Chapter 2
Conservation of Momentum

Conservation of momentum provides the next basic differential equation of the
stellar-structure problem. We will derive this in several steps of gradually increasing
generality. The first assumes mechanical equilibrium (Sect.2.1), the equation of
motion for spherical symmetry follows in Sect.2.4, while in Sect.2.5 even the
assumption of spherical symmetry is dropped. In Sect. 2.6 we briefly discuss general
relativistic effects in the case of hydrostatic equilibrium.

2.1 Hydrostatic Equilibrium

Most stars are obviously in such long-lasting phases of their evolution that no
changes can be observed at all. Then the stellar matter cannot be accelerated
noticeably, which means that all forces acting on a given mass element of the star
compensate each other. This mechanical equilibrium in a star is called “hydrostatic
equilibrium”, since the same condition also governs the pressure stratification, say,
in a basin of water. With our assumptions (gaseous stars without rotation, magnetic
fields, or close companions), the only forces are due to gravity and to the pressure
gradient.

For a given moment of time, we consider a thin spherical mass shell with (an
infinitesimal) thickness dr at a radius r inside the star. Per unit area of the shell, the
mass is o dr, and the weight of the shell is —go dr. This weight is the gravitational
force acting towards the centre (as indicated by the minus sign).

In order to prevent the mass elements of the shell from being accelerated in this
direction, they must experience a net force due to pressure of the same absolute
value, but acting outwards. This means that the shell must feel a larger pressure P;
at its interior (lower) boundary than the pressure P, at its outer (upper) boundary
(see Fig. 2.1). The total net force per unit area acting on the shell due to this pressure
difference is

P
P~ P = ——dr. 2.1
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Fig. 2.1 Pressure at the

upper and lower border of a

mass shell of thickness dr,

and the vector of gravitational

acceleration (dashed) acting

at one point on the shell Ps

(The right-hand side of this equation is in fact a positive quantity, since P decreases
with increasing r.) The sum of the forces arising from pressure and gravity has to
be zero,

oP
— +g0=0, (2.2)
ar

which gives the condition of hydrostatic equilibrium as

aP

’
This shows the balance of the forces from pressure (left-hand side) and gravity
(right-hand side), both per unit volume of the thin shell. Equation (1.8) gives
g = Gm/r? so that (2.3) finally becomes

P Gm
= —_—). 2.4
ar 2 @4
This hydrostatic equation is the second basic equation describing the stellar-
structure problem in the Eulerian form (r as an independent variable).

If we take m as the independent variable instead of r, we obtain the hydrostatic
condition by multiplying (2.4) with dr/0m = (4wr?0)~", according to (1.5) and
(1.6):

P ~ Gm
am ~ dmrt

2.5)

This is the second of our basic equations in the Lagrangian form.

2.2 The Role of Density and Simple Solutions

We have dealt up to now with the distribution of matter, the gravitational field, and
the pressure stratification in the star. This purely mechanical problem yielded two
differential equations, for example, with m as independent variable (a choice not
affecting the discussion),
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Let us see whether solutions can be obtained at this stage for the problem as stated
so far.

We have only two differential equations for three unknown functions, namely
r, P, and po. Obviously we can solve this mechanical problem only if we can express
one of them in terms of the others, for example, the density o as a function of P. In
general, this will not be the case. But there are some exceptional situations where o
is a well-known function of P and r or P and m. We can then treat the equations as
ordinary differential equations, since they do not contain the time explicitly.

If such integrations are to be carried out starting from the centre, the difficulty
occurs that (2.6) are singular there, since r — 0 for m — 0, though one can easily
overcome this problem by the standard procedure of expansion in powers of m, as
given later in (11.3) and (11.6).

A rather artificial example that can be solved by quadrature is 0 = o(m), in
particular o = constant in the homogeneous gaseous sphere.

Physically more realistic are solutions obtained for the so-called barotropic case,
for which the density is a function of the gas pressure only: o = o(P). A simple
example would be a perfect! gas at constant temperature. After assuming a value
P, for the central pressure, both equations (2.6) have to be solved simultaneously,
since o(P) in the first of them is not known before P is evaluated.

As we will see later (for instance, in Sects. 19.3 and 19.8), there are also cases
for which no choice of P, yields a surface of zero pressure at finite values of . In
the theory of stellar structure there is even a use for these types of solution.

Among the barotropic solutions is a wide class of models for gaseous spheres
called polytropes. These important solutions will later be discussed extensively
(Chap. 19). Barotropic solutions also describe white dwarfs, i.e. stars that really
exist (Sect. 37.1).

But in general the density is not a function of pressure only but depends also on
the temperature 7. For a given chemical composition of the gas, its thermodynamic
behaviour yields an equation of state of the form o = o(P, T'). A well-known case
is that of a perfect gas, where

uw P
=2 2.7
O=NT 2.7
with the gas constant R = 8.315 x 107 erg K~ g~! (which we define per g instead
of per mole), while u is the (dimensionless) mean molecular weight, i.e. the average
number of atomic mass units per particle; in the case of ionized hydrogen, u = 0.5
(see Sect. 4.2).

I'Throughout this book we will use the terms perfect and ideal gas synonymously, as they describe
the same physical concept.
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Once the temperature appears in the equation of state and cannot be eliminated
by means of additional conditions, it then becomes much more difficult to determine
the internal structure of a self-gravitating gaseous sphere. The mechanical structure
is then also determined by the temperature distribution, which in turn is coupled to
the transport and generation of energy in the star. This requires new equations, with
which we shall deal in Chaps. 4 and 5.

2.3 Simple Estimates of Central Values P, T,

The hydrostatic condition (2.5) together with an equation of state for a perfect gas
(2.7) enables us to estimate the pressure and the temperature in the interior of a star
of given mass and radius.

Let us replace the left-hand side of (2.5) by an average pressure gradient (Py —
P.)/M, where Py(= 0) and P, are the pressures at the surface and at the centre.
On the right-hand side of (2.5) we replace m and r by rough mean values M/2 and
R /2, and we obtain

N 2GM?

P — e 2.8)

From the equation of state for a perfect gas, and with the mean density

M

—, 2.9
A R3 (2.9

é sy
we find with (2.8) that

Pop . p 0 4nR’
oM "Moo 3M

2
|
|
I

(2.10)

Since in most stars the density increases monotonically from the surface to the
centre, we have 0/o. < 1 (Numerical solutions show that /0. & 0.03...0.01.).
Therefore (2.10) yields

< 8Gu M
3N R

@2.11)

With the mass and the radius of the Sun (Mg = 1.989 x 103 g, Rg = 6.96 x
10'° ¢cm) and with u = 0.5, we find that

P.~ 7% 10" dyn/ecm®, T, <3 x107K. (2.12)
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Modern numerical solutions (Chap.29) give P, = 2.4 x 10" dyn/cm?, T, = 1.6 x
107 K.

So we can expect to encounter enormous pressures and very high temperatures
in the central regions of the stars. Moreover, our assumption of a perfect gas turns
out to be fully justified for these values of P and T'.

2.4 The Equation of Motion for Spherical Symmetry

Our equation of hydrostatic equilibrium (2.5) is a special case of conservation of
momentum. If the (spherical) star undergoes accelerated radial motions, we have to
consider the inertia of the mass elements, which introduces an additional term. We
confine ourselves here to the Lagrangian description (i, t as independent variables),
which is especially convenient for spherical symmetry.

We go back to the derivation of the hydrostatic equation in Sect.2.1 and again
consider a thin shell of mass dm at the distance r from the centre (Fig. 1.1). Owing
to the pressure gradient, this shell experiences a force per unit area fp given by
(2.1), the right-hand side of which is easily rewritten in terms of dP/dm according
to (1.7):

fr =5 dm. (2.13)

The gravitational force per unit area acting on the mass shell is, with the use of (1.8),

gdm  Gm dm
4rr? 2 4mr?’

Je = (2.14)
If the sum of the two forces is not equal to zero, the mass shell will be accelerated

according to

dm 0*r

g = Jr+ S (2.15)

This gives with (2.13) and (2.14) the equation of motion as

1 3% oP Gm

- - . 2.16
4mr? 02 om  4mrt ( )

The signs in (2.16) are such that the pressure gradient alone would produce an
outward acceleration (since dP/dm < 0), while the gravity alone would produce
an inward acceleration.

Equation (2.16) would give exactly the equation of hydrostatic equilibrium (2.5)
if the second time derivative of r vanished, i.e. if all mass elements were at rest
or moved radially at constant velocity. Moreover, the term on the left-hand side is
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certainly unimportant if its absolute value is small compared to the absolute values
of any term on the right, i.e. if the two terms on the right-hand side cancel each
other nearly to zero. Then the hydrostatic condition is a very good approximation,
and the configuration moves through neighbouring near-equilibrium states. In this
sense we are allowed to apply the simpler hydrostatic equation to a much wider
class of solutions than those fulfilling the strict requirement 9%r/d9t> = 0. To
illustrate this further we assume a deviation from hydrostatic equilibrium such that,
for example, in (2.16), the pressure term suddenly “disappears”. The inertial term on
the left would then have to compensate the gravitational term on the right. We now
define a characteristic time-scale t for the ensuing collapse of the star by setting
|0%r/0t?| = R/} Then we obtain from (2.16) R /13 ~ g, or

R\ /2
. (_) . 2.17)
14

This is some kind of a mean value for the free-fall time over a distance of order
R following the sudden disappearance of the pressure. We can correspondingly
determine a timescale Teyp for the explosion of our star for the case that gravity
were suddenly to disappear: R/ Tezxpl = P/oR, where we have replaced dP/dr by
P/R after writing 47r2(dP/dm) = (3P /dr)/o (P and o are here average values
over the entire star). We then find that
0 1/2

Toxpl & R (F) . (2.18)
Since (P/0)'/? is of the order of the mean velocity of sound in the stellar interior,
one can see that Teyp is of the order of the time a sound wave needs to travel from
the centre to the surface.

If our model is near hydrostatic equilibrium, then the two terms on the right
side of (2.16) have about equal absolute value and 7z ~ Texpl. We then call this
timescale the hydrostatic timescale tyyqr, since it gives the typical time in which a
(dynamically stable) star reacts on a slight perturbation of hydrostatic equilibrium.
With g ~ GM/R?, we obtain from (2.17) up to factors of order 1 that

R\ 1/2
O ~ =(Gp)™ /- 2.19
Thyd ( G M) 2( 0) (2.19)
In the case of the Sun we find the surprisingly small value tyyg, ~ 27 min. Even in
the case of a red giant (M ~ Mg, R ~ 100Rp), one has only Ty ~ 18days,
while for a white dwarf (M ~ Mg, R ~ Rg/50), the hydrostatic timescale is
extremely short: 7hyqr &~ 4.5s. In most phases of their life the stars change slowly
on a timescale that is very long compared to thye. Then they are very close to
hydrostatic equilibrium and the inertial terms in (2.16) can be ignored.
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2.5 The Non-spherical Case

Up to now we have dealt with spherically symmetric configurations only. It is easy
to see how the equations would have to be modified for more general cases without
this symmetry.

After rewriting (2.16) for the independent variable r, we easily identify it as a
special case of the Eulerian equation of motion of hydrodynamics

QE =—-VP — oV, (2.20)

where v is the velocity vector, and the substantial time derivative on the left is
defined by the operator

0
—_ = — -V. 2.21
dt at+” ( )

The general form of (1.4) has already been shown to be the continuity equation of
hydrodynamics

do _ v,
= V - (ov), (2.22)

and, as described in Sect. 1.3, the gravitational potential @ is connected with an
arbitrary distribution of the density by the Poisson equation (1.9):

V2@ = 47 Go. (2.23)

We see in fact that the stellar-structure equations discussed up to now are just special
cases of normal textbook hydrodynamics.

2.6 Hydrostatic Equilibrium in General Relativity

To help with subsequent work (Chap.38), we briefly refer to the change of the
equation of hydrostatic equilibrium due to effects of general relativity. For details
see, for example, Zeldovich and Novikov (1971).

Very strong gravitational fields, as in the case of neutron stars, are described by
the Einstein field equations

K 87 G

1
Rix— s8R = Ty, k= —5 (2.24)
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where Rj; is the Ricci tensor, g is the metric tensor and the scalar R is the Riemann
curvature. Ty is the energy-momentum tensor, which for a perfect gas has as the
only non-vanishing components Tyy = oc?, Ty, = T» = T33 = P (o includes
the energy density, P = pressure). We are interested in static (time-independent),
spherically symmetric mass distributions. Then the line element ds, i.e. the distance
between two neighbouring events, is given in spherical coordinates (r, ¥, ¢) by the
general form

ds? = e'c*di — erdr* — r’(d9? + sin® 9 dg?) (2.25)

with v = v(r), A = A(r). With these expressions for Ty and ds, the field equations
(2.24) can be reduced to three ordinary differential equations:

kP (Vv N 1 1 (2.26)

—_— = e —_— —_— — _’ .

c? roor? r2

kP 1 ,(, 1, V=1 v

b _ 1 - _ , 227

2 = 5C (v + 7V + p 7 (2.27)
A 1 1

Ko = e (— — —2) + = (2.28)
roor r

where primes denote derivatives with respect to r. After multiplication with 4772,
(2.28) can be integrated giving

km = 4dmr(l —e™). (2.29)

Here m denotes the gravitational mass inside r defined by
r
m = / 4rriodr. (2.30)
0

For r = R, m becomes the gravitational mass M of the star. It is the mass a distant
observer would measure by its gravitational effects, for example, on orbiting planets.
It is not, however, the mass which we naively identify with the baryon number times
the atomic mass unit: M contains not only the rest mass, but the whole energy
(divided by ¢?). This includes the internal and the gravitational energy, the latter
being negative and reducing the gravitational mass (just as the binding energy of
a nucleus results in a mass defect; see Chap. 18). The seemingly familiar form
of (2.30) is treacherous. First of all, 0 = gy + U/c? contains the whole energy
density U as well as the rest-mass density o, and the changed metric would give
the spherical volume element as e*/?477r2 dr instead of the usual form 47 72 dr [over
which (2.30) is integrated].

Differentiation of (2.26) with respect to r gives P’ = P/(A,A,v',v",r).
When A, A", v, v” are eliminated by (2.26), (2.27) and (2.29), one arrives at the
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Fig. 2.2 The piston model. Gas of mass m™* (with pressure P, density o, temperature 7') is held
in a container with a movable piston of mass M *. The gravitational acceleration g acts on the
piston. The container is embedded in a medium of temperature 7; a possible heat leak is indicated
(dashed) in the right wall of the container. In Chap. 2, only the mechanical properties of the model
are discussed

Tolman-Oppenheimer-Volkoff (TOV) equation for hydrostatic equilibrium in general
relativity:

P Gm (P ( 4TrPY () 2Gm - @31
ar 2 ¢ oc? mc? re? ' '

Obviously this reverts to the usual form (2.4) for ¢> — oo.

For gravitational fields that are not too large (small deviations from Newtonian
mechanics), one can expand the product of the parentheses in (2.31) and retain only
terms linear in 1/c2. This gives the so-called post-Newtonian approximation:

+
oc? mc? rc?

PG P 4nr’P  2G
m (1+— ARSI m) (2.32)

2.7 The Piston Model

From time to time we shall make use of a simple mechanical model which in some
respects mimics the behaviour of stars, and which is shown in Fig.2.2. A piston of
mass M* encloses a gas of mass m* in a box. G* = gM™ is the weight of the
piston in a gravitational field described by the gravitational acceleration g. A4 is the
cross-sectional area of the piston and # its height above the bottom. Then V = Ah
is the volume of the gas, while its density is 0 = m™*/ V.

In the case of hydrostatic equilibrium, the gas pressure P adjusts in such a way
that the weight per unit area is balanced by the pressure:

G* = PA. (2.33)
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If the forces do not compensate each other, the piston is accelerated in the vertical
direction according to the equation of motion

d*h
M*— = —-G* + PA. 2.34
ar* &9
In a similar manner to our considerations of Sect. 2.4, we can define two timescales
Tip and Texpr:

12
T ~ (—) s (235)
g
12 [ M*\ /2
o ~ 4 () (m ) . (2.36)

In the limit of hydrostatic equilibrium both timescales are the same, and we then
call Tfp = Texpr the hydrostatic timescale Tpyq;.
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