
Chapter 2
Unramified Sheaves and Strongly
A

1-Invariant Sheaves

2.1 Unramified Sheaves of Sets

We let ˜Smk denote the category of smooth k-schemes and whose morphisms
are the smooth morphisms. We start with the following standard definition.

Definition 2.1. An unramified presheaf of sets S on Smk (resp. on S̃mk)
is a presheaf of sets S such that the following holds:

(0) For any X ∈ Smk with irreducible components Xα’s, α ∈ X(0), the
obvious map S(X) → Πα∈X(0)S(Xα) is a bijection.

(1) For any X ∈ Smk and any open subscheme U ⊂ X the restriction map
S(X) → S(U) is injective if U is everywhere dense in X ;

(2) For any X ∈ Smk, irreducible with function field F , the injective
map S(X) ↪→ ⋂

x∈X(1) S(OX,x) is a bijection (the intersection being
computed in S(F )).

Remark 2.2. An unramified presheaf S (either on Smk or on S̃mk) is
automatically a sheaf of sets in the Zariski topology. This follows from (2).
We also observe that with our convention, for S an unramified presheaf, the
formula in (2) also holds for X essentially smooth over k and irreducible with
function field F . We will use these facts freely in the sequel. ��
Example 2.3. It was observed in [52] that any strictly A

1-invariant sheaf
on Smk is unramified in this sense. The A

1-invariant sheaves with transfers
of [79] as well as the cycle modules1 of Rost [68] give such unramified sheaves.
In characteristic �= 2 the sheaf associated to the presheaf of Witt groups
X �→ W (X) is unramified by [63] (the sheaf associated in the Zariski topology
is in fact already a sheaf in the Nisnevich topology). ��

1These two notions are indeed closely related by [21].
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16 2 Unramified Sheaves and Strongly A1-Invariant Sheaves

Remark 2.4. Let S be a sheaf of sets in the Zariski topology on Smk (resp.
on S̃mk) satisfying properties (0) and (1) of the previous definition. Then
it is unramified if and only if, for any X ∈ Smk and any open subscheme
U ⊂ X the restriction map S(X) → S(U) is bijective if X −U is everywhere
of codimension ≥ 2 in X . We left the details to the reader. ��
Remark 2.5. Base change. Let S be a sheaf of sets on ˜Smk or Smk, let
K ∈ Fk be fixed and denote by π : Spec(K) → Spec(k) the structural
morphism. One may pull-back S to the sheaf S|K := π∗S on ˜SmK (or SmK

accordingly). One easily checks that the sections on a separable (finite type)
field extension F of K is nothing but S(F ) when F is viewed in Fk. If S is
unramified so is S|K : indeed π∗S is a sheaf and satisfies properties (0) and
(1). We prove (3) using the previous remark. ��

Our aim in this subsection is to give an explicit description of unramified
sheaves of sets both on S̃mk and on Smk in terms of their sections on fields
F ∈ Fk and some extra structure. As usual we will says that a functor
S : Fk → Set is continuous if S(F ) is the filtering colimit of the S(Fα)’s,
where the Fα run over the set of subfields of F of finite type over k.

We start with the simplest case, that is to say unramified sheaves of sets
on ˜Smk.

Definition 2.6. An unramified F̃k-datum consists of:

(D1) A continuous functor S : Fk → Set;
(D2) For any F ∈ Fk and any discrete valuation v on F , a subset

S(Ov) ⊂ S(F )

The previous data should satisfy the following axioms:

(A1) If i : E ⊂ F is a separable extension in Fk, and v is a discrete valuation
on F which restricts to a discrete valuation w on E with ramification
index 1 then S(i) maps S(Ow) into S(Ov) and moreover if the induced
extension i : κ(w) → κ(v) is an isomorphism, then the following square
of sets is cartesian:

S(Ow) → S(Ov)⋂ ⋂

S(E) → S(F )

(A2) Let X ∈ Smk be irreducible with function field F . If x ∈ S(F ), then
x lies in all but a finite number of S(Ox)’s, where x runs over the set
X(1) of points of codimension one.

Remark 2.7. The Axiom (A1) is equivalent to the fact that for any discrete
valuation v on F ∈ Fk with discrete valuation ring Ov, then the following
square in which Oh

v is the henselization and Fh the fraction field of Oh
v should

be cartesian:
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S(Ov) → S(Oh
v )⋂ ⋂

S(F ) → S(Fh)
��

We observe that an unramified sheaf of sets S on S̃mk defines in an obvious
way an unramified F̃k-datum. First, evaluation on the field extensions (of
finite transcendence degree) of k yields a functor:

S : Fk → Set , F �→ S(F )

For any discrete valuation v on F ∈ Fk, then S(Ov) is a subset of S(F ). We
now claim that these data satisfy the axioms (A1) and (A2) of unramified
F̃k-datum.

Axiom (A1) is easily checked by choosing convenient smooth models over
k for the essentially smooth k-schemes Spec(F ), Spec(Ov). To prove axiom
(A2) one observes that any x ∈ S(F ) comes, by definition, from an element
x ∈ S(U) for U ∈ Smk an open subscheme of X . Thus any α ∈ S(F ) lies
in all the S(Ox) for x ∈ X(1) lying in U . But there are only finitely many
x ∈ X(1) not lying in U .

This construction defines a “restriction” functor from the category of
unramified sheaves of sets on ˜Smk to that of unramified F̃k-data.

Proposition 2.8. The restriction functor from unramified sheaves on ˜Smk

to unramified F̃k-data is an equivalence of categories.

Proof. Given an unramified F̃k-datum S, and X ∈ Smk irreducible with
function field F , we define the subset S(X) ⊂ S(F ) as the intersection⋂

x∈X(1) S(Ox) ⊂ S(F ). We extend it in the obvious way forX not irreducible
so that property (0) is satisfied. Given a smooth morphism f : Y → X in Smk

we define a map: S(f) : S(X) → S(Y ) as follows. By property (0) we may
assume X and Y are irreducible with field of fractions E and F respectively
and f is dominant. The map S(f) is induced by the map S(E) → S(F )
corresponding to the fields extension E ⊂ F and the observation that if
x ∈ X(1) then f−1(x) is a finite set of points of codimension 1 in Y . We
check that it is a sheaf in the Nisnevich topology using Axiom (A1) and the
characterization of Nisnevich sheaves from [59]. It is unramified. Finally to
check that one has constructed the inverse to the restriction functor, one uses
axiom (A2). ��
Definition 2.9. An unramified Fk-datum S is an unramified F̃k-data
together with the following additional data:

(D3) For any F ∈ Fk and any discrete valuation v on F , a map sv : S(Ov) →
S(κ(v)), called the specialization map associated to v.

These data should satisfy furthermore the following axioms:
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(A3) (i) If i : E ⊂ F is an extension in Fk, and v is a discrete valuation on
F which restricts to a discrete valuation w on E, then S(i) maps
S(Ow) to S(Ov) and the following diagram is commutative:

S(Ow) → S(Ov)

↓ ↓
S(κ(w)) → S(κ(v))

(ii) If i : E ⊂ F is an extension in Fk, and v a discrete valuation on F
which restricts to 0 on E then the map S(i) : S(E) → S(F ) has its
image contained in S(Ov) and if we let j : E ⊂ κ(v) denotes the

induced fields extension, the composition S(E)→S(Ov)
sv→ S(κ(v))

is equal to S(j).
(A4) (i) For any X ∈ Sm′

k local of dimension 2 with closed point z ∈ X(2),
and for any point y0 ∈ X(1) with y0 ∈ Sm′

k, then sy0 : S(Oy0) →
S(κ(y0)) maps

⋂
y∈X(1) S(Oy) into S(Oy0,z) ⊂ S(κ(y0)).

(ii) The composition

⋂

y∈X(1)

S(Oy) → S(Oy0,z) → S(κ(z))

doesn’t depend on the choice of y0 such that y0 ∈ Sm′
k.

Remark 2.10. When we will construct unramified Milnor-Witt K-theory in
Sect. 3.2 below, the axiom (A4) will appear to be the most difficult to check.
In fact the Sect. 2.3 is devoted to develop some technic to check this axiom in
special cases. In Rost’s approach [68] this axiom follows from the construction
of the Rost’s complex for two-dimensional local smooth k-scheme. However
the construction of this complex (even for dimension 2 schemes) requires
transfers, which we don’t want to use at this point. ��

Now we claim that an unramified sheaf of sets S on Smk defines an
unramified Fk-datum. From what we have done before, we already have
in hand an unramified F̃k-datum S. Now, for any discrete valuation v on
F ∈ Fk with residue field κ(v), there is an obvious map sv : S(Ov) →
S(κ(v)), obtained by choosing smooth models over k for the closed immersion
Spec(κ(v)) → Spec(Ov). This defines the datum (D3). We now claim that
these data satisfy the previous axioms for unramified Fk-datum. Axiom (A3)
is checked by choosing convenient smooth models for Spec(F ), Spec(Ov)
and/or Spec(κ(v).

To check the axiom (A4) we use property (2) and the commutative square:

S(X) ⊂ S(Oy0)

↓ ↓
S(y0) = S(Oz) ⊂ S(κ(y0))
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The following now is the main result of this section:

Theorem 2.11. The functor just constructed from unramified sheaves of
sets on Smk to unramified Fk-data is an equivalence of categories.

The Theorem follows from the following more precise statement:

Lemma 2.12. Given an unramified Fk-datum S, there is a unique way
to extend the unramified sheaf of sets S : ( ˜Smk)

op → Set to a sheaf
S : (Smk)

op → Set, such that for any discrete valuation v on F ∈ Fk

with separable residue field, the map S(Ov) → S(κ(v)) induced by the sheaf
structure is the specialization map sv : S(Ov) → S(κ(v)). This sheaf is
automatically unramified.

Proof. We first define a restriction map s(i) : S(X) → S(Y ) for a closed
immersion i : Y ↪→ X in Smk of codimension 1. If Y = �αYα is the
decomposition of Y into irreducible components then S(Y ) = ΠαS(Yα) and
s(i) has to be the product of the s(iα) : S(X) → S(Yα). We thus may
assume Y (and X) irreducible. We then claim there exits a (unique) map
s(i) : S(X) → S(Y ) which makes the following diagram commute

S(X)
s(i)→ S(Y )

∩ ∩
S(OX,y)

sy→ S(κ(y))

where y is the generic point of Y . To check this it is sufficient to prove that
for any z ∈ Y (1), the image of S(X) through sy is contained in S(OY,z). But
z has codimension 2 in X and this follows from the first part of axiom (A4).

Now we have the following:

Lemma 2.13. Let i : Z → X be a closed immersion in Smk of codimension

d > 0. Assume there exists a factorization Z
j1→ Y1

j2→ Y2 → · · · jd→ Yd = X of
i into a composition of codimension 1 closed immersions, with the Yi closed
subschemes of X each of which is smooth over k. Then the composition

S(X)
s(jd)→ · · · → S(Y2)

s(j2)→ S(Y1)
s(j1)→ S(Z)

doesn’t depend on the choice of the above factorization of i. We denote this
composition by S(i).

Proof. We proceed by induction on d. For d = 1 there is nothing to prove.
Assume d ≥ 2. We may easily reduce to the case Z is irreducible with generic
point z. We have to show that the composition

S(X)
s(jd)→ · · · → S(Y2)

s(j2)→ S(Y1)
s(j1)→ S(Z) ⊂ S(κ(z))
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doesn’t depend on the choice of the flag Z→Y1→· · · → . . .→X . We may thus
replace X by any open neighborhood Ω of z if we want or even by Spec(A)
with A := OX,z, which we do.

We first observe that the case d = 2 follows directly from the Axiom (A4).
In general as A is regular of dimension d there exists a sequence of elements

(x1, . . . , xd) ∈ A which generates the maximal ideal M of A and such that
the flag

Spec(A/(x1, . . . , xd)) → Spec(A/(x2, . . . , xd) → · · · → Spec(A/(xd))

→ Spec(A)

is the induced flag Z = Spec(κ(z)) ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Spec(A).
We have thus reduced to proving that under the above assumptions the

composition

S(A) → S(Spec(A/(xd))) → · · · → S(Spec(A/(x2, . . . , xd)) → S(κ(z))

doesn’t depend on the choice of (x1, . . . , xd).
By [30, Corollary (17.12.2)] the conditions on smoothness on the members

of the associated flag to the sequence (x1, . . . , xd) is equivalent to the fact
the family (x1, . . . , xd) reduces to a basis of the κ(z)-vector space M/M2.

If M ∈ GLd(A), the sequence M.(xi) also satisfies this assumption. For
instance any permutation on the (x1, . . . , xd) yields an other such sequence.
By the case d = 2 which was observed above, we see that if we permute
xi and xi+1 the compositions S(A) → S(κ(v)) are the same before or after
permutation. We thus get by induction that we may permute as we wish the
xi’s.

Now assume that (x′
1, . . . , x

′
d) is an other sequence in A satisfying the

same assumption. Write the x′
i as linear combination in the xj . There is a

matrix M ∈ Md(A) with (x′
i) = M.(xj). This matrix reduces in Md(κ) to an

invertible matrix by what we just observed above; thus M itself is invertible.
One may multiply in a sequence (x1, . . . , xd) by a unit of A an element xi

of the sequence without changing the flag (and thus the composition). Thus
we may assume det(M) = 1. Now for a local ring A we know that the group
SLd(A) is the group Ed(A) of elementary matrices in A (see [39, Chap.
VI Corollary 1.5.3] for instance). Thus M can be written as a product of
elementary matrices in Md(A).

As we already know that our statement doesn’t depend on the ordering
of a sequence, we have reduced to the following claim: given a sequence
(x1, . . . , xd) as above and a ∈ A, the sequence (x1 + ax2, x2, . . . , xd) induces
the same composition S(A) → S(κ(v)) as (x1, . . . , xd). But in fact the flags
are the same. This proves our claim. ��

Now we come back to the proof of the Lemma 2.12. Let i : Z → X
be a closed immersion in Smk. By what has been recalled above, X can be
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covered by open subsets U such that for everyU the induced closed immersion
Z ∩ U → U admits a factorization as in the statement of the previous
Lemma 2.13. Thus for each such U we get a canonical map sU : S(U) →
S(Z ∩ U). But applying the same Lemma to the intersections U ∩ U ′, with
U ′ an other such open subset, we see that the sU are compatible and define
a canonical map: s(i) : S(X) → S(Z).

Let f : Y → X be any morphism between smooth (quasi-projective)
k-schemes. Then f is the composition Y ↪→ Y ×k X → X of the closed
immersion (given by the graph of f) Γf : Y ↪→ Y ×k X and the smooth
projection pX : Y ×k X → X . We set

s(f) := S(X)
s(pX )→ S(Y ×k X)

s(Γf )→ S(Y )

To check that this defines a functor on (Smk)
op is not hard. First given a

smooth morphism π : X ′ → X and a closed immersion i : Z → X in Smk,
denote by i′′ : Z ′ → X ′ the inverse image of i through π and by π′ : Z ′ → Z
the obvious smooth morphism. Then the following diagram is commutative

S(X)
s(π)→ S(X ′)

↓ s(i) ↓ s(i′)

S(Z)
s(π′)→ S(Z ′)

Then, to prove the functoriality, one takes two composable morphism Z
g→

Y
f→ X and contemplates the diagram

Z ↪→ Z ×k Y ↪→ Z ×k Y ×k X

|| ↓ ↓
Z → Y ↪→ Y ×k X

|| || ↓
Z → Y → X

Then one realizes that applying S and s yields a commutative diagram,
proving the claim. Now the presheaf S on Smk is obviously an unramified
sheaf on Smk as these properties only depend on its restriction to ˜Smk. ��
Remark 2.14. From now on in this paper, we will not distinguish between
the notion of unramified Fk-datum and that of unramified sheaf of sets on
Smk. If S is an unramified Fk-datum we still denote by S the associated
unramified sheaf of sets on Smk and vice versa.

Also, one may in an obvious fashion describe unramified sheaves of groups,
abelian groups, etc. on Smk in terms of corresponding Fk-group data, Fk-
abelian group data, etc., where in the given Fk-datum, everything is endowed
with the corresponding structure and each map is a morphism for that
structure. ��
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Remark 2.15. The proof of Lemma 2.12 also shows the following. Let S and
E be sheaves of sets on Smk, with S unramified and E satisfying conditions
(0) and (1) of unramified presheaves. Then to give a morphism of sheaves
Φ : E → S is equivalent to give a natural transformation φ : E|Fk

→ S|Fk

such that:

1) For any discrete valuation v on F ∈ Fk, the image of E(Ov) ⊂ E(F )
through φ is contained in S(Ov) ⊂ S(F );

2) The induced square commutes:

E(Ov)
sv→ E(κ(v))

↓ φ ↓ φ

S(Ov) → S(κ(v))

We left the details to the reader. ��

A
1-Invariant Unramified Sheaves

Lemma 2.16. 1) Let S be an unramified sheaf of sets on ˜Smk. Then S is
A

1-invariant if and only if it satisfies the following:
For any k-smooth local ring A of dimension ≤ 1 the canonical map

S(A) → S(A1
A) is bijective.

2) Let S be an unramified sheaf of sets on Smk. Then S is A
1-invariant if

and only if it satisfies the following:
For any F ∈ Fk the canonical map S(F ) → S(A1

F ) is bijective.

Proof. 1) One implication is clear. Let’s prove the other one. Let X ∈ Smk

be irreducible with function field F . In the following commutative square

S(X) → S(A1
X)

↓ ↓
S(F ) → S(F (T ))

each map is injective. We observe that S(A1
X) → S(F (T ) factors as S(A1

X) →
S(A1

F ) → S(F (T ). By our assumption S(F ) = S(A1
F ); this proves that

S(A1
X) is contained inside S(F ). Now it is sufficient to prove that for any

x ∈ X(1) one has the inclusion S(A1
X) ⊂ S(OX,x) ⊂ S(F ). But S(A1

X) ⊂
S(A1

OX,x
) ⊂ S(F (T ), and our assumption gives S(OX,x) = S(A1

OX,x
). This

proves the claim.

2) One implication is clear. Let’s prove the other one. Let X ∈ Smk be
irreducible with function field F . In the following commutative square

S(A1
X) ⊂ S(A1

F )

↓ ||
S(X) ⊂ S(F )
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each map is injective but maybe the left vertical one. The latter is thus
also injective which implies the statement. ��

Remark 2.17. Given an unramified sheaf S of sets on ˜Smk with Data (D3),
and satisfying the property that for any F ∈ Fk, the map S(F ) → S(F (T ))
is injective, then S is an unramified Fk-datum if and only if its extension to
k(T ) is an unramified Fk(T )-datum.

Indeed, given a smooth irreducible k-scheme X , a point x ∈ X of
codimension d, then X |k(T ) is still irreducible k(T )-smooth and x|k(T ) is
irreducible and has codimension d in X |k(T ). Moreover the maps M(X) →
M(X |k(T )), M(Xx) → M((X |k(T ))x|k(T )

), etc. are injective. So to check the
Axioms involving equality between morphisms, etc., it suffices to check them
over k(T ) for M |k(T ). This allows us to reduce the checking of several Axioms
like (A4) to the case k is infinite. ��

2.2 Strongly A
1-Invariant Sheaves of Groups

Our aim in this section is to study unramified sheaves of groups G on Smk,
their potential strong A

1-invariance property, as well as the comparison
between their cohomology in Zariski and Nisnevich topology.

In the sequel, by an unramified sheaf of groups we mean a sheaf of groups
on Smk whose underlying sheaf of sets is unramified in the sense of the
previous section.

Let G be such an unramified sheaf of groups on Smk. For any discrete
valuation v on F ∈ Fk we introduce the pointed set

H1
v (Ov;G) := G(F )/G(Ov)

and we observe this is a left G(F )-set.
More generally for y a point of codimension 1 in X ∈ Sm′

k, we set
H1

y (X ;G) = H1
y (OX,y;G). By axiom (A2), is X is irreducible with function

field F the induced left action of G(F ) on Πy∈X(1)H1
y (X ;G) preserves the

weak-product
Π′

y∈X(1)H
1
y (X ;G) ⊂ Πy∈X(1)H1

y (X ;G)
where the weak-product Π′

y∈X(1)H
1
y (X ;G) means the set of families for

which all but a finite number of terms are the base point of H1
y (X ;G). By

definition, the isotropy subgroup of this action of G(F ) on the base point
of Π′

y∈X(1)H
1
y (X ;G) is exactly G(X) = ∩y∈X(1)G(OX,y). We will summarize

this property by saying that the diagram (of groups, action and pointed set)

1 → G(X) → G(F ) ⇒ Π′
y∈X(1)H

1
y (X ;G)



24 2 Unramified Sheaves and Strongly A1-Invariant Sheaves

is “exact” (the double arrow refereing to a left action).

Definition 2.18. For any point z of codimension 2 in a smooth k-scheme
X , we denote by H2

z (X ;G) the orbit set of Π′
y∈X

(1)
z

H1
y (X ;G) under the left

action of G(F ), where F ∈ Fk denotes the field of functions of Xz.

Now for an irreducible essentially smooth k-scheme X with function field
F we may define an obvious “boundary” G(F )-equivariant map

Π′
y∈X(1)H

1
y (X ;G) → Πz∈X(2)H2

z (X ;G) (2.1)

by collecting together the compositions, for each z ∈ X(2):

Π′
y∈X(1)H

1
y (X ;G) → Π′

y∈X
(1)
z

H1
y (X ;G) → H2

z (X ;G)

It is not clear in general whether or not the image of the boundary map is
always contained in the weak product Π′

z∈X(2)H
2
z (X ;G). For this reason we

will introduce the following Axiom depending on G which completes (A2):

(A2’) For any irreducible essentially smooth k-scheme X the image of the
boundary map (2.1) is contained in the weak product Π′

z∈X(2)H
2
z (X ;G).

��
Remark 2.19. Given an unramified sheaf of groups G, and satisfying the
property that for any F ∈ Fk, the map G(F ) → G(F (T )) is injective, then G
satisfies (A2’) if and only if its extension to k(T ) does. This is done along
the same lines as in Remark 2.17. ��

We assume from now on that G satisfies (A2’). Altogether we get for X
smooth over k, irreducible with function field F , a “complex” C∗(X ;G) of
groups, action, and pointed sets of the form:

1 → G(X) ⊂ G(F ) ⇒ Π′
y∈X(1)H

1
y (X ;G) → Πz∈X(2)H2

z (X ;G)

We will also set for X ∈ Smk: G(0)(X) := Π′
x∈X(0)G(κ(x)), G(1)(X) :=

Π′
y∈X(1)H

1
y (X ;G) and G(2)(X) := Π′

z∈X(2)H
2
z (X ;G). The correspondence

X �→ G(i)(X), i ≤ 2, can be extended to an unramified presheaf of groups on
S̃mk, which we still denote by G(i). Note that G(0) is a sheaf in the Nisnevich
topology. However for G(i), i ∈ {1, 2} it is not the case in general, these are
only sheaves in the Zariski topology, as any unramified presheaf.

The complex C∗(X ;G) : 1 → G(X) → G(0)(X) ⇒ G(1)(X) → G(2)(X) of
sheaves on S̃mk will play in the sequel the role of the (truncated) analogue
for G of the Cousin complex of [19] or of the complex of Rost considered
in [68].
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Definition 2.20. Let 1 → H ⊂ G ⇒ E → F be a sequence with G a group
acting on the set E which is pointed (as a set not as a G-set), with H ⊂ G a
subgroup and E → F a G-equivariant map of sets, with F endowed with the
trivial action. We shall say this sequence is exact if the isotropy subgroup
of the base point of E is H and if the “kernel” of the pointed map E → F is
equal to the orbit under G of the base point of E.

We shall say that it is exact in the strong sense if moreover the map
E → F induces an injection into F of the (left) quotient set G\E ⊂ F .

By construction C∗(X ;G) is exact in the strong sense, for X (essentially)
smooth local of dimension ≤ 2.

Let us denote by Z1(−;G) ⊂ G(1) the sheaf theoretic orbit of the base
point under the action of G(0) in the Zariski topology on S̃mk. We thus have
an exact sequence of sheaves on S̃mk in the Zariski topology

1 → G ⊂ G(0) ⇒ Z1(−;G) → ∗

As it is clear that H1
Zar(X ;G(0)) is trivial (the sheaf G(0) being flasque), this

yields for any X ∈ Smk an exact sequence (of groups and pointed sets)

1 → G(X) ⊂ G(0)(X) ⇒ Z1(X ;G) → H1
Zar(X ;G) → ∗

in the strong sense.
Of course we may extend by passing to the filtering colimit the previous

definitions for X ∈ Sm′
k. To be correct, we should introduce a name for

the category of essentially smooth k-schemes and smooth morphisms. The
previous diagram is then also a diagram of sheaves in the Zariski topology
and yields for any X ∈ Sm′

k an exact sequence as above, which could have
been also obtained by passing to the colimit.

Remark 2.21. If X is an essentially smooth k-scheme of dimension ≤ 1, we
thus get a bijection H1

Zar(X ;G) = G(0)(X)\G(1)(X). For instance, when X is
a smooth local k-scheme of dimension 2, and if V ⊂ X is the complement of
the closed point, a smooth k-scheme of dimension 1, we thus get a bijection

H2
z (X ;G) = H1

Zar(V ;G)

Beware that here the Zariski topology is used. This gives a “concrete”
interpretation of the “strange” extra cohomology set H2

z (X ;G). ��
For X ∈ Smk (or Sm′

k) as above, let us denote by K1(X ;G) ⊂
Π′

y∈X(1)H
1
y (X ;G) the kernel of the boundary map Π′

y∈X(1)H
1
y (X ;G) →

Π′
z∈X(2)H

2
z (X ;G). The correspondenceX �→ K1(X ;G) is a sheaf in the Zariski

topology on ˜Smk. There is an obvious injective morphism of sheaves in the
Zariski topology on ˜Smk: Z1(−;G) → K1(−;G). As C∗(X ;G) is exact for any
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k-smooth local X of dimension ≤ 2, Z1(−;G) → K1(−;G) induces a bijection
for any (essentially) smooth k-scheme of dimension ≤ 2.

Remark 2.22. In particular if X is an (essentially) smooth k-scheme of
dimension ≤ 2, the H1 of the complex C∗(X ;G) is H1

Zar(X ;G). ��
Now we introduce the following axiom on G:

(A5) (i) For any separable finite extension E ⊂ F in Fk, any discrete
valuation v on F which restricts to a discrete valuation w on E with
ramification index 1, and such that the induced extension i : κ(w) →
κ(v) is an isomorphism, the commutative square of groups

G(Ow) ⊂ G(E)

↓ ↓
G(Ov) ⊂ G(F )

induces a bijection H1
v (Ov;G) ∼= H1

w(Ow ;G).
(ii) For any étale morphism X ′ → X between smooth local k-schemes
of dimension 2, with closed point respectively z′ and z, inducing an
isomorphism on the residue fields κ(z) ∼= κ(z′), the pointed map

H2
z (X ;G) → H2

z′(X ′;G)

has trivial kernel. ��
Remark 2.23. The Axiom (A5)(i) implies that if we denote by G−1 the sheaf
of groups

X �→ Ker(G(Gm ×X)
ev1→ G(X))

then for any discrete valuation v on F ∈ Fk one has a (non canonical)
bijection

H1
v (Ov;G) ∼= G−1(κ(v))

Indeed one may reduce to the case where Ov is henselian, and assume that
κ(v) ⊂ Ov. Choosing a uniformizing element then yields a distinguished
square

Spec(F ) ⊂ Spec(Ov)

↓ ↓
(Gm)κ(v) ⊂ A

1
κ(v)

which in view of Axiom (A5) (i) gives the bijection G((Gm)κ(v))/G(κ(v)) ∼=
H1

v (Ov;G). ��
Lemma 2.24. Let G be as above. The following conditions are equivalent:

(i) The Zariski sheaf X �→ K1(X ;G) is a sheaf in the Nisnevich topology
on S̃mk;
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(ii) For any essentially smooth k-scheme X of dimension ≤ 2 the compari-
son map H1

Zar(X ;G) → H1
Nis(X ;G) is a bijection;

(iii) G satisfies Axiom (A5)

Proof. (i) ⇒ (ii). Under (i) we know that X �→ Z1(X ;G) is a sheaf in
the Nisnevich topology on essentially smooth k-schemes of dimension ≤ 2 (as
Z1(X ;G) → K1(X ;G) is an isomorphism on essentially smooth k-schemes of
dimension ≤ 2). The exact sequence in the Zariski topology 1 → G ⊂ G(0) ⇒
Z1(−;G) → ∗ considered above is then also an exact sequence of sheaves
in the Nisnevich topology. The same reasoning as above easily implies (ii),
taking into account that H1

Nis(X ;G(0)) is also trivial (left to the reader).
(ii) ⇒ (iii). Assume (ii). Let’s prove (A5) (i). With the assumptions given

the square
Spec(F ) → Spec(Ov)

↓ ↓
Spec(E) → Spec(Ow)

is a distinguished square in the sense of [59]. Using the corresponding Mayer–
Vietoris type exact sequence and the fact by (ii) that H1(X ;G) = ∗ for any
smooth local scheme X yields immediately that G(E)/G(Ow) → G(F )/G(Ov)
is a bijection.

Now let’s prove (A5) (ii). Set V = X − {z} and V ′ = X ′ − {z′}. The
square

V ′ ⊂ X ′

↓ ↓
V ⊂ X

is distinguished. From the discussion preceding the Lemma and the inter-
pretation of H2

z (X ;G) as H1
Zar(V ;G), the kernel in question is thus the set

of (isomorphism classes) of G-torsors over V (indifferently in Zariski and
Nisnevich topology as H1

Zar(V ;G) ∼= H1
Nis(V ;G) by (ii) ) which become

trivial over V ′; but such a torsor can thus be extended to X ′ and by a
descent argument in the Nisnevich topology, we may extend the torsor on V
to X . Thus it is trivial because X is local.

(iii) ⇒ (i). Now assume Axiom (A5). We claim that Axiom (A5) (i) gives
exactly that X �→ G(1)(X) is a sheaf in the Nisnevich topology. (A5) (ii) is
seen to be exactly what is needed to imply that K1(−;G) is a sheaf in the
Nisnevich topology. ��

Now we observe that the monomorphism of Zariski sheaves Z1(−;G) →
K1(−;G) is G(0)-equivariant.

Lemma 2.25. Assume G satisfies (A5). Let X be an essentially smooth
k-scheme. The following conditions are equivalent:

(i) For any open subscheme Ω ⊂ X the map Z1(Ω;G) → K1(Ω;G) is
bijective;
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(ii) For any localization U of X at some point, the map Z1(U ;G) →
K1(U ;G) is bijective;

(iii) For any localization U of X at some point, the complex C∗(U ;G) : 1 →
G(U) → G(F ) ⇒ G(1)(U) → G(2)(U) is exact.

When moreover these conditions are satisfied for any Y étale over X, then
the comparison map H1

Zar(X ;G) → H1
Nis(X ;G) is a bijection.

Proof. (i) ⇔ (ii) is clear as both are Zariski sheaves. (ii) ⇒ (iii) is proven
exactly as in the proof of (ii) in Lemma 2.24. (iii) ⇒ (i) is also clear using
the given expressions of the two sides.

If we assume these conditions are satisfied, then

G(0)(X)\Z1(X ;G) = H1
Zar(X ;G) → H1

Nis(X ;G) = G(0)(X)\K1(X ;G)

is a bijection. The last equality follows from the fact that K1(;G) is a
Nisnevich sheaf and the (easy) fact that H1

Nis(X ;G(0)) is also trivial. ��
Lemma 2.26. Assume G is A

1-invariant. Let X be an essentially smooth
k-scheme. The following conditions are equivalent:

(i) For any open subscheme Ω ⊂ X the map

G(0)(Ω)\Z1(Ω;G) = H1
Zar(Ω;G) → H1

Zar(A
1
Ω;G) = G(0)(A1

Ω)\Z1(A1
Ω;G)

is bijective;
(ii) For any localization U of X, G(0)(A1

U )\Z1(A1
U ;G) = ∗.

Proof. The implication (i) ⇒ (ii) follows from the fact that for U a smooth
local k-scheme H1

Zar(U ;G) = G(0)(U)\Z1(U ;G) is trivial. Assume (ii). Thus

H1
Zar(A

1
U ;G) = ∗ for any local smooth k-scheme U . Fix Ω ⊂ X an open

subscheme and denote by π : A
1
Ω → Ω the projection. To prove (i) it is

sufficient to prove that the pointed simplicial sheaf of sets Rπ∗(B(G|A1
Ω
)) has

trivial π0. Indeed, its π1 sheaf is π∗(G|A1
Ω
) = G|Ω because G is A

1-invariant.
If the π0 is trivial, B(G|Ω) → Rπ∗(B(G|A1

Ω
)) is a simplicial weak equivalence

which implies the result. Now to prove that π0Rπ∗((B(G|A1
Ω
))) is trivial, we

just observe that its stalk at a point x ∈ Ω is H1
Zar(A

1
Xx

;G) which is trivial
by assumption. ��

Now we will use one more Axiom concerning G and related to A1-invariance
properties:

(A6) For any localization U of a smooth k-scheme at some point u of
codimension ≤ 1, the “complex”:

1 → G(A1
U ) ⊂ G(0)(A1

U ) ⇒ G(1)(A1
U ) → G(2)(A1

U )

is exact, and moreover, the morphism G(U) → G(A1
U ) is an isomorphism. ��
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Observe that if G satisfies (A6) it is A1-invariant by Lemma 2.16 (as G is
assumed to be unramified). Observe also that if G satisfies Axioms (A2’) and
(A5), then we know by Lemma 2.24 that H1

Nis(A
1
X ;G) = H1

Zar(A
1
X ;G) =

H1(A1
X ;G) for X smooth of dimension ≤ 1.

Our main result in this section is the following.

Theorem 2.27. Let G be an unramified sheaf of groups on Smk that satisfies
Axioms (A2’), (A5) and (A6). Then it is strongly A

1-invariant. Moreover,
for any smooth k-scheme X, the comparison map

H1
Zar(X ;G) → H1

Nis(X ;G)

is a bijection.

Remark 2.28. From Corollary 6.9 in Sect. 6.1 below applied to the A
1-local

space BG itself, it follows that a strongly A
1-invariant sheaf of groups G on

Smk is always unramified.
We thus obtain in this way an equivalence between the category of strongly

A
1-invariant sheaves of groups on Smk and that of unramified sheaves of

groups on Smk satisfying axioms (A2’), (A5) and (A6). ��
To prove theorem 2.27 we fix an unramified sheaf of groups G on Smk

which satisfies the Axioms (A2’), (A5) and (A6).
We introduce two properties depending on G, an integer d ≥ 0:
(H1)(d) For any localization U of a smooth k-scheme at some point u

of codimension ≤ d with infinite residue field, the complex 1 → G(U) ⊂
G(0)(U) ⇒ G(1)(U) → G(2)(U) is exact. ��

(H2)(d) For any localization U of a smooth k-scheme at some point u of
codimension ≤ d with infinite residue field, the “complex”:

1 → G(A1
U ) ⊂ G(0)(A1

U ) ⇒ G(1)(A1
U ) → G(2)(A1

U )

is exact. ��
(H1)(d) is a reformulation of (ii) of Lemma 2.25. It is a tautology in

case d ≤ 2. (H2)(1) holds by Axiom (A6) and (H2)(d) implies (ii) of the
Lemma 2.26.

Lemma 2.29. Let d ≥ 0 be an integer.

1) (H1)(d) ⇒ (H2)(d).
2) (H2)(d) ⇒ (H1)(d+1)

Proof of Theorem 2.27 assuming Lemma 2.29. Lemma 2.29 implies
by induction on d that properties (H1)(d) and (H2)(d) hold for any d. It
follows from Lemmas 2.25 and 2.26 above that for any essentially smooth
k-scheme X with infinite residue fields, then H1

Zar(X ;G) ∼= H1
Nis(X ;G) and

H1(X ;G) ∼= H1
Zar(A

1
X ;G).
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This implies Theorem 2.27 if k is infinite. Assume now k is finite. Let G′

be the sheaf πA
1

1 (BG) = π1(LA1(BG)). By Corollary 6.9 of Sect. 6.1 below
applied to the A1-local space LA1(BG), G′ is unramified and by the first part
of Theorem 6.11 it satisfies, as G the Axioms (A2’), (A5) and (A6).

By general properties of base change through a smooth morphism (see [52])
we see that for any henselian k-smooth local ring A, with infinite residue
field, the morphism G(A) → G′(A) is an isomorphism. Let A be a k-smooth
local ring of dimension ≥ 1. By functoriality we see that G(A) ⊂ G′(A) is
injective, as the fraction field of A is infinite. If κ is a finite field (extension
of k), G(κ) = G(κ[T ]) ⊂ G′(κ[T ]) = G′(κ). We deduce that G → G′ is
always a monomorphism of sheaves, because if κ is a finite extension of k,
G(κ) ⊂ G(κ(T )).

Thus we have the monomorphism G ⊂ G′ between unramified sheaves
satisfying Axioms (A2’), (A5) and (A6) and which is an isomorphism on
smooth local ring with infinite residue field. Now using Remark 2.23 and
proceeding as below in the proof of Lemma 2.34, we see that, given a discrete
valuation ring A ⊂ F , and a uniformizing element π, H1

v (A;G) → H1
v (A;G′)

can be identified to the morphism G−1(κ(v)) ⊂ G′
−1(κ(v)); but this is an

injection as G(X × Gm) ⊂ G′(X × Gm). This implies that G(A) = G′(A)
H1

v (A;G) ∼= H1
v (A;G′) for any discrete valuation ring A ⊂ F ∈ Fk. If we

prove that G(κ) ⊂ G′(κ) is an isomorphism for any finite extension κ of k
then we conclude that G = G′, as both are unramified and coincide over each
stalk (included the finite fields). To show G(κ) ⊂ G′(κ) is an isomorphism,
we observe that G(κ[T ]) = G′(κ[T ]) by what precedes.

Now that we know G = G′, we conclude from the fact that the composition
BG → LA1(BG) → BG′ is a (simplicial weak-equivalence) thatBG is A1-local,
and G is thus strongly A

1-invariant, finishing the proof. ��
Remark 2.30. The only reason we have to separate the case of a finite residue
field and infinite residue field is due to the point (ii) of Lemma 2.31 below.
If one could prove this also with finite residue field, we could get rid of the
last part of the previous proof. ��
Proof of Lemma 2.29 Let d ≥ 2 be an integer (if d < 2 there is nothing
to prove).

Let us prove (1). Assume that (H1)(d) holds. Let U be an irreducible
smooth k-scheme with function field F . Let us study the following diagram
whose middle row is C∗(A1

U ;G), whose bottom row is C∗(U ;G) and whose
top row is C∗(A1

F ;G):

G(F ) ⊂ G(F (T )) � Π′
y∈(A1

F )(1)
H1

y (A
1
F ;G)

∪ || ↑
G(A1

U ) ⊂ G(F (T )) ⇒ Π′
y∈(A1

U )(1)
H1

y (A
1
U ;G) → Π′

z∈(A1
U )(2)

H2
z (A

1
U ;G)

|| ∪ ↑ ↑
G(U) ⊂ G(F ) ⇒ Π′

y∈U(1)H
1
y (U ;G) → Π′

z∈U(2)H
2
z (U ;G)

(2.2)
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The top horizontal row is exact by Axiom (A6). Assume U is local of
dimension ≤ d. The bottom horizontal row is exact by (H1) (d). The middle
vertical column can be explicited as follows. The points y of codimension 1
in A

1
U are of two types: either the image of y is the generic point of U or it

is a point of codimension 1 in U ; the first set is in bijection with (A1
F )

(1) and
the second one with U (1) through the map y ∈ U (1) �→ y[T ] := A

1
y ⊂ A

1
U .

For y of the first type, it is clear that the set H1
y (A

1
U ;G) is the same as

H1
y (A

1
F ;G). As a consequence, Π′

y∈(A1
U )(1)

H1
y (A

1
U ;G) is exactly the product of

Π′
y∈(A1

F )(1)
H1

y (A
1
F ;G) and of Π′

y∈U(1)H
1
y[T ](A

1
U ;G).

To prove (H2)(d) we have exactly to prove the exactness of the middle
horizontal row in (2.2) and more precisely that the action of G(F (T )) on
K1(A1

U ;G) is transitive.
Take α∈K1(A1

U ;G). As the top horizontal row is exact, there is a g∈G
(F (T )) such that g.α lies in Π′

y∈U(1)H
1
v[T ](A

1
U ;G) ⊂ Π′

y∈(A1
U )(1)

H1
y (A

1
U ;G),

which is the kernel of the vertical G(F (T ))-equivariant map Π′
y∈(A1

U )(1)
H1

y (A
1
U ;

G) → Π′
y∈(A1

F )(1)
H1

y (A
1
F ;G).

Thus g.α lies in K1(A1
U ;G)∩Π′

y∈U(1)H
1
y[T ](A

1
U ;G) ⊂ Π′

y∈(A1
U )(1)

H1
y (A

1
U ;G).

Now the obvious inclusion K1(U ;G) ⊂ K1(A1
U ;G) ∩ Π′

y∈U(1)H
1
y[T ](A

1
U ;G) is

a bijection. Indeed, from part (1) of Lemma 2.31 below, Π′
y∈U(1)H

1
y (U ;G) ⊂

Π′
y∈U(1)H

1
y[T ](A

1
U ;G) is injective and is exactly the kernel of the composition

of the boundary map Π′
y∈U(1)H

1
y[T ](A

1
U ;G) → Πz∈(A1

U )(2)H
2
z (A

1
U ;G) and the

projection

Πz∈(A1
U )(2)H

2
z (A

1
U ;G) → Πy∈U(1),z∈(A1

y)
(1)H2

z (A
1
U ;G)

This shows that K1(A1
U ;G) ∩ Π′

y∈U(1)H
1
y[T ](A

1
U ;G) is contained in Π′

y∈U(1)

H1
y (U ;G).
But the right vertical map in (2.2), Πz∈U(2)H2

z (U ;G) → Πz∈(A1
U )(2)H

2
z

(A1
U ;G), is induced by the correspondence z ∈ U (2) �→ A

1
z ⊂ A

1
U and the

corresponding maps on H2
z (−;G). By part (2) of Lemma 2.31 below, this map

has trivial kernel. This easily implies that K1(A1
U ;G) ∩ Π′

y∈U(1)H
1
y[T ](A

1
U ;G)

is contained in K1(U ;G), proving our claim.
Thus g.α lies in K1(U ;G). Now by (H1) (d) we know there is an h ∈ G(F )

with hg.α = ∗ as required.
Let us now prove (2). Assume (H2) (d) holds. Let’s prove (H1) (d+1).

Let X be an irreducible smooth k-scheme (of finite type) of dimension ≤ d+1
with function field F , let u ∈ X ∈ Smk be a point of codimension d+ 1 and
denote by U its associated local scheme, F its function field. We have to check
the exactness at the middle of G(F ) ⇒ Π′

y∈U(1)H
1
y (U ;G) → Π′

z∈U(2)H
2
z (U ;G).

Let α ∈ K1(U ;G) ⊂ Π′
y∈U(1)H

1
y (U ;G). We want to show that there exists

g ∈ G(F ) such that α = g.∗. Let us denote by yi ∈ U the points of
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codimension one in U where α is non trivial. Recall that for each y ∈ U (1),
H1

y (U ;G) = H1
y (X ;G) where we still denote by y ∈ X(1) the image of y

in X . Denote by αX ∈ Π′
y∈X(1)H

1
y (X ;G) the canonical element with same

support yi’s and same components as α. αX may not be in K1(X ;G), but,
by Axiom (A2’), its boundary its trivial except on finitely many points zj
of codimension 2 in X . Clearly these points are not in U (2), thus we may, up
to removing the closure of these zj’s, find an open subscheme Ω′ in X which
contains u and the yi’s and such that the element αΩ′ ∈ Π′

y∈Ω′(1)H
1
y (X ;G),

induced by α, is in K1(Ω′;G).
By Gabber’s presentation Lemma 1.15, there exists an étale morphism

U → A
1
V , with V the localization of a k-smooth of dimension d, such that if

Y ⊂ U denotes the reduced closed subscheme whose generic points are the
yi, the composition Y → U → A

1
V is still a closed immersion and such that

the composition Y → U → A
1
V → V is a finite morphism.

The étale morphism U → A
1
V induces a morphism of complexes of the

form:

G(F ) − Π′
y∈U(1)H

1
y (U ;G) → Π′

z∈U(2)H
2
z (U ;G)

↑ ↑ ↑
G(E(T )) − Π′

y∈(A1
V )(1)

H1
y (A

1
V ;G) → Π′

z∈(A1
V )(2)

H2
z (A

1
V ;G)

where E is the function field of V . Let y′i be the images of the yi in A
1
V ;

these are points of codimension 1 and have the same residue field (because
Y → A

1
V is a closed immersion). By the axiom (A5)(i), we see that for

each i, the map H1
y′
i
(A1

V ;G) → H1
yi
(U ;G) is a bijection so that there exists

in the bottom complex an element α′ ∈ Π′
y∈(A1

V )(1)
H1

y (G) whose image is α.

The boundary of this α′ is trivial. To show this, observe that if z ∈ (A1
V )

(2)

is not contained in Y , then the boundary of α′ has a trivial component in
H2

z (A
1
V ;G). Moreover, if z ∈ (A1

V )
(2) lies in the image of Y in A

1
V , there is,

by construction, a unique point z′ of codimension 2 in Ω, lying in Y and
mapping to z. It has moreover the same residue field as z. The claim now
follows from (A5)(ii).

By the inductive assumption (H2) (d) we see that α′ is of the form h.∗
in Π′

y∈(A1
V )(1)

H1
y (A

1
V ;G) with h ∈ G(E(T )). But if g denotes the image of h

in G(F ) we have α = g.∗, proving our claim. ��
Lemma 2.31. Let G be an unramified sheaf of groups on Smk satisfying
(A2’), (A5) and (A6).

1) Let v be a discrete valuation on F ∈ Fk. Denote by v[T ] the discrete
valuation in F (T ) corresponding to the kernel of Ov[T ] → κ(v)(T ). Then
the map

H1
v (Ov;G) → H1

v[T ](A
1
Ov

;G)
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is injective and its image is exactly the kernel of

H1
v[T ](A

1
Ov

;G) → Π′
z∈(A1

κ(v))
(1)H

2
z (A

1
Ov

;G)

where we see z ∈ (A1
κ(v))

(1) as a point of codimension 2 in A
1
Ov

.
2) For any k-smooth local scheme U of dimension 2 with closed point u, and

infinite residue field, the “kernel” of the map

H2
u(G) → H2

u[T ](G)

is trivial.

Proof. Part (1) follows immediately from the fact that we know from our
axioms the exactness of each row of the Diagram (2.2) is exact for U smooth
local of dimension 1.

To prove (2) we shall use the interpretation ofH2
z (U ;G), for U smooth local

of dimension 2 with closed point z, as H1
Zar(V ;G), with V the complement of

the closed point u. By Lemma 2.24, we know that H1
Zar(V ;G) ∼= H1

Nis(V ;G).
Pick up an element α of H2

u(U ;G) = H1
Nis(V ;G) which becomes trivial

in H2
u[T ](A

1
U ;G) = H1

Nis(VT ;G), where VT = (A1
U )u[T ] − u′, u′ denoting the

generic point of A1
u ⊂ A

1
U . This means that the G-torsor over V become trivial

over VT . As VT is the inverse limit of the schemes of the form Ω − Ω ∩ u′,
where Ω runs over the open subschemes of A1

U which contains u′, we see that
there exists such an Ω for which the pull-back of α to Ω − Ω ∩ u′ is already
trivial. As Ω contains u′, Ω ∩ u′ ⊂ A

1
κ(u) is a non empty dense subset; in

case κ(u) is infinite, we thus know that there exists a κ(u)-rational point z
in Ω ∩ u′ lying over u. As Ω → U is smooth, it follows from [30, Corollary
17.16.3 p. 106] that there exists an immersion U ′ → Ω whose image contains
z and such that U ′ → U is étale. This immersion is then a closed immersion,
and up to shrinking a bit U ′ we may assume that Ω ∩ u′ ∩ U ′ = {z}. Thus
the cartesian square

U ′ − z → U ′

↓ ↓
V → U

is a distinguished square [59]. And the pull-back of α to U ′ − z is trivial.
Extending it to U ′ defines a descent data which defines an extension of α to
U ; thus as any element of H1

Zar(U ;G) = H1
Nis(U ;G) α is trivial we get our

claim. ��
Gm-loop spaces. Recall the following construction, used by Voevodsky

in [79]. Given a presheaf of groups G on Smk, we let G−1 denote the presheaf
of groups given by

X �→ Ker(G(Gm ×X)
ev1→ G(X))



34 2 Unramified Sheaves and Strongly A1-Invariant Sheaves

Observe that if G is a sheaf of groups, so is G−1, and that if G is unramified,
so is G−1.

Lemma 2.32. If G is a strongly A
1-invariant sheaf of groups, so is G−1.

Proof. One might prove this using our description of those strongly A
1-

invariant sheaf of groups given in the previous section. We give here another
argument. Let BG be the simplicial classifying space of G (see [59] for
instance). The assumption that G is strongly A

1-invariant means that it is
an A

1-local space. Choose a fibrant resolution BG of BG. We use the pointed
function space

RHom•(Gm, BG) := Hom•(Gm,BG)

It is fibrant and automatically A
1-local, as BG is. Moreover its π1 sheaf is

G−1 and its higher homotopy sheaves vanish. Thus the connected component
of RHom•(Gm, B(G)) is BG−1. This suffices for our purpose because, the
connected component of the base point in an A

1-local space is A1-local. This
follows formally from the fact (see [59]) that the A1-localization functor takes
a 0-connected space to a 0-connected space.

In fact we may also prove directly that the space RHom•(Gm, B(G)) is
0-connected. Its π0 is the associated sheaf to the presheaf X �→ H1

Nis(X ×
Gm;G), and this amounts to checking that for X the henselization of point
in a smooth k-scheme, then H1

Nis(Gm × X ;G). This follows from the fact
H1

Nis(A
1 ×X ;G) is trivial and the description of H1(−;G) in terms of our

complex. ��
Remark 2.33. In fact given any pointed smooth k-scheme Z, and any strongly
A

1-invariant sheaf G we may consider the pointed function object G(Z) which
is the sheaf X �→ Ker(G(Z × X) → G(X)). The same argument as in the
previous proof shows that the connected component of RHom•(Z,B(G)) is
indeed B(M (Z)). Consequently, the sheaf G(Z) is also strongly A

1-invariant.
��

Let F be in Fk and let v be a discrete valuation on F , with valuation ring
Ov ⊂ F . We may choose an irreducible smooth k-scheme X with function
field F and a closed irreducible subscheme i : Y ⊂ X of codimension 1
which induces v on F . In particular the function field of Y is κ(v). Assume
furthermore that κ(v) is separable over k. Then we may also assume up
to shrinking X that Y is also smooth over k. Consider the pointed sheaf
X/(X − Y ) which is called the Thom space of i. By the A

1-purity theorem
of [59] there is a canonical pointed A

1-weak equivalence (in the pointed A
1-

homotopy category)
X/(X − Y ) ∼= Th(νi)

where Th(νi) is the Thom space of the normal bundle νi of i, that is to
say the pointed sheaf E(νi)/E(νi)

×. Let π be a uniformizing element for v;
one may see the class of π modulo (Mv)

2 as a (non zero) basis element of
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(νi)y = Mv/(Mv)
2, the fiber of the normal bundle at the generic point y

of Y . Consequently, π (or its class in Mv/(Mv)
2) induces a trivialization of

νi at least in a Zariski neighborhood of y. In case νi is trivialized, it follows
from [59] that the pointed sheaf Th(νi) is canonically isomorphic to T ∧(Y+),
with T := A

1/Gm.

Lemma 2.34. Let G be a strongly A
1-invariant sheaf. Let Y be a smooth

k-scheme. Then there is a canonical bijection

G−1(Y ) ∼= H1(T ∧ (Y+);G)

which is a group isomorphism if G is abelian.

Proof. We use the cofibration sequence

Gm × Y ⊂ A
1 × Y → T ∧ (Y+)

to get a long exact sequence in the usual sense

0 → H0(A1 × Y ;G) → H0(Gm × Y ;G) ⇒ H1(T ∧ (Y+);G)
→ H1(A1 × Y ;G) → H1(Gm × Y ;G) → . . .

The pointed map H1(Y ;G) = H1(A1 × Y ;G) → H1(Gm × Y ;G) being split
injective (use the evaluation at 1), we get an exact sequence

0 → G(Y ) ⊂ G(Gm × Y ) ⇒ H1(T ∧ (Y+);G) → ∗

As G−1(Y ) is the kernel of ev1 : G(Gm × Y ) → G(Y ), this exact sequence
implies that the action of G−1(Y ) on the base point ∗ of H1(T ∧ (Y+);G)
induces the claimed bijection G−1(Y ) ∼= H1(T ∧ (Y+);G). The statement
concerning the abelian case is easy. ��

From what we did before, it follows at once by passing to the filtering
colimit over the set of open neighborhoods of y the following:

Corollary 2.35. Let F be in Fk and let v be a discrete valuation on F ,
with valuation ring Ov ⊂ F . For any strongly A

1-invariant sheaf of groups
G, a choice of a non-zero element μ in Mv/(Mv)

2 (that is to say the class
a uniformizing element π of Ov) induces a canonical bijection

θμ : G−1(κ(v)) ∼= H1
v (Ov;G)

which is an isomorphism of abelian groups in case G is a sheaf of abelian
groups.
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Using the previous bijection, we may define in the situation of the corollary
a map

∂π
v : G(F ) → G−1(κ(v))

as the composition G(F ) � H1
v (Ov;G) ∼= G−1(κ(v)) which we call the residue

map associated to π. If G is abelian, the residue map is a morphism of abelian
groups.

2.3 Z-Graded Strongly A
1-Invariant Sheaves

of Abelian Groups

In this section we want to give some criteria which imply the Axioms (A4)
in some particular cases of F̃k-data. Our method is inspired by Rost [68]
but avoids the use of transfers. The results of this section will be used in
Sect. 3.2 below to construct the sheaves of unramified Milnor-Witt K-theory
and unramified Milnor K-theory, etc., without using any transfers as it is
usually done. As a consequence, our construction of transfers in Chap. 4 gives
indeed a new construction of the transfers on the previous sheaves.

Let M∗ be a functor Fk → Ab∗ to the category of Z-graded abelian groups.
We assume throughout this section that M∗ is endowed with the following
extra structures.

(D4) (i) For any F ∈ Fk a structure of Z[F×/(F×2)]-module on M∗(F ),
which we denote by (u, α) �→< u > α ∈ Mn(F ) for u ∈ F× and for α ∈
Mn(F ). This structure should be functorial in the obvious sense in Fk. ��

(D4) (ii) For any F ∈ Fk and any n ∈ Z, a map F××Mn−1(F ) → Mn(F ),
(u, α) �→ [u].α, functorial (in the obvious sense) in Fk. ��

(D4) (iii) For any discrete valuation v on F ∈ Fk and uniformizing
element π a graded epimorphism of degree −1

∂π
v : M∗(F ) → M∗−1(κ(v))

which is functorial, in the obvious sense, with respect to extensions E → F
such that v restricts to a discrete valuation on E, with ramification index 1,
if we choose as uniformizing element an element π in E. ��

We assume furthermore that the following axioms hold:

(B0) For (u, v) ∈ (F×)2 and α ∈ Mn(F ), one has

[uv]α = [u]α+ < u > [v]α

and moreover [u][v]α = − < −1 > [v][u]α.
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(B1) For a k-smooth integral domain A with field of fractions F , for any
α ∈ Mn(F ), then for all but only finitely many point x ∈ Spec(A)(1),
one has that for any uniformizing element π for x, ∂π

x (α) �= 0. ��
(B2) For any discrete valuation v on F ∈ Fk with uniformizing element π

one has ∂π
v ([u]α) = [u]∂π

v (α) ∈ Mn(κ(v)) and ∂π
v (< u > α) =< u >

∂π
v (α) ∈ M(n−1)(κ(v)), for any unit u in (Ov)

× and any α ∈ Mn(F ).
��

(B3) For any field extension E ⊂ F ∈ Fk and for any discrete valuation
v on F ∈ Fk which restricts to a discrete valuation w on E, with
ramification index e, let π ∈ Ov be a uniformizing element for v and
ρ ∈ Ow be a uniformizing element for w. Write ρ = uπe, with u
a unit in Ov. Then one has for α ∈ M∗(E), ∂π

v (α|F ) = eε < u >
(∂ρ

w(α))|κ(v) ∈ M∗(κ(v)). ��
Here we set for any integer n,

nε =

n∑

i=1

< (−1)(i−1) >

We observe that as a particular case of (B3) we may choose E = F so
that e = 1 and we get that for any discrete valuation v on F ∈ Fk, any
uniformizing element π, and any unit u ∈ O×

v , then one has ∂uπ
v (α) =< u >

∂π
v (α) ∈ M(n−1)(κ(v)) for any α ∈ Mn(F ).
Thus in case Axiom (B3) holds, the kernel of the surjective homomorphism

∂π
v only depends on the valuation v, not on any choice of π. In that case we

then simply denote by
M∗(Ov) ⊂ M∗(F )

this kernel. Axiom (B1) is then exactly equivalent to Axiom (A2) for
unramified F̃k-sets. The following is easy:

Lemma 2.36. Assume M∗ satisfies Axioms (B1), (B2) and (B3). Then it
satisfies (in each degree) the axioms for a unramified F̃k-abelian group datum.
Moreover, it satisfies Axiom (A5) (i).

We assume from now on (in this section) that M∗ satisfies Axioms (B0),
(B1), (B2) and (B3). Thus we may (and will) consider each Mn as a sheaf
of abelian groups on ˜Smk.

We recall that we denote, for any discrete valuation v on F ∈ Fk, by
H1

v (Ov,Mn) the quotient group Mn(F )/Mn(Ov) and by ∂v : Mn(F ) →
H1

v (Ov,Mn) the projection. Of course, if one chooses a uniformizing element
π, one gets an isomorphism θπ : M(n−1)(κ(v)) ∼= H1

v (Ov,Mn) with ∂v =
θπ ◦ ∂π

v .
For each discrete valuation v on F ∈ Fk, and any uniformizing element π

set
sπv : M∗(F ) → M∗(κ(v)) , α �→ ∂π

v ([π]α)
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Lemma 2.37. Assume M∗ satisfies Axioms (B0), (B1), (B2) and (B3).
Then for each discrete valuation v the homomorphism sπv : M∗(Ov) ⊂ M∗(F )
doesn’t depend on the choice of a uniformizing element π.

Proof. From Axiom (B0) we get for any unit u ∈ O×, any uniformizing
element π and any α ∈ Mn(F ): [uπ]α = [u]α+ < u > [π]α. Thus if moreover
α ∈ M(Ov), one has suπv (α) = ∂uπ

v ([uπ]α) = ∂uπ
v ([u]α) + ∂uπ

v (< u > [π]α) =
∂uπ
v (< u > [π]α), as by Axiom (B2) ∂uπ

v ([u]α) = [u]∂uπ
v (α) = [u]0 = 0. But

by the same Axiom (B2), ∂uπ
v (< u > [π]α) =< u > ∂uπ

v ([π]α), which by
Axiom (B3) is equal to < u >< u > ∂π

v ([π]α) = ∂π
v ([π]α). This proves the

claim. ��
We will denote by

sv : M∗(Ov) → Mn(κ(v))

the common value of all the sπv ’s. In this way M∗ is endowed with a datum
(D3).

We introduce the following Axiom:
(HA) (i) For any F ∈ Fk, the following diagram

0 → M∗(F ) → M∗(F (T ))

∑
∂P
(P )−→ ⊕P∈A1

F
M∗−1(F [T ]/P ) → 0

is a short exact sequence. Here P runs over the set of irreducible monic
polynomials, and (P ) means the associated discrete valuation. ��

(HA) (ii) For any α ∈ M(F ), one has ∂T
(T )([T ]α|F (T )) = α. ��

This axiom is obviously related to the Axiom (A6), as it immediately
implies that for any F ∈ Fk, M(F ) → M(A1

F ) is an isomorphism and
H1

Zar(A
1
F ;M) = 0.

We next claim:

Lemma 2.38. Let M∗ be as in Lemma 2.37, and suppose it additionally
satisfies Axioms (HA) (i) and (HA) (ii). Then Axioms (A1) (ii), (A3)
(i) and (A3) (ii) hold.

Proof. The first part of Axiom (A1) (ii) follows from Axiom (B4). For
the second part we choose a uniformizing element π in Ow, which is still a
uniformizing element for Ov and the square

M∗(F )
∂π
v−→ M(∗−1)(κ(v)

↑ ↑
M∗(E)

∂π
w−→ M(∗−1)(κ(w)

is commutative by our definition (D4) (iii). Moreover the morphism
M∗(E) → M∗(F ) preserve the product by π by (D4) (i).

To prove Axiom (A3) we proceed as follows. By assumption we have E ⊂
Ov ⊂ F . Choose a uniformizing element π of v. We consider the extension
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E(T ) ⊂ F induced by T �→ π. The restriction of v is the valuation defined
by T on E[T ]. The ramification index is 1. Using the previous point, we see
that we can reduce to the case E ⊂ F is E ⊂ E(T ) and v = (T ). In that
case, the claim follows from our Axioms (HA) (i) and (HA) (ii). ��

From now on, we assume that M∗ satisfies all the Axioms previously met
in this subsection. We observe that by construction the Axiom (A5) (i) is
clear.

Fix a discrete valuation v on F ∈ Fk. We denote by v[T ] the discrete
valuation on F (T ) defined by the divisor Gm|κ(v) ⊂ Gm|Ov whose open
complement is Gm|F . Choose a uniformizing element π for v. Observe that
π ∈ F (T ) is still a uniformizing element for v[T ].

We want to analyze the following commutative diagram in which the
horizontal rows are short exact sequences (given by Axiom (HA)):

0 → M∗(F ) → M∗(F (T ))

∑
P ∂P

(P )−→ ⊕P∈(A1
F )(1)M∗−1(F [T ]/P ) → 0

↓ ∂πv ↓ ∂πv[T ] ↓ ΣP,Q∂π,PQ

0 → M∗−1(κ(v)) → M∗−1(κ(v)(T ))

∑
Q ∂Q

(Q)−→ ⊕Q∈(A1
κ(v)

)(1)M∗−2(κ(v)[T ]/Q) → 0

(2.3)

and where the morphisms ∂π,P
Q : M∗(F [T ]/P ) → M∗−1(κ(v)[T ]/Q) are

defined by the diagram.
For this we need the following Axiom:
(B4) Let v be discrete valuation on F ∈ Fk and let π be a uniformizing

element. Let P ∈ (A1
F )

(1) and Q ∈ (A1
κ(v))

(1) be fixed.

(i) If the closed point Q ∈ A
1
κ(v) ⊂ A

1
Ov

is not in the divisor DP ⊂ A
1
Ov

with

generic point P ∈ A
1
F ⊂ A

1
Ov

then the morphism ∂π,P
Q is zero.

(ii) If Q is in DP ⊂ A
1
Ov

and if the local ring ODP ,Q is a discrete valuation
ring with π as uniformizing element then

∂π,P
Q = − < −P ′

Q′ > ∂Q
Q : M∗(F [T ]/P ) → M∗−1(κ(v)[T ]/Q) ��

We will set U = Spec(Ov) in the sequel. We first observe that (A1
U )

(1) =
(A1

F )
(1)�{v[T ]}, where as usual v[T ] means the generic point of A1

κ(v) ⊂ A
1
U .

For each P ∈ (A1
F )

(1), there is a canonical isomorphism M∗−1(F [T ]/P ) ∼=
H1

P (A
1
U ;M∗), as P itself is a uniformizing element for the discrete valuation

(P ) on F (T ). For v[T ], there is also a canonical isomorphismM∗−1(κ(v)[T ]) ∼=
H1

v[T ](A
1
U ;M∗) as π is also a uniformizing element for the discrete valuation

v[T ] on F (T ).
Using the previous isomorphisms, we see that the beginning of the complex

C∗(A1
U ;M∗) (see Sect. 2.2) is isomorphic to
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0 → M∗(A1
U ) → M∗(F (T ))

∂π
v[T ]+

∑
P ∂P

(P )−→ M∗−1(κ(v)(T ))⊕
(
⊕P∈(A1

F )(1)M∗−1(F [T ]/P )
)

The diagram (2.3) can be used to compute the cokernel of the previous

morphism ∂ : M∗(F (T )) → M∗−1(κ(v)(T )) ⊕
(
⊕P∈(A1

F )(1)M∗−1(F [T ]/P )
)
.

Indeed the epimorphism ∂′

M∗−1(κ(v)(T ))⊕ (⊕PM∗−1(F [T ]/P ))

∑
Q ∂Q

(Q)
−∑

P,Q ∂π,P
Q−→ ⊕Q∈(A1

κ(v)
)(1)

M∗−2(κ(v)[T ]/Q)

composed with ∂ is trivial, and the diagram

M∗(F (T ))
∂→ M∗−1(κ(v)(T ))⊕ (⊕PM∗−1(F [T ]/P ))

∂′→ ⊕QM∗−2(κ(v)[T ]/Q) → 0 (2.4)

is an exact sequence: this is just an obvious reformulation of the properties
of (2.3).

Now fix Q0 ∈ (A1
κ(v))

(1). Let (A1
F )

(1)
0 be the set of P ’s such that Q0 lies in

the divisor DP of A1
U defined by P .

Lemma 2.39. Assume M∗ satisfies all the previous Axioms (including
(B4)). The obvious quotient

M∗(F (T ))
∂→ M∗−1(κ(v)(T )) ⊕

(
⊕

P∈(A1
F )

(1)
0
M∗−1(F [T ]/P )

)

∂′
Q→ M∗−2(κ(v)[T ]/Q0) → 0

of the previous diagram is also an exact sequence.

Proof. Using the snake Lemma, it is sufficient to prove that the image
of the composition ⊕

P �∈(A1
U )

(1)
0
M∗−1(F [T ]/P ) ⊂ ⊕P∈(A1

U )(1)M∗−1(F [T ]/P ) →
⊕Q∈(A1

κ(v)
)(1)M∗−2(κ(v)[T ]/Q is exactly ⊕Q∈(A1

κ(v)
)(1)−{Q0}M∗−2(κ(v)[T ]/Q.

Axiom (B4)(i) readily implies that this image is contained in

⊕Q∈(A1
κ(v)

)(1)−{Q0}M∗−2(κ(v)[T ]/Q).

Now we want to show that the image entirely reaches each M∗−2(κ(v)
[T ]/Q, Q �= Q0. For any such Q, there is a P , irreducible, such that Q is
αP , for some unit α ∈ κ(v)×. Thus Q lies over DP , but not Q0. Moreover,
(π, P ) is a system of generators of the maximal ideal of the local dimension 2
regular ring (Ov[T ])(Q), thus (Ov[T ]/P )(Q) is a discrete valuation ring with
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uniformizing element the image of π. By Axiom (B4)(ii) now, we conclude

that ∂π,P
Q is onto, proving the claim. ��

Now let X be a local smooth k-scheme of dimension 2 with closed point
z and function field E. Recall from the beginning of Sect. 2.2 that we denote

by H2
z (X ;M) the cokernel of the sum of the residues M∗(E)

Σ
y∈X(1)∂y−→

⊕y∈X(1)H1
y (X ;M∗). We thus have a canonical exact sequence of the form:

0 → M∗(X) → M∗(E)
Σ

y∈X(1) ∂y−→ ⊕y∈X(1)H1
y (X ;M∗)

Σ
y∈X(1) ∂

y
z−→ H2

z (X ;M∗) → 0 (2.5)

where the homomorphisms denoted ∂y
z are defined by the diagram. This

diagram is the complex C∗((A1
U )0;M∗).

For X the localization (A1
U )0 of A1

U at some closed point Q0 ∈ A
1
κ(v), with

U = Spec(Ov) where v is a discrete valuation on some F ∈ Fk, we thus get
immediately:

Corollary 2.40. Assume M∗ satisfies all the previous Axioms. The complex
C∗((A1

U )0;M∗) is canonically isomorphic to exact sequence:

0 → M∗((A1
U )Q) → M∗(F (T )) → M∗−1(κ(v)(T ))

⊕
(
⊕

P∈(A1
F )

(1)
0
M∗−1(F [T ]/P )

)

→ M∗−2(κ(v)[T ]/Q) → 0

This isomorphism provides in particular a canonical isomorphism

M∗−2(κ(v)[T ]/Q0) ∼= H2
Q0

(A1
U ;M∗)

Corollary 2.41. Assume M∗ satisfies all the previous Axioms. For each n,
the unramified sheaves of abelian groups (on ˜Smk) Mn satisfies Axiom (A2’).

Proof. From Remark 2.19, it suffices to check this when k is infinite.
Now assume X is a smooth k-scheme. Let y ∈ X(1) be a point of

codimension 1. We wish to prove that given α ∈ H1
y (X ;M∗), there are only

finitely many z ∈ X(2) such that ∂y
z (α) is non trivial. By Gabber’s Lemma,

there is an open neighborhood Ω ⊂ X of y and an étale morphism Ω → A
1
V ,

for V some open subset of an affine space over k, such that the morphism
y ∩ Ω → A

1
V is a closed immersion.

The complement y− y ∩Ω is a closed subset everywhere of > 0-dimension
and thus contains only finitely many points of codimension 1 in y.

For any z ∈ (y ∩ Ω)(1), the étale morphism Ω → A
1
V obviously induces a

commutative square
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H1
y (X ;M∗)

∂y
z→ H2

z (X ;M∗)
↑ � ↑ �

H1
y (A

1
V ;M∗)

∂y
z→ H2

z (A
1
V ;M∗)

(because y ∩Ω → A
1
V is a closed immersion), we reduce to proving the claim

for the image of y in A
1
V , which follows from our previous results. ��

Now that we know that M∗ satisfies Axiom (A2’), for X a smooth k-
scheme with function field E we may define as in Sect. 2.2 a (whole) complex
C∗(X ;M∗) of the form

0 → M∗(X) → M∗(E)
Σ

y∈X(1) ∂y−→ ⊕y∈X(1)H1
y (X ;M∗)

Σy,z∂
y
z−→ ⊕z∈X(2)H2

z (X ;M∗) (2.6)

We thus get as an immediate consequence:

Corollary 2.42. Assume M∗ satisfies all the previous Axioms. For any
discrete valuation v on F ∈ Fk, setting U = Spec(Ov), the complex
C∗(A1

U ;M∗) is canonically isomorphic to the exact sequence (2.4):

0 → M∗(A1
U ) → M∗(F (T )) → M∗−1(κ(v)(T ))⊕

(
⊕P∈(A1

F )(1)M∗−1(F [T ]/P )
)

→ ⊕Q∈(A1
U )(1)M∗−2(κ(v)[T ]/Q) → 0

Consequently, the complex C∗(A1
U ;M∗) is an exact complex, and in partic-

ular, for each n, the unramified sheaves of abelian groups (on ˜Smk) Mn

satisfies Axiom (A6).

Proof. Only the statement concerning Axiom (A6) is not completely clear:
we need to prove that Mn(U) → Mn(A

1
U ) is an isomorphism for U a smooth

local k-scheme of dimension ≤ 1. The rest of the Axiom is clear. This claim
is clear by Axiom (HA) for U of dimension 0. We need to prove it for U of
the form Spec(Ov) for some discrete valuation v on some F ∈ Fk (observe
that for the moment M∗ only defines an unramified sheaf on ˜Smk, and we
can only apply point (1) of Lemma 2.16. But this statement follows rather
easily by contemplating the diagram (2.3). ��

We next prepare the statement of our last Axiom. Let X be a local
smooth k-scheme of dimension 2, with field of functions F and closed point
z. Consider the complex C∗(X ;M∗) associated to X in (2.5). By definition
we have a short exact sequence:

0 → M∗(F )/M∗(X) → ⊕y∈X(1)H1
y (X ;M∗) → H2

z (X ;M∗) → 0

Let y0 ∈ X(1) be such that y0 is smooth over k.
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The properties of the induced morphism

M∗(F )/M∗(X) → ⊕y∈X(1)−{y0}H
1
y (X ;M∗) (2.7)

will play a very important role. We first observe:

Lemma 2.43. Assume M∗ satisfies all the previous Axioms (including
(B4)). Let X be a local smooth k-scheme of dimension 2, with field of
functions F and closed point z, let y0 ∈ X(1) be such that y0 is smooth
over k. Then the homomorphism (2.7) is onto.

Proof. We first observe that this property is true for any localization of a
scheme of the form A

1
U at a point z of codimension 2, with U = Spec(Ov),

for some discrete valuation v on F . If y0 is A1
κ(v) this is just Axiom (HA). If

y0 is not A1
κ(v) we observe that the complex C∗((A1

U )z ;M∗):

M(F (T ))
Σ

y∈((A1
U

)z)1
∂y

−→ ⊕y∈((A1
U )z)(1)H

1
y (X ;M) → H2

z (A
1
κ(v);M∗) → 0

is isomorphic to the one of Corollary 2.40. By Axiom (B4)(ii) we deduce
that the map ∂y

z : H1
y0
(X ;M) → H2

z (A
1
κ(v);M∗) is surjective. This implies

the statement.
To prove the general case we use Gabber’s Lemma. Let α be an element

in ⊕y∈X(1)−{y0}H
1
y (X ;M). Let y1, .., yr be the points in the support of α.

There exists an étale morphism X → A
1
U , for some local smooth scheme U

of dimension 1, and with function field K, such that yi → A
1
U is a closed

immersion for each i. But then use the commutative square

M∗(F )
Σy∈X1−{y0}∂y−→ ⊕y∈X(1)−{y0}H

1
y (X ;M∗)

↑ ↑
M∗(K(T ))

Σ
y∈((A1

U
)z)1−{y0}∂y

−→ ⊕y∈((A1
U )z)(1)−{y0}H

1
y (A

1
U ;M∗)

We now conclude that α = Σiαi, with αi ∈ H1
yi
(X ;M∗) ∼= H1

yi
(A1

U ;M∗),
i ∈ {1, . . . , r} comes from an element from the bottom right corner. The
isomorphism H1

yi
(X ;M∗) ∼= H1

yi
(A1

U ;M∗) is a consequence of our definition
of H1

y (−;M∗) and (D4)(iii). The bottom horizontal morphism is onto by the
first case we treated. Thus α lies in the image of our morphism. ��

Now for our X local smooth k-scheme of dimension 2, with field of
functions F and closed point z, with y0 ∈ X(1) such that y0 is smooth over k,
choose a uniformizing element π of y0 (in OX,y0). This produces by definition
an isomorphismM∗−1(κ(y0)) ∼= H1

y0
(X ;M∗). Now the kernel of the morphism

(2.7) is contained in M∗−1(κ(y0)) ∼= H1
y0
(X ;M∗). We may now state our last

Axiom:
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(B5) Let X be a local smooth k-scheme of dimension 2, with field of
functions F and closed point z, let y0 ∈ X(1) be such that y0 is smooth
over k. Choose a uniformizing element π of y0 (in OX,y0). Then the kernel
of the morphism (2.7) is (identified to a subgroup of M∗−1(κ(y0))) equal to
M∗−1(Oy0,z) ⊂ M∗−1(κ(y0)). ��
Remark 2.44. Thus if M∗ satisfies Axiom (B5) one gets an exact sequence

0 → M∗−1(Oy0,z) → M∗(F )/M∗(X) → ⊕y∈X(1)−{y0}H
1
y (X ;M∗)

Lemma 2.43 shows that it is in fact a short exact sequence. ��
Lemma 2.45. Assume that M∗ satisfies all the previous Axioms of this
section, including (B4), (B5).

1) Let X be a local smooth k-scheme of dimension 2, with field of functions
F and closed point z, let y0 ∈ X(1) be such that y0 is smooth over k.
Choose a uniformizing element π of OX,y0 . Then the homomorphism

M∗−1(κ(y0)) ∼= H1
y0
(X ;M)

∂y0
z→ H2

z (X ;M) induces an isomorphism

Θy0,π : M∗−1(κ(y0))/M∗−1(Oy0,z) = H1
z (y0;M∗−1) ∼= H2

z (X ;M)

2) Assume f : X ′ → X is an étale morphisms between smooth local k-
schemes of dimension 2, with closed points respectively z′ and z and
with the same residue field κ(z) = κ(z′). Then the induced morphism
H2

z (X ;M∗) → H2
z′(X ′;M∗) is an isomorphism. In particular, M∗ satisfies

Axiom (A5) (ii).

Proof. 1) We know from the previous Remark that the sequence 0 →
M∗−1(Oy0) → M∗(F )/M∗(X) → ⊕y∈X(1)−{y0}H

1
y (X ;M∗) → 0 is a short

exact sequence. By the definition of H2
z (X ;M) given by the short exact

sequence (2.5), this provides a short exact sequence of the form

0 → M∗−1(Oy0,z) → M∗−1(κ(y0)) → H2
z (X ;M) → 0

and produces the required isomorphism Θy0,π.
2) Choose y0 ∈ X(1) such that y0 is smooth over k and a uniformizing element

π ∈ OX,y0 . Clearly the pull back of y0 to X ′ is still a smooth divisor
denoted by y′0, and the image of π is a uniformizing element for Oy′

0
. Then

the following diagram commutes

H1
z′(y′0;M∗−1)

Θy′0,π′→ H2
z′(X ′;M)

↑ ↑
H1

z (y0;M∗−1)
Θy,π→ H2

z (X ;M∗)

Thus all the morphisms in this diagram are isomorphisms. ��
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Theorem 2.46. Let M∗ be a functor Fk → Ab∗ endowed with data (D4)
(i), (D4) (ii) and (D4) (iii) and satisfying the Axioms (B0), (B1), (B2),
(B3), (HA), (B4) and (B5).

Then for each n, endowed with the sv’s constructed in Lemma 2.37, Mn

is an unramified Fk-abelian group datum in the sense of Definition 2.9. By
Lemma 2.12 it thus defines an unramified sheaf of abelian groups on Smk

that we still denote by Mn.
Moreover Mn is strongly A

1-invariant.

Proof of Theorem 2.46. The previous results (Lemmas 2.36 and 2.38)
have already established that Mn is an unramified sheaf of abelian groups on
S̃mk, satisfying all the Axioms for unramified sheaves on Smk except Axiom
(A4) that we establish below.

Axiom (A2’) is proven in Corollary 2.41. Axiom (A5)(i) is clear and
Axiom (A5)(ii) holds by Lemma 2.45. Axiom (A6) holds by Corollary 2.42.
Theorem 2.27 then establishes that each Mn is strongly A

1-invariant.
The only remaining point is thus to check Axiom (A4). By Remark 2.17

to prove (A4) in general it is sufficient to treat the case where the residue
fields are infinite. We will freely use this remark in the proof below.

We start by checking the first part of Axiom (A4). Let X = Spec(A) be a
local smooth k-scheme of dimension 2 with closed point z and function field F .
Let y0 ∈ X(1) be such that y0 is smooth over k. Choose a pair (π0, π1)
of generators for the maximal ideal of A, such that π0 defines y0. Clearly
π1 ∈ O(y0) is a uniformizing element for z ∈ O(y0).

We consider the complex (2.5) ofX with coefficients inM∗ and the induced
commutative square:

M∗(F )
Σ

y∈X(1)−{y0}∂y−→ ⊕y∈X(1)−{y0}H
1
y (X ;M∗)

↓ ∂y0 ↓ −Σy∈X(1)−{y0}∂
y
z

H1
y0
(X ;M∗)

∂y0
z−→ H2

z (X ;M∗)

We put this square at the top of the commutative square

H1
y0
(X ;M∗)

∂y0
z−→ H2

z (X ;M∗)
↓ � ↓ �

M∗−1(κ(y0))
∂π1
z−→ M∗−2(κ(z))

where H1
y0
(X ;M∗)

∼→ M∗−1(κ(y0)) is the inverse to the canonical isomor-

phism θπ0 induced by π0, and where H2
z (X ;M∗)

∼→ M∗−2(κ(z)) is obtained
by composing the inverse to the isomorphism Θy0,π0 obtained by the previous
lemma and θπ1

.
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Now we add on the left top corner the morphism M∗−1(OX,y0) → M∗(F ),
α �→ [π0]α. We thus get a commutative square of the form:

M∗−1(Oπ0)
[π0].−→ M∗(F )

Σ
y∈X(1)−{y0}∂y−→ ⊕y∈X(1)−{y0}H

1
y (X ;M∗)

↓ ∂π0
y0

↓
M∗−1(κ(y0))

∂π1
z−→ M∗−2(κ(z))

(2.8)
As for y �= y0, π0 is unit in OX,y we see that if α ∈ ∩y∈X(1)M∗(Oy) the

image of α through the composition M∗−1(Oy0)
[π0]−→ M∗(F )

Σ
y∈X(1)−{y0}∂y−→

⊕y∈X(1)−{y0}H
1
y (X ;M∗) is zero. By the commutativity of the above diagram

this shows that the image of such an α through sy0 = ∂π0
y0
([y0].−) lies in the

kernel of ∂π1
z . But this kernel is M∗−1(Oy0,z) and this proves the first part of

Axiom (A4) (for M∗−1 thus) for M∗.
Now we prove the second part of Axiom (A4). Let y1 ∈ X(1) be such that

y1 is smooth over k and different from y0. The intersection y0 ∩ y1 is the
point z as a closed subset. If y0 and y1 do not intersect transversally, we may
choose (at least when κ(z) is infinite which we may assume by Remark 2.17) a
y2 ∈ X(1) which intersects transversally both y0 and y1. Thus we may reduce
to the case, that y0 and y1 do intersect transversally.

Choose π1 ∈ A which defines y1; (π0, π1) generate the maximal ideal
of A. Now we want to prove that the two morphisms ∩y∈X(1)M∗(Oy) →
M∗−2(κ(z)) obtained by using y0 is the same as the one obtained by using y1.

We contemplate the complex (2.5) forX and expand the equation ∂◦∂ = 0
for the elements of the form [π0][π1]α with α ∈ ∩y∈X(1)M∗(Oy). From our
axioms it follows that if y �= y0 and y �= y1 then ∂y([π0][π1]α) = 0. Now

∂π1
y1
([π0][π1]α) is [π0]sy1(α)∈M∗−1(κ(y1))

θy1∼= H1
y1
(X ;M∗) and ∂π0

y0
([π0][π1]α)

is (using Axiom (B0)) − < −1 > [π1]sy0(α) ∈ M∗−1(κ(y0))
θy0∼= H1

y0
(X ;M∗).

Now we compute the last boundary morphism and find that the sum

Θy1,π1 ◦ θπ0
(sπ0

z ◦ sy1(α)) + Θy0,π0 ◦ θπ1
(− < −1 > sπ1

z ◦ sy0(α)) = 0

vanishes in H2
z (X ;M) (as ∂ ◦ ∂ = 0). Lemma 2.47 below exactly yields, from

this, the required equality sz ◦ sy1(α) = sz ◦ sy0(α). ��
Lemma 2.47. Assume that M∗ is as above. Let X = Spec(A) be a local
smooth k-scheme of dimension 2, with field of functions F and closed point z.
Let (π0, π1) be elements of A generating the maximal ideal of A and let y0 ∈
X(1) the divisor of X corresponding to π0 and y1 ∈ X(1) that corresponding
to π0. Assume both are smooth over k. Then the composed isomorphism
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M∗−2(κ(v))
θπ1∼= H1

z (y0;M∗−1)
Θy0,π0∼= H2

z (X ;M)

is equal to < −1 > times the isomorphism

M∗−2(κ(v))
θπ0∼= H1

z (y1;M∗−1)
Θy1,π1∼= H2

z (X ;M)

Proof. We first observe that if f : X ′ → X is an étale morphism, with
X ′ smooth local of dimension two, with closed point z′ having the same
residue field as z, and if y′0 and y′1 denote respectively the pull-back of y0
and y1, then the elements (π0, π1) of A

′ = O(X ′) satisfy the same conditions.
Clearly, by the previous Lemma, the assertion is true for X if and only if it
is true for X ′, because the θπ’s and Θy,π’s are compatible. Now there is a
Nisnevich neighborhood of z: Ω → X and an étale morphism Ω → (A2

κ(z))(0,0)
which is also an étale neighborhood and such that (π0, π1) corresponds to the
coordinates (T0, T1). In this way we reduce to the case X = (A2

κ(z))(0,0) and

(π0, π1) = (T0, T1).
Now one reapplies exactly the same computation as in the proof of the

Theorem to elements of the form [T0][T1](α|F (T0,T1)) ∈ M∗(F (T0, T1)) with

α ∈ M∗−2(F ). Now the point is that using our axioms sT0

(0,0)◦sY1(α|F (T0,T1)) =

sT0

(0,0)(α|F (T0)) = α and the same holds for the other term. We thus get from

the proof the equality, for each α ∈ M∗−2(F )

ΘY1,T1 ◦ θT0
(α) = ΘY0,T0 ◦ θT1

(< −1 > α)

which proves our claim. ��
Let M∗ be as above. For any discrete valuation v on F ∈ Fk the image of

(Ov)
× ×M(∗−1)(Ov) → M∗(F ), (u, α) �→ [u]α lies in M∗(Ov). This produces

for each n ∈ Z a morphism of sheaves on Smk: Gm ×M(∗−1) → M∗.

Lemma 2.48. The previous morphism of sheaves induces for any n, an
isomorphism (Mn)−1

∼= M(n−1).

Proof. This follows from the short exact sequence

0 → Mn(F ) = Mn(A
1
F ) → Mn(Gm|F )

∂T
D0−→ Mn−1(F ) → 0

given by Axiom (HA) (i). ��
Remark 2.49. 1) Conversely given a Z-graded abelian sheaf M∗ on Smk,

consisting of strongly A
1-invariant sheaves, together with isomorphisms

(Mn)−1
∼= M(n−1), then one may show that evaluation on fields yields a

functor Fk → Ab∗ to Z-graded abelian groups together with Data (D4)
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(i), (D4) (ii) and (D4) (iii) satisfying Axioms (B0), (B1), (B2), (B3),
(HA), (B4) and (B5). This is an equivalence of categories.

2) We will prove in Chap. 5 that any strongly A
1-invariant sheaf is strictly

A
1-invariant. Thus the previous category is also equivalent to that of

homotopy modules over k consisting of Z-graded strictly A
1-invariant

abelian sheaves M∗ on Smk, together with isomorphisms (Mn)−1
∼=

M(n−1); see also [21]. This category is known to be the heart of the
homotopy t-structure on the stable A

1-homotopy category of P1-spectra
over k, see [50–52]. ��

Remark 2.50. Our approach can be used also to analyze Rost cycle mod-
ules [68] over a perfect field k. Then Rost’s Axioms imply the existence of
a obvious forgetful functor from his category of cycle modules over k to
the category of M∗ as above in the Theorem, with trivial Z[F×]-module
structure, that is to say < u >= 1 for each u ∈ F×. This can be shown to be
an equivalence of categories (using for instance [21] or by direct inspection
using our construction of transfers in Sect. 4.2). In particular, in the concept
of cycle module, one might forget the transfers but should keep track of some
consequences like Axioms (B4) and (B5) to get an equivalent notion. ��
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