
Chapter 2
A Random Regret Minimization-based
Discrete Choice Model

Abstract This Chapter presents the RRM-model. First, the Random Regret-
function is presented and explained (Sect. 2.1). Subsequently, this function is
compared with the classical linear-additive Random Utility-function (Sect. 2.2).
Finally, it is shown how the Random Regret-function translates into MNL-type
choice probabilities for a particular distribution of the random error terms
(Sect. 2.3).

2.1 A Random Regret-Function

The key behavioral notion on which the RRM-model is built is that people, when
choosing, compare a considered alternative with each of the other available alterna-
tives in terms of each characteristic (or from here on: attribute), and that they wish to
avoid the situation where a chosen alternative is outperformed by one or more other
alternatives on one or more attributes (which would cause regret).1 Importantly, in
contrast with other models and theories that are based on regret-minimization, the
RRM-model postulates that anticipated regret is also a determinant of choices when
there is no uncertainty about the performance of alternatives. The RRM-model pos-
tulates that as long as alternatives are characterized in terms of multiple attributes,

1 Obviously, the level of anticipated regret that is associated with a particular alternative will
vary between individuals. More specifically, different individuals may have different tastes and
perceptions regarding alternatives and their attributes. Mathematically, this heterogeneity across
individuals can be expressed by making relevant terms in the regret equation presented below
(such as b and e) individual-specific by means of an index (usually ‘n’). In this tutorial, for
reasons of readability, no such indices are used. As a result, equations refer to (the tastes and
perceptions of) an average or ‘representative’ individual.
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which implies that trade-offs have to be made by the decision-maker, there will be
regret in the sense that there will generally be at least one non-chosen alternative that
outperforms a chosen one in terms of one or more attributes.

More specifically, the RRM-model is designed to incorporate the following
seven behavioral intuitions relating to the anticipated regret associated with a
considered alternative:

1. when a considered alternative outperforms another alternative in terms of a
particular attribute, the comparison of the considered alternative with the other
alternative on that attribute does not generate anticipated regret.

2. When a considered alternative is outperformed by another alternative in terms
of a particular attribute, the comparison of the considered alternative with the
other alternative on that attribute generates anticipated regret.

3. Anticipated regret increases with the importance of the attribute on which a
considered alternative is outperformed by another alternative.

4. Anticipated regret increases with the magnitude of the extent to which a con-
sidered alternative is outperformed by another alternative on a particular attribute.

5. Anticipated regret increases with the number of attributes on which the con-
sidered alternative is outperformed by another alternative.

6. Anticipated regret increases with the number of alternatives that outperform a
considered one on a particular attribute.

7. Anticipated regret is, from the perspective of the analyst, partially ‘observable’
(in the sense that it can be explicitly linked to observed variables) and partially
‘unobservable’.

The following equation (Eq. 2.1) gives a formulation of regret that is consistent
with these intuitions:

RRi ¼ Ri þ ei ¼
X

j 6¼i

X

m

ln 1þ exp bm � xjm � xim

� �� �� �
þ ei ð2:1Þ

RRi denotes the random (or: total) regret associated with a considered
alternative i

Ri denotes the ‘observed’ regret associated with i
ei denotes the ‘unobserved’ regret associated with i
bm denotes the estimable parameter associated with attribute xm

xim, xjm denote the values associated with attribute xm for, respectively, the
considered alternative i and another alternative j.

Before discussing this function in more depth, it should be noted that of course,
constants can be added to regret-functions, to represent the mean unobserved regrets
associated with particular alternatives. Also, note that attributes may take the form of
continuous variables as well as variables of categorical measurement level. Fur-
thermore note that socio-demographic variables (such as age, gender, income and
education level) may enter the regret-function to express segmentations of the
population in terms of preferences for alternatives and tastes for attributes. Finally,
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note that in this chapter the focus is on attributes that are common, or shared, or
generic, across alternatives. See Chap. 4 for an in-depth discussion of how the
RRM-model deals with constants, interactions with socio-demographic variables,
non-continuous variables, and with attributes that are specific to particular
alternatives.

Returning to the regret-equation presented above: the term ln(1 ? exp [bm �
(xjm - xim)]) is the core of this equation: it forms a measure of the amount of
regret that is associated with comparing a considered alternative i with another
alternative j in terms of a particular attribute xm. This attribute-level regret is
computed for each of the bilateral comparisons with other alternatives, and for all
available attributes; the summation of these attribute-level regret terms (totaling
M * (J-1) terms in a situation where there are M attributes and the choice set
contains J alternatives) forms the observed regret that is associated with the
considered alternative. In light of the important role of attribute-level regret, also
when it comes to deriving and interpreting the properties of the RRM-model, it is
worth paying additional attention to this regret-kernel.

First, let us investigate whether the third and fourth behavioral intuitions for-
mulated above (which refer to attribute-level regret) are captured in the used mea-
sure. As ln(1 ? exp [bm � (xjm - xim)]) is a monotonically increasing function of
both bm and (xjm - xim) it is easily seen that attribute-level regret increases with the
importance of the attribute on which a considered alternative is outperformed by
another alternative, and with the magnitude of the extent to which the alternative is
outperformed by another alternative on that attribute. Figure 2.1 provides a visual
account of this argument, and illustrates how attribute-level regret emerges for the
situation where higher attribute-values are preferred over lower ones (implied by a
positive sign of bm), respectively for the situation where lower attribute-values are
preferred over higher ones (implied by a negative sign of bm).

More specifically, when higher attribute-values are preferred over lower ones,
regret emerges to the extent that xjm becomes larger than xim and to the extent that

Fig. 2.1 Attribute-level
regret as a function of bm and
(xjm - xim)
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bm becomes more positive. In contrast, when lower attribute-values are preferred
over higher ones, regret emerges to the extent that xjm becomes smaller than xim

and to the extent that bm becomes more negative. When the product bm � (xjm - xim)
becomes negative (i.e., when the considered alternative outperforms the other
alternative with which it is compared in terms of the attribute), attribute-regret
starts to approach zero.2

Note that strictly speaking, the fact that attribute-regret approaches rather than
equals zero when the considered alternative outperforms the other alternative implies
that the first of the seven behavioral intuitions formulated at the beginning of this
Chapter is violated. More generally speaking, although the measure
ln(1 ? exp [bm � (xjm - xim)]) turns out to form a behaviorally intuitive measure of
attribute-level regret, it seems a bit far-fetched at first sight. Indeed, a more intuitive
and easy to interpret measure of attribute-level regret exists, in the form of
max {0, [bm � (xjm - xim)]}. This measure, introduced in Chorus et al. (2008),3

actually represents attribute-level regret in a more direct way than does
ln(1 ? exp[bm � (xjm - xim)]): when a considered alternative outperforms another
alternative in terms of the attribute, regret equals zero (hence, the first behavioral
intuition is not violated by this measure of attribute-regret). When the considered
alternative is outperformed, regret equals the product of the importance of the attribute
and the difference in attribute-values. Figure 2.2 plots max{0, [bm � (xjm - xim)]} as a
function of bm and (xjm - xim), thus forming a counterpart of Fig. 2.1. The resem-
blance with Fig. 2.1 is very obvious: it is easily seen that ln(1 ? exp[bm � (xjm - xim)])

Fig. 2.2 Max {0, [bm �
(xjm - xim)]} as a function
of bm and (xjm - xim)

2 It should be noted at this point that during the estimation process the sign of parameters is
estimated together with their magnitude. That is, no a priori expectations need to be formulated
by the analyst in terms of whether higher attribute-values are preferred by the decision-maker
over lower ones, or vice versa.
3 See Chorus et al. (2008, 2009) and Hess et al. (in press) for applications of this particular form
of the RRM-model.
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forms a close approximation of max{0, [bm � (xjm - xim)]}, especially when the
absolute values of bm and/or (xjm - xim) become larger.

The main difference between the two measures is that the former function is
smooth while the latter (the one with the max-operator) is not. It turns out that it
is exactly this ‘non-smoothness’ of max{0, [bm � (xjm - xim)]} what makes this
measure a less useful one for discrete choice modeling. More specifically, the fact
that the function is discontinuous around zero (see Fig. 2.2) makes that the partial
derivatives of the function with respect to bs and xs cannot be computed in that area.
This causes non-trivial theoretical and practical difficulties in the process of Maxi-
mum Likelihood-based model estimation as well as in the process of computing
elasticities. This non-smoothness also results in practical difficulties in the sense that
conventional software-packages do not support this kind of non-smooth functions
and hence the researcher has to rely on handwritten code for model estimation. This
obviously greatly hampers the model’s usability, especially among students and
practitioners. These theoretical and practical issues are solved by adopting the
smooth function plotted in Fig. 2.1, which was introduced in Chorus (2010) and
which is used in the remainder of this tutorial.4

2.2 A Comparison with (Linear-Additive) Utility Maximization

Before deriving RRM-choice probability-formulations for the random regret-function
presented in Sect. 2.1, it is instructive to compare the random regret-function with the
random utility function that has dominated the field of DCM for decades. More spe-
cifically, the random regret-function is contrasted with its most natural counterpart: the
so-called linear-additive random utility-function. The term ‘linear-additive’ refers to
the fact that observed utility is a summation of terms that each consist of a product of a
parameter and an attribute-value. It is this function that utility-maximizers aim to
maximize by choosing between different alternatives. In notation (Eq. 2.2):

Ui ¼ Vi þ ei ¼
X

m

bm � xim þ ei ð2:2Þ

Ui denotes the random (or: total) utility associated with a considered alternative i
Vi denotes the ‘observed’ utility associated with i
ei denotes the ‘unobserved’ utility associated with i
bm denotes the estimable parameter associated with attribute xm

xim denotes the value associated with attribute xm for the considered alternative i.

4 Note that, although the use of smooth attribute-regret-function instead of the non-smooth one is
inspired mostly by pragmatic reasons as argued above, there is a deeper connection between the two
functions as well. That is, when ignoring a constant, ln(1 ? exp[bm � (xjm - xim)]) gives the
expectation of max{0, [bm � (xjm - xim)]} when the two terms between curly brackets are considered
i.i.d. random variables with Extreme Value Type I-distribution (having a variance ofp2/6). A reason for
this stochasticity might be that the researcher is only able to assess these two terms up to a random error.
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The conceptual differences between the utility-function presented directly
above and the regret-function presented in Sect. 2.1 can be understood by
inspecting Fig. 2.3: the Figure depicts the decision-process assumed in linear-
additive RUM-models,5 in the context of the following example: a decision-maker
chooses between three alternatives A, B, and C (say, a train, car and bus-mode),

Alt A

Attribute 1

Attribute 2

β1 xa1 

β2 xa2

U (Alt A)

Alt A Alt B Alt C

Attribute 1

Attribute 2

β1 xa1 

β2 xa2 β2 xb2

β1  xc1

β2  xc2

U (Alt A) U (Alt B) U (Alt C)

β1 xb1

Alt A Alt B Alt C

Attribute 1

Attribute 2

β1 xa1 

β2 xa2 β2 xb2

β1 xc1

β2 xc2

U (Alt A) U (Alt B) U (Alt C)

Choice

β1 xb1

(a) (b)

(c)

Fig. 2.3 A linear-additive utility maximization-based decision process (solid arrows represent
summations, dashed arrows represent comparisons)

5 Note that strictly speaking, DCMs do not really assume particular processes (in the sense that
they do not postulate a particular order of decision-making steps). Rather, the mathematical
formulation of the linear-additive RUM- model is in fact consistent with a range of underlying
decision processes. Nonetheless, throughout the literature the linear-additive RUM-model form is
generally considered to be the mathematical representation of the decision process described and
visualized on this and the next page. It is instructive at this point to assume this particular order in
decision-making steps as it highlights the ways in which RRM- and RUM-based decision rules
differ in a conceptual sense.
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and alternatives are evaluated in terms of two attributes (x1 and x2, say, travel time
and travel cost). Linear-additive RUM-models assume that before a choice is
made, the utility of each alternative is computed. Figure 2.3a depicts this process
for alternative A (the train mode).

The decision-maker is assumed to ‘compute’ the utility of the train alternative
by means of combining (‘multiplying’) his or her tastes (or: decision-weights) with
the two mode-specific attribute-values. In other words: his or her taste for travel
time is combined with the train’s travel time and the same is done for the travel
cost-attribute. Subsequently, the two combinations (one for time and one for cost)
are summed together to form a measure of train-utility.6 This process is repeated
for the car and bus mode (Fig. 2.3b). After having this way ‘computed’ utilities for
each of the three mode-options, the three utilities are compared and the highest
utility alternative is chosen (Fig. 2.3c).

The RRM-model is based on quite a different assumed decision-making process
(see Fig. 2.4): first, all alternatives are bilaterally compared on attribute x1 (travel
time). The decision-maker does this by means of combining his or her taste for
(decision weight attached to) travel time with travel time differences between train
and car, train and bus, and car and bus, respectively. This process is done both
ways (so: the car-option is compared with the bus-option in terms of travel time,
and the bus-option is also compared with the car-option in terms of travel time,
etc.); this results in 3*2 = 6 attribute-regret terms. This process is repeated for the
cost attribute (Fig. 2.4b), after which attribute level-regrets are summed together
for each alternative (resulting in 3*2*2 = 12 attribute-regrets in total, or 2*2 = 4
attribute-regrets per alternative). This way, measures of overall regret are obtained
for the train-, car- and bus-option; the regrets are compared and the mode with
minimum regret is chosen.

In sum, in terms of the assumed underlying decision-process the (linear-addi-
tive) utility maximization-rule and the regret minimization-rule differ in the sense
that, while the utility maximization-rule assumes that comparisons between
alternatives are only made at the level of aggregated utilities, the regret minimi-
zation-rule postulates that comparisons between alternatives are made at the level
of each attribute, as well as at the level of aggregated regrets. Phrased differently:
whereas a utility maximizer is focused on the performance of a considered
alternative itself (or: in isolation), a regret minimizer is focused on how a con-
sidered alternative compares with other alternatives in terms of every conceivable
aspect.

However, it should at this point again be noted that to a considerable extent the
differences highlighted above are artificial: strictly speaking, choice models do not
assumed particular decision processes, and the same mathematical model-formu-
lation is generally consistent with a range of underlying processes. The only

6 Note that the random error is ignored in this example as it refers to the analyst’s lack of
knowledge and as such is irrelevant from an individual decision-maker’s point of view.
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formal difference between the RRM-model and a linear-additive RUM-model is
that in the former, attributes of other alternatives codetermine the utility (called
regret) of a considered alternative, and that they do so in an asymmetric, non-linear
way.

As a consequence of the slightly fuzzy nature of the conceptual differences
between the two models in terms of their assumed decision processes, it is more
important to discuss how the two models differ in terms of their predictions (i.e., in
terms of the choice probabilities they assign to different alternatives). The next
chapter will provide such a comparison. However, before this comparison can be
made, choice probabilities have to be derived for the RRM-model.

Alt A Alt B Alt C

Attribute 1 xa1 xc1xb1β1 β1

β1

Alt A Alt B Alt C

Attribute 1

Attribute 2

xa1

xa2 xb2

xc1

xc2

xb1β1 β1

β1

β2

β2 β2

Alt A Alt B Alt C

Attribute 1

Attribute 2

xa1

xa2 xb2

xc1

xc2

R (Alt A) R (Alt B) R (Alt C)

Choice

xb1β1 β1

β1

β2

β2 β2

(a)

(b)

(c)

Fig. 2.4 A regret
minimization-based decision
process (solid arrows
represent summations,
dashed arrows represent
comparisons)
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2.3 Regret-based Choice Probabilities and a RRM-based
MNL-Model

Having established and discussed in-depth the random regret-function (as well as
how it contrasts conceptually with its natural RUM-counterpart, the linear-additive
random utility-function), the next step is to present a regret-based choice proba-
bility-formulation which gives the probability that a regret-minimizer chooses a
particular alternative from a choice set. Obviously, should a researcher know the
total (or: random) regret associated with each alternative, then he or she can
readily determine the chosen alternative (which is the one with minimum regret).
However, since part of the regret that is associated with a particular alternative is
‘unobserved’ by the analyst as is represented by the random error term, he or she
can only predict choices up to a probability. Like is the case for RUM-models, this
formulation of this probability depends on the particular distribution assumed for
the error terms. For RUM-models it has been found (McFadden 1974) that the
most convenient (because: closed form) formulation of choice probabilities is
obtained when errors are assumed to be i.i.d. Extreme Value Type I-distributed.7

This result (leading to the RUM-based MNL-or Multinomial Logit-model of
discrete choice) can be used to obtain the same kind of closed form-probability
formulation for regret-minimizers. This is most easily understood by first briefly
revisiting the derivation of RUM-choice probabilities. More specifically, the
probability that a utility-maximizer chooses alternative i from the set of J available
alternatives, given i.i.d. Extreme Value Type I-errors, can be put as follows
(Eq. 2.3):

P ið Þ ¼ P Ui [ Uj; 8j 6¼ i
� �

¼ P Vi þ ei [ Vj þ ej; 8j 6¼ i
� �

¼ expðViÞP
j¼1::J expðVjÞ

ð2:3Þ

It can now be easily seen (Eq. 2.4) that in a regret-minimization setting, the
assumption that the negative of the random errors is i.i.d. Extreme Value Type
I-distributed8 results in a very similar, MNL-formulation of choice probabilities:

7 The term i.i.d. stands for identically and independently distributed. This means that errors
assigned to different alternatives are uncorrelated, and are drawn from the same distribution
(with the same variance). This variance is usually fixed to p2/6, which indirectly implies a
normalization of systematic utility. In this tutorial, the scale of the utility or regret is always
normalized this way, and is therefore not explicitly mentioned in equations.
8 See the Appendix for a discussion of the validity of the assumption of i.i.d. errors in the context
of RRM-models.
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P ið Þ ¼ P RRi\RRj; 8j 6¼ i
� �

¼ P �RRi [ � RRj; 8j 6¼ i
� �

¼ P �ðRi þ eiÞ[ � ðRj þ ejÞ; 8j 6¼ i
� �

¼ P �Ri � ei [ � Rj � ej; 8j 6¼ i
� �

¼ expð�RiÞP
j¼1::J expð�RjÞ

ð2:4Þ

The fact that the RRM-model features MNL-type choice probabilities (in
combination with the fact that it has a smooth regret-function) comes with many
benefits. Particularly it implies that, although the underlying behavioral premises
of the RRM-model are fundamentally different from those of conventional RUM-
models (see Sect. 2.2), the RRM-based MNL-model can use many of the econo-
metric tools contained in the very comprehensive and well-understood ‘toolbox’
that has been developed over the past three decades in the context of the RUM-
based MNL-model. This includes the use of estimation routines embedded in
standard software packages.

It should be noted that, although in the remainder of this tutorial the focus will
be on the MNL-model form presented above, extension towards so-called Mixed
Logit-model forms is straightforward. That is, by adding error terms or by
allowing parameters or the scale factor to vary randomly across individuals, so-
called nesting and panel effects as well as random taste- and/or scale-heterogeneity
can be accommodated in RRM-based Mixed Logit models. Translation of RRM-
based MNL-models towards RRM-based Mixed Logit models is equivalent to the
translation of RUM-based MNL-models towards RUM-based Mixed Logit models
and hence will not be covered in this tutorial (see for example Train (2003) for an
excellent treatment of RUM-based Mixed Logit models).

Finally, it should be noted that in binary choice situations (containing only two
alternatives), the RRM-based MNL and the RUM-based MNL result in the same
choice probabilities. For the interested reader, a formal proof is provided in the
appendix of Chorus (2010).
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