider the problem

∂(u(x)y)

∂t
−Δβ∗(y) +∇ ·K0(x, y) 	 f in R+ ×Ω,

y(t, x) = 0 on R+ × Γ, (1.120)

(u(x)y(τ, x))|τ=t − (u(x)y(τ, x))|τ=t+T = 0 in R+ ×Ω,

under the assumption of the T -periodicity of the function f,

f(t, x) = f(t+ T, x) a.e. (t, x) ∈ R+ ×Ω. (1.121)

The hypotheses made for β∗, K0 and u are preserved as they were
presented in Sect. 1.1 and we assume that f ∈ L∞

loc(R+;V
′).

We begin with the study of the existence for the solution to the problem
on a time period

∂(u(x)y)

∂t
−Δβ∗(y) +∇ ·K0(x, y) 	 f in Q = (0, T )×Ω,

y(t, x) = 0 on Σ = (0, T )× Γ, (1.122)

(u(x)y(t, x))|t=0 − (u(x)y(t, x))|t=T = 0 in Ω.

Then, this solution will be extended by periodicity to all t ∈ R+.

1.3.1 Solution Existence on the Time Period (0, T )

The functional framework for this problem is the same as in Sect. 1.1.

Definition 1.11. Let f ∈ L∞(0, T ;V ′). We call a weak solution to (1.122)
a pair (y, ζ) such that

y ∈ L2(0, T ;V ), y(t, x) ≤ ys a.e. (t, x) ∈ Q,

uy ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′),

ζ ∈ L2(0, T ;V ), ζ(t, x) ∈ β∗(y(t, x)) a.e. (t, x) ∈ Q,
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satisfying the equation

∫ T

0

〈
d(uy)

dt
(t), φ(t)

〉
V ′,V

dt+

∫
Q

(∇ζ −K0(x, y)) · ∇φdxdt

=

∫ T

0

〈f(t), φ(t)〉V ′,V dt, for any φ ∈ L2(0, T ;V )

and the condition (u(x)y(t, x))|t=0 − (u(x)y(t, x))|t=T = 0 in Ω.

With the same notation and definitions as in Sect. 1.1. we consider the
periodic approximating problem

d(uεyε)

dt
(t) +Aεuε(t) = f(t) a.e. t ∈ (0, T ), (1.123)

uε(yε(0)− yε(T )) = 0

which is equivalent with

dθε
dt

(t) +Bεθε(t) = f(t) a.e. t ∈ (0, T ), (1.124)

θε(0) = θε(T ),

by the function replacement θε = uεyε, with Aε and Bε given by (1.38) and
(1.41), respectively.

Let us denote

Cf =
2

ρ

(
‖f‖2L∞(0,T ;V ′) +K

2
)
, (1.125)

where K = Ks(meas(Ω))1/2
N∑
j=1

aMj was defined in Proposition 1.5. We also

recall that ρ was specified in (1.6), M = MK

N∑
j=1

aMj and by cP we have

denoted the constant in the Poincaré inequality.
We are going to prove the following existence result.

Theorem 1.12. Let f ∈ L∞(0, T ;V ′). Then, the periodic approximating
problem (1.124) has a unique solution

θε ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′) ∩ L2(0, T ;V ), (1.126)

β∗
ε

(
θε
uε

)
∈ L2(0, T ;V ). (1.127)
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Moreover, the solution satisfies the estimate

∫ T

0

∥∥∥∥dθεdτ (τ)

∥∥∥∥
2

V ′
dτ +

∫ T

0

∥∥∥∥β∗
ε

(
θε
uε

(τ)

)∥∥∥∥
2

V

dτ (1.128)

≤ 4

(∫ T

0

‖f(t)‖2V ′ dt+K
2
T

)
.

Proof. We apply a fixed point result and start this by fixing in (1.124) θε(0)
in L2(Ω) and denoting it by v, i.e.,

θε(0) := v ∈ L2(Ω).

Hence we have to deal with the Cauchy problem

dθε
dt

(t) +Bεθε(t) = f(t) a.e. t ∈ (0, T ), (1.129)

θε(0) = v,

whose well-posedness for v ∈ L2(Ω) has already been studied in Sect. 1.1,
Proposition 1.5. Thus, (1.129) has a unique solution (1.126)–(1.127).

Let us consider the set

Sε :=

{
z ∈ L2(Ω);

∥∥∥∥ z√
uε

∥∥∥∥ ≤ Rε a.e. x ∈ Ω

}
(1.130)

where Rε is a positive constant for each ε > 0. We define the mapping

Ψε : Sε → Sε, Ψε(v) = θε(T ), for any v ∈ Sε

where θε(t) is the solution to (1.129).
Since (1.129) has a unique solution for v ∈ Sε, the mapping Ψε is single-

valued and we are going to show that it has a fixed point by the Schauder–
Tychonoff theorem (see e.g., [67], pp. 148), working in the weak topology.
We begin by checking the conditions of this theorem.

(i1) It is obvious that Sε is a convex, bounded and strongly closed subset of
L2(Ω). Hence it is weakly compact in L2(Ω).

(i2) Next, we have to show the inclusion Ψε(Sε) ⊂ Sε.
The solution θε ∈ C([0, T ];L2(Ω)) and so θε(T ) = uεyε(T ) ∈ L2(Ω).

We test (1.129) for θε
uε

∈ V and recalling (1.37) and (1.14) we get

1

2

d

dt

∥∥∥∥ θε√
uε

(t)

∥∥∥∥
2

+ ρ

∥∥∥∥ θεuε (t)
∥∥∥∥
2

V

≤ ‖f(t)‖V ′

∥∥∥∥ θεuε (t)
∥∥∥∥
V

+K

∥∥∥∥ θεuε (t)
∥∥∥∥
V

≤ ρ

2

∥∥∥∥ θεuε (t)
∥∥∥∥
2

V

+
1

ρ

(
‖f‖2L∞(0,T ;V ′) +K

2
)
.
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Next, applying the Poincaré inequality we have

d

dt

∥∥∥∥ θε√
uε

(t)

∥∥∥∥
2

+
ρ

c2P

∥∥∥∥ θεuε (t)
∥∥∥∥
2

≤ Cf

and using the relation uε(x) ≤ uM + ε < uM + 1 (since ε is arbitrarily
small) we obtain

d

dt

∥∥∥∥ θε√
uε

(t)

∥∥∥∥
2

+ ρ0

∥∥∥∥ θε√
uε

(t)

∥∥∥∥
2

≤ Cf

with ρ0 = ρ
(uM+1)c2P

. Integrating on (0, t) with t ∈ [0, T ] we get

∥∥∥∥ θε√
uε

(t)

∥∥∥∥
2

≤
∥∥∥∥ v√

uε

∥∥∥∥
2

exp(−ρ0t) + Cf

ρ0
(1− exp(−ρ0t)).

Now if R2
ε ≥ Cf

ρ0
(and this is true since Rε is large enough) and v ∈ Sε

it follows that

∥∥∥∥ θε√
uε

(t)

∥∥∥∥ ≤ Rε, for any t ∈ [0, T ].

Thus, we have obtained that θε(T ) = Ψε(v) ∈ Sε and therefore, it follows
that Ψε(Sε) is weakly compact, too.

(i3) Finally, we have to prove that the mapping Ψε is weakly continuous.

For that we consider a sequence

{vn}n≥1 ⊂ Sε, v
n ⇀ v in L2(Ω) as n→ ∞,

and will show that

Ψε(v
n)⇀ Ψε(v) in L

2(Ω) as n→ ∞.

We introduce the approximating problem

dθnε
dt

(t) +Bεθ
n
ε (t) = f(t), a.e. t ∈ (0, T ),

θnε (0) = vn.

This has a unique solution

θnε ∈ C([0, T ];V ′) ∩W 1,2([0, T ];V ′) ∩ L2(0, T ;V ), β∗
ε

(
θnε
uε

)
∈ L2(0, T ;V )
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satisfying the estimate (1.52). Now, by (1.59)

∫
Ω

uεjε

(
θnε
uε

)
dx ≤ (uM + ε)

β∗
s − β∗(ys − ε)

2ε

∥∥∥∥v
n

uε

∥∥∥∥
2

and ∥∥∥∥v
n

uε

∥∥∥∥ ≤ 1√
ε

∥∥∥∥ vn√
uε

∥∥∥∥ ≤ 1√
ε
Rε

due to the fact that vn ∈ Sε. Therefore (1.52) written for θnε is bounded
independently of n, and we can proceed like in Proposition 1.5 to show that
θnε tends in some appropriate space to θε which turns out to be the solution
to (1.129). This implies also the convergence

θnε (T ) → θε(T ) in V
′, as n→ ∞

due to the Ascoli–Arzelà theorem (see (1.62)). Hence

Ψε(v
n) = θnε (T )⇀ θε(T ) = Ψε(v) in L

2(Ω),

and because Sε is weakly closed it follows that θε(T ) ∈ Sε.
Now the Schauder–Tychonoff theorem ensures that Ψε has a fixed point,

implying that
θε(0) = θε(T ) or uεθε(0) = uεθε(T ).

Consequently, (1.124) has at least a solution.
The estimate (1.128) follows immediately by (1.52) in Proposition 1.5, for

t = T.
Uniqueness is proved as in Proposition 1.5, taking the same data in (1.53).

This ends the proof of Theorem 1.12. ��
Theorem 1.13. Let f ∈ L∞(0, T ;V ′). Then, the periodic problem (1.122)
has at least a solution (y∗, ζ) such that

y∗ ∈ L2(0, T ;V ),

uy∗ ∈ C([0, T ];L2(Ω)) ∩W 1,2([0, T ];V ′),

ζ ∈ L2(0, T ;V ), ζ(t, x) ∈ β∗(y∗(t, x)) a.e. (t, x) ∈ Q,

y∗(t, x) ≤ ys a.e. (t, x) ∈ Q.

If (1.107) and
ρ > NMKkucP

√
uM (1.131)

are satisfied the solution is unique a.e. on Q.
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Proof. The proof of the existence is based on the same arguments and is led
in the same way as in Theorem 1.6, including the construction of y∗, with
the corresponding modifications due to the periodicity condition. Thus in the
approximating problem in Theorem 1.6, θε(0) = uεyε(0) = uεyε(T ) = θε(T )
and by (1.80) we get (uy)|t=0 = (uy)|t=T property which is inherited by uy∗.
Obviously, uy∗ = 0 in Q0.

Assume now (1.107) and that there exist two solutions (y∗, ζ) and
(y∗, ζ) to (1.122) corresponding to the same periodic data f. We subtract
(1.122) written for y∗ and y∗ and multiply the difference scalarly in V ′ by
u(y∗ − y∗)(t),

(
d(u(y∗ − y∗))

dt
(t), u(y∗ − y∗)(t)

)
V ′

+

∫
Ω

∇(ζ(t) − ζ(t)) · ∇ψ(t)dx

=

∫
Ω

(K(y∗(t))−K(y∗(t))a(x) · ∇ψ(t)dx

where A0ψ(t) = u(y∗ − y∗)(t), a.e. t, (where we recall that A0 = −Δ
with Dirichlet boundary conditions (see (1.17)). Integrating over (0, T ) and
proceeding as in Proposition 1.8 we get

1

2
‖u(y∗ − y∗)(T )‖2V ′ − 1

2
‖u(y∗ − y∗)(0)‖2V ′ +

ρ

2

∫ T

0

∫
Ω

u(y∗ − y∗)2dxdt

≤ 1

2ρ
(NMKku)

2

∫ T

0

‖u(y∗ − y∗)(τ)‖2V ′ dτ

≤ 1

2ρ
(NMKkucP

√
uM )2

∫ T

0

∥∥√u(y∗ − y∗)(τ)
∥∥2
dτ,

where cP is the constant in the Poincaré inequality. We apply the solution
periodicity and it remains that ‖√u(y∗ − y∗)‖2L2(Q) =0. This implies
that uy∗=uy∗ a.e. on Q and then we continue as in Proposition 1.8.

��

1.3.2 Solution Existence on R+

Now we can extend the previous result to t ∈ R+. We resume problem (1.120)
and prove

Theorem 1.14. Let us assume

f ∈ L∞
loc(R+;V

′), f(t, x) = f(t+ T, x) a.e. (t, x) ∈ R+ ×Ω.
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Then problem (1.120) has at least a solution y ∈ L2
loc(R+;V ) satisfying

θ = uy ∈ C(R+;L
2(Ω)) ∩W 1,2

loc (R+;V
′),

y(t, x) ≤ ys a.e. (t, x) ∈ R+ ×Ω,

ζ ∈ L2
loc(R+;V ), where ζ(t, x) ∈ β∗(y(t, x)) a.e. (t, x) ∈ R+ ×Ω.

If (1.107) and (1.131) are satisfied then the solution is unique.

Proof. We consider first (1.120) on (0, T ) with f |(0,T ) . We obtain (1.122)

which has a periodic solution with (u(x)y(t, x))|t=0 = (u(x)y(t, x))|t=T

in Ω. Then we consider (1.120) on (T, 2T ) with the periodicity condition
(u(x)y(t, x))|t=T = (u(x)y(t, x))|t=2T in Ω. We make the transformation
t′ = t − T and denote ỹ(t′, x) = y(t′ + T, x) with t′ ∈ [0, T ]. Using
now the periodicity of the function f we find again problem (1.122) which

has a periodic solution ỹ(t′) with θ̃ = uỹ ∈ C([0, T ];L2(Ω)), such that
(u(x)ỹ(t′, x))|t′=0 = (u(x)ỹ(t′, x))|t′=T . Coming back to the variable t we
obtain that (1.120) has a periodic solution such that u(x)y(t, x) is continuous
on [T, 2T ] and this extends by continuity the solution obtained on [0, T ]. The
procedure is continued in this way on each time period. Moreover, if a satisfies
(1.107) and (1.131) the solution is unique on each period. ��

1.3.3 Longtime Behavior of the Solution
to a Cauchy Problem with Periodic Data

Finally we are going to characterize the longtime behavior of the solution y to
problem (1.1) with a T -periodic function f . The domain Q is taken R+ ×Ω,
and we assume that the solution starts from the initial condition θ0. Let

f ∈ L∞
loc(R+;V

′), f(t, x) = f(t+ T, x) a.e. (t, x) ∈ R+ ×Ω, (1.132)

θ0 ∈ L2(Ω), θ0 = 0 a.e. on Ω0,

θ0 ≥ 0 a.e. on Ωu,
θ0
u

∈ L2(Ωu),
θ0
u
(x) ≤ ys a.e. x ∈ Ωu

and we recall that uM is the maximum of u and cP is the constant in Poincaré
inequality (1.19).

Proposition 1.15. Let us assume (1.107) and (1.131). Then, the solution
to the Cauchy problem (1.1) with f periodic of period T satisfies

lim
t→∞ ‖(uy − uω)(t)‖V ′ = 0 (1.133)



1.3 Existence of Periodic Solutions in the Parabolic–Elliptic Degenerate Case 55

exponentially, where ω is the unique periodic solution to (1.120) and y is the
unique solution to (1.1).

Proof. By Theorem 1.14 the solution to (1.120) is unique and let us denote
it by ω. We multiply the difference of (1.1) and (1.120) by u(y(t) − ω(t))
scalarly in V ′, and we get

1

2

d

dt
‖u(y − ω)(t)‖2V ′ + ρ

∫
Ω

u(y − ω)2(t)dx

≤ NMKkucP
√
uM

∥∥√u(y − ω)(t)
∥∥2 .

Therefore, applying (1.131) we obtain

d

dt
‖u(y − ω)(t)‖2V ′ + δ

∥∥√u(y − ω)(t)
∥∥2 ≤ 0

with δ = ρ−NMKkucP
√
uM .

We have that

∫
Ω

u(y(t)− ω(t))2dx ≥ 1

uM

∫
Ω

u2(y(t)− ω(t))2dx ≥ 1

uMc2P
‖u(y − ω)(t)‖2V ′

hence
d

dt
‖u(y − ω)(t)‖2V ′ + δ0 ‖u(y − ω)(t)‖2V ′ ≤ 0

with δ0 = δ
uMc2P

. We deduce that

‖u(y − ω)(t)‖2V ′ ≤ e−δ0t ‖θ0 − (uω)(0)‖2V ′

and this implies (1.133). ��
Referring to applications in real-world problems we remark that the

behavior (1.133) of the solution to the Cauchy problem (1.1) with a periodic
f is possible only if the advection is done with a velocity in absolute value
lower than the porosity u and the diffusion processes has a sufficient high
diffusion coefficient. This means that the velocity must be sufficient small in
comparison with the pore dimension and that the diffusivity should dominate
the advection.

1.3.4 Numerical Results

We shall provide some simulations intended to show the behavior at large
time of the solution to (1.1) with a periodic f .
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a b

Fig. 1.6 Asymptotic behavior of θ = uy solution to (1.1) in the periodic parabolic–elliptic
degenerate case

The computations are done in 2D with Ω = (0, 5)× (0, 5), with the same
data for Ω0, u, β

∗ and K as in Sect. 1.1, (1.110), (1.109), a = (1, 1), c = 1.5
(a weakly nonlinear porous medium),

f(t, x1, x2) =

{(∣∣sin π
20 t

∣∣+ ∣∣cos π
30 t

∣∣) , x ∈ Ωu

0, x ∈ Ω0

and two different initial data. In Fig. 1.6a the values θ(t, x) = u(x)y(t, x) are
computed for

θ0(x1, x2) = 0.01x22u(x1, x2)

and represented at x = (x1, 4), x1 = 1, 2, 4.
In Fig. 1.6b there are the graphics θ(t, x) = u(x)y(t, x) at x = (x1, 1),

x1 = 1, 2, 4, computed for

θ0(x1, x2) = 0.1x1(6− x1)u(x1, x2). (1.134)

We can see that after some time the solutions to (1.1) become periodic.
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