
Chapter 2
Elliptic Systems

Abstract This is an intermediate chapter which first introduces into the theory of
non-linear elliptic systems with quadratic growth in the gradient, and which presents
secondly some results concerning curvature estimates and theorems of Bernstein-
type for surfaces in Euclidean spaces of arbitrary dimensions.

A famous result of S. Bernstein states that a smooth minimal graph in R
3;

defined on the whole plane R2;must necessarily be a plane. Today we know various
strategies to prove this result, and the idea goes back to E. Heinz to establish first
a curvature estimate and to deduce Bernstein’s result in a second step. However,
minimal surfaces with higher codimensions do not share this Bernstein property, as
one of our main examples X.w/ D .w;w2/ 2 R

4 with w D u C iv convincingly
shows. It is still a great challenge to find geometrical criteria, preferably in terms
of the curvature quantities of the surfaces’ normal bundles, which guarantee the
validity of Bernstein’s theorem.

We must admit that we can only discuss briefly some points where we would wish
to employ our tools we develop in this book, but up to now we can not continue to
drive further developments.

2.1 The Mean Curvature Vector

2.1.1 Mean Curvature and Mean Curvature Vector

Elliptic systems with quadratic growth in the gradient of the form

j�Zj � a0jrZj2

with the Euclidean Laplace operator � and the Euclidean gradient r will play
an important role in our analysis. It particularly turns out that the Euler–Lagrange
equations for normal Coulomb frames satisfy such non-linear elliptic systems.
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32 2 Elliptic Systems

The construction of normal Coulomb frames thus requires a profound knowledge
of analytical properties of the underlying geometrical objects. For this reason
we devote this intermediate chapter to present some basic facts of conformally
parametrized immersions with prescribed mean curvature vector H as the standard
example of a non-linear elliptic system of the type from above.

Definition 2.1. Let the immersion X together with an ONF N be given. Then the
mean curvature HN� of an immersion X w.r.t. an unit normal vector N� 2 N is
defined as

HN� WD 1

2

2X

i;jD1
gij LN� ;ij D LN� ;11g22 � 2LN� ;12g12 C LN� ;22g11

2W 2
:

Consider an ONF N D .N1; : : : ; Nn/; and set H� WD HN� for abbreviation.

Definition 2.2. The mean curvature vector H 2 R
n of the immersionX is given by

H WD
nX

�D1
H�N� :

For surfaces in R
3 there is, up to orientation, exactly one unit normal vector N and

thus exactly one mean curvature

H D L11g22 � 2L12g12 C L22g11

2W 2
:

Nevertheless, sometimes ones speaks of the mean curvature vector H D HN even
in this case of one codimension.

It misleads to believe that the mean curvature vector H could replace this special
unit normal vector N for surfaces in R

3: This is not the case since, for example, for
minimal surfaces it always holds H � 0 while, of course, N does not vanish.

Definition 2.3. The immersion X is called a minimal surface if and only if

H � 0 in B :

The property H � 0 does neither depend on the choice of the normal frame N nor
on the choice of the parametrization.

In fact, in general it holds: The mean curvature vector H neither depends on the
parametrization (if we only admit regular parameter transformations which do not
affect the orientation of the unit normal vectors N� 2 N/ nor on the choice of the
ONF (if we only admit transformations of class SO.n/ between those frames).

Minimal surfaces are the topic of a huge amount of literature: Courant [28],
Nitsche [92], Osserman [94], Dierkes et al. [34], Colding and Minicozzi [27],
Eschenburg and Jost [44] to enumerate only some few significant contributions and
to illustrate the importance of this surface class in the fields of geometric analysis.
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2.1.2 Parallel Mean Curvature Vector

Surfaces with constant mean curvature vector generalize the minimal surface
concept. They actually play a central role in modern geometric analysis of surfaces
with one codimension n D 1 which are immersed in Riemannian or Lorentzian
spaces. We refer the reader e.g. to the classical textbook Kenmotsu [78], or to
the extensive works of Große-Brauckmann, Heinz, Hildebrandt, Karcher, Korevaar,
Kusner, Lawson, Meeks, Sauvigny, Sullivan, Wente, and many others; see for
example [54] and the references therein.

So assume now that the mean curvature vector of the immersion X satisfies

jHj � const in B ;

where, of course, H � 0 is allowed. Differentiation yields

nX

�D1
H�H�;ui D 0;

and therefore
nX

�D1
H�H�;ui �

nX

�D1

nX

#D1
H�H#T

#
�;i D 0

since the double sum is zero due to T #�;i D �T �#;i :
We want to associate this property with the following concept.

Definition 2.4. The mean curvature vector H of the immersionX is called parallel
in the normal bundle if the normal parts of the partial derivatives @uiH vanish
identically, i.e. if there hold

@?
uiH � 0 in B for i D 1; 2:

For reasons of simplicity we want to concentrate on the case n D 2 of two
codimensions. Then the following interesting result holds true (see e.g. Chen [21],
or Kenmotsu and Zhou [79] and the references therein).

Proposition 2.1. If the mean curvature vector H of the immersion X WB ! R
4 is

parallel in the normal bundle then it has constant length. If additionally H 6D 0;

then it holds S � 0 for the scalar curvature of the normal bundle.

Proof. The identities

@?
uiH D

nX

�D1
H�;ui N� C

nX

#D1
H#N

?
#;ui D

2X

�D1
H�;ui N� C

2X

#D1

2X

�D1
H#T

�
#;iN� D 0
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for i D 1; 2 can be written in the form

H1;u D H2T
2
1;1 ; H1;v D H2T

2
1;2 ; H2;u D �H1T

2
1;1 ; H2;v D �H1T

2
1;2 :

Thus, we compute

1

2
@ujHj2 D H1H1;u CH2H2;u D H1H2T

2
1;1 �H1H2T

2
1;1 D 0;

1

2
@vjHj2 D H1H1;v CH2H2;v D H1H2T

2
1;2 �H1H2T

2
1;2 D 0

and infer jHj2 � const: Moreover, it holds

0 D @uvH1 � @vuH1 D H2;uT
2
1;2 CH2@uT

2
1;2 �H2;vT

2
1;1 �H2@vT

2
1;1

D �H1T
2
1;1T

2
1;2 CH1T

2
1;1T

2
1;2 CH2@uT

2
1;2 �H2@vT

2
1;1

D �H2.@vT
2
1;1 � @uT

2
1;2/

D �H2SW

and analogously 0 D �H1SW: Therefore, either X is a minimal immersion with
H � 0; or if not then it is a surface with mean curvature vector of constant length
greater than zero and with flat normal bundle. The statement is proved. ut

2.1.3 The Mean Curvature System

From the Gauß equations in connection with the conformal representation of
the Christoffel symbols from Sect. 1.4.2 we now derive an elliptic system for
conformally parametrized immersionsX with prescribed mean curvature vector H:

Proposition 2.2. Let the conformally parametrized immersion X of prescribed
mean curvature vector H together with an ONF N be given. Then it holds

�X D 2

nX

#D1
H#WN# D 2HW in B:

Proof. From the Gauß equations we infer

�X D .� 1
11 C � 1

22/Xu C .� 2
11 C � 2

22/Xv C
nX

#D1
.L#;11 CL#;22/N#

D
nX

#D1
.L#;11 C L#;22/N# :
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Here we take into account that

� 1
11 C � 1

22 D Wu

2W
� Wu

2W
D 0;

� 2
11 C � 2

22 D � Wv

2W
C Wv

2W
D 0

as well as
L#;11 C L#;22 D 2H#W

from the definition ofH#: The statement follows. ut
This system generalizes the classical mean curvature system

4X D 2HWN in B

from Hopf [72] in case n D 1 of one codimension with the scalar mean curvature
H 2 R and the unit normal vector N of the surface X:

In particular, we infer that conformally parametrized minimal surfaces represent
harmonic vectors, i.e. it then holds

�X D 0 in B

which offers the possibility to apply the powerful tools of complex analysis to the
differential geometry of minimal surfaces. We will discuss this fact later.

2.1.4 Quadratic Growth in the Gradient: A Maximum Principle

Now we want to give a geometric application of the classical maximum principle
for subharmonic functions. Namely, assume there is an upper bound jHj � h0 in B
be given such that for the conformally parametrized immersionX it holds

j4X j � 2h0W � h0jrX j2 in B

on account of

WD
p
.Xu �Xu/.Xv �Xv/� .Xu �Xv/2 D

p
.Xu �Xu/2

DjXujjXuj � 1

2

�
X2

u CX2
u

� D 1

2

�
X2

u CX2
v / D 1

2
jrX j2 :

Thus, the surface vectorX is solution of a non-linear elliptic system with quadratic
growth in the gradient.
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Proposition 2.3. LetX WB ! R
nC2 be a conformally parametrized immersion with

prescribed mean curvature vector H: Let jHj � h0 in B; and suppose that

h0 sup
.u;v/2B

jX.u; v/j � 1:

Then it holds the geometric maximum principle

max
.u;v/2B

jX.u; v/j2 D max
.u;v/2@B jX.u; v/j2 :

Proof. We remark that the statement is obviously true without the assumption on the
conformal parametrization since introducing a conformal parameter system .u; v/ 2
B does not affect the maximum norm of the representation X.u; v/: Nevertheless,
using conformal parameters we compute

�jX j2 D 2
�jrX j2 CX � 4X� � 2

�jrX j2 � h0jX jjrX j2�

D 2jrX j2.1 � h0jX j/ � 0:

Therefore, the vector jX.u; v/j2 is subharmonic, and the statement follows from the
classical maximum principle. ut
Surfaces X with the property

h0 sup
.u;v/2B

jX.u; v/j � 1

are also called small solutions of the mean curvature system in contrast to large
solutions which do not necessarily obey the maximum principle. We will encounter
this fact later again. Minimal surfaces are always small in this sense.

The method of proof we presented here goes already back to Heinz (see also
Sauvigny [107], vol. 2, Chap. XII). For further considerations we refer e.g. to
Dierkes [33] and the references therein.

2.2 Curvature Estimates

2.2.1 Problem Statement

With this intermediate chapter we also want to draw the reader’s attention to the
problem of curvature estimates and Bernstein-type theorems for minimal surfaces
in higher-dimensional Euclidean spaces. In particular, we have in mind to confront
some of the methods and results from this field of geometric analysis with the
concepts of extrinsic differential geometry which we developed in the first chapter.
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This plan must be left incomplete due to its complexity. We will therefore
concentrate on some “light” versions of curvature estimates and their immediate
consequences, and we will only discuss briefly more profound approaches and
methods.

2.2.2 Estimate of the S #
�;12

Our first observation is based upon the representation formula

S!�;12 D 1

W
.L�;11 �L�;22/L!;12 � 1

W
.L!;11 � L!;22/L�;12

of the normal curvature tensor from Sect. 1.6.2. Applying the Cauchy–Schwarz
inequality gives us

jS!�;12j � 1

2W
.L2�;11 C 2L2�;12 C L2�;22/C 1

2W
.L2!;11 C 2L2!;12 C L2!;22/:

On the other hand we verify

2H2
� �K� D L2�;11 C 2L�;11L�;22 C L2�;22

2W 2
� L�;11L�;22 � L2�;12

W 2

D L2�;11 C 2L2�;12 C L2�;22

2W 2

so that we arrive at the

Proposition 2.4. Let the immersion X together with an ONF N be given. Then the
components S!�;12 of the curvature vector of its normal bundle can be estimated as
follows

jS!�;12j � .2H2
� �K�/W C .2H2

! �K!/W for all �; ! D 1; : : : ; n:

In particular, immersions with the property

2H2
� �K� � 0 for all � D 1; : : : ; n

have flat normal bundle: S!�;12 D 0: But, in general, bounds for jS!�;12j can only be
achieved by establishing bounds for the curvatures and the area element W:

The special case of two codimensions n D 2 leads us to

jS jW � .2H2
1 �K1/W C .2H2

2 �K2/W D 2jHj2W �KW
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due to S D 1
W
S21;12: Integration then yields the estimate

2

ZZ

B

jHj2W dudv �
ZZ

B

jS jW dudv C
ZZ

B

KW dudv

which we will employ at the end of Sect. 2.2.11. Guadalupe and Rodriguez in [55]
derive this integral inequality in case of compact surfaces without boundary.

The Willmore functional ZZ

B

jHj2W dudv

on the left hand side enjoys a special attention of the geometric analysis due to its
complexity of its non-linear, fourth-order Euler–Lagrange equations, but also due
to its wide range of applications in mathematical biology, chemistry, or physics,
see e.g. the pioneering work of Helfrich [65] who discusses the significant role of
higher-order geometric functionals in R

3 of the general form

ZZ

B

n
˛ C ˇ.H �H0/

2 C �K
o
W dudv

in the theory of so-called elastic bilayers, ˛; ˇ; � and H0 being material constants.
We want to refer the reader to the classical monograph [125] for Willmore’s

own introduction into the fascinating problem of determining immersions which are
critical or even minimal for this functional named after him.

In e.g. Palmer [95] and the recent work Dall’Acqua [31] we find uniqueness
results for the Willmore problem for special boundary data. Dall’Acqua et al. [32]
prove existence and classical regularity of Willmore surfaces of catenoid-type which
were observed phenomenologically e.g. by Fröhlich and Große-Brauckmann using
Ken Brakke’s surface evolver, see [47]. Concerning the general boundary value
problem we want to refer to Schätzle’s paper [108].

Moreover, Rivière [98, 99] extends techniques and results e.g. from Helein [64]
to derive a non-linear differential equation in a divergence-type form for critical
points of the Willmore functional—the basis for further existence and regularity
investigations.

Some of Helein’s results, on the other hand, will play an important role in our
considerations in the fourth chapter.

Let us finally remark that the integral over the Gaussian curvature on the right
hand side of the above inequality can be expressed by the Gauß–Bonnet formula in
terms of the geodesic curvature �g of the immersion X along the boundary curve
@B; ZZ

B

KW dudv D
Z

@B

�g ds � 2�;
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see e.g. Blaschke and Leichtweiß [12] for more details on this famous identity
connecting analysis, topology and differential geometry.

And the conformally invariant functional

ZZ

B

jS jW dudv

measures the total normal curvature of the surface. In Sakamoto [101] we find the
probably first investigations on critical points of this functional, and this should open
new fields in classical differential geometry.

2.2.3 The Special Case of Holomorphic Minimal Graphs

We want to specify the foregoing estimate

jS jW � 2jHj2W �KW

in case of holomorphic minimal graphs.

Proposition 2.5. Let the minimal graph X.w/ D .x; ˚.w// on B with a holomor-
phic function

˚.w/ D '.w/C i .w/

be given. Then it holds

S.w/ D �K.w/ for all w 2 B :

Proof. Making use of the special ONF (see Sect. 1.2.2)

N1 D 1p
1C jr'j2 .�'u;�'v; 1; 0/;

N2 D 1
p
1C jr'j2 .'v;�'u; 0; 1/

we will compute the Gaussian curvatureK and the normal curvature scalar S: Since
X is minimal we already know jS j � .�K/; and we will verify S D �K:

For this purpose, we first note

L1;11 D 'uup
1C jr'j2 ; L1;12 D 'uvp

1C jr'j2 ; L1;22 D 'vvp
1C jr'j2
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as well as

L2;11 D � 'uvp
1C jr'j2 ; L2;12 D 'uup

1C jr'j2 D � 'vvp
1C jr'j2 ;

L2;22 D 'uvp
1C jr'j2

what leads us to (recall W D 1C jr'j2)

K1 D L1;11L1;22 �L21;12
W 2

D 'uu'vv � '2uv

.1C jr'j2/3 ;

K2 D L2;11L2;22 �L22;12
W 2

D �'2uv C 'uu'vv

.1C jr'j2/3 :

Thus, the Gaussian curvature of the holomorphic graph turns out to be

K D 2
'uu'vv � '2uv

.1C jr'j2/3 :

Now let us come to the calculation of S W We have

T 21;1 D �
@u.1C jr'j2/� 1

2
�
.�'u;�'v; 1; 0/ �N2

C 1
p
1C jr'j2 .�'uu;�'uv; 0; 0/ �N2

D 1

1C jr'j2 .�'uu;�'uv; 0; 0/ � .'v;�'u; 0; 1/

D 'u'uv � 'v'uu

1C jr'j2 ;

and analogously

T 21;2 D 'u'vv � 'v'uv

1C jr'j2 :

Compute now the derivatives

@uT
2
1;2D

'uu'vv C 'u'uvv � '2uv � 'v'uuv

1C jr'j2 � 2.'u'vv � 'v'uv/.'u'uu C 'v'uv/

.1C jr'j2/2 ;

@vT
2
1;1D

'2uv C 'u'uvv � 'vv'uu � 'v'uuv

1C jr'j2 � 2.'u'uv � 'v'uu/.'u'uv C 'v'vv/

.1C jr'j2/2 :
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A final calculation of

S D 1

W
.@vT

2
1;1 � @uT

2
1;2/

would then show the stated identity.
ut

2.2.4 Minimal Surfaces in R
3

Bernstein in 1914 proved the following result (see [10] and Hopf [70, 71]).

Proposition 2.6. A minimal graph X.x; y/ D .x; y; �.x; y// satisfying the mini-
mal surface equation

.1C �2y/�xx � 2�x�y�xy C .1C �2x/�yy D 0;

defined on the whole plane R
2 and with continuous partial derivatives of first and

second order, is necessarily a plane.

This result characterizes insistently the non-linear character of the minimal surface
equation in contrast to its linearization

�� D �xx C �yy D 0;

the Laplace equation, which actually possesses non-flat solutions over R2:
Bernstein’s proof relies essentially on his

Lemma 2.1. Let � D �.x; y/ be bounded and twice continuously differentiable,
and suppose it solves

A�xx C 2B�xy C C�yy D 0

with coefficients A; B and C which depend on .x; y; �; �x; �y; �xx; �xy; �yy/ and
fulfill AC � B2 > 0: Then it necessarily holds � � const:

Bernstein verifies that u D arctan �x is a solution of such a differential equation, and
the boundedness of u implies his proposition.

While Bernstein’s method was topological in its nature, Heinz [61] in 1952 gave
a completely new proof of Bernstein’s principle for minimal graphs by establishing
a curvature estimate first, what requires deep analytical estimates of the derivatives
of the conformally parametrized minimal surface vector from above and an estimate
for its area element from below.

For a comprehensive presentation of the theory of plane harmonic mappings
together with this estimate of the area element we also want to refer to Duren [40].
For complete treatments of the theory of non-linear elliptic systems of second order
with quadratic growth in the gradient we refer the reader to Heinz [62], Sauvigny
[107], vol. 2, or Schulz [111].



42 2 Elliptic Systems

The point we want to stress is that Bernstein’s principle fails for minimal graphs
with higher codimensions, for .w;w2/ is obviously a counter-example. One should
find geometric conditions which make this principle hold again.

2.2.5 How a Curvature Estimate Could Work

Let the minimal graph on the closed disc BR of radius R > 0 together with an
ONF N be given. We introduce conformal parameters and obtain a harmonic vector-
valued mappingX WB ! R

nC2:
The Gaussian curvatureK�.0; 0/ in the origin .0; 0/ 2 B w.r.t. an arbitraryN� 2

N can be estimated by

�K�.0; 0/ � jL�;11.0; 0/jjL�;22.0; 0/j C jL�;12.0; 0/j2
W.0; 0/2

where in the enumerator

jL�;ij .0; 0/j � jN�.0; 0/jjXuiuj .0; 0/j � jXuiuj .0; 0/j

or
jL�;ij .0; 0/j � jN�;ui .0; 0/jjXuj .0; 0/j:

Thus, the problem we are faced with is to find (a) upper bounds for the second
derivatives of X; or for its first derivatives and the first derivatives of N� in the
origin, and (b) to establish a lower bound for the area element W.0; 0/:

2.2.6 Estimate of the Area Element from Below:
The Heinz Lemma

Let the minimal graph X.x; y/ D .x; y; �1.x; y/; : : : ; �n.x; y// on the closed disc
BR of radius R > 0 be given. Introduce conformal parameters .u; v/ 2 B such that
it holds

�X.u; v/ D 0 in B:

We now consider the harmonic plane mapping

f .u; v/ WD �
x1.u; v/; x2.u; v/

�
; .u; v/ 2 B:

SinceX.x; y/ is a graph, this mapping represents the reparametrization of the graph
into the new form X.u; v/; and therefore the scaled plane mapping

F WB �! B via F.u; v/ WD 1

R
f .u; v/
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can be chosen with the properties (see e.g. Sauvigny [107], vol. 2):

• F is one-to-one and satisfies F.0; 0/ D .0; 0/:

• F maps the boundary @B positively oriented and topologically onto @B:
• JF .u; v/ > 0 in B for the Jacobian of F:

The Heinz lemma on harmonic plane mappings with all these properties states now
the following universal estimate.

Proposition 2.7. With the Heinz constant CH D 27
4�2

� 0:6839 : : : it always holds

jFw.0; 0/j2 C jFw.0; 0/j2 � CH :

This estimate immediately implies a lower bound for the area element, namely

W.0; 0/ D 1

2
jrX.0; 0/j2 � 1

2
jrx1.0; 0/j2 C 1

2
jrx2.0; 0/j2

D R2jFw.0; 0/j2 CR2jFw.0; 0/j2 � R2CH :

Actually, Heinz first proved

jFw.0; 0/j2 C jFw.0; 0/j2 � 1 � 2�

3
C 4

�
� 0:1788 : : :

while the sharp form given in the proposition above goes back to Hall [57], see e.g.
Duren’s monograph [40] for more details.

Thus, for a complete curvature estimate it remains to estimate the derivatives of
X and/or the derivatives of the unit normal vectorsN�:

2.2.7 Minimal Surfaces with Controlled Growth

Let the minimal graph be conformally parametrized via X WB ! R
nC2: We have

jL�;11jjL�;22j C jL�;12j2 � jXuujjXvvj C jXuvj2 :

Due to �X D 0; potential theory yields a universal constant C1 2 .0;1/ such that

jXuiuj .0; 0/j � C1 sup
.u;v/2B

jX.u; v/j D C1 sup
.x;y/2BR

jX.x; y/j;

see e.g. Gilbarg and Trudinger [53], Theorem 4.6. Now we arrive at the following
curvature estimate and theorem of Bernstein-type from Fröhlich [48].

Theorem 2.1. Let there exist a constant ˝ 2 .0;1/ such that the minimal graph
X WBR ! R

nC2 satisfies the following growth condition

jX.x; y/j � ˝R"
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with some " 2 Œ0; 2/: Then it holds the curvature estimate

jK�.0; 0/j � 2C 2
1˝

2

C 2
H

� R
2"

R4
:

Thus, if the minimal graph is defined over the whole R2 then it is a plane.

The last statement in this theorem follows after performing the limit R ! 1:

This result is sharp in the following sense:X.w/ D .w;w2/; defined on the whole
plane R2; has quadratic growth, i.e. " D 2 in the terminology of our theorem, and it
is obviously not a plane!

We also want to mention that our theorem generalizes the classical Liouville
theorem from complex analysis.

It arises the question whether the critical growth " D 2 has something to do with
the non-vanishing of the scalar curvature of the normal bundle. This question must
be left open.

2.2.8 The First and Second Variation of the Area Functional

Now we want to draw the reader’s attention to curvature estimates for stable minimal
surfaces. For this purpose we first consider immersionsX WB ! R

nC2 which (a) are
critical for the area functional

A ŒX	 WD
ZZ

B

W dudv with W D
q
g11g22 � g212 ;

and (b) for which its second variation is always positive.
For the next two results we especially refer to Sauvigny [102].

Proposition 2.8. The immersion X WB ! R
nC2 is critical for A ŒX	 if its mean

curvature vector vanishes identically, i.e. if

H � 0 in B:

In other words, minimal surfaces are stationary for the area functional.

Proposition 2.9. The second variation of A ŒX	 w.r.t. an unit normal vector N� 2
N for a conformally parametrized minimal immersion X WB ! R

nC2 reads

ı2�A ŒX	 D
ZZ

B

�jr'j2 C 2K�W'
2
�
dudv

C
nX

#D1

ZZ

B

n
.T #�;1/

2 C .T #�;2/
2
o
'2 dudv

for arbitrary ' 2 C1
0 .B;R/:
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In case n D 1 of one codimension there is only one unit normal vector w.r.t. which
we can evaluate the second variation. Thus, we would then arrive at

ı2A ŒX	 D
ZZ

B

�jr'j2 C 2KW'2
�
dudv

since the integral over the squared torsion coefficients drops out.

2.2.9 Stable Minimal Surfaces

The second variation leads us directly to the

Definition 2.5. The minimal surface X is called stable if it holds

ı2NA ŒX	 � 0 for all ' 2 C1
0 .B;R/

and all unit normal vectorsN:

For fixed ONF N and fixed test function ' 2 C1
0 .B;R/ we could sum up all the n

stability inequalities ı2�A ŒX	 � 0 for � D 1; : : : ; n to get

ZZ

B

jr'j2 dudv � 2

n

ZZ

B

.�K/W'2 dudv

� 1

n

nX

�;!D1

ZZ

B

n
.T !�;1/

2 C .T !�;2/
2
o
'2 dudv;

again for all test functions ': Note that H � 0 and K � 0 for the minimal surface.
It must be remarked that the right hand side of these inequalities depends on the

choice of the ONF N while the left hand side does not. Thus, it arises the question
whether there exists an ONF N with controlled torsion coefficients such that the
difference at the right hand side stays positive for all ':

In the next two chapters we will construct special Coulomb-gauged ONF’s for
which we can in fact control the torsion by means of the curvature of the normal
bundle (and certain smallness conditions in case n > 2).

In particular, we will show that if the normal bundle is flat then there exist an
ONF N which is free of torsion, and then the minimal surface is stable if

ZZ

B

jr'j2 dudv � 2

ZZ

B

.�KN/W'
2 dudv

for all test functions ' 2 C1
0 .B;R/ and all unit normal vectors N: It will turn

out that the curvature of the normal bundle acts as a barrier for the existence of
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orthogonal unit normal frames with vanishing torsion coefficients. So if we set

T WD
X

1��<!�n

n
.T !�;1/

2 C .T !�;2/
2
o

in the general case T > 0; when we can not expect existence of torsion-free ONF’s,
we obtain from the above stability inequality after partial integration

0�
ZZ

B

�
jr'j2 C 2

n
.KCT /W'2

�
dudv D

ZZ

B

�
��'C 2

n
.KCT /W'

�
' dudv:

The Schwarzian eigenvalue problem which arises from here,

��' C 
.K C T /' D 0 in B; ' D 0 on @B;

was first considered in Barbosa and do Carmo [5], later in Sauvigny [102, 104] in
his studies of minimal surfaces with polygonal boundaries, but, however, always
without taken the curvature of the normal bundle into particular account.

Thus, also here it remains the question whether we can characterize stability of
minimal surfaces in terms of the eigenvalues of that Schwarzian eigenvalue problem,
and how these eigenvalues depend on the curvature of the normal bundle.

Sauvigny applied his results to prove uniqueness for minimal surfaces spanning
so-called extreme polygonal boundary curves, see e.g. [103]. Moreover, in [106]
he establishes compactness and finiteness results for stable and unstable small
immersions with constant mean curvature spanning regular, extreme Jordan curves.

Concerning new results on finiteness for minimal surfaces with polygonal
boundaries we want to draw the reader’s attention to the papers Jakob [73–75]. In
this context we would also like to refer to a recent result of Bergner and Jakob [9]
on the non-existence of branch points for minimal surfaces in R

nC2:
Finally, we want to remark that already Wirtinger in [126] proved the absolutely

area minimizing property of holomorphic minimal surfaces w.r.t. compactly sup-
ported variations which implies stability in the sense of our definition from the
beginning. This minimizing character is also discussed in Eschenburg and Jost [44]
by means of modern calibration methods.

2.2.10 Osserman’s Curvature Estimate and a Generalization

In 1964, Osserman [93] proved the following

Proposition 2.10. Assume that at each point of a minimal immersionX in R
nC2 all

unit normal vectors make an angle of at least ! > 0 with a fixed axis in space. Then
for the Gauß curvature K.P / at some point P D X.w0/; w0 2 B; with interior
distance d > 0 to the boundary, it holds
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jK.P /j � 1

d2
� 16.nC 1/

sin4 !
:

In particular, if the surface is defined over the whole R2; then it is a plane.

A connection of Osserman’s !-condition with the curvature of the normal bundle
of complete minimal graphs is not known to us. However, his result is sharp in the
sense that the holomorphic graph .w;w2/; w 2 R

2; does not obey the !-condition.
A refinement of Osserman’s proof together with applications of potential the-

oretic methods enabled us in Bergner and Fröhlich [8] to prove the following
curvature estimate for graphs with prescribed Hölder continuous mean curvature
vector.

Proposition 2.11. Let the graph

X.x; y/ D �
x; y; �1.x; y/; : : : ; �n.x; y/

�

of prescribed mean curvature vector

H D H.X;Z/

be given, .X;Z/ 2 R
nC2 �SnC1 with SnC1 	 R

nC2 being the .nC 1/-dimensional
unit sphere. Suppose that X.u; v/ represents a conformal reparametrization of this
graph. Assume furthermore

1. The mean curvature vector H D H.X;Z/ satisfies

jH.X;Z/j � h0 for all X 2 R
nC2 and Z 2 SnC1

and
jH.X1;Z1/ � H.X2;Z2/j � h1jX1 � X2j˛ C h2jZ1 �Z2j

for all X1;X2 2 R
nC2 and Z1;Z2 2 SnC1; with real constants h0; h1; h2 2

Œ0;1/ and with some ˛ 2 .0; 1/:
2. The surface represents (or contains) a geodesic disc Br .X0/ of radius r > 0 and

center X0 2 R
nC2 (see the next paragraph for details).

3. With a real constant d0 > 0; the area of this geodesic disc Br .X0/ can be
estimated by

A ŒBr .X0/	 � d0r
2 :

4. At every point w 2 B; each normal vector ofX makes an angle of at least ! > 0
with the x1-axis.

Then, for an arbitrarily chosen ONF N there exists a constant

� D �.h0r; h1r
1C˛; h2r; d0; sin!; ˛/ 2 .0;1/
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such that it holds the curvature estimate

jK�.0; 0/j � 1

r2

˚
.h0r/

2 C�
�

for all � D 1; : : : ; n:

In particular, if H � 0; and therefore h0; h1; h2 D 0; and if the minimal graph is
defined over the whole plane R2; then X.x; y/ must be affine linear.

A few words to the assumptions in this theorem: Since X is a conformally
parametrized graph with prescribed mean curvature vector H; it is a solution of

�X D 2

nX

�D1
H�WN� D 2HW in B:

Together with the first assumption we arrive at the following non-linear elliptic
system with quadratic growth in the gradient (see Sect. 2.1.4)

j�X j � h0jrX j2 in B:

The first and second derivatives (in the interior) of such a system can be controlled
if X is either a small solution in the sense of

h0 � sup
.u;v/2B

jX.u; v/j < 1;

or if a growth condition for the area as required is known such that a smallness
condition can eventually be forced by means of the Courant–Lebesgue lemma in
connection with a geometric maximum principle.

On the other hand, the assumption on the universal angle! as well as the required
graph property are needed (a) to ensure that also the plane mapping

f .u; v/ D �
x1.u; v/; x2.u; v/

�
; .u; v/ 2 B ;

solves a non-linear elliptic system with quadratic growth in the gradient, and (b) that
it is one-to-one with F.0; 0/ D .0; 0/; positively oriented and topologically on the
boundary, and possesses a positive Jacobian in B; see Sect. 2.2.6.

Most of our inputs were already discussed in the foregoing paragraphs. But also
here the question remains open whether these assumptions can be connected to the
inner geometry of the normal bundle.

2.2.11 On the Growth of Geodesic Discs

At least we can give a partial answer to this question regarding the growth condition
for geodesic discs. Is it valid to require such a condition at all? In Bergner and
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Fröhlich [8] we computed directly

A ŒX	 � 192�r2

for geodesic discs of the holomorphic graph .w;w2/; where r > 0 is chosen
sufficiently large. Note that in this special case the scalar curvature S of the normal
bundle vanishes asymptotically.

If S is otherwise everywhere strictly larger than a positive constant for some
immersion X WB ! R

4 (or smaller than a negative constant), we can show

Proposition 2.12. Let a minimal surface X WB ! R
4 be given such that the scalar

curvature S of its normal bundle satisfies

S.u; v/ � S0 > 0 for all .u; v/ 2 B

with a fixed real number S0 > 0:
Suppose furthermore that X represents (or contains) a geodesic disc Br .X0/ with
geodesic radius r > 0 and with center X0: Then for the area of this disc it holds the
estimate

A ŒBr .X0/	 � �r2 C S0�

12
r4

Proof. Let the geodesic disc Br .X0/ be given parametrically as X.�; '/ with
geodesic polar coordinates .�; '/ 2 Œ0; r	�Œ0; 2�	:With the area element

p
P.�; 
/;

the line element ds2P w.r.t. this coordinate system takes the form

ds2P D d�2 C P.�; '/ d';

with smooth P.�; '/ > 0 for all .�; '/ 2 .0; r	 � Œ0; 2�/ satisfying

lim
�!0C

P.�; '/ D 0; lim
�!0C

@

@�

p
P.�; '/ D 1

for all ' 2 Œ0; 2�/: For these results and for the following identities we refer
the reader e.g. to Blaschke and Leichtweiß [12]. In particular, with the geodesic
curvature �g of the surface, the integral formula of Gauß–Bonnet gives

rZ

0

�g.�; '/
p
P.�; '/ d' C

�Z

0

2�Z

0

K.
; '/
p
P.
; '/ d
d' D 2�:

For curves with � D const it holds

�g.�; '/
p
P.�; '/ D @

@�

p
P.�; '/ for all .�; '/ 2 .0; r	 � Œ0; 2�/;
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and therefore, together with �K � jS j � S0 > 0 (see Sect. 2.2.2) we can estimate

@

@�

2�Z

0

p
P.�; '/ d' D

2�Z

0

�g.�; '/
p
P.�; '/ d'

D 2� �
�Z

0

2�Z

0

K.
; '/
p
P.
; '/ d
d'

� 2� C
�Z

0

2�Z

0

S0
p
P.
; '/ d
d'

D 2� C S0A ŒB�.X0/	

� 2� C S0��
2

for all � 2 .0; r	: Integration over the radius coordinate yields

2�Z

0

p
P.�; '/ d' � 2��C S0�

3
�3 ;

and a further integration over � D 0 : : : r shows

A ŒBr .X0/	 D
rZ

0

2�Z

0

p
P.�; '/ d'd� � �r2 C S0�

12
r4

proving the statement. ut
At least for certain stable minimal geodesic discs we can show that their areas grow
quadratically in the radius r: Namely, let us start again from the stability inequality

ı2!A ŒX	 D
ZZ

B

jr'j2 dudv C 2

ZZ

B

K!W'
2 dudv

C
nX

�D1

ZZ

B

n
.T �!;1/

2 C .T �!;2/
2
o
' dudv

� 0

for all ' 2 C1
0 .B;R/ and using conformal parameters. Since for the non-positive

Gauß curvatureK we know

K! �
nX

�D1
K� D K;
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we have the estimate

ı2!A ŒX	 � D2A ŒX	 WD
ZZ

B

jr'j2 dudv C 2

ZZ

B

KW'2 dudv

for all ' 2 C1
0 .B;R/: The integral D2A ŒX	 agrees with the functional of the

second variation for minimal surfaces in R
3 such that in this situation the condition

D2A ŒX	 � 0 for all ' 2 C1
0 .B;R/

actually defines stability for minimal surfaces X WB ! R
3:

Sauvigny in [102] revives this condition to define (strict) stability for minimal
immersionsX WB ! R

nC2: It holds the

Proposition 2.13. Let the geodesic disc Br .X0/ be stable in the sense of

D2A ŒBr .X0/	 � 0 for all ' 2 C1
0 .B;R/:

Then its area can be estimates by

A ŒBr .X0/	 � 4�

3
r2 :

For the proof we refer the reader to Gulliver [56] and Sauvigny [105].
Two concluding remarks are due: First, and this follows from Sect. 2.2.2, we

estimate

S0

ZZ

B

W dudv �
ZZ

B

jS0jW dudv �
ZZ

B

.�K/W dudv;

that is, if S0 6D 0 then the curvatura integra is not finite for complete minimal graphs.
And secondly, and this is to round out the beginning of this paragraph, Micallef

in [88] showed that if a minimal graph is complete and stable, and if its area
growths quadratically, then it is holomorphic. Wirtinger in [126] proved that
holomorphic minimal surfaces area absolutely area minimizing w.r.t. compactly
supported variations, see our discussion in Sect. 2.2.9 above.

2.2.12 Curvature Estimates for Higher-Dimensional Minimal
Graphs

The next result, which goes back to Hildebrandt, Jost and Widman [68], states a
Bernstein-type result for higher-dimensional minimal surface graphs in Euclidean
spaces of arbitrary dimensions.
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In particular, it contains a gradient bound of the graph a priori which essentially
reflects the fact that a generalized Gauß map of the surface (concerning this, see also

Hoffman and Osserman [69]) must be contained in a geodesic ball of radius
p
2�
4

in
the so-called Grassmannian manifold Gr;s:

Proposition 2.14. Let z˛ D f ˛.x/ with ˛ D 1; : : : ; s and x D .x1; : : : ; xr / 2 R
r

be C2-regular, and let it generate a r-dimensional minimal graph

X.x; y/ D �
x1; : : : ; xr ; f 1.x1; : : : ; xr /; : : : ; f s.x1; : : : ; xr /

�
:

Let there furthermore exist a real number ˇ > 0 such that

ˇ < cos�t
	

�

2
p
t K




with

K WD
�
1 if t D 1

2 if t � 2
and t WD min fr; sg :

Assume finally that

vuutdet

 
ıij C

sX

˛D1

@f ˛

@xi
@f ˛

@xj

!

i;jD1;:::;r
< ˇ:

Then the functions f 1; : : : ; f s are affine linear on R
r ; and the minimal graph is an

affine linear r-dimensional plane.

In subsequent works, e.g. Jost and Xin [76], Wang [119], or Xin [127], one finds
various improvements of this result as well as generalizations to surfaces with
prescribed mean curvature vector.

Also here the question must be left open how the assumption on the gradient
bound stands in connection with our geometrical and analytical concepts of the
normal bundle. We expect that it can be weakened at least in the special case r D 2

of surfaces in view of other results where less restrictive assumptions are required,
see e.g. Fröhlich [46] and the references therein, and combine them for instance
with the discussions from Barbosa and do Carmo [5, 6], and Ruchert [100].

Finally we want to mention the curvature estimates and theorems of Bernstein-
type for minimal submanifolds with flat normal bundle from Smoczyk et al. [113],
where e.g. classical methods from Schoen et al. [109] and Ecker, Huisken [42] were
employed. In Fröhlich and Winklmann [52] we succeeded in proving similar results
for graphs of dimension m 2 Œ2; 5	 but with prescribed mean curvature vector. Can
one find methods and techniques comparable to the ones presented in this book to
establish more general results for submanifolds with arbitrary normal bundles?
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