206 4 Process Orchestrations

4.7 Business Process Model and Notation

This section introduces the Business Process Model and Notation (BPMN),
developed under the coordination of the Object Management Group. Version
2 of this international standard introduces a series of modifications, including
a new extension of the acronym. BPMN used to stand for Business Process
Modeling Notation. In Version 2, the standard also defines a meta-model, so
that Business Process Meta Model and Notation would have been a valid
choice. Unfortunately, the term meta was dropped, resulting in the rather im-
precise official extension we now see in this section’s heading. In the remainder
of this book, we will mostly use the acronym.

The intent of the BPMN for business process modelling is very similar to
the intent of the Unified Modeling Language for object-oriented design and
analysis. To identify the best practices of existing approaches and to combine
them into a new, widely accepted language. The set of ancestors of BPMN
includes graph-based and Petri-net-based process modelling languages, such
as UML activity diagrams and event-driven process chains.

While these modelling languages focus on different levels of abstraction,
ranging from a business level to a more technical level, the BPMN aims at
supporting the complete range of abstraction levels, from a business level to a
technical implementation level. This goal is also laid out in the standards doc-
ument, which states that “The primary goal of BPMN is to provide a notation
that is readily understandable by all business users, from the business analysts
that create the initial drafts of the processes, to the technical developers re-
sponsible for implementing the technology that will perform those processes,
and finally, to the business people who will manage and monitor those pro-
cesses. Thus, BPMN creates a standardized bridge for the gap between the
business process design and process implementation.”

The BPMN defines several diagram types for specifying both process or-
chestrations and process choreographies. Since this chapter focuses on or-
chestrations, only business process diagrams and collaboration diagrams are
discussed in this section. Diagram types regarding process choreographies,
that is, conversation diagrams and choreography diagrams, will be discussed
in the next chapter.

To classify the level of support that a particular BPMN software tool
provides, the standard introduces so called conformance classes.

4.7 Business Process Model and Notation 207

e Process Modeling Conformance: The process modeling conformance class
includes the BPMN core elements, process diagrams, collaboration di-
agrams and conversation diagrams. Subclasses are defined that contain
a limited set of visual modelling elements (Descriptive subclass), an ex-
tended set of modelling elements (Analytical subclass) and modelling ele-
ments that are required to represent executable processes (Common Exe-
cutable subclass), respectively.

e Process Execution Conformance: The process execution conformance class
requires a software tool to support the operational semantics of BPMN.
If, in addition, the mapping from BPMN to WS-BPEL as defined in the
standard is implemented, the tool satisfies WS-BPEL Process Execution
Conformance. WS-BPEL and the mapping from BPMN to this XML lan-
guage is addressed in Chapter 7.

e Choreography Modeling Conformance: The choreography modeling confor-
mance class includes the BPMN core elements, collaboration and choreo-
graphy diagrams. Choreography modelling will be discussed in Chapter 5.

4.7.1 Principles

The BPMN standard defines a notation and a meta model that organizes
the concepts used in the notation. While much more complex, the BPMN
meta model is similar to the meta model discussed in Section 3.5. To avoid
redundancy and to provide a solid basis, the standard is organized in layers.

The BPMN Core Structure is the foundation of the standard, which de-
fines generic concepts like BaseElement, which is the abstract super class for
most BPMN elements. These concepts are refined subsequently in packages
related to processes, choreographies, collaborations, and conversations. The
reader interested in the BPMN meta model is referred to the BPMN stan-
dard, referenced in the bibliographical notes at the end of this chapter. This
text concentrates on the language constructs and their execution semantics
rather than on the organization of the standard.

The basic BPMN modelling elements allow expressing simple structures in
business processes, while expressive power is added by the complete element
set. The basic elements are easy to comprehend, so that process designers
and practitioners can use the language without extensive training. When pro-
cess designers become familiar with the language, more elaborate language
elements can be added.

The graphical notation of a business process is complemented with a set of
attributes. These attributes can be associated with the complete process dia-
gram and with particular elements. Some attribute values have implications on
the visual appearance of the symbols used in process diagrams. For instance,
whenever a gateway activates a single outgoing edge from a set of outgoing
edges, the gateway is marked with the X symbol to indicate its exclusive or
split semantics.

208 4 Process Orchestrations

The BPMN has the flavour of a framework rather than of a concrete lan-
guage, because some aspects, for instance, expressions, are not covered by the
standard, and left to the process designer. Expressions are used, for example,
to decide which branch to follow in the case of an exclusive or split. During
business process modelling projects, the persons responsible can use a lan-
guage of their choice. However, within one business process diagram, only one
expression language can be used.

In case a high-level business process is modelled, informal textual expres-
sions might be useful. An example would be “if the credit amount exceeds
5000 Euros, then the monthly income of the client needs to be checked”. In
this case, the language to formulate expressions would be plain English text.
If business processes need to be represented at a technical implementation
level, formal languages with an operational semantics, such as programming
languages, are required.

Organizational aspects are represented in the BPMN by pools and swim-
lanes, similar to those in UML activity diagrams. There is a hierarchy of
swimlanes within a given pool: lanes, and arbitrarily nested sub-lanes. Lanes
represent organizational entities such as departments in organizations. Sub-
lanes can be used to define organizational entities within departments. Nesting
of arbitrary depth is permitted, but process diagrams might get cluttered in
case of extensive nesting. By drawing flow objects in swimlanes, the organiza-
tional entity responsible for performing the specific objects can be represented
graphically.

Each pool may specify a concrete organization, but it may also represent
a placeholder for a specific organization, that is, a role. Examples of roles in a
supply chain scenario are “supplier”, “manufacturer”, and “customer”. When
it comes to enacting business processes, concrete organizations are bound to
these roles, so that one concrete supplier interacts with a specific manufac-
turer, which interacts with a specific set of customers.

Each process resides in a single pool. As a consequence, each process is
performed by a single organization. Business processes can interact with busi-
ness processes enacted by other organizations in order to realize business-to-
business scenarios. These assumptions of the BPMN regarding pools and the
scope of business processes are in line with Definition 1.1.

4.7.2 Business Process Diagrams

The notational elements in business process diagrams are divided into four
basic categories, each of which consists of a set of elements, shown in Fig-
ure 4.76.

Flow objects are the building blocks of business processes; they include
events, activities, and gateways. The occurrence of states in the real world
that are relevant for business processes and, more generally, anything rele-
vant that happens, can be represented by events. Activities represent units
of work performed during business processes. Gateways are used to represent

4.7 Business Process Model and Notation 209

the split and join behaviour of the flow of control between activities, events,
and gateways.

Gateways

jmTT T T T LI el F-—~~~ =~~~ ~—~———==———==
I Ly b [
| Flow Objects L Artefacts : | Connecting Objects !
| I |
| [[|
! Events O ! | Data Object D | ! Sequence Flow —
I I I
: |) |
I Activiti | [| | |
| Activities | ! 'l 1 Message Flow o !
: | o |
	[

@
=
o
f
°

Pool

S

Fig. 4.76. BPMN: categories of elements

Artefacts are used to show additional information about a business pro-
cess that is “not directly relevant for sequence flow or message flow of the
process”, as the standard mentions. Data objects, groups, and annotations
are supported artefacts. Each artefact can be associated with flow elements.
Artefacts serve only information purposes, so that the execution semantics of
a process is not influenced by them.

Data objects are represented simply by a name; the internal structure of
data objects cannot be defined in BPMN. The main purpose of data object
artefacts is documentation of the data used in the process. By directed asso-
ciation edges, the modeller can represent the fact that a data object is read
or written by a process activity. Paper documents, electronic information, as
well as physical artefacts, like shipped products, can be represented by data
objects.

Text annotations document specific aspects of the business process in tex-
tual form. The text is graphically associated with the object in the business
process diagram that the text explains. Group objects are artefacts that are
used to group elements of a process. Groups do not have a formal meaning;
they just serve documentation purposes. Groups may span lanes and even
pools.

Connecting objects connect flow objects, swimlanes, or artefacts. Sequence
flow is used to specify the ordering of flow objects, while message flow describes

210 4 Process Orchestrations

the flow of messages between business partners represented by pools. Associ-
ation is a specific type of connecting object that is used to link artefacts to
elements in business process diagrams.

Figure 4.77 shows a BPMN business process diagram, representing an
ordering process. The example introduces the main elements of the language:
events, activities, gateways, and sequence flow. The process model starts with
an event. A sequence of activities to analyze the order and to check the stock
are performed, before an exclusive or split is done. The latter is represented
by a gateway with the respective marker.

Purchase
Raw
Material

[Make Products

Manufacture
Products

Make
Production
Plan

Not in Stock

|
I
|
|
%
l‘
|
I
|
|
)

Analyze Check
Order Stock

In Stock

Ship . Receive
Products Send Bill Payment m

Fig. 4.77. Business process diagram expressed in BPMN

If the ordered products are in stock, then the lower branch is selected.
Otherwise the product has to be manufactured first, so that the upper branch
needs to be chosen. The expression language used in this process diagram
is plain English text (In stock, Not in Stock), so that humans can easily
understand the conditions. The manufacturing part of the process can be
seen as a detour, since both branches converge in the exclusive join gateway
before the products are shipped, the bill is sent, and the payment is received.

This process diagram also contains events that mark the start and end of
the process. The start event is marked with an envelope symbol, indicating
that the process starts on receiving a message. There are many different event
types and markers for events, the most widely used of which will be discussed
shortly.

Data in processes plays an increasingly important role. The example rep-
resents the order processed as a data object. Data objects can be associated
with flow elements, indicating a relationship. In the example shown in Fig-
ure 4.77, there is a data object Order, which is associated to activities Analyze
Order and Check Stock. The orientation of the association edge indicates the
type of relationship. In our process diagram, Analyze Order writes the data
object, while Check Stock reads it.

Grouping of activities using the group artefact can increase the under-
standing of the process model by humans. This is exemplified by a group an-

4.7 Business Process Model and Notation 211

notated by Make Products. In this example it is rather obvious that the three
activities are responsible for making the product in case the ordered products
are not in stock. However, in larger process models grouping is a convenient
way of expressing additional information for humans that can not conveniently
be provided by the more formal modelling elements of the BPMN.

The roles involved in this process have not been represented in the process
diagram. If the roles are important for the modelling purpose, for example, if
responsibilities in the organization have to be defined or hand-overs between
departments need to be investigated, roles must be represented in process dia-
grams. Figure 4.78 shows a process diagram of the ordering process introduced
above, enriched with role information.

Sales

Analyze Check In Stock Ship) Receive
Order Stock } X Products Send Bill Payment

® 4 A
2 :
c Not in Stock H
£ :
5 :
g T
(2]
= Purchase AN
o
=] Raw Products
o Material
£
5
g Manufacture | 7
£ Products
g
s Make
Production
Plan

Fig. 4.78. Business process diagram with role information

There are two departments of the company modelled, Manufacturing and
Sales. Receiving and analyzing the order as well as checking the stock and
deciding about manufacturing the products is also decided by the sales de-
partment. Obviously, producing the ordered items is performed by the manu-
facturing department. Since hand-over between organizational entities is im-
portant, the model also contains a data object Product. This illustrates that
also physical products can be represented by data objects in BPMN. In this
case, the write edge from Manufacture Products to Products can be inter-
preted as the production of the physical goods. The read edge from Products
to Ship Products refers to the use of the physical products during the shipment
activity.

212 4 Process Orchestrations
Activities
Activities are units of work. They are the major ingredients of business pro-

cesses. The BPMN provides powerful means for expressing different types of
activities. Figure 4.79 shows the activity types that the BPMN supports.

Task Transaction

Subprocess Call Activity
[+]

Fig. 4.79. Activity types in the BPMN

Activities characterize units of work. Activities which are not further re-
fined are called atomic activities or tasks. Activities might also have an inter-
nal structure, in which case they are called subprocesses. Rather than showing
the structure, the modeller can decide to hide the complexity of the subpro-
cess, using the plus symbol. But subprocesses can also be expanded, exposing
their internal structure.

An example of a subprocess is shown in Figure 4.80. In that figure, the
collapsed subprocess is marked with the subprocess marker, and the expanded
subprocess exhibits its internal process structure. The link between the rep-
resentations is established by the unique identifier Evaluate Credit Risk.

Evaluate Credit Risk

Evaluate Credit Risk

Get Credit As_sess Senq
data risk evaluation

Fig. 4.80. Collapsed and expanded subprocess

Call activities can be used to refer to globally defined process diagrams, or
tasks, facilitating reuse of activities. An example of a call activity involving a
globally defined process diagram is shown in Figure 4.81. In the upper part of
that figure, a simple process containing a sequence of activities is shown. The
first activity is an embedded subprocess with activities to set up a project
team and to create a marketing campaign. After these activities have been

4.7 Business Process Model and Notation 213

completed, the embedded subprocess terminates. Then the Update Web Site
activity is performed.

This call activity references the global process diagram shown in the lower
part of that figure, reusing it. This design allows to define certain processes or
tasks once to be used several times. In the example, each update of the web
site could be realized by a call activity, reducing maintenance effort in large
process repositories.

_Set up Create Marketlng Update Web Site
Project Team Campaign

‘. |:Ca|| activity that

references global
Update Web Site
process diagram

g Update Web Site
'% Design Realize
c|a Solution Solution
% Qo [Solution needs work
0|2 .
als
o
2
0| [Solution ok
>| © g
E| D ;
< < Check X
= Web Site

Fig. 4.81. Process diagram with a call activity that references a global process
diagram; the reference is maintained in the respective attribute of the call activity

Activities can be marked with symbols that refine their execution seman-
tics; activity markers are shown in Figure 4.82. We have already used the
subprocess marker. Notice that transactions will be discussed later in this
section after the required events have been introduced.

The loop marker is used to indicate that an activity is iterated during pro-
cess execution. If the activity has the LoopCharacteristics attribute set,
with attribute class StandardLoopCharacteristics, then the activity repre-
sents a while loop or a repeat-until loop. Whether the loop activity realizes a
while loop or a repeat-until loop is guided by the testTime attribute. Setting
it to Before realizes a while loop, while setting it to After realizes a repeat-
until loop. The different types of loops can not be distinguished by the visual
appearances of the respective loop activities in process models.

Multiple instances tasks have the LoopCharacteristics attribute set,
with attribute class MultiInstanceLoopCharacteristics. The multiple in-
stances of an activity can be executed sequentially or in parallel. The number

214 4 Process Orchestrations

Subprocess Marker
D Loop Marker

Il Parallel Mi Marker
E Sequential MI Marker

m~ Adhoc Marker

<K] Compensation Marker

Fig. 4.82. Activity markers refine the behaviour of activities

of instances is either specified by an expression that returns an integer value
or by the cardinality of a list data object, discussed below.

The markers for sequential and parallel multiple instances activities are
shown Figure 4.82. A for loop with n iterations can be realized by a sequential
multiple instances activity, whose expression evaluates to n.

Lecture Preparation

Content

Outline Generation

Creation
Exam
preparation
Slide
Preparation

Script
preparation

Fig. 4.83. Sample adhoc process

A subprocess that is marked with an adhoc marker consists of a set of tasks
that are not related to each other by sequence flow. The execution of tasks
of the adhoc subprocess is not restricted. Each activity can be executed an
arbitrary number of times. This means that adhoc activities are not embedded
in sequence flow; they can be invoked without a specific trigger or event.

An adhoc subprocess is marked with a tilde symbol at the bottom of the
rounded rectangle. Adhoc activities are very useful for unstructured parts
of processes. Using AdHocOrdering, the modeller can define whether the
activities in an adhoc subprocess can be executed in parallel or whether
they are executed sequentially. An adhoc subprocess completes, if its
CompletionCondition evaluates to true. An example of an adhoc subpro-
cess that represents the preparation of a lecture is shown in Figure 4.83.

4.7 Business Process Model and Notation 215

Send Task

E Receive Task

& User Task
(= Manual Task

E Business Rule Task

Service Task

g Script Task

Fig. 4.84. Task types specify the kind of task that is represented

In BPMN, tasks can be decorated with task types which makes it easier for
human readers to understand the specific type the task represents. Figure 4.84
lists the task types of the BPMN.

User tasks represent traditional workflow tasks that involve user inter-
action. When the process comes to a point where a specific task is to be
performed by a user, the user is informed, for instance, by the appearance of
a new work item in his or her inbox.

When selecting the work item, an application is started that the user
works with in order to perform the task. To facilitate role resolution, role and
skill information are typically associated with a user task. Integration with
organizational modelling is required to facilitate role resolution, because the
BPMN does not support the modelling of detailed organizational aspects.

Manual tasks are performed without the support of software systems.
Sending a printed letter or transferring goods in a logistics environment are
examples of manual activities. While the actual execution of these activities is
outside the scope of an information system, the business process management
system needs to be informed about the completion of a manual activity.

The completion information typically includes a return code, so that the
system is aware of a successful or unsuccessful completion of the manual task.
This information can be important for the remaining parts of the business
process, so that in the case of unsuccessful completion, the business process
can take compensating actions for the failed manual activity.

Business rules are logical rules to be interpreted by a rules engine. In
BPMN we can model a task that triggers a business rule by marking it with
a business rule marker and adding the appropriate information. When the
business rule task task is executed, the business rule is invoked. The actual
representation of business rules and their enactment using rules engines is not
in the scope of the BPMN.

A service task is implemented by a piece of software, either using a Web
services interface or an application programming interface to a software sys-
tem. A script task is a task that uses some scripting language expression in
order to be performed. Script tasks are used to represent simple functionality,

216 4 Process Orchestrations

for which no dedicated software system is required. The particular scripting
language used and the interaction platform for script expressions depend on
the tool support available. When the script completes execution, the script
task completes.

There are also task types related to sending and receiving messages. Since
these task types rely on events, we will introduce events first and return to
send and receive tasks only when we have done so.

A compensation task is invoked to compensate for activities that need to
be undone. The compensation concept is strongly connected to transactions,
which will be discussed in the context of compensation events in the next
section.

Events

Events play a central role in business process management, since they are the
glue between situations in the real world and processes that will react to these
events or trigger them. Events in a business process can be partitioned into
three types, based on their position in the business process: start events are
used to trigger processes, intermediate events can delay processes or they can
be triggered during process executions. End events signal the termination of
processes. There are obvious connection rules associated with these events.
Start events have no incoming edges, end events have no outgoing edges, and
intermediate events have both an incoming and an outgoing edge.

This book covers the most common event types, shown in Figure 4.85. The
rows contain the event types, the columns the position (start, intermediate,
end) and the nature of the event, discussed shortly. There are also intermediate
events that are attached to boundaries of activities rather than having an
incoming sequence flow.

The simplest type of event is the blanco event that has no marker. (The
standard calls this event none event. Since blanco events are in fact events,
we stick to the former terminology and use the term blanco event.) This event
type is used whenever the cause of the event is either not known or is irrelevant
for the current modelling purpose. Blanco events can be used as start events
or as end events.

Events play two major roles, and each event in a process model plays
exactly one of those. These roles are referred to by catching and throwing. An
event is of catching nature, if the process listens and waits for the event to
happen. Whenever the respective event happens, the process catches it and
reacts accordingly. All start events are catching events.

An event is of throwing nature, if it is actively triggered by the process
during process execution. Sending a message to a business partner is an ex-
ample of a throwing event. All end events are throwing events, because the
end event is actively triggered by the process.

Intermediate events can be either catching or throwing. A good example
is the intermediate message event, which comes in two flavors. As throwing

4.7 Business Process Model and Notation 217

Start . End
Intermediate Events
Events

- =)

(2] c

o £
> RS2 2%
£ T oc| ®3C
< c 30| TvEC
[} 3 = ‘('6 cC 0O
® BLO|3E®
(] £ m=T O

c

o

z

None or blanco: Untyped events,
indicate start point, state changes
or final states.

Message: Receiving and
sending messages.

@ @ Throwing
@ O Throwing

Timer: Cyclic timer events, points
in time, time spans or timeouts.

m
<
@ @ Q CatChing g
@

Escalation: Escalating to
an higher level of responsibility.

17

/‘, A\
/A

N

Conditional: Reacting to
changed business conditions or
integrating business rules.

Link: Off-page connectors. Two
corresponding link events equal a
sequence flow.

@
QO
@&
{@1
®

Error: Catching or throwing
named errors.

Cancel: Reacting to cancelled
transactions or triggering
cancellation.

®®

Compensation: Handling or
triggering compensation.

Signal: Signalling across different
processes. A signal thrown can be
caught multiple times.

Multiple: Catching one out of a
set of events. Throwing all events
defined.

o0 ®
PPOR O

Parallel Multiple: Catching
all out of a set of parallel events.

HO®
DO
1@\)

Terminate: Triggering the
immediate termination of a
process.

@

Fig. 4.85. Common event types in the BPMN, adapted from the BPMN Poster,
BPM Offensive Berlin (2011)

event, the intermediate message event sends a message to a business partner.
As catching event, the process waits for a message to come in, that is, it waits
for the event to happen.

218 4 Process Orchestrations

This example shows quite clearly the difference. Catching events wait for
things to happen, while throwing events actively trigger events.

Client

3 B

[Thr_owing event
Process |
Claim

Fig. 4.86. Throwing and catching events

Insurance Company

Throwing and catching events are further illustrated in Figure 4.86, which
shows a claim handling process of an insurance company involving interactions
with a client. The process starts with the start message event “catching” the
claim message. (More precisely, with the start event catching the event that
represents the incoming claim message.)

In case the claim is incomplete, the insurance company sends a request
for clarification to the client. This sending of a message is represented by
a throwing intermediate message event. The event symbol is marked with
a black envelope to show this throwing behaviour, that is, the sending of
the message. At this point, the process waits for the event that represents
the receipt of the answer message from the client. The intermediate message
event catches this event and continues with processing the claim and sending
the response letter to the client in the (throwing) message end event.

Client
i o T A
é Sep_d_ Task] i 6 o . [Receive Task E
: M Send M Receive |
Request Feedback [Send TE}?{(

Insurance Company

Process N Send
Claim notification

Fig. 4.87. Using markers to identify send tasks and receive tasks

4.7 Business Process Model and Notation 219

Task types, introduced above, also provide options of expressing certain
real-world situations, for instance, related to sending and receiving messages.
Instead of send events, we can also use send tasks, that is, tasks that are
marked with task type send. Like with sending and receiving events, a dark
envelope represents send tasks, while the light envelope shows that a task
receives a message. Figure 4.87 shows a process diagram using send and receive
tasks. BPMN also supports a specific type of receive task that can be used to
instantiate a process, but a receive event is much more appropriate in most
cases.

Returning to blanco events, blanco start events are of catching nature,
while blanco end events are of throwing nature. Since there is no way of
marking blanco intermediate events as either catching or throwing events,
by convention, all blanco intermediate events are—by definition—of throwing
nature.

Message events are among the most often used events in BPMN. We have
already seen in Figure 4.86 message start events, message end events, and
intermediate message events of catching and throwing nature. We now look
at intermediate events on the boundary of activities, called boundary inter-
mediate events, or attached intermediate events.

Each intermediate event of this kind is associated with an event context,
used to determine whether the event has occurred. In particular, the interme-
diate event will be triggered only, if the activity that the intermediate event
is attached to is still active when the event occurs.

Reserve Book N Send
Tickets Tickets Tickets

<

Check Ticket
Order
A\

Ticket Service

~
B send cancel
confirmation

| | v Vi

Customer

Fig. 4.88. Process diagram with interrupting boundary event

An example of a process model containing a boundary event is given in
Figure 4.88. The process starts by a customer sending a ticket order to a ticket
service. After receiving the message and checking the order, a subprocess is
entered. In the subprocess, the tickets are reserved and finally booked. Notice
that processes and subprocesses do not require start and end events. While it

220 4 Process Orchestrations

is good practice to use start and end events on the process level, they might be
dropped for simple subprocesses. The boundary event represents the option
of the customer to cancel the order.

If the cancellation message is received while the subprocess is still active,
the subprocess is cancelled, and the confirmation of the cancellation is sent. If
no cancellation message is received while the subprocess runs, the subprocess
completes and the tickets are sent.

In this example we have discussed a boundary event that interrupts the
subprocess it is attached to. But boundary events might also be of non-
interrupting nature.

Send
Response

Process Claim

[#

Insurance Company

] Send
Status Report

I I i

Insuree

=

Fig. 4.89. Process diagram with non-interrupting boundary event

An example of a non-interrupting boundary event is shown in Figure 4.89.
In this process, an insuree sends a claim report to an insurance company. The
complex processing of the claim is hidden in the subprocess Process Claim.
While this subprocess is active, the insuree can ask, even multiple times, for
the current status of the claim handling. The respective incoming message
sent is caught by the boundary event, and a status report is sent. Since the
processing of the claim should not be interrupted by this request, the boundary
event is non-interrupting, indicated by its dashed outline.

Timer events are used frequently in process diagrams. They are quite ver-
satile, since they can represent time intervals, points in time, and timers,
similar to count down watches.

Figure 4.90 shows a process diagram involving several types of timer
events. The process starts with a start timer event. By the annotation we
learn that the process is instantiated every first Monday in October. When
this event is caught, a strategy meeting is announced. Then the process pauses
for 14 days, represented by the intermediate timer event.

The execution semantics of intermediate timer events is as follows. When
the previous activity is completed, the timer is started. This is like starting a

4.7 Business Process Model and Notation 221

[14 days

Announce
Strategy
Meeting

Conduct Write
Strategy Meeting Report

=
TN
[i
1§

......... [timeDuration=5 hours
[timeDuration=12 hours
] Send .
Status Update

Write
Preliminary
Report

Fig. 4.90. Process diagram with interrupting and non-interrupting boundary timer
events

count down watch with the value set to 14 days in this case. In Figure 4.90,
we used an annotation to show the time period.

In BPMN, timer events have attributes that are used to represent timer
values in a structured fashion. In particular, the attribute timeDuration holds
an expression that defines the time duration the timer waits for. Attributes
timeDate and timeCycle are used to specify points in time and recurring
timers, respectively.

After the duration has elapsed, the subprocess and thereby the strategy
meeting can be started. When this happens, two additional timers are started
for the boundary events. Timer 1 with duration 12 hours for the interrupting
timer event and Timer 2 with duration 5 hours for the non-interrupting timer
event.

Assuming the subprocess is still active after 5 hours, Timer 2 is triggered,
and a status update is sent. This event does not interrupt the subprocess.
After being triggered, this timer is immediately reset, so that it can trigger
the sending of the next status update after another 5 hours, if the meeting is
still ongoing at that time. This example shows that non-interrupting boundary
events can occur multiple times while the subprocess is active.

If the subprocess is not completed after 12 hours, Timer 1 elapses, and the
subprocess is interrupted. A preliminary report is written, and the process
terminates.

Link events are quite specific, since they—unlike all other events—do not
represent something that happens in the real world. Rather, they are a means
to layout large process diagrams that span multiple pages or screens. A part
of the process ends with a link event of throwing nature, while the next part
of the process starts with a link event of catching nature. Consequently, link
events are intermediate events, even though they have no outgoing (throwing
link event) or no incoming edge (catching link event).

Regarding the execution semantics, two matching link events are equiva-
lent to a sequence flow. It is important to stress that link events do not connect

222 4 Process Orchestrations

O—»[Quite a]—»[long H process H that]—»[needs

Page 1

continuation]—»[at H another H page }—»O

Page 2

Fig. 4.91. Link events connect different parts of one process

multiple processes, but just parts of one process. Link events are illustrated
in Figure 4.91.

Error events also come in two flavours. A throwing error event indicates
the occurrence of an error in a certain scope, for instance, in a subprocess.
Catching error events are always on the boundaries of subprocesses. They
catch the error and interrupt the subprocess, in case certain parts of the
subprocess are still active. After catching an error, typically error handling
activities are performed.

An example involving error events is shown in Figure 4.92. A subprocess for
planning a workshop consists of planning the workshop followed by concurrent
activities involving the registration of attendees and reserving a venue. If too
few attendees register for the workshop, an error is thrown, and the workshop
has to be cancelled. The cancellation is facilitated by a boundary error event
that catches the occurrence of the error within the subprocess. In this example,
error handling is done by the Cancel Workshop activity.

Notice that once the error event is thrown, any running activity in the
subprocess will be interrupted. In the example, Reserve Venue might be still
running at that point in time. If this is the case, it is interrupted immediately,
since no venue needs to be reserved when the workshop is cancelled.

Compensation events are strongly connected to transactions. Transactions
are specific subprocesses, whose activities have transaction semantics, spec-
ified by a transaction protocol. Probably the most widely used transaction
protocol is the ACID model, which states that transactions have the follow-
ing ACID properties:

o Atomicity: Either all activities in a transaction are executed successfully
or none is.

o (Consistency: The correct execution of a transaction brings the system from
one consistent state in another consistent state.

4.7 Business Process Model and Notation 223

[Too few attendees

Confirm
Venue

Register
Attendees

Cancel
Workshop

Fig. 4.92. An error is thrown in a subprocess; it is caught by an error boundary
event attached to that subprocess

e [solation: The activities of a transaction are executed in isolation from
other transactions, that is, transactions do not interfere with each other.

e Durability: Effects of transactions survive any system failure that might
occur at a later point in time.

Assuming the ACID transaction model, all transactions need to obey the
atomicity property: Either all activities of the transaction need to be suc-
cessfully completed, or none at all. In database systems, this all-or-nothing
property of transactions is typically implemented by locking protocols or mul-
tiversion concurrency control schemes.

In business processes, the situation is a bit more complex, since we cannot
lock large parts of business processes for an extended period of time or create
multiple versions of the same data object. In business process management,
the typical assumption is that each activity is executed in an atomic fashion.
This means, however, that one activity of a transaction can have completed
already, when another activity decides to fail. In this case, the first activity
needs to be undone, using compensation. An example is used to illustrate this
concept.

Figure 4.93 shows a business process diagram that contains a transaction.
The transaction involves activities to book a flight and to book a hotel. The
all-or-nothing property of this transaction states that either both activities
are performed successfully or none will. This property makes sure that the
traveller will not end up with a flight booked and no hotel room booked, or
vice versa.

Thus, the process needs to rule out that one activity of the transaction
succeeds, while the other activity fails. This is done by compensation. Assume
that the hotel booking activity is performed successfully, but the booking of
the flight fails. In this case, the booking of the hotel room needs to be undone.
This is done by cancelling the booking of the hotel room.

When one activity in a transaction subprocess fails, for all activities of the
transaction that have been successfully executed already, the compensating

224 4 Process Orchestrations

Book Flight
"\/J

Inform
Customer

Fig. 4.93. Business process diagram with transaction and compensation elements,
adapted from Object Management Group (2011)

activities are started. In this example, after the booking of the flight fails, the
Cancel Hotel compensating activity of the Book Hotel activity is executed.
Thereby, the booking of the hotel room is undone, so that the effects of neither
of the activities in the transaction are persisted.

The cancellation boundary event catches the unsuccessful completion of
the transaction. It can be used to execute activities after the transaction has
unsuccessfully completed, like informing the customer in the example.

Signal events communicate certain situations to a wide audience. For each
signal throw event, there can be several events that catch the signal. Similar
to a flare that can be seen in a wide perimeter, a signal can be caught by
different parts of the same process, by other processes within the same pro-
cess diagram, and even by other process diagrams. Signals are similar to the
event publication / event subscription mechanism in distributed computing,
where a given signal event can have many subscribers throughout the process
landscape.

There are additional types of events that the BPMN supports. For more
information about these—less frequently used—events, the reader is referred
to the standards document.

Sequence Flow and Gateways

In the BPMN, control flow is called sequence flow. Sequence flow is repre-
sented by solid arrows between flow objects, that is, activities, events, and
gateways. BPMN supports several types of sequence flow, including normal
flow, conditional flow, default flow, and exception flow.

4.7 Business Process Model and Notation 225

The normal flow of a business process represents expected and desired
behaviour of the process. It begins in the start event of a process diagram and
continues via a set of flow objects until it reaches an end event.

Exceptional situations are represented by exception flow. With respect
to process execution semantics, there is no difference between normal flow
and exception flow. The only difference is that exception flow does not define
the desired flow of the process, but exceptional situations. Exception flow is
created by intermediate events attached to the boundary of an activity, as
discussed above in the context of boundary events.

There are two additional types of sequence flow, namely conditional flow
and default flow. Since these play important roles in the context of gateways,
we introduce gateways first.

<> Exclusive Gateway

Exclusive Gateway
@ (alternative) @ Complex Gateway
<-I> Parallel Gateway
<: :> i Exclusive Event-based
inelusive Gateway Gateway (instantiate)

Fig. 4.94. Gateway types in the BPMN, Object Management Group (2011)

Event-based Gateway

Parallel Event-based
Gateway (instantiate)

In BPMN, each gateway acts as a join node or as a split node. Join nodes
have at least two incoming edges and exactly one outgoing edge. Split nodes
have exactly one incoming edge and at least two outgoing edges. We can
also express gateways with multiple incoming and multiple outgoing edges in
BPMN. These gateways are called mixed gateways. Since two behaviours—
split and join—are expressed by a single concept (for example, exclusive or),
best practice is not to use mixed gateways but to use a sequence of two
gateways with the respective split and join behaviour instead.

The gateway types of the BPMN are shown in Figure 4.94, that is, the
exclusive, the parallel, the inclusive, the event-based, the complex and two
instantiation gateway types, which are discussed later in this section.

As shown in that figure, there are two representations of the exclusive
gateway, one without a marker and one with a marker. This feature of an
unmarked gateway in the BPMN can be considered inconsistent with the
definition of an unmarked, that is, blanco event. The blanco gateway actually
represents a particular kind of gateway, while the blanco event does not. To
avoid misunderstandings, we recommend to always use gateway markers.

226 4 Process Orchestrations

Parallel split and join is supported by virtually any process modelling
language. In the BPMN, there is a parallel gateway that can be used to
represent and split and and join behaviour.

Update
Inventory

Preprocess + H Ship

Order Goods

Receive —
Order

Send

Invoice

Fig. 4.95. Example involving the parallel gateway

An example is shown in Figure 4.95. This process starts with receiving
and preprocessing an order. Then the parallel gateway triggers the execution
of three activities. The inventory is updated, the goods are shipped, and the
invoice is sent. There are no execution constraints defined between these activ-
ities, they can be executed concurrently. When the activities have completed,
the and join synchronizes the parallel flows, and the process terminates.

Exclusive gateways are also available in any process modelling language.
The gateway realizes an “exclusive” behaviour, because exactly one option is
chosen from a set of alternatives. An example is shown in Figure 4.96. After
the credit risk is evaluated, an exclusive gateway is reached.

This gateway decides which checking activity shall be executed. The credit
is granted if the credit risk is low or a certain threshold value is not exceeded.
In case of medium credit risk, a subprocess for an advanced credit check is
started. If neither of these conditions holds, the credit request is rejected. This
behaviour is operationalized by formal conditions, attached to the sequence
flows. A sequence flow stores its condition in its conditionExpression at-
tribute.

To decide on the branch to select, the exclusive gateway uses these condi-
tions. These sequence flow edges are then specialized to condition flow edges.
The standard defines that the conditions are “evaluated in order”. The first
condition that is evaluated to true is chosen. An exclusive gateways might
have a default edge, which does not have a condition attached. It is always
evaluated last. This execution semantics makes sure that exactly one outgoing
edge will be triggered.

Notice that this property holds even if there are overlapping conditions
on the outgoing edges of the gateway. In Figure 4.96, the conditions are
overlapping, since both conditions might evaluate to true, for example, if
Risk=medium and Amount=800. Assuming that the conditions are evaluated

4.7 Business Process Model and Notation 227

Risk = low or

Amount < 1000 Grant Credit
. Risk = medium or .
Evaluate Credit X Amount < 10000 Advanced Credit

Risk Check
[+]
Reject Credit
Request

Fig. 4.96. Exclusive gateway with conditions and default flow

from top to bottom, then the first condition evaluates to true, and Grant
Credit is selected. However, if the other condition appears first in the condi-
tion evaluation ordering, then Advanced Credit Check is chosen.

If the requested amount exceeds 10000, none of the conditions evaluates
to true, so that the default flow is taken and the request is rejected. In any
case, the exclusive or split semantics of the gateway is realized.

Since the decision is taken based on data, for instance, the value of the
Risk and Amount data objects, the exclusive gateway is also called data-based
exclusive gateway.

Figure 4.97 shows a process diagram with a loop. The loop is represented
by two exclusive gateways, a join gateway and a split gateway. It is a char-
acteristic of a loop that the join appears before the split in the process flow.
After a document is prepared, it is checked. Depending on the outcome of the
checking activity, either the process is continued with archiving the document
or the loop is iterated.

Q—&—[Prepare DocumentH Check Document Archive Document

Fig. 4.97. Exclusive gateways realizing a loop

In BPMN, the process could also be represented by using a single gateway
instead of two gateways. The split gateway that decides whether to iterate
the loop needs to be kept. Instead of the join gateway in the beginning of the
process, the edge from the split gateway can directly lead to the first activity
in the loop. According to the BPMN; activities with multiple incoming edges
act as merge nodes. Such an activity gets enabled and can be executed, if one
of its incoming edges is triggered. This process is shown in Figure 4.98. It has
exactly the same execution semantics as the process shown in Figure 4.97.

228 4 Process Orchestrations

Q—»{Prepare DocumentH Check Document }—&A Archive Document ‘

Fig. 4.98. Process diagram with uncontrolled flow

Process activities with multiple outgoing edges are also possible in BPMN.
In this case, each of the outgoing edges will be followed. These activities
might lead to modelling errors. The reason being that the split behaviour of
activities with multiple edges is different from their join behaviour. Activities
with multiple outgoing edges represent a parallel split gateway, while activities
with multiple incoming edges realize a merge gateway.

Q—»{Prepare DocumentH Check Document }—»{Amhive Document}—bo

Fig. 4.99. Process diagram with split and join activities, representing a livelock

This fact is illustrated by Figure 4.99, which shows a variant of the previ-
ously discussed process with activities acting as split nodes (Check Document)
and activities acting as join nodes (Prepare Document). As a result, for each
iteration of the loop, both outgoing edges of the checking activity are trig-
gered. For each iteration of the loop, the document is archived. In addition,
the loop will never terminate, resulting in a livelock.

This modelling error could be fixed by attaching conditions to the outgo-
ing edges of the Check Document activity, that is, by using conditional flow.
However, it is good practice for process activities to have exactly one incoming
edge and exactly one outgoing edge. The split and join behaviour of the pro-
cess should be represented explicitly by gateway nodes rather than implicitly
by activities with multiple incoming or multiple outgoing edges.

Just like an exclusive gateway, an event-based gateway realizes an exclusive
choice. However, rather than deciding itself using process data, the gateway
uses the environment to let others decide on how to continue the process. It
allows several events to happen, and the environment decides on what actually
will happen.

A typical usage of this pattern is shown in Figure 4.100. The process starts
with the sending of an invoice by a reseller to one of its customers, followed by
an event-based gateway. When the gateway is reached, two things can happen.
Either the funds are received or the timer event occurs. Whichever occurs first,
decides, that is, the environment decides on how the process continues.

On the completion of the gateway, the Receive Funds task is enabled.
At the same time, a count down timer for the intermediate timer event is

4.7 Business Process Model and Notation 229

started with a duration of 14 days. If the amount is received within 14 days,
the intermediate timer is deactivated and the process completes. If, however,
the customer does not pay within 14 days, the timer event occurs, and a
reminder is sent. Afterwards, the gateway is reached again, and the customer
has another 14 days for paying his invoice.

Notice that only catching intermediate events and receive tasks can occur
after event-based gateways. The standard defines that either receive tasks or
message intermediate events can occur after a given event-based gateway, not
both. In addition to timer intermediate events, like shown in the example,
signal events and a few other events are allowed at this position, but message
events and timer events occur most frequently.

Customer

)
:
Send
invoice

™ Receive : M Send
Funds : Confirmation

Reseller

Fig. 4.100. Example of an event-based gateway

The semantics of an event-based gateway is fundamentally different from
the semantics of a data-based exclusive gateway. In an event-based gateway,
multiple activities are enabled and ready for receiving messages at the same
time, realizing the deferred choice pattern. In the data-based exclusive gate-
way, the decision is made by the gateway itself—more precisely, by the condi-
tions associated with the condition flow edges leaving the gateway. However,
both gateways exhibit an exclusive or semantics.

The inclusive gateway exposes the most flexible behaviour, since it sub-
sumes and extends both exclusive gateways and parallel gateways. Inclusive
gateways can be used in situations where an arbitrary non-empty set of out-
going branches need to be selected. As with the data-based exclusive or split,
it is the responsibility of the modeller that at least one branch be chosen. An
example of an inclusive is shown in Figure 4.101, where a trip is planned and
then—depending on the concrete planning of the trip—any subset of flight,
hotel, and rental car is booked.

A complex gateway allows the definition of combined split and join be-
haviour. Consider a complex split gateway with outgoing sequence flows to A,
B, and C. The gateway may define that either A or, jointly, B and C' need

230 4 Process Orchestrations

—
R Book Flight

-

—
Q—> Plan Trip ()>—> Book Hotel
-

)

———» Book Rental Car

-

Fig. 4.101. Example of an inclusive or gateway

to be executed. It may also define that any pair of sequence flows is valid.
The behaviour is specified in the activation condition and an expression of
the gateway. The behaviour of the complex gateway is not known from its
visual appearance, so that modellers should use this construct with caution.

Handling Data

All business processes deal with information or physical artefacts. To repre-
sent information and physical artefacts, BPMN provides data objects. While
the term data object seems to indicate digitalized information, it also covers
physical objects, such as documents and products.

N B3N
Data Object Data Output
Data Object Collection Data Object in state s
1] [s]
% S————
Data Input Data Store
Data Store

Fig. 4.102. Notational elements regarding data

The notational symbols regarding data in BPMN are shown in Fig-
ure 4.102. Often, data objects represent digitalized objects, such as orders in
an information system. Since BPMN concentrates on process modelling, there
are no data modelling capabilities available. This would also not be appropri-
ate, since the UML provides excellent data and object modelling capabilities,
for example, class diagrams.

The relationships between data objects and activities or, more generally,
flow objects are specified by data associations. A directed edge from an activity

4.7 Business Process Model and Notation 231

to a data object means that the activity creates or writes the data object.
Directed edges in opposite direction indicate read relationships.

Typically processes use data that has been created before the process has
started. Examples of this type of data is customer information stored in a
customer relationship management system or production information stored
in a database. To represent that a process uses these types of data, input
data objects can be used. Analogously, if data objects are created as output
to be used by other processes, these are marked with a data output marker,
as shown in Figure 4.102.

Information systems that store data can be represented in process models
as data stores. Since BPMN covers a wide spectrum of application domains,
also non-technical stores such as, for instance, warehouses, can be represented
by data stores.

The life time of data items that are neither data input nor data output
is restricted to the duration of the process instance, that is, data objects are
volatile. An association of a data object with a data store, however, indicates
that the data object is persistently stored in that data store. Therefore, data
stores do not only serve the documentation purpose but also carry a semantics
that is important for an implementation of the process.

Order Reject
Notification

[rejected]

y ! -
Reject |- (N Send
Order Notification

Order
Order

[invalid]

invalid

[received]

Order.state

Receive
Order

valid

Prepare b Send
Parcel Parcel

R A

Order.state

>
oq

a 9
R]
Eh-1

o3

Fg g
SNNEE
12

IR Order e« ---
[valid]
Order Order Parce Parcel

[accepted] [processed] [prepared] [sent]

Fig. 4.103. Process diagram involving data objects

A sample business process involving data objects is shown in Figure 4.103.
In this order handling process, the start message event occurs when an or-
der is received. This message contains a data object Order in state received,
indicated by the association from the start event to that data object.

232 4 Process Orchestrations

The Check Order activity might produce different results: either the order
is valid or invalid. This behaviour is represented by two data object symbols
in the diagram, which have different state markers, reflecting the outcome of
the checking activity.

This illustrates that, in general, an association from an activity A to a
data object D in state s means that A might change the state of D to s, but
it might as well not. Modellers need to make sure that at least one of the data
objects an activity is related with in a write association, is actually created
as output.

In the example, the order checking activity changes the state of the data
object to either walid or invalid. The current value or state of a data object
can be used by expressions, for instance, by expressions that decide which
path is taken following an exclusive gateway.

The respective attributes of the conditional flows leaving the exclusive
gateway are visualized. If Order.state=invalid, the upper branch is chosen
and the order is rejected. If Order.state=valid, the lower branch is chosen
and the order is accepted. In the former case, a rejection message is sent. If,
however, the order is accepted, the order is processed, a parcel is prepared
and sent.

Notice that the Prepare Parcel activity reads an order in state processed.
This is a typical use of data objects including states; it implements a business
policy that a parcel can be prepared only if the respective order is processed.
While this situation is obvious for the process shown, the language features
provide additional expressiveness regarding data, which proves quite useful in
real-world settings.

There is a shorthand notation for a data flow between activities that follow
each other directly in sequence flow. Rather than providing two edges from
and to, respectively, the activities, the data object can simply be associated
with the sequence flow connecting these activities. This language construct is
illustrated in Figure 4.103 to show the data flow between the Reject Order
and Send Notification activities.

Data objects also come in collections. A process activity may process a
collection of data, such as a list of data, instead of an individual data object.
A sample business process involving a collection of data objects is shown in
Figure 4.104.

As shown in Figure 4.103, the Process Order subprocess reads the order
data object in state accepted and changes the state of that data object to
processed. The data objects in these states are also shown in the subprocess
refinement in Figure 4.104. Notice that the order in state accepted is a data
input of the subprocess, while the order in state processed is data output of
the subprocess. This example shows how data objects are communicated from
a subprocess activity to its internal process and back.

When the subprocess starts, the order is preprocessed, resulting in a list
of order positions and a data object representing the order header. The list
of order positions serves as input to the Process Order Position activity. As

4.7 Business Process Model and Notation 233

—> -—)
Order Order

Order Position Position Order
[unprocessed] [processed]

[accepted] “I I“ [processed]
B < N S
Preprocess Process Order Postprocess

Order Polsliiion Order
“:\| Order
Header
Process Order

Fig. 4.104. Diagram of the Process Order subprocess from Figure 4.103, involving
data object collections

shown by the marker of this activity, it is a multiple instance activity. With a
data object collection as input, the multiple instance marker indicates that an
activity instance is created for each object in the collection. In our example,
each order position is processed by an individual instance of the Process Order
Position activity.

Once all order positions are processed, the respective data object collection
is created, and the multiple instances activity terminates. Postprocessing of
the order involves assembling the order positions and the order header to
create the order, which is now in the processed state. That data object is
provided to the follow-up activities on the process level as data output, as
shown in Figure 4.103.

Finally, we sketch the execution semantics of data objects in BPMN. Each
process activity is associated with input sets, which contain data objects which
have to be available when the activity starts. Notice that this set can be empty
in case an activity is not associated with any data object. In the example, the
activity Accept Order in Figure 4.103 has one input set containing just one
data object, namely the order data object in the valid state.

In general, however, there might be multiple input sets associated with a
given activity. When sequence flow arrives at the activity, the input sets are
visited. For each input set, the system checks if the data objects are available
in the requested states. The activity can be started, once all data objects
for an input set are available, making sure that an activity can deal with
alternative input data objects.

This approach is illustrated in Figure 4.105, which shows a variant of the
ordering process discussed above. In this variant, a response message is sent
in any case. To realize this behaviour, the Send Response activity has two

234 4 Process Orchestrations

Order

[rejected]
Order

Order
[invalid]

[received]

invalid

M Send O
Response

Order.state

Receive
Order

valid *

O

Order.state

L order | ovniiinn
Parcel

[valid]

[sent]

Fig. 4.105. Process diagram involving multiple input sets of an activity

input sets, one of which consists of the order object in state rejected. The
other consists of the same data object in state accepted.

From the discussion of the process it is obvious that these input sets are
alternative. Either the response message contains the information that the
order is rejected or it sends a message that tells the client that the order is
accepted. When control flow enters the Send Response activity, either of the
input sets is available, realizing the intended process behaviour.

Process Instantiation

So far, most aspects of BPMN process diagrams have been covered. Activi-
ties, events, gateways, and sequence flow were introduced and their execution
semantics have been discussed. In formal language theory, the semantics of a
language or grammar determines the meaning of the words, written in that
language. In process languages like the BPMN, the meaning of the process
diagrams—the words of that language—is defined by the behaviours that the
diagram specifies.

For each language construct covered, its execution semantics was discussed.
For example, a sequence flow between two activities restricts their execution
ordering, after an exclusive gateway exactly one option will be chosen, etc.

However, so far we have disregarded the question when a process should
actually be instantiated. This is an important aspect of the execution se-
mantics of a process language. Luckily, the process diagrams discussed so far
always had a single start event. In this case, the instantiation question can
trivially be answered: A process should be instantiated if and when the start
event occurs.

4.7 Business Process Model and Notation 235

The case is more complex for process diagrams with multiple start events.
The BPMN states that start events are alternative. This means that whenever
one start event occurs, a process is instantiated.

Collect Order
Data

Receive order by
fax message

Enter Order Process Order
Data

Receive order by
email message

Receive order by
web form

Fig. 4.106. Process diagram with multiple alternative start events

Figure 4.106 shows a process diagram with several start events. These
events represent alternative ways of receiving an order. If the order is received
by fax message, the data first needs to be digitalized in the Collect Order
Data activity. Once the data is available in electronic form, it can be entered
in the information system of that company, using the Enter Order Data ac-
tivity. Notice that the order can be immediately entered in the information
system, if it is received by email message. Finally, the order can be processed
immediately after process start, if the order has been issued via a web form.

These alternative ways of receiving an order can be represented by multiple
start events. These start events are alternative, and the process is in line
with their alternative nature, because all start events are merged by exclusive
gateways. Notice that in this example substituting an exclusive gateway with
a parallel gateway would result in a deadlock situation.

However, there are situations which do require multiple start events. The
BPMN reserves a specific element for these situations, shown in Figure 4.107.
In that example, a process is instantiated only if an application is received and
a corresponding vacancy is available. Notice that the availability of a vacancy
is represented by a condition start event. (For illustration purposes, we use
a condition start event here, even though BPMN allows only message start
events). We use the parallel event-based gateway to capture this situation. A
process is instantiated only if all incoming events have occurred.

This example covers another interesting aspect. When multiple start events
are required to start a process, these start events need to be correlated with
each other. Correlation is used to tie events to process instances.

In the concrete example, the Receive application event needs to reference
a vacancy. When there are multiple vacancies and multiple applications re-

236 4 Process Orchestrations

Process
Application

Receive application

Fig. 4.107. Process diagram with two start events, both of which need to occur to
instantiate the process

ceived, a process can only be started if an application is received and the
vacancy referenced in the application is actually available.

To illustrate this concept, assume vacancies V1,V2, and V3. This means
that condition start events occur only for these vacancies. If an application
is received that references a vacancy that is not available, for example V4,
then no process instance can be instantiated. If, however, an application is
received which references vacancy V1, a process is instantiated. This makes
sure that a process is instantiated only if there is an open position available
for the application received.

4.7.3 Collaborating Processes

Business processes involving multiple organizational entities can interact with
each other. The BPMN is not restricted to single-organization business pro-
cesses, but is ready to express business processes of multiple organizations
that collaborate.

As already introduced, pools represent specific process participants or
roles, such as role supplier or role customer. Lanes are used to represent or-
ganizational entities within participants. Typically, top level divisions within
companies are represented by lanes, such as marketing and sales, operations,
and logistics; but more fine-grained organizational entities can also be repre-
sented by sub-lanes, if required by the process.

Sequence flow is allowed within processes only, that is, between nodes that
reside in a single pool. Therefore, sequence flow may cross lane boundaries,
but it may never cross a pool boundary. Communication between processes
can occur only through message flow.

The rationale behind this stipulation is as follows. Sequence flow defines
an execution order of activities in a given process. Within an organization, we
can set up procedures and rules, even a workflow engine, that make sure that
the activities are executed as specified in the process model.

However, we can not ask for a certain execution ordering of activities in a
process of one of our business partners. We can only send a message to our
business partner, which will then influence its business processes. Therefore,
business-to-business communication is handled exclusively through messages,

4.7 Business Process Model and Notation 237

while intra-company communication can be handled directly through sequence
flow.

Manufacturer

Supplier

Fig. 4.108. Business processes collaborating through message flow

Collaborating processes can be represented on different levels of abstrac-
tion. In the most abstract way, only the roles of the partners are represented
and the message flows between them. There is no information about the in-
ternal processes available. Also the ordering of message flow edges from left
to right does not have any meaning.

Figure 4.108 shows a collaboration diagram involving a supplier and a
manufacturer. The diagram does not indicate that first the manufacturer sends
a message to the supplier, even though the left most edge has that orientation.
We can not even conclude from the diagram that the message flow actually
happens. A message send event might be on an optional path, so that not all
process instances actually send a message!

Since we cannot look inside these pools, they are called black box pools.
Collaboration diagrams involving black box pools provide a high level view
by providing roles of participants and message flow that might occur.

An example of a business process with one black box pool and one white
box pool is shown in Figure 4.109. A manufacturer sends an order to its sup-
plier, represented by a message flow from the manufacturer pool to the mes-
sage start event of the supplier. Then an invoice is sent, payment is received,
and the material is sent.

In a typical business-to-business collaboration, business partners commu-
nicate in a structured way by sending and receiving messages. While the
externally visible behaviour of a process that runs in a given organization is
essential for the overall communication, the internal process is not relevant.
Pools can also be used to provide this form of abstraction. The internal struc-
ture of a business process can be abstracted from and, only the externally
visible communication behaviour can be shown.

There are two advantages related to expressing only the externally visible
behaviour. The first advantage is that the information hiding principle is fol-
lowed, so that the complexity of internal business processes does not add to
the complexity of the overall process.

238 4 Process Orchestrations

Manufacturer

%_ M Send ™ Receive M Send
o Invoice Payment Material
@ Receive

Order

Fig. 4.109. Collaborating business processes with public process of the Supplier

The second advantage is based on business considerations. Business pro-
cesses are a significant asset of a company, so that the company is not willing
to expose its internal processes to the outside world. Since only the commu-
nication behaviour of a process can be observed from the outside, a process
restricted to its communication activities is called public process.

We can also provide public processes for both communication partners. In
this case, message flows are no longer associated with borders of pools, but
with the actual send and receive tasks. This view provides details about the
communication activities of both collaborating processes. To illustrate this,
Figure 4.110 shows also the communication tasks of the manufacturer and
their process flow.

™1 Receive
ﬁj Material
=3
E N Send
“g Order
2 M Receive]| (Nd Send
Invoice Payment
3 Nd Send M Receive N Send
§ Invoice Payment Material
@ | Receive
Order

Fig. 4.110. Collaborating business processes with public processes of both partners

The process of the manufacturer starts by sending an order. The process
continues with concurrent branches. In one branch the manufacturer waits for

4.7 Business Process Model and Notation 239

the ordered material; in the other branch, it waits for receiving the invoice.
After the invoice is received, the payment is sent.

A partner might also choose to expose its complete internal process. This is
done by adding activities and potentially also control structures to its public
process. The resulting process is called private process. A private business
process contains all activities that are enacted within a company; it realizes
a process orchestration.

™ Receive Check
g Material Material
2
S
3
g
s ™ Receive Nd Send *
Invoice Payment

5 > — =
= Check N Send ™ Receive N Send
=3 Order Invoice Payment Material
7]

Receive

Order

Fig. 4.111. Collaborating business processes with private processes of both partners

A private business process of the manufacturer shown in Figure 4.111
contains an activity Check Material, so that the manufacturer can check the
material after receiving it. This is a typical example of an activity that is exe-
cuted in the process orchestration of a partner, but which has no implication
on the externally visible behaviour of the process. Therefore, it is part of the
private process, but not of its public process.

So far, each pool represented a single organization, for instance a con-
crete supplier or a concrete manufacturing company. The BPMN also provides
means to express pools that represents multiple organizations that participate
in the process collaboration.

An example involving multiple instance pools is given in Figure 4.112,
where a credit request process is shown. There are three pools in this collabo-
ration, a customer, a credit agency, and a bank. As indicated by the multiple
instances marker in the bank pool, multiple banks participate in this collab-
oration, while only one customer and only one credit agency participate.

The process starts by the customer filling a credit request and sending it
to the credit agency, spawning off a new process instance. The credit agency
requests offers from several banks, represented by the multiple instances sub-
process. In each instance of the subprocess, one offer message is sent to a

240 4 Process Orchestrations

concrete bank, and a response is received from that bank. The subprocess
instances are created concurrently, so that the requests are sent out concur-
rently and the respective messages are collected from the banks, as they come
in.

The BPMN states that the number of multiple instances of a subprocess
matches the number of instances of a multiple instances pool it communicates
with. In our example, the number of subprocess instances that send the request
messages and receive the response matches the number of banks.

I}
£ Submit Credit
] Request
o s
= 1%
S B Request
Z Offer
o
e
. o ©

Bank
1]

Fig. 4.112. Collaborating processes with a multiple instances pool

The process continues as follows. Once all responses are collected or a timer
elapses, an offer is selected and submitted to the customer. If the customer is
still patiently waiting to receive this offer, it does so.

While the BPMN can graphically represent the interaction of business
processes, there are no formal properties defined on the relationship between
a business process and its externally visible behaviour. Correctness criteria for
process choreographies that consist of a set of interacting business processes
are also not part of the BPMN. These aspects will be discussed in the context
of process choreographies in Chapter 5.

4.7.4 Executability and Exchange Format

One of the points of critique regarding earlier versions of the BPMN was the
lack of executable processes, which resulted in the need to translate BPMN
diagrams to executable languages, like WS-BPEL. In the current version,

4.7 Business Process Model and Notation 241

executability is addressed in BPMN, and first process engines that natively
support that standard are available.

Maybe the most important aspect of the BPMN in its current version
is the standardization of the exchange format. By providing XML Schema
definitions for the standard, tool vendors can provide a serialization format
for BPMN diagrams, so that process models can be exported from one tool to
be imported in another tool. This is a very important feature, since it allows
the automatic transfer of process models between tools that are rather on the
domain aspect to tools that are focusing on executable processes.

2 Springer
http://www.springer.com/978-3-642-28615-5

Business Process Management

Concepts, Languages, Architectures
Weske, M,

2012, XV, 404 p., Hardcover
ISEM: 978-3-642-28615->

	4.7 Business Process Model and Notation
	4.7.1 Principles
	4.7.2 Business Process Diagrams
	4.7.3 Collaborating Processes
	4.7.4 Executability and Exchange Format

