
Chapter 2
Maxwell Equations and Landau–Lifshitz
Equations

Abstract This chapter will present the theoretical, mathematical and computa-
tional fundamentals for micromagnetics. The target of micromagnetics is to clar-
ify the motion of magnetic moments in ferromagnetic materials and devices,
which is described by the nonlinear Landau–Lifshitz equations, or the equivalent
Landau–Lifshitz–Gilbert (LLG) equations. In the LLG equations, the time derivative
of the magnet moment in a micromagnetic cell is controlled by the local effective
magnetic field. The effective magnetic field contains the terms determined by the
fundamental and applied magnetism in a magnetic material, including the external
field, the crystalline anisotropy field, the exchange field, the demagnetizing field, and
the magneto-elastic field. Among these field terms, the most time-consuming one
in computation is the demagnetizing field, which will be calculated by the Green’s
function method following the Maxwell’s equations.
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The development of micromagnetics was related to the computational science in
an unusual way. In 1945, the great mathematician John von Neumann started a
computer project in Princeton, to redesign the logic structure of the first computer
ENIAC invented in 1944 by J. Presper Eckert and John Mauchly. Neumann brought
up the idea of “program digital computer”, including a processing unit, a data and
program memory, a controller and an input/output device. The major problem in
ENIAC was the lack of memory; thus Neumann suggested to build up a memory
by vacuum tubes, and made the independent development of hardware and software
possible. The storage capacity of vacuum tube memory was limited; therefore a
magnetic recording tape drive “Uniservo” was built up as the external memory of
the UNIVAC computer in 1948 by the first computer company Eckert–Mauchly
Computer Corporation (EMCC). In 1945, Neumann already saw the great potential
of computer to change the way of mathematical computation, especially for the
nonlinear problems. At the heart of micromagnetics, there is such a nonlinear problem
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defined by the Landau–Lifshitz (LL) equations [1]; only after using the computational
methods by Brown in 1960s [2], micromagnetics finally became dependable and
served as the basic theory in magnetic recording industry.

The target of micromagnetics is to clarify the motion of magnetic moments in
ferromagnetic materials and devices, which is described by the LL equations, or
the equivalent Landau–Lifshitz–Gilbert (LLG) equations. In the LLG equations, the
time derivative of the magnet moment m̂ in a micromagnetic cell is controlled by
the local effective magnetic field Heff , which varies along with m̂(r) and forms a
high nonlinearity. The effective magnetic field Heff contains the terms determined by
the fundamental and applied magnetism, including the external field, the crystalline
anisotropy field, the exchange field, the demagnetizing field, and the magneto-elastic
field. Among these field terms, the most time-consuming one in computation is
the demagnetizing field, which will be calculated by the Green’s function method
following the Maxwell’s equations.

2.1 Maxwell Equations and Vector Analysis

In Maxwell’s book A Treatise on Electricity and Magnetism [3], all equations of
electromagnetic field were written in the component form. Similar to the mathemati-
cal development after Newtonian mechanics in the eighteenth century, there was also
a period of mathematics development after Maxwell’s equations. In late nineteenth
century, Josiah Willard Gibbs and Oliver Heaviside developed the vector analysis,
and Maxwell’s equations were rewritten in the vector form, which is beautiful and
even looks like an apocalypse, as commented by Laue [4].

Gibbs was awarded the first Ph.D. in Engineering in the US from Yale in 1863. He
went to Europe in 1866, and spending a year each at Paris, Berlin, and Heidelberg.
Maxwell’s theory published in 1865 predicted the existence of electromagnetic waves
moving at the speed of light. Hermann von Helmholtz was at Heidelberg at that time,
and he was one of the first physicists in continental Europe who was interested in
Maxwell’s theory. Gibbs was influenced by Helmholtz’s interests during his visit.
In 1879, Helmholtz suggested his student Heinrich Hertz to test experimentally the
Maxwell’s theory of electromagnetism, which was finally done by Hertz later in
1886. In the same period, Gibbs invented vector analysis in Yale, and developed a
theory of optics using his notation.

Oliver Heaviside, another independent inventor of vector analysis, abstracted
Maxwell’s set of equations to four equations in the vector form. Heaviside was a
self-taught English electrical engineer, mathematician, and physicist. In 1873 Heav-
iside had encountered Maxwell’s newly published book [3]. He felt it was great,
greater and greatest with prodigious possibilities in its power, and determined to mas-
ter the book. However he had no knowledge of mathematical analysis at that time.
Finally in 1884, Heaviside reformulated Maxwell’s 20 equations in 20 unknowns
to the four vector equations using vector calculus. Those four vector equations,
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involving abstract mathematical terminology as curl and divergence, are formally
called as “Maxwell’s equations”.

2.1.1 Vector Analysis

The first step to solve a problem is to describe the space of the object. A coordinate
system has to be introduced for the mathematical expressions of physical quantities.
The Cartesian coordinate is an universal choice, and especially suitable for numerical
calculations. In an n-dimensional space, the position vector is r = (x1, x2, ..., xn)

and an arbitrary vector has the form A = (A1, A2, ..., An), which can be easily
stored in an n-dimensional array in computer. It just has to be remembered, in the
numerical calculation, a step size has to be introduced for a component xi ; otherwise
the memory of the position vector will be infinite. Actually this discretization is a
basic problem in micromagnetics, which will be further discussed in Chap. 4.

In micromagnetics, the magnetization M takes the role of position vector in
mechanics. The polar coordinate expression M = (M, θ, φ) of magnetization is often
used, where the inclination angle 0 ≤ θ ≤ π and the azimuth angle 0 ≤ φ < 2π .
The real polycrystalline material is complicated, usually including multilevel of
microstructure and different orientation of crystal, therefore the coordinate trans-
formation between Cartesian and polar coordinate of the same vector is important:

M1 = M sin θ cos φ, (2.1)

M2 = M sin θ sin φ,

M3 = M cos θ.

M =
√

M2
1 + M2

2 + M2
3 , (2.2)

θ = cos−1 (M3/M) ,

φ =

⎧
⎪⎪⎨
⎪⎪⎩

cos−1
(

M1/

√
M2

1 + M2
2

)
(M2 > 0)

− cos−1
(

M1/

√
M2

1 + M2
2

)
(M2 < 0).

The accurate definitions of scalar, vector and tensor depend on the characteristics
of the quantity under the rotation of coordinate system. The scalar is invariant under
rotation; the vector is transformed by the rotation matrix under rotation; and the
tensor is transformed by two or more rotation matrices, depending on its order.

There are two rotation matrix R̃ and R̃E introduced here: R̃ is related to two angles
θ and φ, which is not universal but enough in most of cases; and R̃E is general and
related to three Euler angles α, β and γ , as defined in Fig. 2.1. The rotational property
of a vector v can be described by two angles: first the coordinates (x, y, z) rotates
around y-axis by angle θ , then rotates around the old z-axis by angle φ, as seen in
Fig. 2.1a. The unit vectors ê′

α of the new coordinates are transformed from êα of the

http://dx.doi.org/10.1007/978-3-642-28577-6_4
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Fig. 2.1 Rotation of Cartesian
coordinates. a Two angles, no
self rotation; b Euler angles
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old coordinates as ê′
α = R̃ · êα by a rotation matrix R̃:

R̃ =
⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠
⎛
⎝

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠

=
⎛
⎝

cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞
⎠ (2.3)

The components (v′
1, v′

2, v′
3) of a fixed vector v in the new coordinate system is

related to (v1, v2, v3) in the old coordinate system by the inverse rotation matrix or
transpose of rotation matrix RT, in a passive (“pose”) manner:

v′
i = RT

i j v j = R ji v j (i = 1, 2, 3; j = 1, 2, 3), (2.4)

vi = Ri j v
′
j (i = 1, 2, 3; j = 1, 2, 3), (2.5)

where the Einstein notation (auto sum over dummy indices) is used. Equations (2.4)
and (2.5) can be viewed as the accurate definition of a vector.

When the rotation matrix R̃E of Euler angles is utilized to define vectors, the
transform between the new components (v′

1, v′
2, v′

3) and old components (v1, v2, v3)

is in an active (“displacement”) manner, with rotations α (around z), β (around N or
y′ with γ = 0) and γ (around z′) successively:

v′ = R̃E · v, v′
i = Ri j

E v j (2.6)

where the transpose of R̃E related to the definition of Euler angles in Fig. 2.1b
[this definition is different from the most common definition of Euler angles with a
transform x ↔ y for compatibility with Eq. (2.3)] is defined as:
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R̃T
E =

⎛
⎝

cα −sα 0
sα cα 0
0 0 1

⎞
⎠
⎛
⎝

cβ 0 sβ

0 1 0
−sβ 0 cβ

⎞
⎠
⎛
⎝

cγ −sγ 0
sγ cγ 0
0 0 1

⎞
⎠

=
⎛
⎝

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎞
⎠ (2.7)

where c stands for cosine and s stands for sine functions respectively. Equation (2.7)
is equivalent to Eq. (2.3) if we let α = φ, β = θ and γ = 0, as stated in Fig. 2.1.

There are three kinds of operations between two vectors: dot product, cross product
and diad, where the results are scalar, vector and matrix, respectively:

A · B = Ai Bi = A1 B1 + A2 B2 + A3 B3; (2.8)

A × B =
∣∣∣∣∣∣

ê1 ê2 ê3
A1 A2 A3
B1 B2 B3

∣∣∣∣∣∣
= êiεi jk A j Bk; (2.9)

(
ABT

)
i j

= Ai B j , (2.10)

where ê1, ê2, ê3 are the unit vectors along x, y, z axes in Cartesian coordinates,
respectively. The εi jk is a third-order antisymmetric tensor with only 6 nonzero
elements ε123 = ε231 = ε312 = 1 = −ε321 = −ε213 = −ε132.

The operation related to scalar is easy, just a simple multiplication. For the tensors,
there are an operation called contraction: the contraction between the Nth-order tensor
and the Mth-order tensor is a |N−M |th-order tensor:

Xi1i2...iN Yi1i2...iM = ZiM+1iM+2...iN (N ≥ M). (2.11)

Therefore, the sum over dummy indices using Einstein notations is a kind of contrac-
tion, as seen in Eqs. (2.8) and (2.9). The trace of a matrix X̃ is a contraction between
X̃ and the unit matrix or Kronical-delta function:

Xi1i2δi1i2 = Xi1i1 , (2.12)

where the zeroth-order tensor is just a scalar; and Xii is the trace of X̃ .
As we stated before, the rotational characteristics of vector and tensor are different.

If the passive and active manner of the rotation defined in Eq. (2.3) of angles θ and φ

and Eq. (2.7) of Euler angles are used respectively, after rotation, the diad X̃ = ABT

has the same characteristics as a tensor:

X̃ ′ = (R̃TA)(R̃TB)T = R̃T X̃ R̃

X̃ ′ = (R̃EA)(R̃EB)T = R̃E X̃ R̃T
E . (2.13)
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These characteristics under rotation is very useful when we calculate the demagne-
tizing matrices of micromagnetic cells in a thin film or a device.

The Maxwell equations include the differentiation of electric and magnetic vector
fields E and B in three-dimensional (3-D) space. When the vector analysis is applied
to calculus in space, the differentiation in one-dimension becomes the gradient oper-
ator in three-dimensions. The express of the gradient operator ∇ and the Laplace
operator ∇2 depends on the coordinate system. In Cartesian coordinates ê1, ê2, ê3
are constant vectors, but in cylindrical coordinates two out of three local unit vectors
êρ, êφ vary with position r, and in spherical coordinates all three local unit vectors
êr , êθ , êφ vary with r. Thus when the ∇ is acting on a vector A = êi Ai it is much
more complicated in cylindrical and spherical coordinates.

In this book, we will just use Cartesian coordinates to build up the regular mesh
of micromagnetic cells, therefore things become much easier. When the gradient
operator acts on a vector, there are also three kinds of differentiation operations: dot
product (divergence), cross product (curl) and diad:

∇ = êi∂i = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
(2.14)

∇ · A = ∂i Ai = ∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z
, (2.15)

∇ × A = êiεi jk∂ j Ak, (2.16)(
∇AT

)
i j

= ∂i A j . (2.17)

The operations between two ∇ operators (if we let A = ∇) can also be performed.
The dot product of two ∇ is the famous Laplacian ∇2, which is a scalar operator;
the cross product of two ∇ is zero when it acts on a scalar field; and the diad of two
∇ often appears in the calculation of demagnetizing matrix.

2.1.2 Maxwell’s Equations

The development of electromagnetism in the eighteenth and nineteenth centuries has
been reviewed in Sect. 1.1. In 1861–1862, inspired by Faraday’s thought of electro-
magnetic induction in dielectrics, Maxwell brought up the concept of “displacement
current” in his paper “On Physical Lines of Force”, and he added this extra term of
effective current in the Ampere’s law. In his book A Treatise on Electricity and Mag-
netism finally published in 1873, the “general equations of electromagnetic field”
were derived and discussed in electric and magnetic media, and the system of units
were close to the cgs units, except that the speed of light c did not appear as in the
modern form of the Maxwell’s equations:

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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Fig. 2.2 Definition of mag-
netic induction B or magnetic
field H by Maxwell: the force
acting on an unit dipole at the
center of cavity if b � a or
b � a, respectively
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∇ · D = 4πρ0, (2.18)

∇ · B = 0, (2.19)

∇ × E = −1

c

∂B
∂t

, (2.20)

∇ × H = 4π

c
j0 + 1

c

∂D
∂t

, (2.21)

where ρ0 and j0 are the charge density and current density of free charge. The
Coulomb’s law in Eq. (2.18) was given in Sect. 77 of Maxwell’s book; the Faraday’s
law of electromagnetic induction in Eq. (2.20) was derived in Sect. 598 by introducing
the magnetic vector potential; the Gauss’ law for magnetism in Eq. (2.19) was stated
in Sect. 604; and the Ampere’s law with the modification of displacement current in
Eq. (2.21) was finally discussed in Sects. 607–610 [3].

There are four electromagnetic field in the Maxwell’s equations in media: the
electric displacement D, electric field E, magnetic induction B and magnetic field H;
therefore the Maxwell’s equations have to be solved self-consistently with the polar-
ization equation of dielectrics in Eq. (1.4), the magnetization equation of magnetic
media in Eq. (1.5), and the Ohm’s law of conductors in Eq. (1.6).

The relationships among B, H and magnetization M of magnetic materials are
actually the central topic of this book. When Maxwell introduced the magnetization
equation of magnetic media in Sects. 395–400 [3], the magnetic induction B and
magnetic field H were defined following Fig. 2.2. If there is a cylindrical cavity in
an uniform magnetic medium with magnetization M, and the axis of the cylinder
is parallel to M, the magnetic induction B is the force acting on the unit magnetic
dipole at the center when the cavity is extremely flat (b � a), and the magnetic field
H is the force on unit dipole when the cavity is extremely thin and long (b � a). The
effective magnetic field (Maxwell called it “force” [3]) acting on the unit magnetic
dipole can be found by a simple integration, by considering the contributions of the
effective surface magnetic pole intensity ±σ = ±M on the bottom/top surface:

http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
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Fz = H0 + 2

a∫

0

σb 2πρdρ(
ρ2 + b2

)3/2 = H0 + 4πσb

√
a2+b2∫

b

rdr

r3

= H0 + 4πσ

(
1 − b√

a2 + b2

)
, (2.22)

where H0 is an uniform external magnetic field, and the “force” F = Fzêz is along
the z-axis or axis of the cylinder. In a flat cavity (b � a), F = H0 +4πM just equals
the magnetic induction B; in a long cavity (b � a), F = H0 equals the magnetic
field H, because there is no other terms such as the exchange field acting on the
unit dipole. These definitions of B and H are related to the demagnetizing field in
magnetic media, which will be further discussed in the next section.

The experimental verifications of Maxwell’s equations have been performed at
a large scale, from microscopic to macroscopic. The electromagnetic field of fun-
damental particles in vacuum is micro-electric field e and micro-magnetic field h.
The electric field E and magnetic induction B in Maxwell’s equations in media
from Eq. (2.18) to Eq. (2.21) are actually the statistical average of the microscopic
electromagnetic field e and h in an element of media:

E = 〈e〉element, B = 〈h〉element. (2.23)

The average is necessary because, microscopically, the atoms are vibrating, the elec-
trons are moving; therefore the micro-electric field e and micro-magnetic field h
are highly nonuniform in time and space. In the studies of macroscopic electric or
magnetic materials, these fluctuations of microscopic electromagnetic field around
fundamental particles need not to be considered, thus an average in an element, at
least with a size of several conventional unit cells, can be made to obtain the macro-
scopic E and B. However, if the scattering of external particle or wave with the
matter has to be considered, quantum excitation, absorbing or emission processes
are involved, the average in Eq. (2.23) is no longer appropriate.

The Maxwell’s equations in vacuum have an beautiful symmetric form between
electric and magnetic phenomena, except that there is no intrinsic “magnetic charge”
for fundamental particles:

∇ · e = 4πρ, (2.24)

∇ · h = 0, (2.25)

∇ × e = −1

c

∂h
∂t

, (2.26)

∇ × h = 4π

c
j + 1

c

∂e
∂t

. (2.27)

The concepts of polarization P and magnetization M do not exist microscopically,
because the microscopic view is a view of elementary particles in vacuum. Therefore
Eqs. (2.24)–(2.27) are enough to solve the microscopic electromagnetic field if the
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sources (ρ, j) of particles are known. In early twentieth century, Dutch physicist
Hendrik Antoon Lorentz pointed out that, when the interactions among the electro-
magnetic field and fundamental particles are considered, there must be a formula
for electromagnetic force to make the problem complete. This is the famous Lorentz
force for a fundamental particle with charge q and velocity v:

F = qe + q

c
v × h (2.28)

Einstein called the four equations from Eq. (2.24) to Eq. (2.27), plus the Eq. (2.28),
a complete set of Maxwell–Lorentz theory of electromagnetism.

It would be important to state the Maxwell’s equations in the SI or MKS units,
especially for the macroscopic problems in media. The unit transformation has been
introduced in Tables 1.1 and 1.2 in Sect. 1.1. Actually we can follow some simple
rules to transform the Maxwell’s equations in cgs units from Eq. (2.18) to Eq. (2.21)
into the MKS units (in cgs units, E, D, H and B have the same dimension; but in
MKS units, both the ratio [E/B] and [H/D] have a dimension of speed c, the unit
of D is C/m2, and the unit of H is A/m):

∇ · D = ρ0, (2.29)

∇ · B = 0, (2.30)

∇ × E = −∂B
∂t

, (2.31)

∇ × H = j0 + ∂D
∂t

, (2.32)

where (ρ0, j0) are source of “free charge” in conductors. The Maxwell’s equations
Eqs. (2.29)–(2.32) also have to be solved self-consistently with the polarization
equation of electric media in Eq. (1.4), the magnetization equation of magnetic
media in Eq. (1.5), and the Ohm’s law of conductors in Eq. (1.6).

2.2 Green’s Function and Demagnetizing Matrix

The Green’s function was brought up by George Green in 1824 to solve the electro-
static problem. If a point charge q is put at point r0 in a space with a conductor, the
potential at another point r is contributed by the Coulomb potential from q and the
potential from the induced charge on the surface of the conductor:

V (r) = q

|r − r0| +
∫∫

d2r′G(r, r′)σ (r′) = q

|r − r0| +
∫∫

d2r′ σ(r′)
|r − r ′| , (2.33)

where the Green’s function G(r, r′) = 1/|r − r ′| is the solution in an infinite space
of the Poisson equation with an unit point charge located at r′:

http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
http://dx.doi.org/10.1007/978-3-642-28577-6_1
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∇2 G(r, r′) = −4πδ3(r − r′). (2.34)

The Poisson equation developed by Siméon Poisson in 1811 is consistent with dif-
ferential form of the Coulomb’s law in Eq. (2.24) if we define the electric field
e = −∇V . The Green’s function G(r, r′) = G(r′, r) = 1/|r − r ′| in an infinite
space thus has the famous 1/r potential form, the same as the Coulomb potential.

The Green’s function is important because it keeps the same form when the exter-
nal charge q and the induced surface charge σ vary with time. When we try to solve
the magnetic properties of a thin film or a device, although there is no intrinsic mag-
netic charge, the induced magnetic pole density ρM varies with the external field
Hext. This can be clarified by the differential form of the Gauss’ law for magnetism
in Eq. (2.19) and the magnetization equation in Eq. (1.5):

∇ · H = 4πρM (cgs); ρM = −∇ · M. (2.35)

If the magnetization M is uniform in a grain or cell, the magnetic pole only exists
on its surface. It is easy to prove by the Gauss law that the surface magnetic pole
density is σM = n̂ · M, where n̂ is the unit vector normal to the surface.

In micromagnetics, the magnetic material is discretized into micromagnetic cells.
Inside a cell, the moment μ = VcM is assumed to rotate uniformly. Following the
spirit of the Green’s function, the demagnetizing matrix Ñ can be defined, where
the magnetization M in a micromagnetic cell is the “source”, and the magnetostatic
interaction field or demagnetizing field Hd is the “target”:

Hd(r) =
∫∫∫

d3r′ [−∇′ · M(r′)
] (r − r ′)

|r − r ′|3 = −Ñ (r, 0) · [4πM], (2.36)

Ñ (r, 0) = − 1

4π

∫∫∫

Vc

d3r′ ∇′∇′ 1

|r − r ′| = − 1

4π

∫∫

S

d2r′ (r − r ′)n̂′

|r − r ′|3 , (2.37)

where the 3-D integral is made over the volume of the micromagnetic cell Vc (this
is related to the fact that the magnetization M(r′) = M is zero outside the cell), and
the 2-D integral is made over the surface S of the cell. The (r − r ′)n̂′ is a diad of
the two vectors, and n̂′ is the local normal at r′ pointing outside the cell.

In micromagnetics, the demagnetizing matrix Ñ (ri , r j ) = Ñ (r, 0) only depends
on the relative displacement r = ri − r j of the i th and j th micromagnetic cells, and
it is independent of the magnetization of the cells. This characteristics is especially
important when the problem is solved numerically, because Ñ can be computed in
advance, stored and used repeatedly in calculation. Due to the intrinsic characteristics
of the Green’s function or the demagnetizing matrix, the trace is a conserved quantity
when the target vector r is inside or outside of the micromagnetic cell:

Tr Ñ (r, 0) =
∑
α

Nαα(r, 0) =
{

1 r inside the cell
0 r outside the cell

(2.38)

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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Fig. 2.3 Micromagnetic cells in a magnetic thin film. a Cuboid or cubic cell in the main body;
b triangular prism cell at the edge; © [2009] IEEE. Reprinted, with permission, from Ref. [5]

Table 2.1 Demagnetizing matrix of a cuboic cell with uniform magnetization [7]

Cuboid cell size a × b × c Integer variables p = ±1, q = ±1, w = ±1
Intermediate variable R = (R1, R2, R3) R1 = a

2 + px R2 = b
2 + qy , R3 = c

2 + wz

Demagnetizing matrix element N11
1

4π

∑
p
∑

q
∑

w tan−1[R2 R3/(R1 R)]
Demagnetizing matrix element N22

1
4π

∑
p
∑

q
∑

w tan−1[R3 R1/(R2 R)]
Demagnetizing matrix element N33

1
4π

∑
p
∑

q
∑

w tan−1[R1 R2/(R3 R)]
Demagnetizing matrix element N12 = N21

1
8π

∑
p
∑

q
∑

w pq ln[(R − R3)/(R + R3)]
Demagnetizing matrix element N13 = N31

1
8π

∑
p
∑

q
∑

w pw ln[(R − R2)/(R + R2)]
Demagnetizing matrix element N23 = N32

1
8π

∑
p
∑

q
∑

w qw ln[(R − R1)/(R + R1)]

This is an useful property to check the correctness of the demagnetizing matrix.
Modern ferromagnetic devices are mostly made by thin films, as introduced in

Sect. 1.3. To discretize an arbitrary-shaped device into micromagnetic cells, there are
two basic classes for the geometry of cells: cuboid or cubic cell in the main body, and
triangular prism cells at the edge, as seen in Fig. 2.3. The demagnetizing matrices
of either cells can be calculated by Eq. (2.37), with a sum of contributions from all
surfaces of the cell.

The demagnetizing matrix of a cuboid cell with a size a × b × c can be integrated
out directly [6]. Among the nine elements, there are only two independent types:

Ñ = − 1

4π

a/2∫

−a/2

dx ′
b/2∫

−b/2

dy′
c/2∫

−c/2

dz′ ∇′∇′ 1

|r − r ′| (2.39)

N11 = 1

4π

∑

p =±1

∫∫
dy′dz′ a/2 + px[

(a/2 + px)2 + (y − y′)2 + (z − z′)2
]3/2 (2.40)

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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Fig. 2.4 Demagnetizing matrix contributed by poles on a 2-D surface. a Rectangle; b triangle;
© [2009] IEEE. Reprinted, with permission, from Ref. [5]

N12 = − 1

4π

∑

p =±1

∑

q =±1

pq
∫

dz′
[
(a/2 + px)2 + (b/2 + qy)2 + (z − z′)2

]3/2 ,

(2.41)

where the sum integer variables p, q = ±1 come from the two integral limits. The
nine elements in the demagnetizing matrix of a cuboic cell are listed in Table 2.1.

The demagnetizing matrix of a cuboid cell Ñ or a triangular prism cell Ñ (t)

(the center of cell locates at 0) in Fig. 2.3 can be calculated by summing over the
contributions from the magnetic poles on the rectangle or triangle 2-D surfaces:

Ñ (r, 0) =
6∑

l = 1

R̃l · Ñ rec
(

R̃T
l · (r − δl), 0

)
· R̃T

l (2.42)

Ñ (t)(r, 0) =
3∑

l = 1

R̃l · Ñ rec
(

R̃T
l · (r − δl), 0

)
· R̃T

l

+
2∑

n = 1

R̃n · Ñ tri
(

R̃T
n · (r − δn), 0

)
· R̃T

n (2.43)

where Ñ rec or Ñ tri is the demagnetizing matrix of a rectangular or a right-angle
triangular surface located in a fixed plane (say z′ = 0), as seen in Fig. 2.4; R̃ is
the 3-D rotational matrix between the real position of the respective surface in a
micromagnetic cell (x = ±a/2, y = ±b/2, z = ±c/2 for a cubic cell; or x = a′/2,
y = b′/2, y = −sx , z = ±c′/2 for a triangular prism cell) and the suppositional
surface in the fixed z′ = 0 plane; and δ is the displacement vector from the center
of a cell to the face center of a square/rectangular surface, or from the center to the
midpoint of the hypotenuse of a triangular surface, as labeled in Fig. 2.4.
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Table 2.2 Demagnetizing matrix of a a′ × b′ rectangular surface at z′ = 0 with uniform pole

Integer variables q = ±1, w = ±1, Intermediate variable R = (R1, R2, R3)

R1 = a′
2 + qx , R2 = b′

2 + wy, R3 = z, R = |R| =
√

R2
1 + R2

2 + R2
3

N rec
13 = − 1

4π

∑
q
∑

w qw ln (R − wR2) = − 1
8π

∑
q
∑

w q ln[(R − R2)/(R + R2)]
N rec

23 = − 1
4π

∑
q
∑

w qw ln (R − q R1) = − 1
8π

∑
q
∑

w w ln[(R − R1)/(R + R1)]
N rec

33 = − 1
4π

∑
q
∑

w arctan[R1 R2/(R3 R)]

Table 2.3 Demagnetizing matrix of a a′×b′ right-angle triangular surface at z′ = 0 with hypotenuse
y′ = −sx ′ or x ′ = −vy′

RI =
√( a′

2 − x
)2 + R2

2 + R2
3 , RII =

√
R2

1 + ( b′
2 − y

)2 + R2
3

c1 = y−vx
1+v2 , c2

2 = r2

1+v2 − c2
1, P2 = b′

2 + wc1, P =
√

P2
2 + c2

2

c3 = x−sy
1+s2 , c2

4 = r2

1+s2 − c2
3, Q1 = a′

2 + qc3, Q =
√

Q2
1 + c2

4

c5 = y − iz,
√

(c1 − c5)2 + c2
2 = Aeiθ ′/2

V± = −wP2 +
√

P2
2 + c2

2 + c1 − c5 ± Aeiθ ′/2 = |V±| eiφ± ,

N tri
13 = − 1

4π

∑
w w
{

1√
1+v2 ln(P − wP2) − ln(RI − wR2)

}

N tri
23 = − 1

4π

∑
q q
{

1√
1+s2 ln(Q − q Q1) − ln(RII − q R1)

}

N tri
33 = − 1

4π

∑
w arctan[(a′/2 − x)R2/(R3 RI)]

− 1
4π

zv√
1+v2

∑
w

w
A

[
+ ln

∣∣∣ V+
V−

∣∣∣ cos θ ′
2 + (φ+ − φ−) sin θ ′

2

]

+ 1
4π

x+vy√
1+v2

∑
w

w
A

[
− ln

∣∣∣ V+
V−

∣∣∣ sin θ ′
2 + (φ+ − φ−) cos θ ′

2

]

Definitions of R1, R2, R3, q and w are the same as in Table 2.2

The demagnetizing matrix Ñ rec(r, 0) or Ñ tri(r, 0), contributed by magnetic poles
on a rectangular or a triangular surface, can be calculated by the 2-D integral in
Eq. (2.37), where the target position locates at r = (x, y, z) = (r1, r2, r3), as seen
in Fig. 2.4. The integrations for nonzero elements of Ñ rec(r, 0) and Ñ tri(r, 0) [5]

N rec
α3 (r, 0) = − 1

4π

a′/2∫

−a′/2

dr ′
1

b′/2∫

−b′/2

dr ′
2

rα − r ′
α[

(r1 − r ′
1)

2 + (r2 − r ′
2)

2 + r2
3

]3/2 (2.44)

N tri
α3(r, 0) = − 1

4π

b′/2∫

−b′/2

dy′
a′/2∫

−vy′
dx ′ rα − r ′

α[
(r1 − r ′

1)
2 + (r2 − r ′

2)
2 + r2

3

]3/2 (2.45)

= − 1

4π

a′/2∫

−a′/2

dx ′
b′/2∫

−sx ′
dy′ rα − r ′

α[
(r1 − r ′

1)
2 + (r2 − r ′

2)
2 + r2

3

]3/2 (2.46)
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Fig. 2.5 Bloch wall
between two domains:
mz = tanh(x/a) where wall
width a = √

A∗/K1

are given in the Appendix. The analytical expressions of N rec
α3 (r, 0) and N tri

α3(r, 0)

(α = 1, 2, 3) are given in Tables 2.2 and 2.3, respectively.
Using the results of the surface demagnetizing matrices given in Tables 2.2 and

2.3, together with the definitions of the demagnetizing matrices of a cubic/cuboid cell
and a triangular prism cell in Eqs. (2.42) and (2.43) respectively, the magnetostatic
interaction field can be calculated for any micromagnetic cell in a ferromagnetic thin
film or device with a flat structure. In more complicated device with 3-D structures,
the surface of any edge micromagnetic cell can still be divided into rectangles and
right-angle triangles, thus the respective demagnetizing matrix can also be found
analytically using the similar methods as in Eq. (2.43).

2.3 Landau–Lifshitz Equations

In 1935, Landau and Lifshitz brought up a free energy expression for ferromagnetic
materials [8]; furthermore, a dynamic equation of spins, called LL equation later,
was given to analyze the motion of Bloch domain wall in Fig. 2.5. These works built
the fundamentals of applied magnetic theory.

As discussed in Sect. 1.2, in 1907, Pierre-Ernest Weiss brought up the concept
of a huge spontaneous magnetic field to explain the alignment of the elementary
magnets (atomic spins) in a ferromagnetic material even without an external field.
The spontaneous magnetization is related to the crystal structure, which orients to
the easy axis. A single crystal contains a large amount of “domains”, and the size of
a Weiss domain is assumed to be 10–100 nm.

The modern magnetization-curve theory was founded by Akulov and Becker.
In 1929, Akulov derived the anisotropy energy for Fe and Ni [9]; in 1930, Becker
introduced a rigid rotational model to find the loops of a particle [10]. In 1932,
Bloch worked out a structure of the boundary wall between two Weiss domains [11],
now known as the “Bloch wall”, although its common expression mz = tanh(x/a)

was given by Landau [8]. The concept of “Micromagnetics” was brought up by
Brown in 1958. The rise of computational science in 1940s made it possible to
solve the LL equations numerically, which led to the micromagnetic theory today
for ferromagnetic materials.

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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2.3.1 Free Energy and Effective Field

Landau was a master of phenomenological theory in condensed matter physics. In the
free energy F of a ferromagnet, the magnetization vector M = Msm̂ takes the role
of “position vector” r as in mechanics, the Zeeman energy Eext due to the external
magnetic field, the anisotropy energy Ea describing the Weiss spontaneous magne-
tization, the exchange energy Eex of Heiseberg model, the magnetostatic interaction
energy Em, and the magneto-elastic energy Eσ are included [1]:

F ({m̂}) = F0 + Eext + Ea + Eex + Em + Eσ , (2.47)

Eext = −
∫∫∫

d3r Msm̂(r) · Hext(r), (2.48)

Ea =
∫∫∫

d3r
(

K (1)
i j mi m j + K (2)

i jklmi m j mkml + o(m6)
)

, (2.49)

Eex = 1

2

∫∫∫
d3r (2A∗

i j )(∂i ml)(∂ j ml), (2.50)

Em = −1

2

∫∫∫
d3r Msm̂(r) · Hd(r)

= 1

2
(4π M2

s )
∑

r

Vr

∑

r ′
m̂(r) · Ñ (r, r′) · m̂(r′), (2.51)

Eσ = −
∫∫∫

d3r ai jkl σi j mkml , (2.52)

where Einstein notation is used to sum all the dummy indices from 1 to 3. In Eq. (2.49),
the first two orders of crystalline anisotropy energy are included, which are both
important in crystals with different symmetries. In Eq. (2.50), the exchange constant
2A∗ is the parameter α in Landau and Lifshitz’s original paper [8]; 2A∗ but not
A∗ is utilized because in this way A∗ has a direct relationship with the exchange
energy Je in the Heisenberg model discussed in Sect. 1.2: A∗ = Je/R where R is the
nearest neighbor (NN) atomic distance. In Eq. (2.51), the demagnetizing field Hd is
similar to the one given in Eq. (2.36), except that the Hd here is contributed by all
micromagnetic cells r′ in the medium; in the second line of this equation, a sum but
not an integral over the volume Vr is utilized, because the concept of “demagnetizing
matrix” Ñ in Eq. (2.37) has to be defined in a finite-size volume Vr ′ . In Eq. (2.52),
σi j is the stress matrix, and the fourth-order tensor parameter ai jkl links the magnetic
property and the mechanical property in a crystal; this term can also be used at the
interface of thin films, where the stress σi j is nonzero only in several atomic planes,
but this will be very important to explain the thin film properties.

The free energy of crystalline anisotropy in Eq. (2.49) needs to be further discussed
for different crystal symmetries. In general, we can prove the characteristics of the
parameter matrix K (1)

i j by the rotational invariant under all rotational matrices R̃ of
a certain symmetry:

K̃ (1) = R̃ · K̃ (1) · R̃T (2.53)

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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For cubic crystals such as iron and nickel, if we use two successive R̃ of C4

operation, the off-diagonal matrix elements K (1)
i j (i 
= j) can be proved to be zero;

then by using R̃ of C3 operation, we can proved that K (1)
11 = K (1)

22 = K (1)
33 . However,

under the constraint of m̂2 = 1, the term of K (1)
i j is trivial. The next order parameter

K (2)
i jkl can be treated as the diad of two matrices. Still, by two successive R̃ of C4

operation and another R̃ of C3 operation, we can prove that there are only two kinds
of nonzero independent parameters in this term: Ka = K (2)

i i j j = K (2)
i j i j = K (2)

i j j i and

Kb = K (2)
i i i i , and the cubic crystalline anisotropy energy is in the form [9]:

E (c)
a =

∫∫∫
d3r

{
2K1[(m̂ · k̂1)

2(m̂ · k̂2)
2 + (m̂ · k̂2)

2(m̂ · k̂3)
2

+(m̂ · k̂3)
2(m̂ · k̂1)

2] + K2(m̂ · k̂1)
2(m̂ · k̂2)

2(m̂ · k̂3)
2
}

(2.54)

The k̂1, k̂2, k̂3 are cubic axes; K1 = 3Ka − Kb is positive for Fe and negative for Ni.
For a hexagonal crystal such as cobalt, it is easy to prove that, for K (1)

i j matrix,

there are only two nonzero independent elements K (1)
11 = K (1)

22 and K (1)
33 if we use

R̃ of C6 group with θ = π and θ = π/3. Furthermore, by using the constraint
m2

x + m2
y + m2

z = 1, there is only one independent parameter K1 = K (1)
11 − K (1)

33
left. Then, the hexagonal anisotropy energy must be in the form [1]:

E (h)
a =

∫∫∫
d3r

{
K1[m̂ × k̂c]2 + K2[m̂ × k̂c]4

}
(2.55)

where K2 is the second-order term which can be proved by the symmetry of K (2)
i jkl .

The magnetic recording media such as CoPt and FePt have a tetragonal symmetry
of L10 phase. The fourfold symmetry axis is the c-axis or z-axis, by using two
successive R̃ of C4 operation around c-axis, we can prove that Ku1 = K (1)

11 =
K (1)

22 . Both the hexagonal and tetragonal anisotropy are called “uniaxial anisotropy”,
because the first term in their crystalline anisotropy is Ku1 sin2 θ or −Ku1 cos2 θ

around the c-axis. In the term of K (2)
i jkl , there are also two classes of independent

parameters. Then the tetragonal crystalline anisotropy energy is in the form [1]:

E (t)
a = ∫∫∫

d3r
{
−Ku1(m̂ · k̂c)

2 − Ku2

[
1 − (m̂ · k̂c)

2
]2

−Kc(m̂ · k̂a)2(m̂ · k̂b)
2
}

(2.56)

where k̂a , k̂b , k̂c are the crystal axes for a tetragonal conventional unit cell. The
details of the second-order parameters Ku2 and Kc depend on the degree of order of
the alloy, and usually Kc is more important and harder to control in experiment.
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Table 2.4 Anisotropy constants and exchange field constants He = 2A∗/(Ms D2)

FM Crystals Fe Co Ni

Ms(emu/g) 221.71 ± 0.08 162.55 58.57 ± 0.03
Ms(emu/cm3) 1742.6 1446.7 521.3
K1(erg/cm3) 4.81 × 105 4.12 × 106 −5.5 × 104

K2(erg/cm3) 1.2 × 103 1.43 × 106 −2.5 × 104

Easy axis k̂1 , k̂2 , k̂3 k̂c k̂1 + k̂2 + k̂3

Hk = 2K1/Ms(Oe) 552 5,696 −221
He(Oe) with D = 10 nm 1,148 1,382 3,827
He(Oe) with D = 2 nm 28,700 34,550 95,675

D is the micromagnetic cell size, A∗ is assumed to be on the order of 1 × 10−6 erg/cm, for Fe, Co
and Ni

The micromagnetics is not an atomic or electronic scale theory; therefore the
basic magnetic parameters such as Ms, K1 and A∗ have to be treated as the input
of the model. Actually in practical alloy or composite magnetic materials, these
basic parameters can not be provided by either accurate theoretical calculation or
direct experimental measurement. The experiment-simulation cycles have to be done
to fit these parameters Ms, K1 and A∗. In Table 1.3, the structure and crystalline
characteristics of ferromagnetic crystals have been given, here in Table 2.4, the
anisotropy energy constant and exchange field constant of Fe, Co, Ni are given
respectively.

In a magnetic material, the effective magnetic field Heff felt by a micromagnetic
cell at r can be found by the variation Heff(r) = −δF/δ(Msm̂(r)) in the continuum
integration form in Eqs. (2.49)–(2.52) or by the derivation Heff=−∂F/∂(Vr Msm̂(r))
in the discretized summation form over r in Eq. (2.51) (cgs units):

Heff(r) = Hext(r) + Ha(r) + Hex(r) + Hm(r) + Hσ (r). (2.57)

Ha(r) = Hk

(
êi K (1)

i j m j + êi 2K (2)
i jklm j mkml + o(m5)

)
/K1, (2.58)

Hex(r) = (2êl/Ms) A∗
i j∂i∂ j ml � He

NN∑

r ′

(
m̂(r′) − m̂(r)

)
, (2.59)

Hm(r) = −(4π Ms)
∑

r ′
Ñ (r, r′) · m̂(r′), (2.60)

Hσ (r) � Hme (m̂(r) · êx )êx + H ′
me

[
(m̂(r) · êy)êx + (m̂(r) · êx )êy

]
, (2.61)

where Einstein notation is still used in three of previous equations. In Eq. (2.58),
the anisotropy field constant Hk = 2K1/Ms, and the relationship among K1,
K (1)

i j and K (2)
i jkl has been discussed in crystals with different symmetries. For cubic

symmetry, the term of K (1)
i j will not appear, since it is a trivial or constant term.

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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Furthermore, if a clearer vector form of anisotropy field is to be used, the derivative
Ha = −∂Ea/∂(Vr Msm̂(r)) can be taken directly for Eqs. (2.55)–(2.56).

In Eq. (2.59), the exchange field constant is He = 2A∗/(Ms D2) where D is the
micromagnetic cell size. In the original form of Landau and Lifshitz [1], the exchange
constant A∗

jl also depends on the crystal symmetry. Inside a micromagnetic cell,
the magnetic moment is assumed to rotate uniformly. With two neighbor cells at a
distance of D, which is usually larger than 1 nm, at least one order larger than atomic
distance R, the exchange field constant He = 2Je/(Ms D2 R) is much smaller than
the Weiss field HE � z Je/(Ms R3) ∼ 107 Oe among neighbor atoms, where z is the
number of NN atomic spins. Therefore, we can make an approximation A∗i j � A∗δi j

and omit the crystal asymmetry in Eq. (2.59), where the sum over r′ is only taken
over the NN cells of the cell at r.

In Eq. (2.60), the sum over r′ is taken over micromagnetic cells discretized at
a distance D in any dimension, similar to Eq. (2.59). When r′ = r, the term in
the sum −Bs Ñ (r, r) · m̂(r) is called the shape anisotropy field, whose expression
is actually more complicated due to the constraint m̂2 = 1; however we will prove
that it is equivalent to the term here when used in LL equations. As discussed in
Sect. 2.2, sometimes the micromagnetic is not a simple cube, but a polyhedron,
then the demagnetizing matrix Ñ should be calculated following a formula similar
to Eq. (2.43) by summing over the contributions of demagnetizing matrices of a
rectangle surface and a triangle surface in Tables 2.2 and 2.3.

In Eq. (2.61), the magneto-elastic field due to interfacial stress is largely simplified.
The Hme is the magneto-elastic field constant along an in-plane direction êx , and H ′

me
is related to the mx my energy term, if the thin film is in x–y plane.

2.3.2 LL Equation and LLG Equation

In 1935, Landau worked in the Haerkof University and the Physico-Technical Insti-
tute, Academy of Science, in Ukraine, USSR. Landau and his student Lifshitz brought
up the famous LL equation in their theory of magnetic domain and domain wall res-
onance. The first term in LL equation can be derived from the Heisenberg equation
of spin, which is related to the energy conservation of magnetic free energy. The
second term in LL equation was said to be originated from the relativistic interaction
between the magnetic moment and the crystal in the original paper [8]; nowadays
this nonlinear second term is believed to be caused by the dissipative process, which
is complicated and hard to be explained accurately, just similar to the frictional force
(Fig. 2.6).

As discussed in Sect. 1.2, the atomic magnetic moment μa = −gμBS, where
g is the g-factor, μB is the Bohr magnet, S is the atomic spin. If we omit energy
dissipation, the eigenvalue of Hamiltonian H = −μa ·H, is conserved; then we can
use the Heisenberg’s equations to describe the motion of spin S = êi Si :

http://dx.doi.org/10.1007/978-3-642-28577-6_1
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(b)(a)

Fig. 2.6 Landau–Lifshitz equation. a Directions of precession term and damping term; b switching
process of a magnetic moment or a spin from +z to −z direction by an external field

dSi

dt
= 1

i�
[Si , H ] = gμB

i�
[Si , S j ] Hj = gμB

�
εi jk Sk Hj (2.62)

where the commutator of the spin is [Si , S j ] = i εi jk Sk . In a ferromagnetic material,
near the 0 K, the atomic moment in a cell can be written as: M = nμ = −ngμBS ,
where n is the atomic density. Based on Eq. (2.62), if the energy is conserved, the
equation of motion of magnetic moment is in the form:

dM
dt

= −ngμB
dS
dt

= −g
e

2mc
(M × H) = −γ0(M × H) (2.63)

where the constant γ0 = ge/2mc is the gyromagnetic ratio for an atomic spin. For the
ferromagnetic alloys of Fe, Co, Ni transition metal elements, due to the quenching
of orbital angular momentum of d-electrons, the g-factor of atomic spin usually is
just the g0 = 2 of an electron. Therefore the gyromagnetic ratio in the LL equation
usually takes the value γ0 = e/mc = 1.75882 × 107 Oe−1 s−1.

When the dissipation of magnetic free energy is included, the atomic spins have
a non-equilibrium statistics, and its motion becomes nonlinear. Based on the Hamil-
tonian H = −μa · H, the dissipation of magnetic energy means the moment M will
rotate to the direction of local magnetic field H, which equals the effective magnetic
field Heff . Therefore Landau and Lifshitz added a damping term in the equation of
motion of spin, which results in the famous LL equation:

dM
dt

= −γ (M × Heff) − γ
α

M
M × (M × Heff) (2.64)

where the dimensionless constant α is called the Landau damping constant, which
reveals the dissipation speed in the ferromagnetic material. Similar to the frictional
coefficient, the damping constant α is also phenomenological. Usually in Fe, Co,
Ni metals or alloys, α is less than 0.1, sometimes even below 0.01. However, in
ferromagnetic oxides or ferrites, the dissipation process is much slower, thus α can
be one or two orders lower than the value in ferromagnetic metals.
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In micromagnetics, the equation of motion for magnetic moments is always called
the LLG equation, because an American scientist Thomas Gilbert explained the
damping term of LL equation by the dissipative Lagrange equation with a Rayleigh’s
dissipation function in 1955 [12]:

d

dt

δL [M, Ṁ]
δṀ

− δL [M, Ṁ]
δM

+ δR[Ṁ]
δṀ

= 0 (2.65)

where Gilbert assumed that the Lagrange equation itself will result in the Eq. (2.63)
of motion for the magnetic moment under the constraint of energy conservation. In
the Lagrange L [M, Ṁ] = T − U , the role of magnetization M is the same as the
position r in L [r, ṙ] of classical mechanics. The Rayleigh dissipation functional is
also constructed analogous to that of the frictional force in mechanics:

R[ṙ] = η

2

∫∫∫
d3r ṙ2(r, t) ⇒ R[Ṁ] = η

2

∫∫∫
d3r Ṁ2(r, t) (2.66)

Then the LLG equation can be obtained by inserting the Rayleigh dissipation func-
tional into Eq. (2.65), where the effective field appears as δU /δM = −Heff :

d

dt

δT [M, Ṁ]
δṀ

− δT [M, Ṁ]
δM

+ (−Heff + ηṀ
) = 0 ⇒

∂M
∂t

= −γ0M × (Heff − ηṀ
) = −γ0M × Heff + α

M
M × ∂M

∂t
(2.67)

where the damping α = γ0ηM . The explicit expression for the kinetic energy
T [M, Ṁ] of a rotating body is quite complicated, thus the derivation in Eq. (2.67)
from the first line to the second line is obtained by the argument that this equation
must be equivalent to Eq. (2.63) when the “friction coefficient” η = 0 [12].

The LLG equation and LL equation is totally equivalent to one another, except
that the gyromagnetic ratio γ in the two equations has a small difference related to
the damping. If we insert the right-hand side of the LLG equation in Eq. (2.67) into
the last term ∂M/∂t , it is easy to prove that:

(1 + α2)
∂M
∂t

= −γ0M × Heff − γ0
α

M
M × (M × Heff) (2.68)

Comparing this Eq. (2.68) with the LL Eq. (2.64), it is clear that:

γ = γ0/(1 + α2) (2.69)

Therefore the gyromagnetic ratio γ in the LL equation should be smaller than the
gyromagnetic ratio γ0 in the LLG equation, by a small factor related to the damping
coefficient α.
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2.3.3 History of Micromagnetics

The phrase “micromagnetics” was brought up by Brown in 1958, now it becomes
the mainstream theory for computational applied magnetism. In Brown’s book
Micromagnetics [13], he summarized the “magnetization curve theory” and “domain
theory” before 1960s, which are the main parts of today’s micromagnetics. Further-
more, he studied the LL equation with the linear approximation or by the nonlinear
calculation of static and dynamic problems.

The predecessor of micromagnetics was the magnetization-curve theory. The ear-
liest theory of “induced magnetization” was given by W. E. Weber in 1852. The
modern magnetization-curve theory was founded by Akulov and Becker. In 1929,
Akulov derived the anisotropy energy for Fe and Ni with the cubic crystalline symme-
try [9], as given in Eq. (2.54). To explain the magnetization curve of single crystals,
as shown in Fig. 2.7a–c, a rigid rotation approximation can be used to explain the
curve by minimizing the total energy Ea − H · M.

In Table 2.5, the expression of the anisotropy energy Ea and the derived mag-
netization curve, i.e. the M̄−H relationship, are listed in the hard axes for Fe, Co
and Ni single crystal, respectively. It should be noted that the expressions of Ea for
Fe and Ni are equivalent, except a constant, because both Fe and Ni have the cubic
symmetry. M–H curves listed in Table 2.5 are also plotted in Fig. 2.7d–f.

If we compare the measured and the calculated magnetization curves under the
rigid rotation approximation, several conclusions can be made. First, the remanence
of M–H curves along hard axes can be estimated quite well. Secondly, the saturation
field is on the order of the anisotropy field constant Hk = 2K1/Ms; however, it can
be seen in Fig. 2.7 and Table 2.5 that, in Fe, Co, Ni, the saturation field is about
Hk, 0.15Hk and 0.65Hk respectively; therefore only the sample of Fe in Kaya’s
experiment [14] was near a single crystal. Most importantly, the M–H curve in the
easy axis can not be explained by the rigid rotation model.

Thus Bloch’s domain wall theory brought up during 1930–1931 was natural and
necessary to explain these non-uniform rotation phenomena. A Bloch wall has a
structure with zero pole density ρM = −∇ · M; Therefore the magnetostatic interac-
tion energy can be neglected in the free energy. Actually this was an approximation
used in most of the early magnetization-curve theory and domain theory [8].

The M–H loop of single-domain particle was an important topic too in the mag-
netic theory. In 1930, Becker introduced the rigid rotational model, in conjunction
with the concept of “internal stress”, to explain the loops of an element in a magnetic
material. The total free energy of this element was [10]:

U = Udip − H · J = −2S AJ 2 cos(2(θ − ε)) − H J cos θ, (2.70)

where S is a coefficient, A is the internal stress, J is the magnetization, θ is the angle
between J and H, and ε is the angle between H and the original position B of J when
H = 0 (along the stress anisotropy). Becker derived the M–H loop at different angle
ε, where horizontal axis is H/Hσ with Hσ = 4S AJ , as seen in Fig. 2.8.



42 2 Maxwell Equations and Landau–Lifshitz Equations

(a) (b) (c)

Fig. 2.7 a–c Measured M–H loops of Fe, Co, Ni [14]; d–f calculated M–H curves in the hard axes
of single crystal Fe, Co, Ni under the rigid rotation approximation

Table 2.5 Magnetization curve M̄ = M · H/(Ms H) of Fe, Co, Ni by the rigid rotation model

Crystal Fe Co Ni

Ea 2K1(m2
1m2

2 + m2
2m2

3 + m2
3m2

1) K1(m2
1 + m2

2) −K1(m4
1 + m4

2 + m4
3)

Ms 1742.6 emu/cm3 1446.7 emu/cm3 521.3 emu/cm3

Hk 552 Oe 5696 Oe −221 Oe
M–H 1 H[110]/Hk = M̄(2M̄2 − 1) H[112̄0]/Hk = M̄ H[110]/Hk = (2M̄2 − 1)/M̄

M–H 2 H[111]/Hk = (3M̄3−M̄)

1+(3M̄2−1)/4
H[101̄0]/Hk = M̄ H[100]/Hk = 2M̄3

The famous Stoner–Wohlfarth model [15, 16] of a single-domain particle’s M–H
loop was mathematically equivalent to Becker’s work. However, the physical expla-
nation of the effective anisotropy energy of the single particle or element was differ-
ent. In the first 50 years of magnetic recording, the magnetic media were granular or
particulate media, which were composed of elongated particles such as γ -Fe2O3. The
γ -Fe2O3 has a complicated cubic structure, and its crystalline anisotropy is small. In
a recording medium, γ -Fe2O3 stores information due to its shape anisotropy, which
was clarified by Stoner and Wohlfarth’s work in 1948, and that is the reason why
Stoner–Wohlfarth model is very important.

The effective anisotropy energy density of a Stoner–Wohlfarth single-domain
particle is from the self-demagnetizing energy term as given in Eq. (2.51), where
the self-demagnetizing matrix Ñ (r, r) is diagonal, with N11 = N22 and N33 < N11
along its long-axis k̂s, due to the rotational symmetry of the elongated particle:
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Fig. 2.8 M–H loops of an element with uniaxial anisotropy, where ε is the angle between the
external field and the easy axis. © with kind permission from Springer Science and Business
Media: [10], Fig. 3

E /V = 1

2
4π M2

s

(
N11m2

1 + N22m2
2 + N33m2

3

)
− H · M

= E0 −
[
2π M2

s (N11 − N33)
]
(m̂ · k̂s)

2 − H · M

= E0 − Ks cos2(φ − θ) − Ms H cos φ (2.71)
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where the angle φ = 〈H, m̂〉 and θ = 〈H, k̂s〉 of the Stoner–Wohlfarth model take
the position of the angle θ and ε respectively in Eq. (2.70) and Fig. 2.8 of Becker’s
rigid rotational model. The shape anisotropy energy Ks = 2π M2

s (N11 − N33); thus
the shape anisotropy field constant H s

k = 2Ks/Ms = 4π Ms(N11 − N33).
If we use the LL equations or the LLG equations to find the static or dynamic

magnetic states, but not the energy minimization method like the Stoner–Wohlfarth
model, the effective shape anisotropy field of an arbitrary shaped micromagnetic cell
can be very simple and straightforward:

E s
a /V = 1

2
4π M2

s (m1, m2, m3)

⎛
⎝

N11 N12 N13
N12 N22 N23
N13 N23 N33

⎞
⎠
⎛
⎝

m1
m2
m3

⎞
⎠ (2.72)

= 1

2
4π M2

s

{
(N11 − N33)m

2
1 + (N22 − N33)m

2
2 + N33

+2N12m1m2 + 2N13m1

√
1 − m2

1 − m2
2 + 2N23m2

√
1 − m2

1 − m2
2

}

−Hs
k = ∂E s

a

∂(V Msm̂)
= 4π Ms

⎛
⎝

N11 N12 N13
N12 N22 N23
N13 N23 N33

⎞
⎠
⎛
⎝

m1
m2
m3

⎞
⎠− h0{m̂}

⎛
⎝

m1
m2
m3

⎞
⎠ (2.73)

where h0{m̂} = 4π Ms(m1 N13 + m2 N23 + m3 N33)/m3 is a scalar. Thus, if we use
LLG equations, after considering the constraint m̂2 = 1, the shape anisotropy field
of an arbitrary cell in Eq. (2.73) is equivalent to the self-demagnetizing field term in
the general expression of the magnetostatic interaction field in Eq. (2.60).

In 1970s, owing to the invention of personal computers, the computational meth-
ods were developed gradually to analyze media and heads in recording systems,
although strictly speaking, “nanomagnetics” is a more suitable term.

In 1980s, two main computational micromagnetic methods were developed: finite
difference method (FDM) and finite element method (FEM). The most important
development of the computational magnetics was the inclusion of the magnetostatic
energy in the micromagnetic model. In traditional domain theory, such as in Landau–
Lifshitz’s work, this term of magnetostatic energy was ignored [1]:

E =
∫

dV

[
1

2
αs′2 + 1

2
β
(

s2
x + s2

y

)]
, s = (0, s sin θ, s cos θ) , (2.74)

αθ ′′ − β sin θ cos θ = 0 ⇒ cos θ = − tanh[x/
√

α/β] (2.75)

where the coefficient α = 2A∗, β = 2K1, and s′2 = ∑
i (dsi/dx)(dsi/dx). The

boundary condition of the Bloch wall is θ = 0, π at x = −∞,+∞, respectively.
The Bloch wall width a = √

α/β equals the Bloch exchange length lB
ex = √

A∗/K1.
The ignore of magnetostatic energy was reasonable for the Bloch wall, because
its magnetic pole density −∇ · M is zero. However, for most of other cases in
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Fig. 2.9 FDM and FDM–FFT micromagnetic method. a Model of magnetic grains in Co–P thin
film; © Reprinted with permission from Ref. [17]. Copyright [1983], American Institute of Physics;
b model of micromagnetic cells in CoNi film; © Reprinted with permission from Ref. [18]. Copy-
right [1987], American Institute of Physics; c, d effects of magnetostatic interaction (Ms/Hk) and
exchange interaction (C∗ = He/Hk) among the grains on M–H loops using FDM–FFT method;
© Reprinted with permission from Ref. [19]. Copyright [1988], American Institute of Physics

applied magnetism, this ignorance of the demagnetizing field is not correct, and the
computational magnetics is necessary to include the term Hm in Eq. (2.60).

The FDM uses regular mesh of micromagnetic cells to discretize the magnetic
material. In 1983, Hughes used the energy minimization method to calculate the
M–H loops of Co–P thin film, where hexagonal grains arranged on a triangular
lattice was chosen as the regular mesh, as seen in Fig. 2.9a [17]. In 1987, Victora used
the LLG equations to calculate the torque curve of CoNi film, where the complete
magnetostatic interaction was included for micromagnetic cells in Fig. 2.9b by a
direct integration [18]. In 1988, Bertram and Zhu developed a FDM–FFT method
for the micromagnetic model, where the computation of the magnetostatic interaction
was largely speed up by using the fast-Fourier-transform (FFT) method [19]. By using
FDM–FFT method, the effects of the magnetostatic interaction among all grains and
the exchange among neighbor grains can be carefully studied, as seen in Fig. 2.9c, d,
which was important for the development of low-noise thin film recording media. The
Object-Oriented MicroMagnetic Framework (OOMMF) software of micromagnetics
was initiated in the Intermag 1995, based on discussions of micromagnetic standard
problems in Intermag 1994 and Intermag 1995. OOMMF uses FDM–FFT methods,
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which is developed by NIST and widely utilized recently [20]. All micromagnetic
studies in the following chapters of this book are accomplished by FDM–FFT or its
improved version, as introduced in Sect. 2.2 of this chapter.

The FEM was initially proposed by Fredkin and Koehler in 1987 [21], where a
2-D thin film was discretized into triangle elements, and the energy minimization
was taken with respect to the magnetization m̂. The key path was to find the magnetic
field energy from m̂ defined at barycenters of triangular cells:

m̂ at barycenter ⇒ vector potential A at vertex ⇒
B at barycenter ⇒ magnetic field energy |B|2/8π (2.76)

The simulation speed and efficiency of FEM micromagnetics has been largely
improved by Fidler and Schrefl [22] and Scholz [23], who worked at Vienna Univer-
sity of Technology, where the scalar magnetic potential but not the vector potential
is the key to solve magnetostatic interactions [23]:

∇2φ = 4π∇ · M (M = 0 outside magnetic domain Ω) (2.77)

φexternal = φinternal ,
∂φexternal

∂ n̂
− ∂φinternal

∂ n̂
= 4π n̂ · M (2.78)

The Dirichilet boundary condition in Eq. (2.78) contains an approximation, which
will be better in soft magnetic materials than in hard magnetic materials.

Appendix

Appendix A

If a a′ × b′ rectangle locates at z′ = 0, and the observation position vector is located
at r = (x, y, z) = (r1, r2, r3), as seen in Fig. 2.4a, the three nonzero elements in the
demagnetizing matrix of a rectangular surface are (α = 1, 3):

N rec
α3 (r) = − 1

4π

a′/2∫

−a′/2

dr ′
1

b′/2∫

−b′/2

dr ′
2

rα − r ′
α[

(r1 − r ′
1)

2 + (r2 − r ′
2)

2 + r2
3

]3/2 (2.79)

We just have to do two integrations for N rec
33 and N rec

13 , and the integration of N rec
23

is totally analogy to N rec
13 . Let’s start with N rec

13 :
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N rec
13 = − 1

4π

a′/2∫

−a′/2

dx ′
b′/2∫

−b′/2

dy′ x − x ′
[
(x − x ′)2 + (y − y′)2 + z2

]3/2

= − 1

4π

b′/2∫

−b′/2

dy′ 1[
(x − x ′)2 + (y − y′)2 + z2

]1/2

∣∣∣∣∣
a′/2

x ′=−a′/2

= − 1

4π

∑
q

(−q) ln

(
y′ − y +

√
R2

1 + (y − y′)2 + R2
3

)b′/2

y′=−b′/2

= − 1

4π

∑
q

∑
w

qw ln (R − wR2) (2.80)

The variables are defined in Table 2.2. The integration for N rec
33 can also be done:

N rec
33 = − 1

4π

a′/2∫

−a′/2

dx ′
b′/2∫

−b′/2

dy′ z[
(x − x ′)2 + (y − y′)2 + z2

]3/2

= − 1

4π

b′/2∫

−b′/2

dy′ z[
(y − y′)2 + z2

] x ′ − x[
(x − x ′)2 + (y − y′)2 + z2

]1/2

∣∣∣∣∣
a′/2

x ′=−a′/2

= − 1

4π

∑
q

arctan

⎛
⎝ R1

R3

y′ − y√
R2

1 + (y − y′)2 + R2
3

⎞
⎠
∣∣∣∣∣∣

b′/2

y′=−b′/2

= − 1

4π

∑
q

∑
w

arctan
R1 R2

R3 R
(2.81)

The N rec
α3 (r) of a rectangular surface have be listed in Table 2.2 respectively.

Appendix B

If the surface located at z′ = 0 is a right-angle triangle with right-angle side lengths
(a′, b′), the origin at the midpoint of the hypotenuse, and the hypotenuse defined by
equation y′ = −sx ′ or x ′ = −vy′, and the observation position vector is located
at r = (x, y, z), there are still three nonzero elements N tri

13, N tri
23 and N tri

33 in the
demagnetizing matrix of a triangular surface, as seen in Fig. 2.4b. Here we can first
do the integral for element N tri

13:
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N tri
13 = − 1

4π

b′/2∫

−b′/2

dy′
a′/2∫

−vy′
dx ′ x − x ′

[
(x − x ′)2 + (y − y′)2 + z2

]3/2

= − 1

4π

b′/2∫

−b′/2

dy′
{

1[
(a′/2 − x)2 + (y − y′)2 + z2

]1/2

− 1[
(x + vy′)2 + (y − y′)2 + z2

]1/2

}

= − 1

4π
ln

(
y′ − y +

√
(a′/2 − x)2 + (y − y′)2 + z2

)∣∣∣∣
b′/2

y′=−b′/2

+ 1

4π

b′/2∫

−b′/2

dy′ 1√
1 + v2

1
[
(y′ − c1)2 + r2/(1 + v2) − c2

1

]1/2

= 1

4π

∑
w

w ln (RI − wR2)

+ 1

4π

1√
1 + v2

ln

(
y′ − c1 +

√
(y′ − c1)2 + c2

2

)∣∣∣∣
b′/2

y′=−b′/2

= − 1

4π

∑
w

w

{
1√

1 + v2
ln(P − wP2) − ln(RI − wR2)

}
(2.82)

The symbols c1, c2
2, P , P2, RI, and R2 used in Eq. (2.82) have be defined in Tables 2.2

and 2.3 respectively. The integration for N tri
23 is totally analogy to N tri

13, just with a
x ↔ y symmetry, therefore the derivation of N tri

23 will be omitted here.
The integral for the matrix element N tri

33 is the most complicated one, which include
three parts:

N tri
33 = − 1

4π

b′/2∫

−b′/2

dy′
a′/2∫

−vy′
dx ′ z[

(x − x ′)2 + (y − y′)2 + z2
]3/2

= − 1

4π

b′/2∫

−b′/2

dy′ z[
(y − y′)2 + z2

] x ′ − x[
(x − x ′)2 + (y − y′)2 + z2

]1/2

∣∣∣∣∣
a′/2

x ′=−vy′

= − 1

4π

{
N (1)

33 + N (2)
33 + N (3)

33

}
(2.83)

In Eq. (2.83), the derivation of the first term N (1)
33 is actually very similar to one of the

two terms in Eq. (2.81) for rectangular surface; in the second term, the numerator of
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the integrand is z(−vy′ − x), which can be disassembled into two parts zv(−y′ + y)

and z(−vy−x), and these two part just corresponds to the N (2)
33 and N (3)

33 respectively.

The integration for N (1)
33 is just straightforward:

N (1)
33 =

b′/2∫

−b′/2

dy′ z[
(y − y′)2 + z2

] a′/2 − x[
(a′/2 − x)2 + (y − y′)2 + z2

]1/2

= arctan

(
a′/2 − x

z

y′ − y√
(a′/2 − x)2 + (y − y′)2 + z2

)∣∣∣∣∣
b′/2

y′=−b′/2

=
∑

w

arctan[(a′/2 − x)R2/(z RI)] (2.84)

In the derivation for N (2)
33 , complicated variables such as c1, c2 and c5 = y − iz in

Table 2.3 have to be defined, and the respective integral is:

N (2)
33 =

b′/2∫

−b′/2

dy′ zv[
(y − y′)2 + z2

] y′ − y[
(x + vy′)2 + (y − y′)2 + z2

]1/2 (2.85)

=
b′/2∫

−b′/2

dy′ zv

2

[
1

y′ − c5
+ 1

y′ − c∗
5

]
1√

1 + v2

1
[
(y′ − c1)2 + c2

2

]1/2

The previous integration include two terms which are complex conjugates of one
another. Now let’s make an integration variable change y′ − c1 = c2 sinh θ with
the two integration limits of the angle θ as θ1 = sinh−1[(−b′/2 − c1)/c2] and
θ2 = sinh−1[(b′/2 − c1)/c2], the integral in Eq. (2.85) has the form:

N (2)
33 = zv

2
√

1 + v2

θ2∫

θ1

[
dθ

c1 − c5 + c2 sinh θ
+ c.c.

]
(2.86)

Then make another variable change eθ = u, and define a new constant sinh η =
(c1 − c5)/c2, the integral becomes:
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N (2)
33 = zv√

1 + v2

u2∫

u1

[
1

c2

d
(
eθ
)

(
eθ
)2 + 2[(c1 − c5)/c2]eθ − 1

+ c.c.

]

= zv√
1 + v2

u2∫

u1

[
1

c2

du

(u + eη)(u − e−η)
+ c.c.

]

= zv√
1 + v2

{
1

2c2 cosh η
ln

u − e−η

u + eη

∣∣∣∣
u2

u = u1

+ c.c.

}

= zv√
1 + v2

∑
w

�
⎧
⎨
⎩

w√
(c1 − c5)2 + c2

2

ln
V+
V−

⎫
⎬
⎭

= zv√
1 + v2

∑
w

�
{

w

Aeiθ ′/2
ln

|V+|eiφ+

|V−|eiφ−

}
(2.87)

In the previous derivation, the difficult part is to find integration limits u1 and u2.
Actually sinh−1 x = ln[x + √

x2 + 1], therefore u1, u2, eη and e−η are:

u1 = eθ1 = 1

c2

⎡
⎣−

(
b′

2
+ c1

)
+
√(

b′
2

+ c1

)2

+ c2
2

⎤
⎦

u2 = eθ2 = 1

c2

⎡
⎣+

(
b′

2
− c1

)
+
√(

b′
2

− c1

)2

+ c2
2

⎤
⎦

eη = 1

c2

[
+(c1 − c5) +

√
(c1 − c5)2 + c2

2

]

e−η = 1

c2

[
−(c1 − c5) +

√
(c1 − c5)2 + c2

2

]
(2.88)

By defining P2 = b′
2 + wc1 (w = +1 and w = −1 are for the two integral limits u1

and u2 respectively), Aeiθ ′/2, V+ and V− will have the forms in Table 2.3:

u − e−η

u + eη
=

−wP2 +
√

P2
2 + c2

2 + (c1 − c5) −
√

(c1 − c5)2 + c2
2

−wP2 +
√

P2
2 + c2

2 + (c1 − c5) +
√

(c1 − c5)2 + c2
2

= V−
V+

(2.89)

The integration of N (3)
33 is similar to N (2)

33 , which also includes imaginary numbers:
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N (3)
33 =

b′/2∫

−b′/2

dy′ z[
(y − y′)2 + z2

] x + vy[
(x + vy′)2 + (y − y′)2 + z2

]1/2 (2.90)

=
b′/2∫

−b′/2

dy′ x + vy

2i

[ −1

y′ − c5
+ 1

y′ − c∗
5

]
1√

1 + v2

1
[
(y′ − c1)2 + c2

2

]1/2

The rest of derivations are similar to Eq. (2.87), but the result is an imaginary part:

N (3)
33 = − x + vy

2i
√

1 + v2

θ2∫

θ1

[
dθ

c1 − c5 + c2 sinh θ
− c.c.

]

= − x + vy

2i
√

1 + v2

u2∫

u1

[
1

c2

du

(u + eη)(u − e−η)
− c.c.

]

= − x + vy√
1 + v2

∑
w

�
⎧
⎨
⎩

w√
(c1 − c5)2 + c2

2

ln
V+
V−

⎫
⎬
⎭

= − x + vy√
1 + v2

∑
w

�
{

w

Aeiθ ′/2
ln

|V+|eiφ+

|V−|eiφ−

}
(2.91)

Finally, insert the results of the three parts in Eqs. (2.84), (2.87) and (2.91) into
Eq. (2.81), the most difficult matrix element of a triangular surface N tri

33 can be
found.
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