Optimal dividend and risk control in diffusion
models with linear costs™

Hiroaki Morimoto

Abstract We consider the optimization problem of dividends and risk exposures of
a firm in the diffusion model with linear costs. The variational inequality associated
with this problem is given by the nonlinear form of elliptic type. Using the viscos-
ity solutions technique, we solve the corresponding penalty equation and show the
existence of a classical solution to the variational inequality. The optimal policy of
dividend payment and risk exposure is shown to exist.

1 Introduction

We consider the optimal dividend and risk control problem of a firm in the diffusion
model with linear costs. Let R; be the risk process refered to the reserve of the firm at
time ¢ > 0. The risk process evolves according to the stochastic differential equation:

th:udt+6dBt7 R0:x>0,

on a complete probability space (Q,.%,P), carrying a one-dimensional standard
Brownian motion { B, }, endowed with the natural filtration .% generated by 6 (Bs,s <
t) for t > 0, where u > 0 denotes the profit per unit time and ¢ # 0 is a diffusion
coefficient.

A control policy (a,L) is described by a pair of the risk exposure a = {4, } and
the flow L = {L,} of dividend payments. The portion 1 —q, of the reserve is paid for
reinsurance and L; denotes the total amount of dividend paid out up to time ¢. The
policy (a,L) is said to be admissible if {a,} is an {.% }-progressively measurable
process such that

0<a, <1, t>0,

and {L} is a nonnegative, nondecreasing, continuous {.%; }-adapted process with
x— Lo > 0. We respectively denote by <7 and .Z the class of all admissible risk ex-
posures a and dividends L. Given (a,L) € o/ x £, the dynamics of the risk process
{R;} is given by
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th Za,(‘udt—i—GdB,)—vR,dt—dL;, R():.X_LO >O7 (1)

where vx represents the linear cost function of the reserve x or the debt payment for
v >0.

The objective is to find an optimal policy (a*,L*) = {(a},L;)} so as to maximize
the expected present value of dividends up to bankruptcy:

J(a,L) :E[/ﬁ

e~dL,], )
0

over all (a,L) € & x .Z, where 9 = O(R) :=inf{t >0: R, =0} and ¢ >0 is a
discount factor. In case of v = 0, this problem has been studied by Hgjgaard and
Taksar [4] and Taksar [7]. We refer to Morimoto [5, 6] for the viscosity solutions
technique in the stochastic optimization problem.

Our approach consists in finding a classical solution v of the following variational
inequality associated with the problem:

V{x)>1, x>0, 3)
1
—ov+ Olilaicl(zazo'zv" +aw)—vn/' <0, x>0, %)
<a<
1
{—av+ Orgai(l(zazdzv" +aw) v}V -1)" =0, x>0, 5)
<a<
¥(0) = 0. 6)

In order to solve the variational inequality (3) - (6), we study the penalty equation

of the form:
1 2.2.1 ! 1 ! - _

—au—O—Eexu +///u—qu—|—E(u—1) =0, x>0, @)

u(0) =0, ®)

where .#/u = maxo<,<1(3a*0?u” + apu’) and € € (0,1). We show the existence

of a solution u € C?(0,5) N C[0,0) to the penalty equation (7), (8). By using the

penalization method, we prove the convergence of u to a concave viscosity solution

v € C%(0,00) N C[0,0) of (3) - (6) as € — 0. Furthermore, we present the optimal
policy (a*,L*) with the reflecting barrier at the free boundary x* for v.

2 The penalized problem

For each (a,c) € € x €, there exists a unique nonnegative solution {X; } of

dX[ = 1{,§19(X)}{a,(udt + GdBt) + SXtdB[ — VXtdt — %dt}, X() =X Z O7 (9)
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where {B,} is a Brownian motion, mutually independent of {B, }, and ¢ denotes the
class o7 for {(B;,B;)}. Since (u' — 1)~ = maxp<.<1(1 —u)c, we observe that the
penalty equation (7) is the Hamilton-Jacobi-Bellman equation associated with the
maximization problem:

6 ¢
w(x):=  sup E{/ e—“’—dt}, (10)
(a,0)eExE 0 €

subject to (9), where 0 := ¥(X) and the supremum is taken over all systems

(Q, 7 ,PAF:}:{(Bi,B)} {ar}, {ei}).

Lemma 1. There exists a concave supersolution f € C'(0,00) NC?((0,00) \ {m}) of
(7), (8), independent of €, for some m > 0.

Proof. Define ®
k(x), x<m,

flx) = {x—m+k(m), x>m,
where k(x) = Kx* and m = 6>(1 — 1) /. For a suitable choice of 0 < A < 1 <K,
we see that f is a supersolution, i.e.,

1 1
—af+§e2x2f”+///f—v;cf’+E(f’—1)* <0, x>0,x#m.

Theorem 1. We have

0<u(x) < fx), x=0,

u(x) —u()[ < f(lx=y[), xy=0.

Proof. By (9) and (10), we see 6 > ¥(Y) and u(x) > u(y) if x > y. Applying the
generalized Ito formula for convex functions to f, we can show the assertions.

Definition 1. Let { € C|[0, o) satisfy (8). Then { is called a viscosity subsolution
(resp., supersolution) of (7), (8) if, whenever for ¢ € C, { — ¢ attains its local
maximum (resp., minimum) at z > 0, then

—al+ %szzd)"—k///d) —vx¢' + %(q)' —-1)7| >0 (resp.,<0).

X=Z

We call  a viscosity solution of (7), (8) if it is both a viscosity sub- and supersolu-
tion of (7), (8).

Theorem 2. u is a viscosity solution of (7), (8).

Proof. By Theorem 1, we can see that the dynamic programming principle holds
for u. Therefore, we obtain the viscosity property of u.

Theorem 3. We have
u € C2(0,00) NCJ0, o).
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Proof. For any 0 < p < g, we consider the boundary value problem:

1 1
—ow+ Eszxzw"—k///w— vaw' + E(w’— 1)"=0, x€(p,q),

w(p) =u(p), wlq)=u(q). (1)

By uniformly ellipticity, the theory of fully nonlinear elliptic equations [3] yields
that there exists a unique solution w € C?(p,q) NC[p,q] of (11). By the uniqueness
result on viscosity solutions, we have w = u and u is smooth.

Theorem 4. u is concave on [0, ).

3 Variational inequalities

3.1 Viscosity solutions

Definition 2. Let { € C[0,) satisfy (6). Then { is called a viscosity solution of
(3) - (6), if the following assertions are satisfied:

(a) Forany ¢ € C*(0,c) and any local minimum point Z > 0 of { — ¢,
0'zZ) =1, —al+.#9—vx¢'| <0,
74

x=

(b) Forany ¢ € C%(0,0) and any local maximum point z > 0 of { — ¢,

(ol .9 —vx'}(¢'~1)*| _>o.

Theorem 5. There exists a subsequence {us, } such that

ug, — v €C[0,) locally uniformly in (0,e) as &, — 0. (12)

n

Furthermore, v is a viscosity solution of (3) - (6).

Proof. Let 0 < p < g be arbitrary. By concavity and Theorem 1, we get

0 <t (0)x < e (x) — ue(0) < [ flleppgy  x € [pogl-

Hence
sgpllu’gnqp,q] < oo, (13)

Thus, by the Ascoli-Arzela theorem, there exists a subsequence {ug,} satisfying
(12). By Theorem 2, passing to the limit, we obtain the viscosity property of v.

3.2 Regularity and the free boundary

Theorem 6. We have
g (x) >1 for x>0.
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Proof. By Theorems 4 and 5, we note that v is concave and twice differentiable
almost everywhere. We recall that dv(q) = {V/(¢)} at a differentiable point ¢ > 0 of

v. Then, by the viscosity property of v, we have the assertion.

Now, let A, (x) denote the maximizer of maxo<,<;(3a>0%u} +apul ), ie.,

An(x) = G(My(x)), My(x) = _“”2,1/62”//

&’

where

x if 0<x<1,
G(")_{l if 1<x.

Lemma 2. For any 0 < p < g, we have

My(x) > 2ap/u) A1, x€[p,q], (14)
sgpsup{lAn(X) — AW/ Ix =yl x,y € [p.gl,x F# y} <o (15)

Proof. By (7), concavity and Theorem 6, we have

1 1 u
I 2.2.1 2.2 1 / /
Quitg, + VXl = = €, X U, —0—013512(1(561 O U +apug ) < EugnMn(x).

By concavity, xug, < ug,. Thus we get otx < (u/2)M,(x), which implies (14).
Next, let A, (x) = M, (x) on (p1,91) C [p,q]. By (14) and (13), we get

0< sup —o%ug (x) <eo,  sup[[Ayllcrp, g <>
x€lp1.q1] "

which implies (15).
Theorem 7. We have
vECH0,0), VvV >1 on (0,%).
Proof. For any 0 < p < ¢, we set (p,q) = (p/2,q+ p/2). Consider the boundary
value problem:
%83}62@’" + %An(x)zczcﬂ +{A (U —vx}l' = ome,, x€(p,q), (16)
C(p) = ue,(p), C(q) = ue,(q)-

By Theorems 3 and 6, we see that ug, solves (16). By Lemma 2 and the interior
Schauder estimates for (16), we have sup,, [[ue, [|c2.1(, 4 < 2,0 < ¥ < 1, which com-
pletes the proof. We remark that v is a classical solution of (3) - (6).

Theorem 8. There exists the free boundary x* € (0,e0) for v, which fulfills
¥ =sup{x>0:v(x) > 1}.

Proof. By the contradiction arguments, we can see that {-} is non-empty and x* < eo.
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4 Optimal policies

Consider the SDE with reflecting barrier conditions for the free boundary x*:

dR; = A(R})(udt + odB;) — VR dt —dL;, Rj=x, 17)
L;‘:/(:I{Rj:x*}dL;‘, (18)
L] is continous and nondecreasing, (19)
R <x*, t>0, (20)
/(:1{R§:x*}ds=o, >0, @1)

where A(x) is the continuous extension of A(x) := G(—uv' /o) for x > 0 and

A(x) =0forx <0.

Lemma 3. We have lim A(x) =0 and A is Lipschitz on (—eo,x*].

x—0+

Theorem 9. We assume 0 < x < x*. Then the optimal policy (a*,L*) for (2) subject
to (1) is given by a’ = A(R}) and {L;}} of (17) - (21).

Proof. According to [1], by Lemma 3, there exists a unique solution {(R},L;)} of
(17) - (21). Applying Ito’s formula to (3) - (6), we can obtain the optimality.

5 Conclusion

The optimal policy with the reflecting barrier at the free boundary is shown to exist.
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