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desired one, whereas “’bubbles” of liquid metal form and collapse inside the object
in the first experiment, which results in a casting of poor quality.
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20 seconds

200 seconds

31

20,000 seconds

(SR) k = 251M; f(xx) = 1.448

(SR) k = 28,837M; f(x;) = 0.423

(PR) k = 799M: f(x;) = 0.695

(PR) k = 8,052M; f(x;) = 0.428

(PR) k =799,386M; f(x;) = 0.408

(SG) k =215; f(x¢) = 14.132

(SG) k=2,106; f(x;) = 1.593

(SG) k = 213,682; f(x;) = 0.474

(PG) k = 11,300; f(x;) = 0.620

(PG) k = 110,600; f(x;) = 0.513

(PG) k = 11M; f(x;) = 0.451

Fig. 1 “Bridge” truss after 20s, 200s (~3.34 minutes) and 20,000s (=5.56 hours) of computation
time for algorithms SR, PR, SG and PG (rows in this order). Number of iterations (“M” = millions)
and objective value is shown under each plot.
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3 Extreme Points Crossover

Each component ¥ of the solution % yielded by solving the master problem (2) is
a convex combination & = 3 PP, kaxkl’, with P, being the (index) set of extreme
points obtained by solving the k-th pricing problem. These are integer feasible and
satisfy the constraints D¥xk > d*, while # satisfies all linear constraints but is usu-
ally not integer feasible. This leads to the question: Can we exploit the integer feasi-
bility of the x7 to obtain a solution ¥ satisfying all constraints? This is what extreme
point based heuristics try to achieve. The extreme points we are particularly inter-
ested in are those with ikp > 0.

It may happen that there is a number of coordinates in which these extreme points
are identical. Especially when their values are also shared by £%, it seems worth ex-
ploring whether there are more integer feasible or feasible points taking the same
values. Therefore, Extreme Points Crossover performs a neighborhood search on the
extreme points by crossing them: For each block, it takes those x*” with the high-
est ),kp, fixes the variables in which the selected points are identical and solves a
sub-MIP.

As its name indicates, the heuristic can be compared to the Crossover heuristic
discussed in [3,12] and implemented in SCIP, which considers a number of already
known feasible solution for crossing. The main advantage of our heuristic against
this one is that it does not need any previously found feasible solution.

Fig. 1 Extreme Points
Crossover: An LP feasible
solution ¥ is a convex combi-
nation of x1,xP2 € conv(X).
All the three points have a
coordinate in common which
is also shared by the encircled
feasible point.

Subproblem

Master problem

4 Restricted Master

When we solve the master problem, we dynamically add variables that improve the
current solution. As the total number of master variables may be exponentially high
compared to the number of original variables, this means that the master problem
may soon reach a size where searching for feasible solutions would become very
time-consuming. This is what the Restricted Master heuristic (suggested by Joncour
et al. [9]) tries to overcome. It searches for an integer feasible master solution by
restricting the formulation again to a subset of promising variables, hence regarding
a problem which is of considerably smaller size than the current master formulation.
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Fig. 1 The solving process depicted for the instance n3seg24

better is the expected quality of the incumbent solution if we stop the solver at an
arbitrary point in time.

We used the benchmark set of the MIPLIB 2010 [5] as test set for our exper-
iments. Since we are interested in the primal part of the solution process, we ex-
cluded the four infeasible instances triptiml, enlightl4, ns1766074, and
ash608gpia-3col;further, msppl6 was excluded since it terminated for mem-
ory reasons during presolving for all our tests. Thus, 82 test instances remained.
We performed four different runs: SCIP without any primal heuristics (Heur_OFF),
SCIP using only the rounding and propagation heuristics which are described in
this paper (R&P), SCIP using all default heuristics except the ones described in this
paper (NoR&P), and SCIP with default settings (DEF). All experiments were con-
ducted with a time limit of one hour, a memory limit of 4 GB on a 3.00 GHz Intel®)
Core™?2 Extreme CPU X9650 with 6144 KB Cache and 8 GB RAM.

Figure 1 exemplarily shows the primal gap function p(¢) for the four settings ap-
plied to the instance n3 seg24. A square shows when a new primal solution is found
and its quality. It can be seen that the two settings that use rounding and propagation
heuristics find solutions earlier and hence have a smaller primal integral P(tmax ). For
all four settings, SCIP found the optimal solution within an hour, but timed out with-
out proving optimality. Interestingly, with disabled heuristics (Heur_OFF), the opti-
mal solution was found in the smallest amount of time. Nevertheless, the behavior
of the default settings (DEF) seems favorable since primal solutions of reasonable
quality are found much earlier.

Table 1 shows aggregated results of our experiments. The first row shows the
evaluation of the normalized primal integral over the entire testset. For each in-
stance, the corresponding integral P(tmax) is divided by the integral obtained with
the setting Heur_OFF. This reference value is then used to compute the geometric
mean @ (P) for each setting. The remainder of the table shows the geometric means
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an evaluation of the incurred trenching cost in overall cost-optimized networks as
computed by the FTTX-PLAN software.

To this end, we use an extended Steiner tree model to determine lower bounds on
the trenching costs for a given FTTx instance. This model is presented in Section 3,
after a high-level description of the FTTx network planning problem is given in
Section 2. Finally, Section 4 compares trenching costs in solutions obtained from
FTTX-PLAN with the lower bounds obtained by the Steiner tree model on various
realistic test instances.

2 Problem formulation

The FTTx network planning problem can be described as the task to connect a
number of given customers to central offices of the telecommunication carrier, using
optical fibers and various active and passive components. Fibers can be laid out
in different types of cables which themselves are direct-buried or embedded into
different types of ducts, which are eventually buried into the ground along specified
trails of the deployment area.

The topological structure of the input is represented by the trail network, an undi-
rected graph whose edges designate the trails along which connections (fibers, ca-
bles, ducts) can be laid. To each edge is assigned a cost value that determines the
trenching costs for the trail in question. The trails can also have existing infrastruc-
ture, such as dark fibers or ducts, which can be used for planning.

Some nodes in the trail network can be of a special type — each such node is
associated with a setup cost which is incurred if it is included in the final network.
Figure 1 shows an example of a trail network with special nodes BTPs and COs.

Fig. 1 Trail network of an
instance, projected onto a
satellite image of the de-
ployment area. Yellow dots
indicate BTPs, red diamonds
possible CO locations; trails
are colored according to their
trenching costs — green for
low, red for high costs.




Estimating trenching costs in FTTx network planning 93

4 Results and conclusion

We assessed trenching costs in 7 instances, given in Table 1. The first three trail net-
works were artificially generated using GIS information from OpenStreetMap [1].
The last four are modified networks provided by different German city carriers. Fig-
ure 2 shows an example of an FTTX-PLAN solution and the trenched trails attaining
the lower bound for the instance a2.

Fig. 2 Solution network (left) to instance a2 and trenched trails attaining the lower bound (right).

Table 1 shows the results from the computations. Besides the size of the in-
stances, we have given the trenching costs incurred by the solution networks, the
lower bound obtained with the model in Section 3, and the relative gap between
these two values. Additionally, we list the average and maximal connection lengths
for the networks and the lower bound.

Instance: al a2 a3 cl c2 c3 cd
# nodes 637 1229 4110 1051 1151 2264 6532
# edges 826 1356 4350 1079 1199 2380 7350
# customers 39 238 1670 345 315 475 1947
# potential COs 4 5 6 4 5 1 1
network trenching cost 235640 598750 2114690 322252 1073784 2788439 4408460
average connection length 717.1 1186.6 7334  589.6 1969.2 9953 2094.1
maximal connection length 1320 2257 2334 1180 4369 2452 4809
lower bound 224750 575110 2066190 312399 1063896 2743952 4323196
relative gap 48% 41%  2.3% 32%  0.9% 1.6%  2.0%
average connection length 299.2 887.5 504.6  363.7 1531.0 590.2 1092.9
maximal connection length 1049 3142 3215 1394 7315 2586 4786

Table 1 Comparison of trenching costs for different instances.

It can be observed that trenching costs in the solution networks are in an accept-
able range with respect to the obtained lower bounds (up to 5 percent). Furthermore,
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individual individual normalized
contribution contribution| group group
Provider  provider |Customer customer |weighting weighting

Max  0.65 0.33 Min 0.60 -0.30 ‘ 0.03 Max 0.06

Profit provider
Energy consumption|
Cooperation

Table 2 Weighting

Min 0.10 -0.05 Min 0.25 -0.13 -0.18 Min 0.44
Max  0.25 0.13 Max 0.15 0.08 0.20 Max 0.50

Results

Figure 1 depicts the net flows and the rankings of the single decision makers and
the group. There are no differences in the results between PROMETHEE 1 and
PROMETHEE 1I, therefore, the results of the partial ranking are not shown sep-
arately. Considering the results of the single decision makers, the provider prefers
PSS 3 most. After this follows PSS 2 and on the last position is PSS 1. For the cus-
tomer the ranking is the other way round. He prefers PSS 1 most and PSS 3 least.
Regarding the results of group decision, PSS 2 is the best compromise for both the
decision makers. This is ranked on the second position for both decision makers, so
no one has to cope with the worst choice. According to the group weighting PSS 3 is
at second position with only little distance to the first one. The last-ranked business
concept is PSS 1, where the negative flows predominate, what already can be seen
in the decision matrix, as this alternative is worse than PSS 3 in all criteria, as long
as the profit for the provider is maximized.

Fig. 1 Results single decision

maker and group Provider Customer Group

1,5

ol H
-0,5 I
-1

-1,5
-2
MPSS1 mMPSS2 mPSS3
Provider Customer Group
PSS 3 PSS1 PSS 2
PSS 2 PSS 2 PSS 3
PSS 1 PSS3 PSS1

Discussion

If the criteria with conflicting targets are highly ranked by all decision makers they
are losing importance as shown above. Therefore, the decision is mainly based on
criteria with equal targets of the decision makers whereby the veto function helps to
find a compromise concerning criteria with conflicting targets. In case that only one
decision maker considers the conflicting criteria as important and the other decision
maker has rather low weights for these special criteria, the calculated difference is
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2 Approach

For answering these questions we are using a linear programming model to optimize
production® and investment decisions* of the energy sector. Thereby the objective is
to maximize the profit, calculated with a contribution margin accounting, and the de-
cision variables are running times of plants and capacity enlargements. For reliable
results, we first have to consider the political, economic and technical framework
conditions, what gives us the input parameter, constraints and appropriate model
structure. Accordingly, we do not simplify but respect the difference between the
ETS and taxes in taking the EA price as uncertain and endogenous variable. This
results in a calculation of the EA price as intersection of the supply and demand
function. The first is given by the CAP. However, the second is deduced by the op-
timal quantity of carbon emissions depending on the adaption of the merit order
to variations in the EA price. Since the switch load effect leads to a discontinuous
slope, we calculate the demand function for EA with a sensitivity analysis.

fr k

4

Contribution Margin
Accounting

v
0

Production Planning

Technical constraints fe—p Model Market data

N

Linear Programming

Simplex algorithm \ o

Sensitivity analysis
Itei method

\ Demand function for EA

Price of EA

Environmental Supply of
policy goals EA

n

Scenario analysis

Fig. 1 Approach of the production and investment planning model

In the long run not only running times of plants are variable, but also changes
in the plant portfolio are possible due to construction and wear. Since in the long-
term perspective the framework conditions may change additionally, we consider
the endogenous modifications of the input parameter in a feedback loop on the one
hand and use a scenario analysis for the exogenous changes on the other hand. In

3 Cf. Fichtner (2005).
4 Cf. Roth (2008).
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For cross-border grid capacities, the EU commission is planning network invest-
ments, which are allocated according to demand and international trading. Disman-
tling is excluded in order to build an European wide electricity market.
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4 Results

After solving the optimization model with a simplex algorithm, we receive similar
but too low investment levels in scenario 0 to 3. This underinvestment problem
leads to cutbacks in total capacity. However scenario 4 with lower capital costs for
renewables due to subsidized interest rates shows that countermeasures are possible.

In scenarios 1 to 4 (all with ETS) is the enlargement of power production by
biomass and the decline of coal remarkable. Additionally, in scenario 1 and 2 the
increasing use of gas is significant both in power and heat production. Investments
in wind, water and geothermy plants play only in scenario 4 a special role, which is
the only scenario which reaches the EU and national goals of 22 % respectively 30
% of renewables in the energy mix.

Furthermore the total amount of power production decreases in all scenarios, but
especially in 3 with the expansion of the EU internal electricity market, since in
balance there will be an electricity import instead of an export as before.

b.€ Investment poil Total power capacity
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/\ s Wind
; it |I  HlgH | v
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5 oit
/ e——Scenario 2 60 s
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Fig. 2 Investments in capacities and development of the plant portfolio
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Fig. 3 Power and heat production per technology

But what are the results for the ecological effectiveness and economic efficiency
of the ETS? The emission allowance price shows a big range between 0 and 85 Euro
in 2020 and so the emission costs with 0 to 24 b. Euro. This means specific emission
costs of 0 to 4.01 ct/kWh,;. Since emission costs are reflected in the power price and
the ETS triggers a fuel switch from lignite and coal to more expensive but low emis-
sion gas, in 2020 the power price can be 6.16 ct/kWh,; higher in comparison to the
scenario 0 without ETS. Renewables, nuclear plants and an EU internal electricity
market can reduce this price increase effect, but not the emission amount, since the
CAP is always used. Nevertheless is the emission abatement ascribed to the ETS
96 to 119 m. t CO, or 0.146 to 0.201 t CO,/MWh,,;. Other reasons for emission
abatement can be a technological efficiency increase (about 2 to 15 % points on av-
erage over the total plant portfolio) and so a decline in fuel consumption. However,
an increase of the primary energy import quota of up to 7 % points in scenario 1
and a decrease of the supply security of up to 8 % points in scenario 4 can also be
observed.

5 Discussion and conclusion

Since the ETS has strong impacts on production decisions, it is expedient for emis-
sion control. But low interest rates (scenario 4) influence more effective long-term
decisions like plant investments. So effective the ETS is in achieving emission goals,
so costly it can be on the other hand. Emission costs can go up to 24 b. Euro in 2020
and can noticeably drive up power prices. But choosing the right regulatory frame-
work can lower this costs.
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Fig. 1 Development of European power plant capacities and power production

4.2 Production

In Fig. 2 typical production patterns for European power production in the year 2050
(climate-market scenario) are presented. In the upper figures a typical weekend day
in summer is depicted. Here, load is low compared to other days of the year and
especially solar infeeds are high. On the right side infeed from renewables on a
summer day are low while they are high on the left side. The adjustment of the
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Fig. 2 European power production at the twelfth hour of a typical summer weekend day with a)
high and b) low RES infeeds and an evening of a typical winter workingday with c) high and d)
low RES infeeds
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Fig. 3 Transmission on a typical summer weekend day with a) high and b) low RES infeeds and a
typical winter workingday with c) low and d) high RES infeeds
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ple [1,5-9]. Many concepts include still a manual operation of the devices by the
user. This leads to a significant loss of comfort and requires the presence of the user.
In addition, the user must actively inform about the current and future prices.

Dynamically priced electricity rates are much more complex than constantly
priced electricity rates: A dynamically priced electricity rate model must define pos-
sible prices, steps as well as upper and lower limits, and must also determine how
far in advance consumers will receive the price information. The model must not be
too complex, so that it remains understandable to consumers and doesnt violate reg-
ulatory restrictions [2]. The price model planned for the field experiment and used in
the simulation prototype is kept very simple: The base price is set to 20Ct/kWh and
there is a range between a defined minimum (lower than acutal price) of 15Ct/kWh
and maximum (higher than acutal price)of 25Ct/kWh (11 1Ct/kWh steps). The price
is defined for each hour and will be constant for at least two hours. The price is
announced and fixed for six hours (preview time) in advance. This enables a fast re-
sponse to changes in wind and solar power and still offers the consumer a reasonable
certainty about the costs incurred for its electricity consumption.

3 Simulation of Smart Devices

As smart devices for consumer households are not widely available yet, we simulate
their behavior as preparation for the field experiment with 500 households. Smart
devices are able to react to changing price signals. A rational behavior for a smart
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realized --:-----
delta-load
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Fig. 1 Simulation result of devices running once (like dishwashers, washing machines, dryers)



150 Cornelius Kopp, Hans-Jorg von Metthenheim and Michael H. Breitner

25 i

15
9000

Price [Ct/kWh]

8000 1
7000 1
6000
5000

< 4000

3000
2000

1000

-1000

2000 i 1 1
0:00 24:00 48:00 72:00 96:00 120:00 144:00 168:00

Fig. 2 Simulation reasult of heating devices (like water boilers with storage)

device is to run when electricity rates are low. The exact optimization stragegies
used by real smart devices are still unknown, but simulation allows to test several
strategies and parameters. The realized load is heavyly dependent on the optimiza-
tion stragegy used by the devices. We implement two classes of smart devices:

Devices running once (for a few minutes to several hours) in a defined limited
time slice (of several hours, typically much longer than running time), as sim-
plified model of real devices like dish washer, washing machine, or dryer. These
devices start at once as soon as the current time is the unique cheapest time within
the preview time. Otherwise the devices wait for are cheaper time. It is ensured
that the device execution is complete at the end of the limited time slice. Figure 1
show examplary results from simulation of this device class.

Devices without time restriction and a given daily runtime, as a simplified model
of water heaters with large storage or heat pumps. The daily running time is based
on running times of real water heaters. These devices have a storage capacity
of several hours. The storage is filled completely while the current time is the
cheapest time within the preview time. Otherwise the device will only run (for
minimal required time) when the storage runs empty in the beginning hour.

The results (examplarily see figure 1 and 2) of simulation show that the price

significantly influences the load. The two implemented device classes result in dif-
ferent delta-loads (difference between uninfluenced and influenced load). The load
change is asymmetric: There are high positive peaks and smaller negative troughs.
The very high peaks are the result of cheapest solution for the device owners, but
are not in the interest of the energy provider.
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Price, LGD & Rating for a 30Y Greek Government Bond
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Fig. 1 Inconsistency between price and recovery rate for a Greek government bond.

hazard rate model'. This suggested dynamic calibration is in contrast to usual usage
of static CDS models, where a deterministic hazard rate function is derived from
market prices for a given recovery rate. Instead, the market-implied recovery rate
now becomes an output of the model rather than an input. In this way we aim to
make practical the recent more expressive models [2, 5, 6], however, we limit the
scope of this exposition to market-consistent calibration of static recovery rates for
brevity of presentation.

2 Modeling

Let us start by recalling the most common definitions of the recovery rate o of a
bond, see for example [4], Section 5.7 or [1]:

e Recovery of face value*: A fraction § € [0;1] of the outstanding notional N is
paid at the time of default 7.

e Recovery of treasury: A fraction § € [0;1] of the outstanding notional N is paid
at the bond maturity T.

e Recovery of market value: A fraction 6 € [0; 1] of the value of the claim just prior
to default (denoted by PVp,,4(77)) is paid at time of default 7.

I See for example [4], Section 8.4 or http://www.cdsmodel . com/cdsmodel/

2 Recovery of face value is the standard assumption used in most CDS pricing models, for ex-
ample in the already mentioned hazard rate model which is also the standard ISDA model, see
http://www.cdsmodel .com/cdsmodel/
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CFgL;??t(ti) = A; - (fi + SBona) - Lz yapy + (1-6)- Lice(r 1))

e Premium leg: In return for the protection, a fixed premium scps has to be paid by
the protection buyer until a default has been observed:

CFERS" (1) = A+ scps - Vg
Then the present value of the CDS can be obtained similarly to the price of the bond

n

n
PVeps(to) =Eq | Y Plto,1i) - CFEE (1) | —Eq | X, P(to,ti) - CFR (6) |y |
=1 i=1

and it can be shown (by comparison of the cash flows to a default-free floating rate
bond) that it holds

Vt: PVpona(t) +PVeps(t) =1 <= scps = SBond,

independent of the specific recovery value. More generally, for a given recovery
rate 0, the bond price can be deduced from the CDS price and vice versa, as both
prices are only depending on the hazard rate (i.e. default probabilities). Thus it is
obvious that if the bond trades below the recovery rate, no reasonable CDS price or
par spread can be obtained any more for the corresponding CDS, see Figure 2.

Theoretical CDS par spread vs bond price and recovery rate
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Fig. 2 Inconsistency between price and recovery rate leads to non-existing CDS par spread.

In practice, if the bond price drops towards the current recovery assumption,
the assumption is reviewed and the recovery rate is adjusted downwards. If the bond
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Table 1 Classification of the players into prosocial and proself according to their social value
orientation

Number of cases )
Proself 62 71.3
Prosocial 25 28.7

3 Experimental Design

We conducted a computerized PD experiment using the payoffs in Table 2. Players
interacted repeatedly with the same partner and were rematched with a new partner
two or three times. In 9 cases players are rematched once, in 14 cases the players
are rematched twice. Thus we had two or three matchings per session. A matching
we call a number of successive rounds in which one player interacts with the same
partner. A player is matched with a different partner after a number of rounds not
known to the participants in advance. One matching lasts between 10 and 35 rounds.

The experiment is conducted in the Experimental Economics Laboratory of the
Department of Statistics and Operations Research at the University of Graz. The
participants are recruited in classes and by campus advertisementes. Potential par-
ticipants are informed that they can take part in a paid experiment consisting of an
decision making task. We arranged the experiments in a way that 8 or 12 participants
take part at the same time. 92 subjects took part in the experiments.

These participants were then randomly assigned in groups of four that were led
to computer workstations. The workstations are seperated from each other so partic-
ipants cannot directly interact with each other. Subjects do not know which one of

2 5 Players were excluded from the analysis because either they either were outliers in the so-
cial preferences distribution or their comments suggested that they did not understand the game
properly.
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dy = (.40,.20,.30,.10)
d» = (.60,.10,.25,.05)
ds = (.80,.00,.15,.05)

We clearly see an increase in the initial probability of joint cooperation from match-
ing to matching. We like to denote this as a ‘restart-effect’, because it seems likely
that a new partner is credited with an increasing level of trust, once the individual
learns that mutual cooperation has a tendency to increase returns. On the other hand,
within one matching we find a decreasing probability of joint cooperation over time.
This tendency can be exemplified by the steady state distribution generated by M:
(.16,.14,.14,.56). So in the long run there seems to develop a dominating probabil-
ity for joint defection.

This simple model seems to contribute to a better understanding of experimental
observations in several ways. Firstly, it mimics the high probabilities of rather long
runs of either CC or DD states, which are, e.g., about 60% for a run length of 4, given
an initial state of either CC or DD. Secondly, the model can be used to simulate
hypothetical experimental results which can be compared with the actual ones. This
allows for a whole range of advanced analysis.

The following figure shows the probability of joint cooperation (CC) found in 20
simulated experiments, using the matching-specific transition matrices in connec-
tion with the initial distribution for each matching, together with the actual exper-
imental result (thick black line). The simulations seem to capture the experimental
observations reasonably well, although we have a rather short length of the match-
ing, and the first two matchings had equal length of 6 rounds. It is quite obvious that
players assumed that the third matching would also have 6 rounds, which led them
to defect more often because of expected end effects, which could not be captured
with transition matrices estimated for whole matches. For the first two matchings,
the experimental observations are well covered by the range of the simulated obser-
vations. The restart-effect is also prominent.
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The simulated experiments show rather wide fluctuations. This indicates that we
should expect similar fluctuations in the results of actual experiments if we repeat
them. This should make us careful in interpreting certain patterns in experimental
data, as they could prove as the mere result of stochastic fluctuations.
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The next figure shows these probabilities as inferred directly from the estimated
transitions matrices, again together with the actual experimental result (thick black
line). The apparent deviation is likely to have two reasons. The fitted model is not
flexible enough to reflect learning effects properly. We have to live with that because
of data limitations. More important is the insight, that it could well be possible that
the typical behavior that we might find based on large data sets might well be rep-
resented by Markov matrices, but that just the realization of the actually conducted
experiment deviates from this average, although its stochastic behavior is well rep-
resented.

1.Opr
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To clarify these issues we need to develop test criteria for the accuracy of Markov
models, and it is likely advantageous to use time dependent models if enough data
is available. Tests need then to be performed out-of-sample.

4 Conclusion

We conducted a series of IPD experiments with unknown length and re-matching
of players and observed the patterns of cooperation over time. This pattern shows
apparent stochastic behavior, which calls for an attempt of stochastic modeling. We
present descriptive as well as simulation results for a very simple Markov model
derived under the assumption of stochastically equivalent behavior of all players.
They indicate that various patterns in the data may well be the results of an in fact
simple memoryless stochastic behavior. With more data, likely learning behavior
could also be investigated in more detail.
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2.1 Data

The L.A. Jackman et al. (1997)° study was based on the idea that the achievement
of maximal calcium retention during adolescence may influence the magnitude of
peak bone mass and subsequently lower risk of osteoporosis. Calcium retention
is generally considered to reach a plateau at a certain calcium intake. To test this
idea, subjects were given two controlled diets with a different amount of calcium
in each. However, some individuals completed the study and provided two observa-
tions while others provided only one observation due to drop outs.

In our data, the total number of observations is 202 which includes 44 subjects
with a single observation, and 79 subjects with two observations. Besides, there
are no significant differences between these subjects in the following areas: medical
problems, use of medications, pregnancy, abortion, eating disorder, or current use of
tobacco. The distribution of the response variable (calcium retention) has clear cen-
ter, and is slightly symmetric. On the other hand, the distribution of the independent
variable (calcium intake) is not normal. Since some subjects have two observations
for calcium intake levels (low/high), the distribution for this variable has two peaks.
Moreover, there is a nonlinear relationship between the dependent and independent
variable.

Figure 1 shows that there are positive correlations between high/low calcium in-
take levels and high/low retention levels for most of the subjects. These correlations
demonstrate the dependence between these two levels of variables for the same sub-
ject. This dependence affected the re-sampling part of the study.
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Fig. 1 Two levels of calcium intake versus calcium retention for subjects with double observations
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and mBIC2 compared with mBIC is larger than in case of extreme sparsity, leading
to misclassification rates of the FDR controlling rules which are now visibly smaller
than those of mBIC. It is noticeable that BIC is doing slightly better in the denser
case. Its FDR is now converging towards O for large p, and its misclassification rate
approaches that of mBIC.

Effect of correlations: For the second part of the simulation study a design
matrix with n = p = 256 was obtained by simulating from a multivariate normal
distribution X ~ .4,(0,X). Figure 2 shows the block structure of X. Correlation
within blocks was set constant, varying between p = 0 and p = 0.8 for different
matrices. Trait values of 2000 replicates were simulated similarly to the previous
section, where effect sizes were chosen slightly larger with 7 = 0.5. The positions
of the k = 24 non-zero regressors are shown in Figure 2.

For orthogonal designs the minimization of selection criteria is particularly sim-
ple, because the estimate of a regression coefficient for a given explanatory variable
does not depend on other regressors. It is enough to find the minimum among nested
models according to the order obtained from p-values of one-factor regression mod-
els. In the non-orthogonal case one has to consider instead more sophisticated search
procedures, leading to more time consuming procedures. Here we applied back-
ward elimination starting from the top 40 regressors of one-factor models, followed
by forward selection. This heuristic procedure is not guaranteed to find the model
which minimizes a given selection criterion, but more sophisticated search proce-
dures would become prohibitively time consuming for a simulation study. The focus
of this article is on comparing different criteria, and to this end the relatively simple
search strategy serves well.

Figure 3 illustrates the effects of correlation on the performance of different se-
lection procedures. The larger the correlation, the more often regression models
select a strongly correlated regressor instead of the correct one, resulting in a loss
of power. However, this effect only becomes recognizable for p > 0.3, and really
severe for p > 0.5. In the literature on GWAS thresholds on correlation have been
used to distinguish between correct detections and wrong detections [8,9]. The pre-
sented results indicate the usefulness of a threshold somewhere between p = 1/0.05
of [9] and p = 0.7 of [8].

Fig. 2 The correlation struc-
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Fig. 1 Basic Scenario

their goods from an outside region via the terminal. The flow of a full container from
the terminal to the receiver is called inbound full (IF) container. It is obvious that a
shipper requires an empty container before he can fill the freight in it. Additionally,
an empty container remains at the receiver’s location after the IF container is emp-
tied. We define two time windows at each customer location: During the first time
window the full/empty container has to be delivered to the customer location. After
the container is emptied/filled, it can be picked up by a vehicle during the second
time window. Moreover, trucking companies have to consider two additional trans-
portation requests. Due to the imbalance between import- and export-dominated
areas, they need to take care of outbound empty (OE) or inbound empty (IE) con-
tainers which either have to be moved to the terminal or derive from it. For these
requests only the terminal as the destination or as the origin is given in advance.
Hence, the locations that can provide empty containers for the OE requests and the
destinations for the imported empty containers need to be determined during the so-
lution process. This scenario was defined by Zhang et al. (2009) as the multi-depot
container truck transportation problem (CTTP) [5]. The objective is to minimize the
carriers’ total fulfillment costs consisting of fixed and variable costs. Hence, in a
first step the number of used vehicles should be minimized while in the second step
the optimization of the vehicles’ total operating time symbolizing the transportation
costs should be pursued [3]. In this paper the first objective is formulated as a con-
straint and the minimization of the operating time is chosen as the objective function
of our models. Thereby, the number of used vehicles within the employed models is
raised iteratively until a feasible solution is found. The resulting solution approach
leads to an integrated model which does not only consider vehicle routing but also
empty container repositioning. Thus, solving the problem determines: a) where to
deliver the empty containers released after inbound full/empty loads, b) where to
pick up the empty containers for outbound full/empty loads, and c¢) in which order
and by which truck the loads should be carried out.

In this paper, two scenarios for the hinterland transportation are analyzed. In the first
scenario empty containers are uniquely assigned to trucking companies, i.e. they can
solely be used by the company they are assigned to. For instance, an empty container
obtained at a receiver location served by a certain trucking company can exclusively
be used for transportation requests of this company. This scenario is given by the
above CTTP. In the second scenario companies can use empty containers of cooper-
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Fig. 2 Possible Benefits through Container Sharing

ating trucking companies. I.e. companies share their information at which locations
empty containers are currently stacked and they agree with the mutual exchange
of these containers. Thus, the cooperating companies can improve their routes and
increase their profit by decreasing transportation costs in return. The permission of
sharing empty containers among trucking companies leads to the multi-depot con-
tainer truck transportation problem with container sharing (CTTP-CS).

Figure 2 demonstrates the rising possibilities to reposition empty containers of two
trucking companies cooperating with each other. Trucking company 1 has to serve
a receiver and needs to move an IE container to the hinterland. Trucking company
2 has to serve a shipper and needs to move an OE container to the terminal (see
Figure 2 (a)). In the non-cooperative case, as illustrated in Figure 2 (b), the only op-
portunity for both companies to reposition empty containers is moving them either
to (trucking company 1) or from (trucking company 2) their own depot. If the ex-
change of containers is permitted, both companies could benefit through the emerg-
ing additional flexibility to allocate empty containers to a vehicle’s tour (see Figure 2
(c)). The amount of the benefit of a cooperation highly depends on time and place
conditions given by the time windows for pickup and delivery and by the locations
of the terminal and customers.

2 Simultaneous Solution Approach

Let V denote the nodes of a directed graph, consisting of customer node set V¢,
terminal node set Vr and depot node set V. There are two types of customers (Vo =
VsUVg), the node sets Vs = Vi U Vso and Vg = Vi U Vge describe the shipper and the
receiver node sets. Vg and Vj refer to the first time window of the shipper/receiver,
in which an empty/full container has to be made available. After the container has
been completely filled or emptied, respectively, container ¢ € C can be picked up by
a vehicle k € K during the second time window (Vse and Vo). The terminal node set
Vr consists of Vi and Vo which correspond to the amount of ingoing and outgoing
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Fig. 1 Construction of the tour planning graph.

ie,v=_(s1) € SxZ:={0,A,...,T —A,T} C [0,T], or they represent artifical
start and end nodes d; and d; for the vehicle paths (depot nodes). Directed arcs
connect either adjacent time intervals of the same section, or they connect adjacent
sections, i.e., Vs € S there is ((s,71), (s,72)) € A with t =1, + A, starting at 1; =0
until 7, = T, and if (s1,s2) € N it holds that ((s1,#),(s2, +A)) € AVt € Z\{T}.
Figure 1 illustrates this construction. In addition, arcs are inserted from the start
depot to all other non-depot nodes and from all non-depot nodes to the end depot
node. Finally, a profit value is associated with each node v = (s,¢). We consider the
problem of finding a feasible (d;,d;)-path in D for each vehicle f on each day, that
respects a tour length restriction of 8h30. Each control tour corresponds to such a
control path. The profit w, of a control path p is the sum of the profit of its visited
nodes. This approach could be seen as a vehicle routing problem with profits under
some additional constraints. Vehicle routing is an well-established research area,
see [6] for an overview. For the case of dealing with profits Feillet et al. [3] give a
literature survey.

There are restrictions on the feasible starting and ending times of the control
tours; the feasible times are defined by the (Working) Time Windows. Let P be set
of all control paths in D and Py ; C P the set of all paths that are feasible for vehicle
f € F and start at day j € J. Furthermore for a given section s € S, the set of all
paths p € P that visit anode v = (s,;) € V is denoted by Py and the minimum control
quota is named by ;. The Tour Planning Problem (TPP) is then formulated as a 0/1
multi-commodity flow problem in D, where vehicles f represent the commodities.
We introduce 0/1-variables z,,, p € P, that indicate if tour p is chosen or not. Then
the TPP can be modeled by the following integer program:

max Z WpZp (1)
PEP
ZZPSL Y(f,j) eFxJ 2)
pEPj',j
Y >k,  VseS 3)
pEePy

zp€{0,1}, VpeP )
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Fig. 1 UMTS architecture and Measurement Campaign configuration.

{s1(11), s2(1), ..., sp(Tv)}, with the corresponding degraded received samples,
S(t) = {51(71), $2(1), ..., Sn(7v)}, at the called party, B-side, by applying the
objective assessment algorithm, ¢. The objective QoE indicator, MOS;_.;, varies
between 1 (bad/very annoying) and 5 (excellent/imperceptible) and (i, j) € {(A,B),
(B,A)}:

1 N
MOSi.j = 5 3 @(svi(t).5v,j(%) (0
v=I1

Fig.1 presents a measurement campaign configuration for E2E QoE assessment
with a ”Diversity Benchmarker” [12]. Besides, we conducted post-processing anal-
ysis with NetQual NODI on a measurements database managed by MS SQL Server
and we used MATLAB for regression and optimization modelling.

3 Robust Optimization in Regression Analysis

In order to predict QoE from QoS, a non-linear regression method can be performed
for speech and video quality estimation from E. /Ny, QoE = exp (ot E./No+ ). A
log-linear model can be derived, In(QoE) = o.- E. /Ny + . The estimates for o and
B can be computed through non-linear regression or linear regression and are almost
the same. The estimates of linear regression are the optimal solution to

mlél \/i (ln(QOE,') — O (EC/N()),' — ﬁ)z, (2)
o, i=1

where QoE;, (E./No); denotes the i-th samples of QoE, E. /Ny respectively.

The accuracy of the data used to compute them is limited. To deal with this
problem, we propose to follow a robust optimization approach. We assume that
that data (E./Np); incorporate errors and that their true value resides in a p-sized
interval centered at (E./Np);, p > 0. The robust estimates are the optimal solution
to the min-max problem
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Fig. 2 Robust optimization in non-linear regression for QoE prediction models.

n

min max In(QoE;) — ox; — B)2. 3)
o,B Vi |xi—(Ec/No)il<p l:zi( (QoE;) B)

The constraint Vi : |x; — (E./Np)i| < p is equivalent to ||x — (E¢/Np)||~ < p,
where || - || is the infinity norm and x, (E./Ny) are the vectors which contain the
xis (Ec/No); respectively. Problem (3) is equivalent [15] to

n

miél Y (In(QoE;) — a(Ec/No)i — B)*+ plel, 4)
«, i=1

which defines an /j-regularized regression estimator [13]. Using our data and Se-
DuMi [9], we computed the robust estimates for o and 3 for various values of the
size p of the uncertainty set. The results can be seen in Fig. 2.

We observe that as the size of uncertainty p increases, ¢« drops, namely the ro-
bust estimates suggests a weaker dependence between QoE and E./Ny. This weaker
dependence is compensated by a smaller fixed term f3, as seen in Fig. 3. Thus, in the
presence of errors, one should be more conservative in the prediction of QoE for a
given E./Ny. The rate of change for QoE with respect to E. /N estimated by linear
or non-linear regression is too optimistic in the presence of errors. The regularized
estimator of Eq. (4) takes this phenomenon into consideration by adding the trade-
off term p |ar|. Our method connects the impact p of this trade-off with the size of
the uncertainty sets for the data (E./Ny);. In this way, we can use the information

g-estimale vs. p-paramefer

B-estimate vs. p-parameter

Fig. 3 Robust estimates of o and 8 parameters for various values of the size p of the uncertainty
set.
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Fig. 1 Drawing of a continuous roller furnace

multiple plates at the same time. The plates are passing the furnace continously and
one by one. In addition, they have to leave the furnace in the same order as they
entered it because inside the furnace overtaking is not possible. Due to technical,
physical and logistical restrictions, a plate cannot always enter the furnace directly
after its predecessor. The minimal time a plate has to wait is equal to the duration its
predecessor needs to completely enter into the furnace. In the following, we assume
this duration to be constant (" = 8 minutes).

One reason for additional waiting times is the finite furnace capacity. A plate
cannot enter the furnace if there is not enough space. It has to wait until one or
more plates leave the furnace, so that the free furnace capacity is sufficiently large.
A further complication results from a special kind of setup procedure in cases when
two consecutive plates need different heat treatment temperatures. Depending on
the temperature deviation, these plates have to keep a specific distance from each
other in the furnace. This distance is necessary in order to avoid an overheating or
inhomogeneous heating of the plates. Apart from this, a minimal safety distance
"M of two meters has always to be kept between two consecutive plates.

Another additional waiting time occurs if the processing time of the next plate
needed to enter the furnace is smaller than the processing time of its predecessor.
We already mentioned that overtaking is not possible inside the furnace. In addi-
tion, each plate has to keep its predefined holding time, so that processing times are
never exceeded. As a consequence, the waiting time of a plate whose processing
time is smaller than that of its predecessor is at least as long as the processing time
deviation.

To the best of our knowledge, there is no study on this problem in the literature
up to now. However, there are some studies having some parts in common with the
HTFSPD (see [3], [10], [9]).

2 Problem formulation

Koné et al. [7] demonstrate different MILP models for the Resource-Constrained
Project Scheduling Problem (RCPSP), two discrete-time formulations, a flow-based
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In the above formulation, the objective function (1) minimizes the makespan.
Constraints (2)-(21) assure that a feasible solution conforms with the continuous
process described in Section 1. Constraints (22)-(23) make sure that the furnace

capacity is never exceeded.

3 A genetic algorithm

A genetic algorithm (GA) is developed in order to solve real world problems. Its

procedure is shown in Figure 2.

The most individuals of the initial population are generated randomly. In order to
increase the performance of the algorithm, the others are generated by some simple
sorting methods. One of them corresponds to the method the Dillinger Hiitte GTS
applies in practice. First, the plates are sorted by their furnace temperatures. Then,
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Fig. 2 A genetic algorithm

all plates with identical furnace temperatures are sorted by its processing time in
ascending order. We refer to this heuristic in the following as the rule-based sorting
(RBS).

The next step of the algorithm is to evaluate the indiviuums. A simulation of the
furnace process serves as evaluation function.

The Selection scheme is similar to a proposal made by Karci [5]. It is based on the
intelligence in bee swarms. The individual with the best fitness value of the current
generation is the queen bee. All the other parents (selected by tournament selection)
are crossed over with this fixed parent. For a survey about algorithms simulating bee
swarm intelligence, we refer to Karaboga and Akay [4].

For crossover, we use the Position based crossover operator (PBX) with prob-
ability p,,, and the Order based crossover operator (OBX) with probability pp..
Kellegoz et al. [6] compare eleven crossover operators for the one machine n-jobs
problem. Experimental results demonstrate the effectiveness of the OBX and PBX
crossover operators. With probability pp.x, the selected individual does not cross
with the queen bee.

As last step of each iteration, the individuals are mutated by the use of the swap
operator (SWM) with probability py,m, the insert operator (INSM) with probability
Dinsms the inverse operator (INVM) with probability pjy,,, and the scramble operator
(SCRM) with probability pyer,. These operators can be found in [2].

There are two stopping criterions to terminate the algorithm. The first is if there
has been no improvement since stopy;,;, iterations whereas the second is a total run
time limit of stopyime seconds.

4 Computational results

ILOG CPLEX is used to solved the MILP formulation presented in Section 2. The
genetic algorithm described in Section 3 has been implemented in C++. All compu-
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time and personnel needed to serve these passengers is highly volatile, both over the
day and over the week. Figure 1 shows a typical arrival profile with 4 peaks over the
day and 2 different daily patterns over the week. In order to reduce costs it is thus
desirable to smooth the demand by making use of the allowed service level.

Fig. 1 Two days of the same
week. Check-In demand over
the day (minutes 0 — 1440) for
a smaller carrier on a major
European airport. 4 large
peaks, but different layout:
strong morning peak over the
week, strong evening peak on
Sunday

0 200 400 600 800 1000 1200 1400 1600

Our goal is to smooth the irregular demand by making some passengers wait,
i.e. we try to move peaks into valleys. We present a network flow formulation for
this problem and discuss additional constraints relevant for real-world scenarios. We
show how to solve the model and present numerical results on real-world data.

The model is part of the Inform GroundStar suite. GroundStar is an integrated
resources management system to optimize all planning and control processes in
aircraft handling at passenger airports. GroundStar is in successful use in various
handling areas of more than 200 airports of every size world-wide.

There is not much literature on check-in counter planning (consisting of calculat-
ing the demand and allocating the counters). Check-In counter allocation problems
have been studied by [5]. They use a simulation for generating the appropriated in-
put. [6] work with a number of passengers for a flight without assumptions on their
distribution or on waiting times. To our knowledge, this problem has also not been
considered in queuing theory.

2 A Network Model

We consider a planning horizon of 7' minutes. Typically, we plan for 10 days (T =
14400). Let n, denote the demand at time ¢. The queue length, Q, is the maximum
time a demand is allowed to wait before being served, i.e. demand at time ¢ should be
served at time ¢’ with ¢ < ¢ <t+ Q. As this is not always possible we allow violating
queue length Q. However, demand at time ¢ must being served before ¢ + L, where
L > Qs alimit of e.g. 6 hours.
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possible, etc. A better estimation of /(z) is used if the estimation above yields large
numbers. And there are additional rules, e.g. as soon as demand is there at least one
check-in counter must be opened.

3 Numerical Results

The above model is implemented in C++ using the COIN-OR LP solver Coin CLP
1.11 [2].! Run time is measured on an Intel Core2, 2.8GHz, 3GB Ram on Windows
XP using Visual Studio 2008. We start with an artificial test case, Fig. 3. The demand
is given as a double sinus wave over 1001 minutes (n; := 12+ 10sin(z 1000) r=
0...1000). The two lines show the resource requirement for a maximum waiting
time of 20 and 100 minutes, respectively”. No departure flights are assumed. As can
be seen in the statistics (Table 1), enlarging the queue length increases the number of
edges between I and O and thus the number of LP variables. Nevertheless, run times
of less than 2 seconds are no problem for the overall planning process. Quality-wise,
the result is good as the number of resources only required for short time intervals
is small and only up to 1.6% additional demand is induced by rounding (i.e. the
demand of ~ 12,000 minutes is only increased by 172 or 192 minutes, resp. when
rounding).

The figure on the right shows one day of a real-world scenario originally con-
sisting of 9 days, 149 departure flights. The queue length is Q = 24. Whereas the
number of variables scales with the number of days when comparing artificial and
real model, the latter introduces new edges between C and Z. These variables en-
sure that all demand is served before departure. Despite their large number, they do
barely impact running time here.

demand m— ' ' ' demand m—
| Q=24 ——

1600 1800 2000 2200 2400 2600 2800

Fig. 3 Artificial example (right), 1 day from a real-world scenario (left)

! The model above could be adequately solved by a pure network solvers (e.g. [3,4]). We prefer
the more generic LP solver as that gives us some more freedom for future enhancements and
constraints.

2 waiting time is typically < 1 hour on real airports. Q = 100 is chosen for illustration here.
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and constraint relations shown on the spreadsheet are for display purposes only, and
are not used by Solver.

Al B C D Ea ok G H 1 Solver Parameters [ESE )
1 X1 X2 X3 =
Set Target Cell: 53 -§u|ve
2 123 Equal To: - @ Mi 7 Value of: 0
N g l) @ Min ) Yalue ot:
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3 i By Changing Cells:
451 min 2 3 4 20 creneEes
6| st 10 11 12 68 <= 60 =R
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) 19 34 -32 9 = 500 et
Help

Fig. 1 A typical spreadsheet optimization model (left) and the Solver entry for this. Many models
do not follow this layout, but instead ‘hide’ the model inside the spreadsheet formulae.

2 Constructing a Mathematical Model from a Solver Model

The means by which Solver stores a model does not appear to be documented. How-
ever, using the Excel Name Manager add-in [7], developed by Jan Karel Pieterse
of Decision Models UK, shows that Solver uses hidden ‘names’ to contain all the
model’s details. OpenSolver reads these values to determine the cells that define the
model and Solver options.

Excel’s representation of the optimisation model is given in terms of cells that
contain constants and formulae. Because OpenSolver restricts itself to linear mod-
els, we wish to analyse the spreadsheet data to build an optimisation model with
equations of the form:

Min/max cix; +coxp + ...+ cuXy
Subject to aj1x; + apxa + ...+ amxy >/=/< b, i=1,2,...m

where >/=/< denotes either >, = or <. Assuming the model is linear, then the
Excel data can be thought of as defining an objective function given by

Obj(x) = o + c1x1 + c2x2 + ...Cnxn

where X = (x,X2,...,%,) is the vector of n decision variables, Obj(x) is the objective
function cell value, and ¢p is a constant. Similarly, each constraint equation i is
defined in Excel by

LHS;(x) >/=/< RHS;(x) = LHS;(x) — RHS;(x) >/=/<0, i=1.2,...m
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Fig. 2 OpenSolver’s buttons and menu appear in Excel’s Data ribbon.

OpenSolver and CBC files can be copied to the appropriate Microsoft Office folder
to ensure OpenSolver is available every time Excel is launched.

Users can construct their models either using the standard Solver interface or
using a new OpenSolver dialog. The new dialog provides a number of advantages,
including highlighting of selected constraints on the sheet, and easier editing of
constraints.

We have found OpenSolver’s performance to be similar or better than Solver’s.
CBC appears to be a more modern optimizer than Solver’s, and so gives much
improved performance on some difficult problems. For example, large knapsack
problems which take hours with the Excel 2007 Solver are solved instantly using
OpenSolver, thanks to the newer techniques such as problem strengthening and pre-
processing used by CBC [1].

To review an optimisation model developed using the built-in Solver, the user
needs to check both the equations on the spreadsheet and the model formulation
as entered into Solver. This separation between the equations and the model form
makes checking and debugging difficult. OpenSolver provides a novel solution to
this in the form of direct model visualisation on the spreadsheet. As Figure 3 shows,
OpenSolver can annotate a spreadsheet to display a model in which the objective
cell is highlighted and labeled min or max, the adjustable cells are shaded with
any binary and integer decision variable cells being labeled ‘b’ and ‘i’ respectively,
and each constraint is highlighted and its sense shown. We have found this model
visualisation to be very useful for checking large models.

4 Automatic Model Construction

We have developed additional functionality that allows OpenSolver to build Solver-
compatible models itself without requiring the usual step-by-step construction pro-
cess. Our approach builds on the philosophy that the model should be fully docu-
mented on the spreadsheet. Thus, we require that the spreadsheet identifies the ob-
jective sense (using the keyword ‘min’ or ‘max’ or variants of these), and gives the
sense (<, =, or >) of each constraint. Our example spreadsheet shown in Figure 1
satisfies these layout requirements.

To identify the model, OpenSolver starts by searching for a cell containing the
text ‘min’ or ‘max’ (or variants of these terms). It then searches the cells in the
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vicinity of this min/max cell to find a cell containing a formula (giving preference
to any cell containing a ‘sumproduct’ formula); if one is found, this is assumed
to define the objective function. The left and/or right hand side formulae for the
constraints are then located in a similar fashion by searching for occurrences of <=
(or ‘<’), = and, >= (or ‘>"). The predecessor cells of all these formulae are then
found, and the decision variables are then taken as those predecessors cells that have
as successors either (1) at least two constraints or (2) the objective and at least one
constraint.

The final step is to identify any binary or integer restrictions on the decision
variables. These are assumed to be indicated in the spreadsheet by the text ‘binary’
or ‘integer’ (and variants of these) entered in the cells beneath any restricted decision
variables of these types.

5 Advanced Features

OpenSolver offers a number of features for advanced users, including:

The ability to easily solve an LP relaxation with a single menu click,

Interaction with the COIN-OR CBC solver via the command line,

Faster running using ‘Quick Solve’ when repeatedly solving the same problem
with a succession of different right hand sides,

Viewing of the CBC .Ip input file showing the model’s equations, and,
Detection and display of non-linearities in the model.

Al il il el il ; x1 | X2 | x3

1 X1 X2 X3 9 1 0923 1
-
2 1ol=200s 10 [<1s 20 =
3 binary integer
min -

4, min 2 3 4 |£| 12 20 [-1.846 |< 50
5 13
6| st 10 11 12 68 |<=|_ 60 14
7 21 22 23 134 |<=| 120 15
8 21 22 -23 -4 |={>s00 16
9 19 34 -32 -9 }={=s00 17 1

2<
18 0.923

an

Fig. 3 OpenSolver can display an optimisation model directly on the spreadsheet. The screenshot
on the left shows OpenSolver’s highlighting for the model given earlier, while the screenshot on
the right illustrates OpenSolver’s highlighting for several other common model representations.
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The buyer chooses the fraction 8 of used items to be collected and remanufactured
(collection rate, 0 < B < 1) as well as the order size q.

The relevant costs of the supplier and the buyer consist of fixed costs per order,
stock holding costs and, in the buyer’s case, disposal costs. The evolution of the
inventory levels at the buyer is shown in Figure 1, where 1 = ¢/D is the order cycle
length. It is straightforward to see that the buyer’s cost function expresses then as

TCb(q,ﬁ)=Sb'§+g-(/’lb-l-ﬁ'ub)-i-db'(l—ﬁ)'D.

The structure of the inventory levels at the supplier depends on what operation is
run first within each order cycle. Figure 2 illustrates the inventory levels during an
order cycle with manufacturing executed prior to remanufacturing; f, and 3 repre-
sent there the respective durations, and #; = t“ — t, —t3 is the slack time. Due to
the assumption Py, Pr > D, it holds #; > 0. The expression of the supplier’s costs
accordingly depends on the sequence of operations during an order cycle [4]:

Co(q.B) = v %—F% -hyr(B), if manufacturing is run first
sv-§—|—% -hrm(B), otherwise

q I(t)

Baq

8D

[ t © t

Fig. 1 Inventory levels of serviceables (left) and nonserviceables (right) at the buyer over time

L) o

1“([) A

q
(1-Pq Pr Bq

Fig. 2 Inventory levels of serviceables (left) and nonserviceables (right) at the supplier; manufac-
turing precedes remanufacturing



2005011 RFS (Uncontrolled outlers)

Fig.

N.C.P. Edirisinghe
S A AR X g e
X o
% s, Txe © *, * Longstocks
g o b BHE o T .
e 5D ¢ 0y
g g,
o =
. @ “ "
B i ; k .
L g 3
el i P L B
.’ a% 4 4* short stocks “e® + Short stocks
*~ A . o0 o .
Firm Fim
# Technalogy Health Care & Baskc Materlals Indl Goods # Technalogy Health Care & Basic Matesials ind Geods.
Energy ® Cons Discretionary - Cons Staples Unilities Energy ® Cons Discretionary ~ Cons Staples Uttilities.
(a) No control for outliers (b) Outliers controlled

1 2005Q1 expected firm-RFS scores

15%

Annualized volatility for all series = 10.5%

0% foreoreereeeemee e S

A o
= VI’ =
0% VJ\ 7\
W a1 \\Apa/\/\ M 121
5% A

Day (Jan-Jun, 2005)

Portfolio Cumulative RoR

= RFS (outlier-Control) ~=--- RFS (outlier-Uncon) ETF —— S&P 500

Fig. 2 Out-of-sample performance of RFS-based and ETF portfolios

References

10.

11.

Banker, R.D.: Maximum likelihood, consistency and DEA: Statistical foundations. Manage-
ment Science 39 1265-1273 (1993)

Banker, R.D., Natarajan, R.: Evaluating contextual variables affecting productivity using Data
Envelopment Analysis. Operations Research 56 48-58 (2008)

Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision-making units.
European Journal of Operational Research 2, 429-444 (1978)

Dusansky, R., Wilson, P.W.: On the relative efficiency of alternative modes of producing pub-
lic sector output: The case of the developmentally disabled. European Journal of Operational
Research 80 608-628 (1995)

Edirisinghe, N.C.P., Zhang, X.: Portfolio selection under DEA-based relative financial
strength indicators: Case of US industries. Journal of the Operational Research Society 59
842-56 (2008)

. Fama, E.F.: Efficient capital markets: A review of theory and empirical work. Journal of

Finance 25 383-417 (1970)

. Huang, M., Li, S.X,: Stochastic DEA models with different types of input-output distur-

bances. Journal of Productivity Analysis 15 95-113 (2001)

. Olesen, O.B., Petersen, N.C.: Chance constrained efficiency evaluation. Management Science

41 442457 (1995)

. Post,T.: Performance evaluation in stochastic environments using mean-variance Data Envel-

opment Analysis. Operations Research 49 281-292 (2001)

Sengupta, J.K.: Efficiency measurement in stochastic input-output systems. International
Journal of Systems Science 13 273-287 (1982)

Wilson, G.W., Jadlow, J.M.: Competition, profit incentives, and technical efficiency in the
provision of nuclear medicine services. The Bell Journal of Economics 13 472-482 (1982)



574 Hans-Jorg von Metthenheim, Cornelius Kopp and Michael H. Breitner

tecture is that it allows multi step forecasts. Additionally, by training an ensemble
of HCNNs, we get a distribution of possible outcomes. In this paper we will not
primarily evaluate the merits of HCNNs as a forecasting model. See, e.g., [5, 6, 8]
for detailed performance evaluations. Instead we focus on supporting the decision
maker in interpreting the considerable amount of data that the forecast produces.

2 Basic Visualization Techniques for Ensemble Forecasts

Typically, we visualize time series ensembles by plotting summary data, see for
example [1-4]. As a first step, we can simply plot the mean or median, see figure 1.
The figure shows a 20-day ahead forecast for the price of natural gas in US-Dollar.
The exact forecast asset is not central to the following discussion. We continue using
the same 20-day ahead natural gas price forecast throughout the paper. Mean and
median can, of course, differ. The general visual impression of figure 1 is that of
strong downtrend. The figure does not convey any distributional information.

This changes slightly when we add representative percentiles, like the quartiles,
see figure 2. Note an interesting feature: future uncertainty, as measured by the dif-
ference of maximum and minimum, does not necessarily increase. In fact, uncer-
tainty decreases during the last five forecast days. The figure now only conveys the
visual impression of a slight downtrend, due to the width of the distribution. Never-
theless, we still have no idea of the distribution of individual paths.

An additional step is to plot every path of individual ensemble members, see
also [7]. This leads to figure 3. For clarity, the figure also shows mean and median
in bold lines. It becomes apparent that we do not gain much by plotting every path.
To the contrary, the information becomes less clear because the paths overlap. All
we can see is that the distribution is dense in the middle and less dense to its borders.
We might therefore visually conclude that the distribution is unimodal — a possibly
dangerous conclusion as we will see later on. The approach of plotting every ensem-
ble member does not scale well. It becomes unwieldy when the ensemble includes
several hundred members. The figure is, e.g., a plot of 190 individual paths.
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3 Prototypical Visualization Environment with Heatmaps

The question arises: how can we present the forecast information to a decision
maker in an intuitive way but still exploit all distribution information? We propose a
heatmap style visualization. A heatmap allows to differentiate between more active
and less active regions of the forecast space by color coding, see figure 4. We obtain
the color values as follows:

e At every timestep compute the maximum of ensemble members within an (ad-
justable) e-environment.

e Optionally divide the number of ensemble members within an €-environment by
the maximum for the specific timestep.

e Assign the color red to a ratio of 1 (the maximum) and light blue to a ratio of
almost 0.

e Values with no ensemble members at all in the given £-environment are color
coded in white.

Therefore, red regions indicate regions of high activity according to the forecast. For
clarity, figure 4 also shows mean, median, maximum and minimum in thick lines.
We note that often, but not always, the mean coincides with red regions. However,
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we also note that approximately from day 5 to day 15 the red region splits into
several paths and becomes quite large. This becomes especially clear in a smoothed
version of the heatmap, see figure 5. The conclusion is that according to the forecast
the mean does not represent the distribution well at all, because (especially for days
6 to 8) the distribution is bimodal or multi modal. This significantly changes the
interpretation of the decision maker. Looking only at figures 1-3 it was apparent
that the forecast for days 6 to 8 is a slight downtrend. Looking at the heatmap we
see that the correct answer actually is: the model doesn’t know! This is a warning to
the decision maker. On the other hand, during the last few forecast days (days 16-
20) the uncertainty becomes smaller and the model clearly forecasts a downtrend.
Remember, that we are not dealing with realized forecast accuracy. We are just
exploiting the forecast information a priori.

We implement heatmap style visualization in a prototype, see the screenshot in
figure 6. For plotting the open source software Gnuplot (version 4.2 patchlevel 6) is
used. The right part of the program window controls several plot parameters. Espe-
cially, vertical and horizontal plot resolution can be configured. Higher parameters
produce smoother heatmaps, see 4 and 5 for two extremes. The screenshot 6 shows
an intermediate setting. At first sight no additional information seems to be gained
by interpolating between different forecast steps. However, the smoothed result al-
lows to follow intersecting paths. See, for example, the split path from timestep
8 to 9 in figures 4 and 5. Another important parameter is the class radius divider
which allows to set the width of the mentionned e-environment. Finally, different
checkboxes allow the plot additional information, like extrema, percentiles, etc.
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Fig. 4 Heatmap style forecast visualization.
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Fig. 5 Smoothed heatmap.

4 Conclusions and Outlook

This paper presents a visualization approach for distributional forecasts. Individ-
ual distributional forecasts often arise in the context of neural network ensembles.
However, the same visualization style could be useful for other forecasts. We see,
that mean and median do not necessarily confer the right information because the
distribution may split. This makes mean and median bad representatives. We also
see, that forecast uncertainty does not uniformly increase with future timesteps. A
split distribution may actually become unimodal again.

An apparent alternative to heatmap style visualization would be a three dimen-
sional plot. This would replace the color coded information by height information.
However, the disadvantage of three dimensional plots is that often parts of the plot
may hide other parts. Generally, getting adequate information out of a three dimen-
sional plot is more difficult. Heatmap style visualization provides a good compro-
mise between information density and visual interpretability.

The paper only focuses on visual representation. It would be interesting to ana-
lyze, if we could also quantify the advantage of better using the forecast informa-
tion. This involves, e.g., identifying peaks of the distribution and benchmarking a
tri-state model forecast (increases, decreases, don’t know) against the realization.
Other means of better quantifying the forecast information can, of course, be de-
vised.
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Fig. 6 Screenshot of the prototypical visualization environment (alternative heatmap style).
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2 Causal-Retro-Causal Recurrent Neural Networks

2.1 Causal Recurrent Neural Networks

To derive the CRCNN, we let us first introduce causal RNN for closed dynamical
systems, a NN for modeling the dynamics of observables Y; in a causal formu-
lation [ZGTJ10]. We formulate the RNN as a state space model in discrete time
T that describes the observables Y; by using a state transition and output equa-
tion [ZGTJ10]:

state transition s; = f(s;—1) = tanh(As;_1), so (1)
output equation Y; = g(s;) = [Id,0]s; (2)
! 2
system identification Error = Z (YT — YTd ) — HEH 3)
T=t—m

The time-recurring state transition equation s; = f(s;_1) describes the current state
st solely dependent on the previous system state s;_j. The observables Y; are de-
rived from the state s; using the output equation g. Without loss of generality
we can approximate the functions f and g of the state space model with a NN,
i. e. tanh(As;_) and [Id,0]s; [SZ06,ZGNO02].

We use the technique of finite unfolding in time to transform the temporal equa-
tions into a spatial architecture. The RNN is unfolded across the entire time path,
i. e. we learn the unique history of the system. Fig. 1 depicts the resulting RNN. The

‘rﬂ "r+’ ::,:"H?
f(f 0] [1d 0] [1d.0] er 0] [1d.0] |[{d.0] [f(fO [1d.0] ‘ [1d 0] | [1d 0]

Fig. 1 Architecture of the Causal Recurrent Neural Network

RNN is trained using error back propagation through time (BPTT) [Wer74] together
with an architecture based formulation of teacher forcing (TF) [ZGTJ10].

We applied the causal RNN to forecast prices of energy and copper futures traded
on the European Energy Exchange (EEX) and the London Metal Exchange (LME)
over 20 days. Fig. 2 compares the RNN forecasts with the actual prices for two
forecast horizons in sequence.

As depicted in Fig. 2 the causal RNN gives a fairly good forecast of the EEX
(LME) market dynamics in case of the first (second) forecast horizon, while it fails
in case of the second (first) time horizon. Now the question arises, how we can
improve the forecasting accuracy of the causal RNN.
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Fig. 2 Forecasting EEX and LME future contracts over 20 days with causal RNNs

2.2 Retro-Causal Recurrent Neural Networks

Causal models might fail due to the impact of utility maximization, which implies an
information flow from the future backwards to make an optimal decision at present
time. Thus we formulate a model with a retro-causal information flow:

state transition s, = tanh(A’s, ), s7 4)
output equation Y; = [Id,0]s’;, 5)

In the RCNN the internal state s, depends on s, +1- The observables Y; are part of
s’ The final state s/, and the transition matrix A’ are trained such that the historical

system behavior is described. Fig. 3 depicts the architecture of the RCNN.

GICICICICICION R E Rt
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Fig. 3 Architecture of the Retro-Causal Recurrent Neural Network (RCNN)

Likewise to the causal RNN, the RCNN in Fig. 3 is also trained using the BPTT
algorithm and an architecture based formulation of TF [ZGTJ10]. We applied the
RCNN model on the same time periods as the causal RNN (Fig. 4).

In cases the causal RNN fails, the RCNN is able to give an accurate forecast and
vice versa. However, ex ante we do not if we are in a causal or retro-causal regime.
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Fig. 4 Forecasting EEX and LME future contracts over 20 days with RCNNs

2.3 Causal-Retro-Causal Recurrent Neural Networks

Causal-retro-causal neural networks (CRCNN) combine a causal and a retro-causal
information flow in an integrated NN model given by

causal state transition s; = tanh(As;_1), so (6)
retro-causal state transition s, = tanh(A's, |), s7 @)
output equation Y; = [Id,0]s; + [Id,0]s. (8)

The dynamics Y; is explained in the CRCNN by a sequence of causal s; and retro-
causal states s using a transition matrices A and A’ for the causal and retro-causal
information flow (Eq. 6 and Eq. 7). Fig. 5 depicts the architecture of the CRCNN.

(d01 |[1d01 |[1d,0] |[7d,0] 7,01 |(7d.01 |[Fd, 0] [Id,()] [M,O] [Id,O]

[1d.0] ([1d.O] |[id,0] |[1d,0] |[/d.0] [Id[]] [MO] [IdO] [Id[)] [MD]
cleleielzielzlo

Fig. 5 Architecture of the Causal-Retro-Causal Recurrent Neural Network (CRCNN)

To train the CRCNN we use a combined teacher forcing approach on both
branches, resulting in an extended CRCNN architecture (Fig. 6).
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Fig. 6 Extended CRCNN incorporating a Teacher Forcing (TF) mechanism

The causal as well as the retro-causal branch have to explain only the incomplete-
ness of the opposite side. Thus, we have a moving target problem, where the TF has
to take into account the behavior of the opposite side. If the error approaches zero,
TF is inactive and thus, the extended architecture converges to the original CRCNN
(Fig. 5). The advantage of extended CRCNN (Fig. 6) is that it allows a fully dy-
namical superposition of the causal and retro-causal information flows. We have to
state that the numerical solution is difficult, because the extended CRCNN contains
many closed loops. Mathematically this means to identify a dynamical system on a
manifold, where we have to find the dynamics and the manifold in parallel.

Fig. 7 depicts the application of the CRCNN to the two consecutive time periods.
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Fig. 7 Forecasting EEX and LME future contracts over 20 days with CRCNN5s

The combination of the causal and retro-causal information flow within an in-
tegrated NN is able to give an accurate prediction for the future contracts under
consideration. Remarkably, the CRCNN is able to detect beforehand if the market
is in an causal or retro-causal regime as well as a mixture thereof, since the causal
and retro-causal information flows are dynamically combined.
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When parameterizing the adapted MNS procedure, we found a contrary behavior
between the two objectives minimization of delay and minimization of empty travel
time. If more relative weight is put on one of both objective criteria, this produces
the desired improvement; however, simultaneously the solution quality of the other
objective decreases by nearly the same magnitude.
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Fig. 1 Pareto curves for different simulation speeds

Figure 1 illustrates this finding: The black square indicates the benchmark value
in terms of delay (x-axis) and empty travel time (y-axis). The triangles show the
results of different penalty cost parameter settings and different simulation speeds.
For a simulation speed of s = 5 (black triangles), it can be observed that cost param-
eters (30,10) and (20,5) result in reduced delay, while the cost parameters (40,8),
(30,5) and (40,5) result in a reduced empty travel time. However, there is no black
triangle solution that reaches the preferred area with simultaneous improvement of
both objective criteria. The preferred area is only achieved with a simulation speed
of s = 1 (real-time simulation, grey triangles).

It is interesting to observe the general impact of simulation speed on overall solu-
tion quality: The slower the simulation is run, the better the solution quality. This
finding can be exemplarily investigated for cost parameter (40,8): From simulation
speed s = 120 (blank triangles) to simulation speed s = 5 (black triangles) empty
travel time is reduced by 5.1% and delay is reduced by 23.4%. From s = 5 (black
triangles) to s = 1 (grey triangles) empty travel time and delay are reduced by an
additional 2.2% and 6.6%, respectively. This finding is due to the MNS procedure’s
improvement framework: additional time is efficiently used to perform extra calcu-
lations resulting in an improved overall solution quality.
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Figure 2 shows a typical planning result generated by the adapted MNS procedure.
Such type of graphical illustrations were used to discuss and verify the planning
results with the cooperating freight forwarding company. The first loaded trip di-
rects the vehicle from Reutlingen (Germany) at point A, to Miskolc (Hungary) at
point B. Afterwards, the vehicle has to perform an empty trip from Miskolc (Hun-
gary) at point B to Mosonszolnok (Hungary) at point C. Here, the vehicle gets its
second loaded trip from Mosonszolnok (Hungary) at point C, to Vienna (Austria)
at point D. In Vienna (Austria) at point D, the third loaded trip is directly available:
Vienna (Austria) at point D, to Mannheim (Germany) at point E. And so on...
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Fig. 2 Exemplary five-week vehicle tour — geographical illustration

Due to the contrary objectives, it is not possible to report one best result. Instead,
the best results of three penalty cost combinations are presented in Figure 3:

For penalty cost combination (40,8) empty travel time is reduced by 3.9% and de-
lay by 6.0%. More relative weight is put on the reduction of empty travel time with
penalty cost combination (30,5): Consequently, a reduction of 7.3% in empty travel
time is now achieved. However, the reduction in delay decreases to only 1.7%. The
highest reduction of empty travel time is achieved with penalty cost combination
(40,5): 11.9%. However, at the same time, delay increases by 16.6%.

Our cooperating freight forwarding company chose the results of penalty cost com-
bination (30,5) as their “preferred ones”.
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Fig. 1 Distance vs. game theoretical prices

tance and our game theoretical prices. Obviously, it is impossible to consider all of
the 28° — 1 coalitions. The best thing that we can do is to sample and create a pool
of some “essential coalitions” among them. Based on this pool one can show graph-
ically a representative comparison between the two price vectors. The picture on the
left side represents the relative profits of 7084 essential coalitions in the pool with
the two price vectors, while the picture on the right side is just a zoom of the first
one. They show that our prices for all of the 100 coalitions which have the worst
relative profit with the distance price vector increase significantly. Many of them
have even a relative profit of more than 10% with our prices. This example shows
clearly that using our game theoretical approach one can come up with price sys-
tems that constitute a good compromise between fairness and enforceability and are
better (fairer) than the ad-hoc allocations.
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