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Abstract We consider the optimization problem of dividends and risk exposures of
a firm in the diffusion model with linear costs. The variational inequality associated
with this problem is given by the nonlinear form of elliptic type. Using the viscos-
ity solutions technique, we solve the corresponding penalty equation and show the
existence of a classical solution to the variational inequality. The optimal policy of
dividend payment and risk exposure is shown to exist.

1 Introduction

We consider the optimal dividend and risk control problem of a firm in the diffusion
model with linear costs. Let Rt be the risk process refered to the reserve of the firm at
time t ≥ 0. The risk process evolves according to the stochastic differential equation:

dRt = μdt +σdBt, R0 = x > 0,

on a complete probability space (Ω ,F ,P), carrying a one-dimensional standard
Brownian motion {Bt}, endowed with the natural filtration Ft generated by σ(Bs,s≤
t) for t ≥ 0, where μ > 0 denotes the profit per unit time and σ �= 0 is a diffusion
coefficient.

A control policy (a,L) is described by a pair of the risk exposure a = {at} and
the flow L = {Lt} of dividend payments. The portion 1−at of the reserve is paid for
reinsurance and Lt denotes the total amount of dividend paid out up to time t. The
policy (a,L) is said to be admissible if {at} is an {Ft}-progressively measurable
process such that

0 ≤ at ≤ 1, t ≥ 0,

and {Lt} is a nonnegative, nondecreasing, continuous {Ft}-adapted process with
x−L0 > 0. We respectively denote by A and L the class of all admissible risk ex-
posures a and dividends L. Given (a,L) ∈ A ×L , the dynamics of the risk process
{Rt} is given by
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dRt = at(μdt +σdBt)−νRtdt −dLt , R0 = x−L0 > 0, (1)

where νx represents the linear cost function of the reserve x or the debt payment for
ν ≥ 0.

The objective is to find an optimal policy (a∗,L∗) = {(a∗t ,L∗
t )} so as to maximize

the expected present value of dividends up to bankruptcy:

J(a,L) = E
[∫ ϑ

0
e−αtdLt

]
, (2)

over all (a,L) ∈ A ×L , where ϑ = ϑ(R) := inf{t ≥ 0 : Rt = 0} and α > 0 is a
discount factor. In case of ν = 0, this problem has been studied by Højgaard and
Taksar [4] and Taksar [7]. We refer to Morimoto [5, 6] for the viscosity solutions
technique in the stochastic optimization problem.

Our approach consists in finding a classical solution v of the following variational
inequality associated with the problem:

v′(x) ≥ 1, x > 0, (3)

−αv + max
0≤a≤1

(
1
2

a2σ2v′′ + aμv′)−νxv′ ≤ 0, x > 0, (4)

{−αv + max
0≤a≤1

(
1
2

a2σ2v′′ + aμv′)−νxv′}(v′ −1)+ = 0, x > 0, (5)

v(0) = 0. (6)

In order to solve the variational inequality (3) - (6), we study the penalty equation
of the form:

−αu +
1
2
ε2x2u′′ +M u−νxu′+

1
ε
(u′ −1)− = 0, x > 0, (7)

u(0) = 0, (8)

where M u = max0≤a≤1( 1
2 a2σ2u′′ + aμu′) and ε ∈ (0,1). We show the existence

of a solution u ∈ C2(0,∞)∩C[0,∞) to the penalty equation (7), (8). By using the
penalization method, we prove the convergence of u to a concave viscosity solution
v ∈ C2(0,∞)∩C[0,∞) of (3) - (6) as ε → 0. Furthermore, we present the optimal
policy (a∗,L∗) with the reflecting barrier at the free boundary x∗ for v.

2 The penalized problem

For each (a,c) ∈ C ×C , there exists a unique nonnegative solution {Xt} of

dXt = 1{t≤ϑ (X)}{at(μdt +σdBt)+ εXtdB̄t −νXtdt − ct

ε
dt}, X0 = x ≥ 0, (9)
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where {B̄t} is a Brownian motion, mutually independent of {Bt}, and C denotes the
class A for {(Bt , B̄t)}. Since (u′ − 1)− = max0≤c≤1(1− u′)c, we observe that the
penalty equation (7) is the Hamilton-Jacobi-Bellman equation associated with the
maximization problem:

u(x) := sup
(a,c)∈C×C

E
[∫ θ

0
e−αt ct

ε
dt
]
, (10)

subject to (9), where θ := ϑ(X) and the supremum is taken over all systems
(Ω ,F ,P,{Ft};{(Bt , B̄t)},{at},{ct}).
Lemma 1. There exists a concave supersolution f ∈C1(0,∞)∩C2((0,∞)\{m}) of
(7), (8), independent of ε , for some m > 0.

Proof. Define

f (x) =
{

k(x), x ≤ m,
x−m+ k(m), x ≥ m,

where k(x) = Kxλ and m = σ2(1−λ )/μ . For a suitable choice of 0 < λ < 1 < K,
we see that f is a supersolution, i.e.,

−α f +
1
2
ε2x2 f ′′ +M f −νx f ′ +

1
ε
( f ′ −1)− ≤ 0, x > 0, x �= m.

Theorem 1. We have

0 ≤ u(x) ≤ f (x), x ≥ 0,

|u(x)−u(y)| ≤ f (|x− y|), x,y ≥ 0.

Proof. By (9) and (10), we see θ ≥ ϑ(Y ) and u(x) ≥ u(y) if x ≥ y. Applying the
generalized Ito formula for convex functions to f , we can show the assertions.

Definition 1. Let ζ ∈ C[0,∞) satisfy (8). Then ζ is called a viscosity subsolution
(resp., supersolution) of (7), (8) if, whenever for φ ∈ C2, ζ − φ attains its local
maximum (resp., minimum) at z > 0, then

−αζ +
1
2
ε2x2φ ′′ +M φ −νxφ ′ +

1
ε
(φ ′ −1)−

∣∣∣
x=z

≥ 0 (resp.,≤ 0).

We call ζ a viscosity solution of (7), (8) if it is both a viscosity sub- and supersolu-
tion of (7), (8).

Theorem 2. u is a viscosity solution of (7), (8).

Proof. By Theorem 1, we can see that the dynamic programming principle holds
for u. Therefore, we obtain the viscosity property of u.

Theorem 3. We have
u ∈C2(0,∞)∩C[0,∞).
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Proof. For any 0 < p < q, we consider the boundary value problem:

−αw+
1
2
ε2x2w′′ +M w−νxw′+

1
ε
(w′ −1)− = 0, x ∈ (p,q),

w(p) = u(p), w(q) = u(q). (11)

By uniformly ellipticity, the theory of fully nonlinear elliptic equations [3] yields
that there exists a unique solution w ∈C2(p,q)∩C[p,q] of (11). By the uniqueness
result on viscosity solutions, we have w = u and u is smooth.

Theorem 4. u is concave on [0,∞).

3 Variational inequalities

3.1 Viscosity solutions

Definition 2. Let ζ ∈ C[0,∞) satisfy (6). Then ζ is called a viscosity solution of
(3) - (6), if the following assertions are satisfied:

(a) For any φ ∈C2(0,∞) and any local minimum point z̄ > 0 of ζ −φ ,

φ ′(z̄) ≥ 1, −αζ +M φ −νxφ ′
∣∣∣
x=z̄

≤ 0,

(b) For any φ ∈C2(0,∞) and any local maximum point z > 0 of ζ −φ ,

{−αζ +M φ −νxφ ′}(φ ′ −1)+
∣∣∣
x=z

≥ 0.

Theorem 5. There exists a subsequence {uεn} such that

uεn → v ∈C[0,∞) locally uniformly in (0,∞) as εn → 0. (12)

Furthermore, v is a viscosity solution of (3) - (6).

Proof. Let 0 < p < q be arbitrary. By concavity and Theorem 1, we get

0 ≤ u′ε(x)x ≤ uε(x)−uε(0) ≤ ‖ f‖C[p,q], x ∈ [p,q].

Hence
sup
ε
‖u′ε‖C[p,q] < ∞. (13)

Thus, by the Ascoli-Arzelà theorem, there exists a subsequence {uεn} satisfying
(12). By Theorem 2, passing to the limit, we obtain the viscosity property of v.

3.2 Regularity and the free boundary

Theorem 6. We have
u′εn

(x) ≥ 1 for x > 0.
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Proof. By Theorems 4 and 5, we note that v is concave and twice differentiable
almost everywhere. We recall that ∂v(q) = {v′(q)} at a differentiable point q > 0 of
v. Then, by the viscosity property of v, we have the assertion.

Now, let An(x) denote the maximizer of max0≤a≤1( 1
2 a2σ2u′′εn

+ aμu′εn
), i.e.,

An(x) = G(Mn(x)), Mn(x) = −μu′εn
/σ2u′′εn

,

where

G(x) =
{

x if 0 ≤ x ≤ 1,
1 if 1 < x.

Lemma 2. For any 0 < p < q, we have

Mn(x) ≥ (2α p/μ)∧1, x ∈ [p,q], (14)

sup
n

sup{|An(x)−An(y)|/|x− y| : x,y ∈ [p,q],x �= y} < ∞. (15)

Proof. By (7), concavity and Theorem 6, we have

αuεn +νxu′εn
=

1
2
ε2

n x2u′′εn
+ max

0≤a≤1
(

1
2

a2σ2u′′εn
+ aμu′εn

) ≤ μ
2

u′εn
Mn(x).

By concavity, xu′εn
≤ uεn . Thus we get αx ≤ (μ/2)Mn(x), which implies (14).

Next, let An(x) = Mn(x) on (p1,q1) ⊂ [p,q]. By (14) and (13), we get

0 ≤ sup
x∈[p1,q1]

−σ2u′′εn
(x) < ∞, sup

n
‖A′

n‖C[p1,q1] < ∞,

which implies (15).

Theorem 7. We have

v ∈C2(0,∞), v′ ≥ 1 on (0,∞).

Proof. For any 0 < p < q, we set (p̄, q̄) = (p/2,q + p/2). Consider the boundary
value problem:

1
2
ε2

n x2ζ ′′ +
1
2

An(x)2σ2ζ ′′ +{An(x)μ−νx}ζ ′ = αuεn , x ∈ (p̄, q̄), (16)

ζ (p̄) = uεn(p̄), ζ (q̄) = uεn(q̄).

By Theorems 3 and 6, we see that uεn solves (16). By Lemma 2 and the interior
Schauder estimates for (16), we have supn ‖uεn‖C2,γ [p,q] <∞,0 < γ < 1, which com-
pletes the proof. We remark that v is a classical solution of (3) - (6).

Theorem 8. There exists the free boundary x∗ ∈ (0,∞) for v, which fulfills

x∗ = sup{x > 0 : v′(x) > 1}.

Proof. By the contradiction arguments, we can see that {·} is non-empty and x∗ <∞.
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4 Optimal policies

Consider the SDE with reflecting barrier conditions for the free boundary x∗:

dR∗
t = Ā(R∗

t )(μdt +σdBt)−νR∗
t dt −dL∗

t , R∗
0 = x, (17)

L∗
t =

∫ t

0
1{R∗

s =x∗}dL∗
s , (18)

L∗
t is continous and nondecreasing, (19)

R∗
t ≤ x∗, t ≥ 0, (20)∫ t

0
1{R∗

s =x∗}ds = 0, t ≥ 0, (21)

where Ā(x) is the continuous extension of A(x) := G(−μv′/σ2v′′) for x > 0 and
Ā(x) = 0 for x ≤ 0.

Lemma 3. We have lim
x→0+

A(x) = 0 and Ā is Lipschitz on (−∞,x∗].

Theorem 9. We assume 0 < x ≤ x∗. Then the optimal policy (a∗,L∗) for (2) subject
to (1) is given by a∗t = Ā(R∗

t ) and {L∗
t } of (17) - (21).

Proof. According to [1], by Lemma 3, there exists a unique solution {(R∗
t ,L

∗
t )} of

(17) - (21). Applying Ito’s formula to (3) - (6), we can obtain the optimality.

5 Conclusion
The optimal policy with the reflecting barrier at the free boundary is shown to exist.
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