Chapter 2
Process-Aware Information Systems

Abstract The success of commercial enterprises increasingly depends on their
ability to flexibly and quickly react to changes in their environment. Businesses
are therefore interested in improving the efficiency and quality of their business
processes and in aligning their information systems in a process-centered way.
This chapter deals with basic concepts related to business process automation and
process-aware information systems (PAISs). Characteristic properties, perspectives,
and components of a PAIS are presented based on real-world process scenarios.

2.1 Introduction

As discussed in Chap. 1, businesses are increasingly interested in improving the
quality and efficiency of their processes, and in aligning their information systems
in a process-centered ways; i.e., to offer the right business functions at the right time
to the right users along with the information and the application services (e.g., user
forms) for them. In this context, process-aware information systems (PAISs) have
emerged to provide a more dynamic and flexible support for business processes [82].

To provide additional value for the business, however, any automation of
its processes through PAISs should be preceded by process re-engineering and
optimization efforts [130, 273]; i.e., business processes have to be (re-)designed
to meet organizational goals in an economic and efficient manner. Frequent goals
pursued in this context are shortening process cycle times, reducing process costs,
increasing customer satisfaction by utilizing available resources in an efficient and
effective manner, and decreasing error rates.

To discuss alternative process designs with stakeholders and to evaluate the
designed processes in respect to these goals, process knowledge must be first
captured in business process models. These models describe business processes at a
rather high level of abstraction and serve as a basis for process analysis, simulation,
and visualization. More precisely, a business process model should comprise all
the activities of a business process and their attributes (e.g., cost and time) as well

M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Information Systems, 9
DOI 10.1007/978-3-642-30409-5_2, © Springer-Verlag Berlin Heidelberg 2012

10 2 Process-Aware Information Systems

as the control and data flow between the activities. The activities in a business
process, in turn, may be manual ones without the potential to be automated and
hence lying outside the scope of a PAIS, or system-supported ones requiring human
or machine resources for their execution [367]. Hence, a business process model
does not always correspond to the part of the business process automated in a PAIS.

Accordingly, a distinction has to be made between business process models on
one hand, and their executable counterparts (also denoted as executable process
models or workflow models) on the other [240]. The latter can realize the automation
of business processes and thus, in whole or part, the implementation of their
models. When interpreting an executable process model, documents, data objects, or
activities are passed from one process participant to another according to predefined
procedural rules [367].

Modern PAISs describe process logic explicitly in terms of such executable
process models which provide the schema for process enactment. This book focuses
on executable process models and their flexible support through PAISs, whereas
issues related to the modeling, analysis, and redesign of business processes are
outside the scope of this book. When realizing a PAIS based on executable process
models, however, one has to bear in mind that there is a variety of processes
showing different characteristics and needs. On one hand, there exist well-structured
and highly repetitive processes whose behavior can be fully prespecified. On
the other hand, many processes are knowledge-intensive and highly dynamic.
Typically, the latter cannot be fully prespecified, but require loosely specified
process models. Using real-world process scenarios, this chapter gives insights into
these different process categories. Furthermore, it presents properties, perspectives,
and components of PAISs. Thereby, it abstracts from the subtle differences that exist
between the different PAIS-enabling technologies and process modeling paradigms,
focusing instead on core features.

The chapter is organized as follows: Section 2.2 presents examples of prespec-
ified and repetitive processes, and discusses their basic properties, while Sect. 2.3
introduces examples of knowledge-intensive and dynamic processes to illustrate the
broad spectrum of business processes to be supported by PAISs. Following this,
Sect. 2.4 deals with the different perspectives on a PAIS, and Sect. 2.5 presents its
build- and run-time components. Section 2.6 concludes this chapter with a short
summary.

2.2 Prespecified and Repetitive Processes

This section deals with repetitive business processes whose logic is known prior to
their execution and can therefore be prespecified in process models [178]. After
emphasizing the need for the IT support of business processes, we provide two
realistic examples of prespecified processes from the health care domain.

2.2 Prespecified and Repetitive Processes 11
2.2.1 Motivation

To understand why IT support for repetitive business processes is needed, we first
describe a medical scenario (cf. Example 2.1).

Example 2.1 (Need for Supporting Prespecified Processes). The work of
a hospital’s medical staff is significantly burdened by organizational
tasks [172]. Medical procedures (e.g., lab tests and diagnostic imaging) have
to be planned and prepared, appointments with different service providers
(e.g., cardiology or radiology) scheduled, lab specimens or the patients
themselves transported, visits of physicians from other departments arranged,
and medical reports written, transmitted, and evaluated. Thus, cooperation
between the medical staffs of different departments is a repetitive, but
crucial task. Still, in many hospitals such organizational tasks have to
be coordinated manually by staff members requiring, for example, time-
consuming phone calls and documentation steps. In practice, this often
leads to organizational problems and to high administrative loads for staff
members resulting in numerous errors and undesired delays. Patients may
have to wait because resources (e.g., physicians, rooms, technical equipment)
are not available. Medical procedures may be impossible to perform if
information is missing, or preparatory work is omitted, postponed, canceled,
or requires latency time. Previously made appointments may then have to
be rescheduled, again resulting in phone calls and a loss of time. Moreover,
insufficient communication and missing process information are among the
major factors contributing to adverse events in a medical environment (e.g.,
complications due to incorrect treatment). For these reasons hospital stays
are often longer than required, and costs or invasive treatments unnecessarily
high.

From this scenario, it becomes clear why the demand for effective IT support
of repetitive processes for businesses is growing, especially in hospitals. In this
context, a PAIS can foster the collaboration and communication among staff
members and contribute reducing the number of errors by selectively providing
accurate and timely information to process participants. To further illustrate this,
Sect. 2.2.2 presents two examples of processes that are relevant in the context of the
scenario described in Example 2.1.

12 2 Process-Aware Information Systems
2.2.2 Examples of Prespecified Processes

This section introduces two real-world examples of prespecified processes from
the health care domain [172,267]. The first one deals with medical order entries
and the respective reports generated by them (cf. Example 2.2). This process is
characteristic for many hospitals and enables the coordination of interdepartmental
communication between a ward and a radiology department.

Example 2.2 (Medical Order Entry and Result Reporting). Consider Fig.2.1.
It shows the process of handling a medical order between a ward and the
radiology department. First, the medical order is placed by the ward’s nurse
or a physician; this is accomplished by performing consecutively activities
Prepare Order and Enter Order. Following this, the order is sent to the
radiology department. When receiving the order, this department checks the
medical indication to decide whether or not the order can be accepted (activity
Check Indication). Depending on the outcome of this activity, either the
order is rejected (activity Reject Order) or the requested X-ray is scheduled
(activity Schedule X-rays). In both cases, the ward is informed accordingly.
If the order is rejected, the process will be completed. Otherwise, at the
scheduled date, the patient is sent to the radiology department (activity
Transfer Patient), where the X-rays are performed by a radiographer (activity
Perform X-rays), and the resulting images are diagnosed by the radiologist in
the examination room (activity Diagnose Images). Afterward the radiology
report is created (activity Create Report) and its validity is checked (Check
Validity). If required, iterations for corrections may be performed before a
senior radiologist validates the report (Validate Report). The final report is
then printed (Print Report) and signed (Sign Printed Report), before it is sent
to the ward. When the ward receives the report (Receive Report) the process
is completed.

The prespecified process model from Fig.2.1 reflects the activities to be per-
formed and the control flow between them. For example, the process model
comprises the two activities Prepare Order and Enter Order as well as the
precedence relation between them (represented by the arc linking these two
activities). The latter indicates that activity Prepare Order has to be completed
before activity Enter Order may be started. Furthermore, the process model
contains alternative execution paths; e.g., after completing activity Check Indication
either Reject Order or Schedule X-rays is performed. Finally, the depicted process
model also refers to different organizational units, i.e., a ward and the radiology
department.

2.2 Prespecified and Repetitive Processes

13

Start Event

Activities
- .

Prepare

Order

Ward

Precedence
Relation

XOR-Split Transition

Condition
order rejected

order
accepted

M Transfer

End Event

—— XOR-Join

IReceive

Patient

Report

_ Message

Medical
Report

Patient
Record

=

Medical ["

Appointment Ack /
]

Reject Ack

Radiology

Message

Flow else
I Perform | examination Check
X-rays room Validity

phys. room
revision
Create

required
Report] [

1 phys. room

B Reject
Order

order ~—
rejected radiology entrance

Validate
Report

phys. room

Print
Report
radiology
entrance

Check
Indication

radiology entrance

Diagnose examination
Images room

S Schedule
X-rays

radiology entrance

order
accepted,

Sign -
Printed Report

Fig. 2.1 Process for medical order handling and result reporting

Our second process example deals with laparoscopic surgery in a woman’s

hospital (cf. Example 2.3). This process is highly repetitive and provides routine
medical services like cyst removal, dilation, or curettage. Furthermore, it is well
structured and involves three organizational units: the outpatient department, the
surgical ward, and the surgical suite.

Example 2.3 (Planning and Performing a Laparoscopic Surgery). Consider
the prespecified process from Fig.2.2. It starts with the referral of a patient
to the hospital. The patient is first admitted to the outpatient department (1)
where a medical checkup is performed (2), a medical examination takes place
(3), and then anesthesia and its attending risks are discussed with the patient
(4 and 5). Following this, a decision is made (6). If there are contraindications,
a discharge letter will be written (7) and the process is completed. Otherwise
a date for the surgery is scheduled (8), before the patient may return home.
Before the day of the surgery, a physician from the surgical ward to which
the patient will be admitted checks the patient’s medical record (9). On the
scheduled date, the patient is admitted to the surgical ward (10), prepared
for the surgery (11), and sent to the surgical suite (12), where the surgery is
then performed (13). Afterward, the patient is transferred back to the surgical
ward (14), where postsurgical care is provided (15). Usually, the patient is
discharged on the same day (18). Meanwhile, the doctor from the surgical

14

2 Process-Aware Information Systems

Start Event 1 8
R Admit i Schedul
s | ©=)— SO L Activiti Transition chedule
E|= @ Patient ctviies Condition ™ surgery| Surgery e
S patient referral ok Y
8 to hospital 4 | i
I » T
o AND-Split i
2 < *, i i
,g :g Perform Examine Y Anesthesia Make Discharge Letter] 1
5 |2 Checkup Patient Decision '
o | Discuss discharge letter |
Risks AND-Join for referring phys. !
= . ‘
C 9 18 19
3 @ Check Discharge = write e
- 23 Patient Record Patient Discharge Lette 4
s |& i
= & start Event Q End Event
g 1
> i
5 < |
] 2 Admit Prepare M4 5end Patient = Provide }
3 Patient Patient to Surgical Suite| Postsurgical Care| |
® [|
| 1 1
I T e — T ! Exchanged
Message g ieietieieteteinteteinit ettt e Message Ezl
T | T
| i
! i Create 1
° | H Surgery Report] | End Event
5 1 13 ! b
2 v Perform
T e
USJ 17
StartEvent ity with Assigned Order
Sub-Process Lab Test
Fig. 2.2 Prespecified process for planning and performing a Laparoscopic surgery

suite orders a lab test (17) and creates a surgery report (16). Based on this,
a discharge letter is created (19) and sent to the physician who referred the
patient to the hospital.

The prespecified process model from Fig. 2.2 starts with an incoming message on

the referral of a patient and ends with an outgoing message referring to the discharge
letter. Furthermore, the process model includes activities that may be executed in
parallel. For example, this applies to activities Create Surgery Report (16) and
Order Lab Test (17). Finally, for each human activity, the prespecified process
model contains information about the potential actors performing this activity. In
our example, this is accomplished by referring to entities from the organizational
model of the hospital; e.g., activity Examine Patient (3) may be performed by any
user designated Physician who belongs to the Outpatient Department.

2.2.3 Discussion

Processes as illustrated in Examples 2.2 and 2.3 can be found in every hospital.
Particularly, they are highly repetitive and represent the organizational knowledge
necessary to coordinate daily tasks among staff members and across organizational

2.3 Knowledge-Intensive Processes 15

units. Although the described processes are long-running (up to several days, weeks,
or months), they are well structured; i.e., process logic is known prior to the process
execution and thus can be prespecified in process models like the ones depicted in
Figs. 2.1 and 2.2. Generally, such a prespecified process model captures the activities
to be executed, their control and data flow, the organizational entities performing the
activities, and the data objects and documents accessed by them. Note that at this
stage, it is not important to fully understand the notation used in Figs.2.1 and 2.2
(cf. Chap. 4), but to recognize that there are existing processes whose logic is usually
known prior to their execution and thus can be prespecified in the respective process
models. Prespecified processes and their support, along the different phases of the
process life cycle, will be discussed in Part Il (Flexibility Support for Prespecified
Processes) of the book, i.e., in Chaps. 4-10.

2.3 Knowledge-Intensive Processes

2.3.1 Motivation

In practice, many business processes are knowledge-intensive and highly dynamic;
i.e., the process participants decide on the activities to be executed as well as their
order. Typically, respective processes cannot be fully prespecified like the ones
described in the previous section. Example 2.4 emphasizes this in a clinical scenario.

Example 2.4 (Complex Patient Treatment Scenario). When being confronted
with a complex patient treatment case, physicians have to dynamically
decide which examinations or therapies are necessary (e.g., taking costs and
invasiveness into account) or even dangerous due to contraindications and
treatment-typical problems. Further, many procedures require a preparation;
e.g., before a surgery can take place a patient has to undergo preliminary
examinations, either of which requires additional preparation or excludes
other interventions. While some of them are known in advance, others have
to be scheduled dynamically. Generally, decisions about the next process
steps have to be made during treatment by interpreting patient-specific data
according to medical knowledge and by considering the current state of the
patient. It is generally agreed that such knowledge-intensive processes cannot
be fully automated [172]; i.e., physicians should not blindly obey any arbitrary
step-by-step treatment plan (i.e., prespecified process model), but need to
provide the best possible treatment for their patients after taking into account
the given situation.

16 2 Process-Aware Information Systems

Supporting such complex scenarios requires loosely specified processes (e.g.,
medical guidelines providing assistance in the context of a particular medical
problem) as the one described in Example 2.5. Furthermore, as will be shown in
Example 2.6, in many scenarios it is even not possible to straightjacket a process
into a set of activities, but to explicitly consider the role of business data as a driver
for flexible process coordination.

2.3.2 Examples of Knowledge-Intensive Processes

We introduce two examples of knowledge-intensive processes. While the first one
can be directly related to the scenario from Example 2.4 and corresponds to a loosely
specified process, the second example emphasizes the role of data as a driver for
process execution.

2.3.2.1 Loosely Specified Processes

Example 2.5 deals with a simplified medical guideline we adopted from [19]. It
describes a constraint-based process of treating a patient admitted to the emergency
room of a hospital suspected of having a fracture (cf. Fig.2.3).

Example 2.5 (Fracture Treatment Process). Consider Fig.2.3. Before any
treatment may be chosen, activity Examine Patient has to be performed
by a physician (constraint init). If required, additional medical diagnosis is
done by executing activity Perform X-rays. Depending on the presence and
type of fracture, four different treatments exist: Prescribe Sling, Prescribe
Fixation, Perform Surgery, and Apply Cast. Except for Apply Cast and
Prescribe Fixation, which are mutually exclusive (constraint not co-existent),
the treatments can be applied in any combination and each patient receives at
least one of them (/-of-4 constraint). Activity Perform X-rays is not required
if the specialist diagnoses the absence of a fracture when performing activity
Examine Patient. If activity Perform X-rays is omitted, only the treatment
Prescribe Sling may be applied. All other treatments require Perform X-rays
as preceding activity in order to rule out the presence of a fracture, or
to decide how to treat it (constraint precedence). Simple fractures can
be treated just by performing activity Apply Cast. For unstable fractures,
in turn, activity Prescribe Fixation may be preferred over activity Apply
Cast. When performing activity Perform Surgery, the physician is further
advised to (optionally) execute activity Prescribe Rehabilitation afterward

2.3 Knowledge-Intensive Processes 17

[Cinit | - A must be the first
Perform response Prescribe El activity [A executed activity
Examine Surgery - - Rehabilitation
Patient
B needs to be preceded by A
1of4
Perform precedence Prescribe © Prescribe
X-rays Fixation Sling

mutually

A and B must not co-
exist

[A = B | Atleastn out of m activi-

Prescribe exclusive n ties must be executed
Medication Apply ’
»o If Ais executed B should be
i Cast —
E'_ executed as well (optional)

Fig. 2.3 Example of a constraint-based process (adopted from [19])

(optional constraint response). Moreover, the physician may execute activity
Prescribe Medication (e.g., pain killers or anticoagulants) at any stage of the
treatment. Note that activities Examine Patient and Perform X-rays may be
also performed during treatment.

Figure 2.3 depicts the loosely specified process model corresponding to
Example 2.5 when using a constraint-based process modeling approach. The boxes
represent activities and the relations between them are different kinds of constraints
for executing these activities. The depicted model contains mandatory constraints
(solid lines) as well as one optional constraint (dashed line). As opposed to fully
prespecified process models (cf. Figs.2.1 and 2.2) that describe how things have to
be done, constraint-based process models (cf. Fig. 2.3) only focus on the logic that
governs the interplay of actions in the process by describing the activities that can
be performed and those constraints prohibiting undesired behavior.

Note that in more complex cases, the physician in charge may have to choose
from dozens or even hundreds of activities. While some of them may be executed
any number of times and at any point in time during the treatment process, for
others a number of constraints have to be obeyed; e.g., certain activities may
have to be preceded or succeeded by other activities or may even exclude certain
activities. Moreover, depending on the particular patient and his medical problems,
certain activities might be contraindicated and should therefore not be chosen. The
challenge is to provide PAIS support for such knowledge-intensive processes and to
seamlessly integrate the described constraints within the physician’s work practice.
Generally, the structure of knowledge-intensive processes strongly depends on user
decisions made during process execution; i.e., it dynamically evolves.

Loosely specified processes will be discussed in Part 111 (Flexibility Support for
Loosely Specified Processes) of the book, i.e., in Chaps. 11-12.

18 2 Process-Aware Information Systems

2.3.2.2 Data-Driven Processes

Both prespecified and loosely specified processes are activity-centric; i.e., they
are based on a set of activities that may be performed during process execution.
In practice, however, many knowledge-intensive and dynamic processes exist that
cannot be straightjacketed into a set of activities [24, 159]. Characteristic of these
processes is the role of business data acting as a driver for process execution
and coordination. Capturing the logic of respective processes in activity-centric
process models like the ones depicted in Figs.2.1-2.3, therefore, would lead to
a “contradiction between the way processes can be modeled and preferred work
practice” [315].

In the area of human resource management, for instance, recruitment constitutes
an example of a knowledge-intensive, data-driven process [156, 160]. It starts
with the human resource department receiving recruitment requisitions from a
department of the organization, followed by steps like preparing the job description,
identifying the employees to be involved (e.g., advertising and interviewing activi-
ties), finding the best candidates among the applicants, arranging and conducting the
interviews with the selected candidates, and making the final decision. Example 2.6,
which we adopted from [160], describes such a recruitment process.

Example 2.6 (Recruitment Process). Applicants may apply for job vacancies
via an Internet form. The overall process goal is to decide which applicant
shall get the job. Before an applicant can send her application to the respective
company, specific information (e.g., name, e-mail address, birthday, resi-
dence) has to be provided. Once the application has been submitted, the
responsible officer in the human resource department is notified. Since many
applicants may apply for a vacancy, usually, a number of various personnel
officers might be handling the applications. If an application is ineligible, the
applicant is immediately rejected. Otherwise, personnel officers may request
internal reviews for each applicant. Depending on the respective divisions
of the company involved, the concrete number of reviews may vary from
application to application.

Corresponding review forms have to be filled in by employees from the
various company divisions before a stated deadline. Employees may either
decline or accept performing the requested review. In the former case, they
must provide a reason; otherwise, they propose how to proceed; i.e., they
indicate whether the applicant shall be invited for an interview or be rejected.
In the former case, an additional appraisal is needed. After the employee
has filled in the review form, she submits it to the personnel officer. In the
meanwhile, additional applications may have arrived; i.e., different reviews
may be requested or submitted at different points in time. In this context,
the personnel officer may flag already evaluated reviews. The processing

2.3 Knowledge-Intensive Processes

Q > external
It

applicant application
Init
g’ _— application
applicant
company division

C-» roiew

_l-_playu in
Willi Ohr
O [
raview
amployes
ranz Hahr fill in
raview
G- - fill in
review

amployes

v v
users activities

job
engineer
01]01 2010
software
Ulm

M
I\
application
application
Hans Manz
hmiweb. de
1212|1970
Ulm

many skills

v
data structure

Fig. 2.4 Example of a data-driven process (adopted from [160])

human resource department

lDDl-Itlﬂnn

| initiate
| initiate
initiate
initiate
initiate
reviews

activities

19

-

personnel
officer

. -J
perscnnel
officer

users

of the application proceeds while corresponding reviews are created; e.g.,
the personnel officer may check the CV and study the cover letter of the
application. Based on the incoming reviews he makes a decision about the
application or initiates further steps (e.g., interviews or additional reviews).
Finally, he does not have to wait for the arrival of all reviews; e.g., if a
particular employee suggests hiring the applicant. An illustration of this
example is provided by Fig.2.4.

Example 2.6 describes a scenario in which business data acts as a driver for
process execution; i.e., objects (e.g., applications and reviews), object attributes,
and object relations play a fundamental role for process execution. Therefore, a
tight synchronization between the object and process state is required; i.e., it is no
longer sufficient to only model processes in terms of black-box activities. Instead,
their execution is related to objects and object states [158]. Unlike activity-centric
approaches, enabling a particular process step does not directly depend on the
completion of preceding process steps, but rather the changes of certain object

attribute values.

Data-driven processes will be discussed in Part IV (User- and Data-Driven
Processes) of the book, i.e., in Chaps. 13—14.

20 2 Process-Aware Information Systems

data structure process structure
[— T~ —~
job i 1. job
‘n(s}gi Efes lattributes object .~ : kSl A
[i ; = asynchronous
[informalion - pepaor | [REIEEX
¥ [| uciui f
relations application H application v |
i }
g — 5 v
o Tam = aa Y)
H " N - A
review b “H interview | {H| review 4 +» intervieww :
: : i i~ ' &)

Fig. 2.5 Relation between data and process modeling (adopted from [160])

2.3.3 Discussion

Typically, knowledge-intensive processes are very dynamic. In particular, the
concrete activities to be performed, as well as their exact course, may depend on
decisions made by process participants during process execution; i.e., knowledge-
intensive processes cannot be completely prespecified. Instead, more maneuvering
room for process participants and looseness of process execution are required.
In certain cases this can be achieved by using constraint-based process models
focusing on what shall be done by describing the activities that may be performed
as well as related constraints prohibiting undesired process behavior.

As further shown, there are scenarios in which an activity-centric approach is not
suitable at all, but a tighter integration of process and data is required. In accordance
to data models comprising object types and object relations (cf. Fig.2.5a), the
modeling and execution of processes have to be based on two levels of granularity:
object behavior and object interactions (cf. Fig. 2.5b).

The scenarios presented in Examples 2.2-2.6 indicate that a variety of business
processes exist for which PAIS support is needed. Effective IT support for this
wide spectrum of business processes necessitates different approaches considering
the specific properties of prespecified, loosely specified, and data-driven processes.
Later chapters of this book will introduce dedicated approaches supporting pro-
cesses of the different categories in a flexible manner. For the remainder of this
chapter, however, we abstract from the subtle differences existing between the these
process support paradigms and focus on basic commonalities and notions of PAISs.

2.4 Perspectives on a PAIS

Generally, different perspectives on a PAIS can be taken (see [138] for a correspond-
ing framework). For example, relevant perspectives include function, behavior,
information, organization, operation, and time. As illustrated by Fig. 2.6, operational

2.4 Perspectives on a PAIS 21

Operation Organization Time
Perspective Perspective Perspective
application services actors, roles, time constraints

organizational units

\ } ~
T

o0 0

Business
Function 3

1
A4 A4
Business Business
Function 1 Function 2

Business
Function4

Business
Function n
'Y

Executable Process Model

/ t N
@ L8 oo >0 O <~

business functions control flow data objects & data flow
Function Behavior Information
Perspective Perspective Perspective

Fig. 2.6 Perspectives in a PAIS

support of these perspectives and their integration with executable process models
are needed in order to offer the right business functions at the right time and to the
right users along with the information and the application services needed. In the
following, the different perspectives are presented in detail.

2.4.1 Function Perspective

The function perspective covers the functional building blocks from which activity-
centric process models can be composed; i.e., atomic activities representing ele-
mentary business functions as well as complex activities representing subprocess
models. To be more precise, an atomic activity constitutes the smallest unit of
work, i.e., a description of a business function that forms one logical step within
an executable process model. Usually, atomic activities require human or machine
resources for their execution (cf. Example 2.7). In the former case, the activity

22 2 Process-Aware Information Systems

is allocated to process participants during process execution. In the latter case,
the activity is handled by the PAIS in an automated way by directly invoking an
associated application service without requiring any user interaction.

Example 2.7 (Atomic Activity). Consider the prespecified process model
from Fig. 2.2. Perform Checkup constitutes an atomic activity performed by a
user with the role Physician, whereas the activity Provide Postsurgical Care
has to be performed by a user with the role Nurse.

Activity Print Report from Fig. 2.1, in turn, constitutes an example of an
atomic activity that can be handled in an automated way.

A complex activity, in turn, represents a step in a process model referring
to a subprocess model. This signifies that the subprocess model implements
the activity. Every time a complex activity gets enabled during process execu-
tion, its corresponding subprocess model is executed. Generally, a subprocess
is described by its own process model and may have both input and output
data containers to pass data between it and the subordinate process. Basically,
subprocesses constitute a powerful concept for describing the common parts of
different process models and so for enabling their reuse. Furthermore, the use
of complex activities allows process designers to hierarchically structure the
overall process (e.g., limit the number of activities contained in a (sub)process
model).

Example 2.8 (Complex Activity). Consider again the prespecified process
model from Fig.2.2: Perform Surgery constitutes a complex activity which
refers to a subprocess that aggregates a number of related activities not
depicted in Fig. 2.2 (e.g., Prepare Surgical Suite, Check Patient Record, and
Perform Surgical Intervention).

2.4.2 Behavior Perspective

The behavior perspective captures the dynamic behavior of an executable process
model. For example, in activity-centric process models this corresponds to the con-
trol flow between the process activities. A control flow schema includes information
about the order of the activities or the constraints for their execution. As we will

2.4 Perspectives on a PAIS 23

see in later chapters of this book, depending on the process modeling language used
and its underlying paradigm (prespecified, loosely specified, or data-driven process
models), major differences can exist regarding the specification of the behavior
perspective.

Example 2.9 (Behavior Perspective: Prespecified Process Models). Consider
Fig.2.2. Among others, it shows the behavior perspective of a prespecified
process model. First, the depicted model contains activity sequences; e.g.,
activity Admit Patient (10) is followed by Prepare Patient (11), which, in turn,
is followed by Send Patient to Surgical Suite (12). Second, the process model
contains parallel splits of the control flow; e.g., Create Surgery Report (16)
and Order Lab Test (17) may be performed in parallel. As another example,
consider the process model from Fig. 2.1 that contains conditional branchings;
e.g., either activity Schedule X-rays or Reject Order may be executed.
Furthermore, this process model contains a loop structure embedding the two
activities Create Report and Check Validity; i.e., these two activities may be
repeated if a revision is required.

Existing languages for defining prespecified process models offer a variety of
control flow elements [142], e.g., for defining sequential, conditional, parallel, and
iterative activity executions. Chapter 4 presents these and other control flow patterns
for prespecified process models and discusses how they can enable flexibility-
by-design.

Prespecified process models prescribe how, and in which order, the activities of
a process have to be executed. Opposed to this, the behavior of a constraint-based
process model allows for loosely specified processes, and rather describes what shall
be done by defining a set of activities and a set of constraints prohibiting undesired
behavior [19, 243].

Example 2.10 (Behavior Perspective: Loosely specified Process Models).
The constraint-based process model from Fig. 2.3 comprises activities Exam-
ine Patient, Prescribe Medication, Perform X-rays, Prescribe Sling, Prescribe
Fixation, Perform Surgery, Apply Cast, and Prescribe Rehabilitation. More-
over, this process model comprises several constraints prohibiting undesired
execution behavior. For example, each patient gets at least one out of four
treatments (i.e., Prescribe Sling, Prescribe Fixation, Perform Surgery, or
Apply Cast). Furthermore, activities Apply Cast and Prescribe Fixation are
mutually exclusive. Finally, activity Perform X-rays needs to be executed
before any treatment (except Prescribe Sling) may take place.

24 2 Process-Aware Information Systems

Note that Example 2.10 refers to a constraint-based process model. Generally,
loosely specified processes may be partly prespecified, but contain unspecified parts
which are detailed by end-users during process execution (cf. Chap. 11).

As discussed in the context of Example 2.6, there are processes which cannot
be straightjacketed into activities. Instead, a tight integration of process and data is
needed. In accordance to a data model comprising object types and object relations,
the modeling and execution of processes can be based on two levels of granularity:
object behavior and object interactions. First, object behavior determines in which
order and by whom object attributes may be read or written, and what the valid
attribute settings are. To achieve this end, a set of states may be defined for each data
object type, each of them postulating the specific object attribute values to be set.
More precisely, a state can be expressed in terms of a data condition referring to
a number of attributes of the object type. The second level of process granularity
concerns the object interactions between the instances of the same or of different
object types. Note that whether the processing of a particular object instance may
proceed also depends on the states of other object instances processed in parallel.

Example 2.11 (Behavior Perspective: Data-Driven Processes). We refer to
the recruitment process from Example 2.6.

Object Behavior. Consider object type Review and its attributes (cf.
Fig.2.7a), the abstract states of this object type (cf. Fig. 2.7b), and its behavior
expressed in terms of a state diagram (cf. Fig.2.7c). The latter restricts
possible state transitions; i.e., for each reachable state, possible successor
states are defined. More precisely, a review must be first initiated by a
personnel officer. The employee may then either decline or accept performing
the review. In the latter case, he submits the review back to the personnel
officer. Furthermore, states are linked to object attributes; i.e., once a state is
entered, it may only be left if certain attribute values are set. For example,
state initiated may only be left if values are assigned to attributes applications
and employee.

Object Interactions. The behavior perspective of data-driven processes
not only deals with the behavior of single objects, but also considers the
interactions between them. Consider the scenario from Fig. 2.4. Assume that a
personnel officer announces a job. Following this, applicants may submit their
applications. After receiving an application, the personnel officer requests
internal reviews for it. If an employee acting as referee proposes to invite the
applicant to come in, the personnel officer will conduct an interview. Based
on the results of reviews and interviews, the personnel officer makes a decision
about the application. Finally, in the case of acceptance the applicant is hired.
Obviously, whether one may continue with the processing of a particular
object depends on the states of other objects as well (see Chap. 14 for details).

2.4 Perspectives on a PAIS 25

| states | object behavior

e 0 initiated o

Review s Aapplication is not null
/ and employee id not null Q} g Q

perscnnel employee employee
remark accepted officer

(proposal = ,reject’ or I

" proposal = ,invite’) and | ¥ ¥
o appraisal is not null " accepted -+ submitted

initiated<

\ refused refused

reason

refusal = true and
reason is not null

submitted Q

returned = true employee

\ J ||k)
A J = ~—
attriblutes states state transitions

Fig. 2.7 Object behavior

A

conclusion

2.4.3 Information Perspective

In activity-centric process models (i.e., prespecified or constraint-based process
models), the information perspective usually comprises a set of data objects as well
as the data flow between the activities. The latter describes which activities may read
or write which data objects (including data mappings and data type conversions
where required) [310]. Generally, in activity-centric PAISs, a distinction is made
between application data, process-relevant data, and process control data [367].
Application data is specific to a particular application and is usually managed by
the application services invoked in the context of an activity execution (i.e., it is
outside the control of the PAIS). Process-relevant data, in turn, is used by the PAIS
to evaluate state transitions within process instances, i.e., to decide which execution
paths shall next be taken at respective split nodes. Finally, process control data
comprises information about the current state of a process as well as its execution
history.

Example 2.12 (Information Perspective: Activity-centric Processes). Con-
sider the prespecified process model from Fig. 2.1. Its information perspective
includes data objects (and exchanged messages respectively) like Medical
Order and Medical Report. Usually, these objects are stored as application
data in an application system, while the generic process support services of
the PAIS only refer to them via object identifiers. An example of process-
relevant data needed for evaluating transition conditions is the order status
indicating whether an order is accepted. Finally, when executing a process
instance, respective control data (e.g., the time at which activities are started
or completed) is logged.

26 2 Process-Aware Information Systems

In data-driven process models, in turn, the information perspective is tightly
integrated with the behavior perspective. Typically, the information perspective
captures object types, their attributes, and their interrelations [156, 158,225], which
together form a data structure (cf. Fig. 2.4). At run-time the different object types
comprise a varying number of interrelated object instances, whereby the concrete
instance number may be restricted by lower and upper bounds. Typically, object
instances of the same object type differ in their attribute values as well as their
interrelations.

Example 2.13 (Information Perspective: Data-driven Processes). An exam-
ple illustrating the information perspective of a data-driven process is depicted
in Fig. 2.4 and has been explained in detail in the context of Example 2.6. For
instance, for a particular application only two reviews might be requested,
while for others three reviews are initiated.

2.4.4 Organization Perspective

The organization perspective deals with the assignment of human activities to
organizational resources. To enable such an assignment, a process model usually
contains references to an organizational model [298]. An organizational model, in
turn, captures entities like actors, roles, or organizational units as well as their
relationships (e.g., is-manager or is sub-ordinate). Furthermore, it may incorporate
a variety of attributes associated with those entities (e.g., skill or role). Typically,
an organizational model incorporates concepts such as hierarchy, authority, and
substitution as well as attributes associated with organizational roles. The latter
refer to a group of actors exhibiting a specific set of attributes, qualifications, or
skills. Simply speaking, any actor having the role required by a particular activity
may perform this activity. Example 2.14 illustrates the organization perspective.

Example 2.14 (Organization Perspective: Activity-centric ~ Processes).
Consider the process depicted in Fig. 2.2. It involves different organizational
units (i.e., outpatient department, surgical ward, and surgical suite) as well
as different user groups. For example, activities Perform Checkup and
Examine Patient need to be carried out by a staff member of the Outpatient
Department and possessing the role Physician. Further, there might be
additional constraints concerning the execution of single activities; e.g., it
might be required that the same physician who performs the medical checkup

2.4 Perspectives on a PAIS 27

should also examine the patient; i.e., the concrete assignment of an actor
to an activity at run-time may depend on the process execution history.
Generally, information on user roles and organizational units is captured in
the organizational model of the hospital.

Regarding data-driven processes, forms are usually used to enable access to
selected attributes of an object instance (cf. Example 2.15).

Example 2.15 (Organization Perspective: Data-driven Process Models).
Consider the scenario from Example 2.6. Here, a review form has to be
filled by employees from various company divisions. Furthermore, undesired
updates of these attribute values have to be prevented after reaching certain
states; e.g., after an employee from a company division has submitted
her review, she is no longer allowed to change the value of attribute
recommendation.

2.4.5 Operation Perspective

The operation perspective of a PAIS that is based on activity-centric process models
(i.e., prespecified or constraint-based process models) covers the implementation of
the process activities; i.e., the business functions to be performed when executing
these activities. Many PAISs treat activity implementations as a black-box; i.e., they
coordinate the sequence of activities independent from their implementation [178].
More precisely, the application service invoked in the context of an activity expects
that its input parameters are provided upon invocation by the run-time environment
of the PAIS; then the service only has to take care that correct values for its output
parameters are provided (cf. Fig. 2.8).

The application service linked to a particular activity may either be implemented
from scratch or be reused from a service repository. Generally, a PAIS should be
able to invoke arbitrary application services (e.g., Web Services, EJB Components,
Office Applications) in the context of an activity execution. This heterogeneity, in
turn, should be hidden from application developers, which necessitates appropriate
service abstraction as well as service invocation mechanisms. As examples, consider
an Enterprise Service Bus for invoking web services or an Application Server
supporting EJB components.

Regarding Examples 2.2 and 2.3, most human activities can be implemented
in terms of electronic forms. In addition, several connectors for integrating legacy
applications (e.g., to document a surgery or access the electronic patient records in a

28 2 Process-Aware Information Systems

______ , : r_————-> Data Flow
¥ ¥
y
[
Activity Input Parameters Actnvnty Output Parameter
Activity X ——————» Control Flow

Application Service

Fig. 2.8 Passing data between a PAIS and an invoked application service

hospital information system) are required. Generally, the IT support of prespecified
processes is related to enterprise application integration [203] as illustrated by
Example 2.16 (for more details on this topic we refer to [34]).

Example 2.16 (Hospital Application Integration). The architecture of a
typical hospital information system is characterized by many different
departmental systems that have usually been optimized for the support of
different categories of business functions (i.e., services provided by different
medical disciplines like radiology, cardiology, or pathology), but not for the
support of cross-departmental business processes. The need to consolidate the
data produced by these ancillary systems with a global (patient-centered) view
and to support the cross-departmental processes has been a prime mover in the
development of standards for data and message interchange in health care, as
well as the enactment of similar standards in other application domains. These
standards also play an important role, not only when cross-departmental
processes are supported, but cross-organizational ones as well. Today, HL7
is the leading standard for systems integration in health care and may be also
used to integrate health care application services with clinical PAISs [172].

In data-driven process models, the operation perspective is usually represented
by user forms [24,158]. When executing an electronic form related to a data-driven
process, attributes of the corresponding object instance may be read, written, or
updated using the respective form (e.g., the form an applicant may use for entering

2.4 Perspectives on a PAIS 29

his application data). Generally, forms provide input fields (e.g., text-fields or check-
boxes) for writing and data fields for reading selected attribute values of object
instances, depending upon the object state and the process state.

2.4.6 Time Perspective

The time perspective captures temporal constraints that need to be obeyed during
process execution. For example, consider an activity deadline; i.e., a time-based
scheduling constraint requiring that a particular activity has to be completed by a
certain date (i.e., the activity deadline). Typically, such a deadline is dynamically set
during process execution. Generally, a PAIS should take care that activity deadlines
are met or—if a deadline expires—that appropriate escalation and notification
procedures are triggered (cf. Chap. 6); e.g., reminding a process participant to work
on a particular activity or informing a process owner about the expiration of the
deadline [21].

Note that in actual practice, many other temporal constraints exist (see [170]
for a representative collection). For example, the time patterns described in [170]
allow specifying activity durations as well as time lags between activities or—
more generally—between process events (e.g. milestones). Furthermore, there exist
patterns for expressing temporal constraints in connection with recurrent activities
(e.g., cyclic flows and periodicity). Since the focus of this book is not on the time
perspective, we will omit further details and instead refer interested readers to [170].

Example 2.17 (Time Perspective).

* In the context of Examples 2.2 and 2.3, a number of existing temporal
constraints have not yet been touched upon; e.g., a surgery is usually
scheduled for a particular date. Furthermore, a patient record has to be
checked at least 1 day before the scheduled surgery takes place (minimum
time distance). Finally, a checkup of a patient should not take longer than
30 min (activity duration).

* Regarding the data-driven process illustrated in Example 2.6, applications
for a particular job vacancy have to be submitted by a certain date
(deadline). Furthermore, a requested review has yet to be performed by
an employee from a company division within the specified time frame
(duration). Finally, job interviews must take place on a fixed date.

30 2 Process-Aware Information Systems
2.5 Components of a PAIS

This section summarizes basic components and artifacts of a PAIS.

2.5.1 Overview

As depicted in Fig. 2.9, a distinction is made between the process type and process
instance level. While the former defines the schemes for executable process models,
the latter refers to the execution of related process instances, i.e., single enactments
of an executable process model referring to particular business cases. Accordingly,
a PAIS distinguishes between build- and run-time components. While build-time
components enable the creation and management of the type-level artifacts of the
PAIS, run-time components refer to the process instance level and support the
creation, execution, and management of process instances.

Figure 2.10 shows an overview of the build- and run-time environment of a PAIS.
Regardless of the paradigm chosen (i.e., prespecified, constraint-based, or data-
driven process), the build-time environment includes tools for defining, configuring,
and verifying executable process models. The core of the run-time environment, in
turn, is built by a process engine. The latter is a generic software service that allows
creating, executing, and managing the instances of executable process models.
This includes the creation of new process instances, the run-time interpretation of
these process models according to the defined behavior, the execution of activity
instances (including sub-process instances), the management of user worklists, and
the invocation of application services (e.g., web services or user forms) in the
context of activity executions. Furthermore, the run-time environment comprises
end-user tools enabling access to worklists or status monitors.

2.5.2 Build-Time Environment

Before implementing a business process in a PAIS, it must first be decided which
parts of the process are to be automated. Then, an executable process model cover-
ing these parts needs to be created. Usually, the latter task is accomplished using the
process model editor of the PAIS (cf. Fig. 2.11). This build-time component allows
process designers to define, configure, and verify the different perspectives of an
executable process model. The latter includes the activities of the executable process
model (i.e., function perspective) as well as the control and data flow between
them (i.e., behavior and information perspectives). Furthermore, for each atomic
activity an application service (e.g., a user form or web service) has to be provided
either through implementation or reuse from a service repository (i.e., operation
perspective). In turn, for complex activities, an executable subprocess model must
be defined. Finally, for human activities, so-called actor expressions have to be

2.5 Components of a PAIS

31
a Process Type Level (Build-time) b Process Instance Level (Run-time)
Executable | . - Process
Process Model . Instances
Executable [R 7; 777777777777777777 Sub-Process
Sub-Process Model Instances
‘ composed of : comprises l
: ¥
Atomic Process ;\ Activity
Activites | — T T T T T ST T T . Instances
T t
which may be : which include
l or l : ‘ and / or l
Human Automated Work A:::‘:ic:;ii(:)n
Activity Activity ltems Services

Fig. 2.9 Build-time and run-time artifacts of a PAIS (adopted from [367])

BUILD-TIME RUN-TIME

Process Engine

Worklist Mgmt. Service Invocation ~ Time Management

Run-time _—t control Escalation & Notification Schema Evolution

Services
Rollback Recovery Logging Persistency
Create, Execute and Manage Process Instances
— i Instance 11
Repository Process Editor Instance 4 Instance 10
& Composer Instance 3 Instance 9 Instance 14
= Instance 2 Instance 6 Instance 8 Instance 13
Define Process Model Instance 1 Instance 5 Instance 7 Instance 12
Configure Process Model

Verify Process Model
Application Reference %
Services Process Models /
N N I

Define, Configure and Verify Deploy
Executable Process Models Executable Invoked Application Services

Process Model

Process Designer End-Users %

Fig. 2.10 Build-time and run-time environment of a PAIS

specified to enable the PAIS to assign these activities to potential actors during run-
time (i.e., organization perspective). In turn, an actor expression refers to entities

from the organizational model of the PAIS, such as roles or organizational units (cf.
Fig.2.11).

32 2 Process-Aware Information Systems

creates

|

references
Process Model Editor ‘ Executable l

Process Model |

references | Process Control

Data

v

deploy

A

Organizational v

v
Model invokes Application Service
Process Engine (e.g., Web Service)

1 é
Process-relevant,

Data
S —

'y A 4

Worklist ‘ Applcaton ‘
Worklist — Application Service
Manager (e.g., Form)

I [Y
End-User invokes

Client
Process Actor

Fig. 2.11 Basic components of a PAIS (adopted from [367])

Regardless of the process modeling approach used (i.e., prespecified, constraint-

based, or data-driven process), the build-time components should enable com-
prehensive checks of executable process models in order to exclude any error
or undesired behavior during run-time. Respective verification tasks concern all
process perspectives, €.8.:

Function perspective: Do activity labels comply with existing guidelines and
taxonomies [206]? Are required activity attributes completely specified?
Behavior perspective: Will the instances of an executable process model always
complete properly or may undefined states (e.g., deadlocks) occur during run-
time? Are there activities that will never be executed?

Information perspective: Does each data object have a defined data type? Will
there be missing data or unnecessary data during process execution?
Organization perspective: Do all organizational entities to which actor expres-
sions of human activities refer exist in the organizational model? Can we ensure
that there will be always at least one user authorized to execute a particular human
activity?

Operation perspective: Does each atomic activity have an assigned application
service? Will there always be assigned values for the input parameters of an
invoked application service at run-time?

2.5 Components of a PAIS 33

Focusing on the behavior and information perspectives, later chapters of this
book will show how modeling and verification tasks look like for prespecified,
constraint-based, and data-driven process models.

2.5.3 Run-Time Environment

After releasing an executable process model, it can be deployed to the PAIS run-
time environment whose core component is the process engine. A process engine
allows creating, executing, and managing process instances related to the same or
to different process models; i.e., a process engine constitutes a software service
providing the run-time environment for executing a collection of process instances.
Figure 2.11 shows build-time and run-time components of a PAIS as well as their
relationships. Core services provided by these PAIS components are as follows:

* Creating new instances of an executable process model.

e Executing process instances and related activities through interpretation of
executable process models.

e Managing process instance data (i.e., control data and process-relevant data).

e Creating work items for instances of human activities and assigning these work
items to the worklists of qualified actors.

* Orchestrating the application services and subprocesses linked to the activities of
a process model according to the defined process logic.

* Invoking the right application service when starting the execution of an activity
and exchanging parameter data with this service.

* Monitoring the progress of process instances and logging relevant execution
events to ensure process traceability.

In the following, the notions of process instance, activity instance, and work item
will be explained in detail.

2.5.3.1 Process Instances and Their Life Cycle

Once an executable process model has been deployed to a process engine, new
process instances can be created and executed according to this model. Generally,
several instances of the same process model may exist representing different
business cases (e.g., treatments of different patients). The process engine employs
a state model to control the concurrent execution of these process instances; i.e.,
each process instance exhibits an internal state representing its progress toward
completion and its status with respect to its activities and data objects.

Process Instance Life Cycle. Figure 2.12 depicts the life cycle of a process
instance. A newly created process instance has state Created. When starting
its execution, this state changes to Running; i.e., the process model is then
interpreted by a process engine, and activities whose preconditions are met become

34 2 Process-Aware Information Systems

—— terminate / abort

terminate / .
Suspended abort Terminated
A

000“ terminate / abort
,8@\ each running
O activity instance

e

start actvity
— creat Created start Running suspend/ Active
complete

(1 or more running
activity instances)

suspend
awnsal

suspend or complete
all running activties

Completed

I4—919dwoo l

Fig. 2.12 Possible states and state transitions of a process instance

enabled. As soon as at least one of the enabled activities is running (i.e., it has
been started), the process instance enters state Active. The distinction between
the two states Running and Active is useful since different actions may be
applied in these states. A process instance without currently running activities can
be easily suspended or completed. Conversely, this is not immediately possible
with a process instance with running activity instances. Furthermore, in the case
a process instance is abnormally terminated or aborted (i.e., the instance enters state
Terminated), different actions are required, depending on the concrete state of
the process instance; e.g., for a process instance in state Active, each running
activity instance needs to be terminated before the process instance itself may enter
state Terminated.

Example 2.18 (Process Instance). Figure 2.13 shows an example of a process
instance representing a Request for Credit by one particular customer. In
detail, activities Collect Credit Data and Assess Risk have been completed,
while activity Accept Credit is enabled. Activities Request Approval and
Refuse Credit, in turn, have been skipped during the execution of the process
instance. Furthermore, the instance state includes information about produced
and consumed data objects, as well as about the actors who have worked on
human activities (not depicted in Fig. 2.13).

2.5 Components of a PAIS 35

Credit Risk
Reviewer: J. Mending

Risk: low activity is

bled
Credit Request enaple

evaluated to true v : »
created Borrower: H.A B B
data object ~|City: Hertogenbosch : Asses Accept
: Amount <1 h Risk = "low" :
Amount: 5.000 mount 10,00 Risk isk = "low’ 0 Crodit .

v

Collect
Credit Data

activity instance is

completed <>

acli\/ity is
skipped

Fig. 2.13 Internal state of a process instance

Event Logs. Generally, all relevant events occurring during the execution of
a process instance (e.g., start and completion of activities) are recorded in a an
event log (also denoted as an execution log or audit trail). Respective event logs
provide detailed information about the actual sequences of activities, key attributes
of the performed activity instances (e.g., start and completion times), and the
resources or human actors that performed these activities. Based on event logs,
the PAIS additionally offers a run-time component for monitoring and visualizing
the progress of its running process instances [53]. In particular, process monitoring
relieves staff members from manually keeping track of their processes.

Example 2.19 (Process Monitoring). Regarding the process dealing with
order entry and result reporting from Example 2.2, a process monitoring
component will allow hospital staff to answer questions like “Has an ordered
X-ray already been made?” or “Why is there no medical report for a
previously ordered X-ray?”.

Note that in connection with data-driven processes, respective monitoring com-
ponents usually do not only provide a process-oriented view, but also a data-
oriented view for accessing business data at any point in time.

2.5.3.2 Activity Instances and Their Life Cycle

When the preconditions for executing a particular activity are met during run-time,
a new instance of this activity is created. Hence, an activity instance represents a
single invocation of an activity during the execution of a particular process instance.
Furthermore, an activity instance utilizes data associated with its corresponding
process instance and itself produces data utilized by succeeding activities.

36 2 Process-Aware Information Systems

Inactive enable

disabl

Enabled
(has workitems)

Running
(is processed)

(%)
=
el

®
€
3
@
o
e

4
skip Skipped Suspended

Fig. 2.14 States and state transitions of an activity instance

puadsns

Activity Instance Life Cycle. Figure 2.14 illustrates the life cycle of a single
activity instance. When the preconditions for executing an activity are met during
process execution, the state of the activity instance changes from Inactive to
Enabled. If no human interaction is required, the activity instance immediately
enters state Running and its corresponding application service is invoked. In
this context, process-relevant data is passed from the process engine to the input
parameters of the invoked application service, which then processes these data (cf.
Fig.2.15). When completing the execution of the application service, in turn, its
output parameters are mapped to process-relevant data, which may then be accessed
in subsequent activity executions of the same process instance. Otherwise (i.e.,
human interaction is required), corresponding work items are created for qualified
actors and added to their worklists. As soon as one of these actors starts processing
this work item, the activity instance switches to state Running (cf. Sect.2.5.3.3).
Finally, when an activity instance completes, its state changes to Completed.
Usually, this is followed by an evaluation of the preconditions of subsequent
activities.

To cover more advanced scenarios, three states have to be added as indicated
in Fig.2.14. First, an activity instance in state Inactive or Enabled may be
skipped (i.e., it enters state Skipped) if an alternative path is chosen for execution.
Second, a human activity (e.g., writing a medical report) in state Running may be
suspended (i.e., it enters state Suspended) and resumed later (i.e., it reenters state
Running). Finally, if a running activity instance fails due to technical or semantic
errors, it then switches to state Failed.

2.5.3.3 Worklists and Work Items

When a human activity becomes enabled during the execution of a process instance,
the PAIS first determines all actors qualifying for this activity instance. Basic to this
is the actor expression that is associated with the respective activity and can be used
for querying the organizational model of the PAIS.

2.5 Components of a PAIS 37

Process-relevant

Data
NG
I
[2
L X .
-’ Process Engine
Input Parameter Output Parameter
(&) x
S,
%,. 2 \Q\) <2 /
. 2, XS
0. o8
Application Service Q% QQQ@
Program Variables

Application Data

Fig. 2.15 Exchanging data between process engine and invoked application service

Example 2.20 (Actor Assignment for a Human Activity). Consider the pro-
cess model from Fig.2.2. Activity Perform Checkup will be offered to all
actors with role Physician and who are also a member of the outpatient
department.

For each potential actor, a work item referring to the activity instance is created
and added to his worklist, i.e., work items related to a particular activity instance
may be added to different user worklists. Generally, a worklist comprises all work
items currently offered to, or processed by, a user. Example 2.21 illustrates the
relationships that may exist between executable process models, process instances,
and work items. Note that this example abstracts from those actor expressions that
have led to the creation of respective work items.

Example 2.21 (Worklists and Work Items). Consider Fig.2.16, which depicts
two prespecified process models (i.e., Biopsy and Medication) and five related
process instances /; to Is. While instances [, I, and /3 are running on
process model Biopsy, instances [, and [5 are based on process model

38 2 Process-Aware Information Systems

Executable Process Model Process Instances User Worklists
Process Instance |, (Patient: Hajo) - -
. Worklist (Michael)
Process Model: Biopsy l—-|
. —— — T — ® work item (Check Record, Hajo)
P work item (Look after Patient, Jan,
Process Instance |, (Patient: Jan) // ()
T ~ 7 p work item (Record Medication, Jan)
Take] . IRecord Check -\ 7 /
Biopsy Biopsy [~ | Record L:|J___~A\ ///J, work item (Take biopsy, Wil)
P Inst I; (Patient: Wi el
Look after rocess Instance |, (Patient: ﬂ/(/
Patient i \ /
= \
T+ 3+ \ |
— \
/’ \ Worklist (Marlon)
-~ \
Process Model: Medication ient: Ri
Process Instance |, (Pa"f’j‘; Bick)_ _ -/L - \\! work item (Administer Drug, Rick)
-—|:|—|:| / ® vwork item (Order Lab Test, Jan)
Prepare HAdministerH Record /
Drug Drug Medication y [work item (Record Medication, Jan)
_ [} /
Activity Instance States: Process Instance |5 (Patient: Jan))/ 4
HEE Completed [Inactive Pl
1 Enabled _——

Fig. 2.16 Executable process models, process instances, and work items

Medication. Furthermore, the depicted worklists of users Michael and Marlon
comprise work items relating to process instances /; to /.

* An instance of activity Check Record belonging to [, is enabled and a
corresponding work item has been added to the worklist of user Michael.

* Regarding /I, two work items exist belonging to different activity
instances. One of them refers to an instance of activity Order Lab Test—a
corresponding work item has been added to the worklist of user Marlon.
The other one refers to an instance of activity Look after Patient. For
this activity, a corresponding work item is added to the worklist of user
Michael.

* For activity instance Record Medication of I5 there are two work items
assigned to the worklists of Michael and Marlon.

Generally, process participants interact with a PAIS via end-user clients and the
worklists displayed by them. When an actor allocates a work item from his worklist,
all work items related to the same activity instance are removed from the worklists
of other users. Further, as illustrated by Fig.2.17, the user to whom the work item
is allocated may then trigger the start of the application service associated with the
corresponding activity instance.

2.5 Components of a PAIS 39

user
worklist

automatic invocation
of the corresponding
application service
(e.g., user form)

selectionof
a particular
work item

AT

Fig. 2.17 Selecting a work item from a worklist

Work Item Life Cycle. As illustrated by Fig. 2.16, several work items may exist
for a particular activity instance. In the following, the states of a single work item
and its processing are discussed.

Figure 2.18 illustrates the work item life cycle from the perspective of one
particular actor to whom this work item is assigned [311]: A work item typically
progresses from state Offered to Allocated to Started, and finally to
Completed. Initially, the work item has state Of fered; i.e., it is offered to all
qualified actors (e.g., all user possessing a particular role). If one of these actors
wants to perform the task associated with the work item, he needs to issue an
allocate request. The work item is then allocated to this actor. At the same time, all
work items from other worklists referencing the same activity instance are removed.
When the actor who allocated the work item wants to start its execution, he issues
a start request, and the state of the work item changes to Started. Finally, once
the work item is processed, the actor issues a complete request and the state of the
work item changes to Completed. Three additional states need to be added to
this life cycle as indicated by the dotted arcs in Fig.2.18. First, a work item will
immediately change from its initial state Of fered to state Withdrawn if another
work item belonging to the same activity instance, but being offered to a different
actor, is allocated by that actor. Second, the processing of a started work item may
be temporarily suspended (i.e., the state of the work item switches from Started
to Suspended) and later be resumed. Third, if the execution of a work item fails,
its state will change to Failed. The latter corresponds to a termination action in
relation to the work item which is outside the control of the actor. We will extend
the life cycle from Fig. 2.18 in Chap. 6 to show what additional support is needed to
flexibly cope with exceptional situations during run-time.

In principle, process participants do not need to know the exact logic of a process
instance when working on a corresponding work item; i.e., they may solely interact

40 2 Process-Aware Information Systems

Suspended

A

suspend resume
A
allocate start complete
Offered Allocated Started Completed
withdraw fail
y y
Withdrawn Failed

Fig. 2.18 Work item life cycle from the perspective of a particular actor

with the PAIS via their worklist (cf. Fig. 2.17). When completing the processing of
a work item, new work items referring to subsequent activity instances are created
and added to user worklists.

2.6 Summary

Turning away from hard-coded process logic toward explicitly specified pro-
cess models significantly eases PAIS development and maintenance. In summary,
a PAIS

e knows the logic of the supported processes; i.e., processes are explicitly
described in terms of executable process models (e.g., comprising a set of
activities and a number of constraints for their execution).

e ensures that activities are executed in the specified order or considering the
specified constraints (i.e., the PAIS manages the flow of control during run-time).

» controls the flow of data between the activities; i.e., the output data of a particular
activity can be consumed as input data by subsequent activities.

* knows the application service to be invoked when an atomic activity is started.

» assigns work items related to human activities to the worklists of authorized users
and manages these worklists.

* provides reminders if users do not complete an activity instance before a certain
deadline is reached.

* enables end-users to monitor the progress of process instances and to trace their
previous execution.

2.6 Summary 41

Model 5" =
Model §
.t.-. LE]

Create Proces
Instances

Process engineer /

Process administrator
Execuhorl
Lug

Process Monitoring,
Analysis & Mining

Process
Work ltems

Process
participant

Fig. 2.19 Traditional process life cycle

Traditional PAISs enable process life cycle support as depicted in Fig.2.19:
At build-time, an initial representation of the business process to be supported
is created either by explicitly modeling the process based on the result of a
process analysis or by discovering the process model through the mining of
execution logs [11, 133] (1). At run-time, new process instances can be created
from the executable process model (2), each representing a concrete business
case. In general, process instances are executed according to the process model
they were originally derived from. While automated activities are immediately
executed once they become enabled, nonautomated activities are assigned to
the worklist of qualified actors who may perform the respective activities (3).
Thereby, execution logs record information about the start and completion of
activity instances as well as their chronological order (4). The analysis of respective
logs by a process engineer and/or process intelligence tools allows discovering
malfunctions or bottlenecks. In turn, this triggers the evolutionary change of the
process model (5).

We will extend this life cycle in subsequent chapters to accommodate the
different flexibility needs for PAISs as discussed in Chap. 3.

Exercises

2.1. Process Perspectives

Think of a business process you are familiar with that utilizes a PAIS (e.g., ordering
goods in a Web shop or performing a financial transaction using Internet banking).
Give examples of the different perspectives on a PAIS using this scenario.

42

2 Process-Aware Information Systems

2.2. Process Instances, Activity Instances and Work Items

(a) Consider the states of a process instance as illustrated in Fig. 2.12. Explain the

difference between states Completed and Terminated.

(b) What is the relationship between the life cycle of an activity instance (cf.

Fig.2.14) and the one of a single work item (cf. Fig. 2.18)?

(c) Consider the life cycle of an activity instance from Fig.2.14. What exactly is

(d)

the difference between states Enabled and Running?
Which of the following statements are true?

— A worklist may contain more than one work item.

— Each activity instance is associated with exactly one work item.

— For a process instance in state Running multiple work items related to the
same activity instance may exist at a certain point in time.

— A work item switches from state Of fered to state Withdrawn if another
work item related to the same activity instance is allocated by a user.

2.3. Application Data, Process-Relevant Data, and Process Control Data

(a)
(b)
()

Describe the differences between application data, process-relevant data, and
process control data. Give examples.

Explain how data may be exchanged between a started activity instance and the
application service invoked during its execution.

Describe how data is passed between the activities of a process instance.

2.4. Build-Time and Run-Time Components of a PAIS

Give examples of build- and run-time components of a PAIS. What services are

offered by them?

2 Springer
http://www.springer.com/978-3-642-30408-8

Enabling Flexibility in Process-fAware Information
Systems

Challenges, Methods, Technologies

Reichert, M.; Weber, B.

2012, XV, 518 p., Hardcover

ISBEN: 978-3-642-30408-8

	2 Process-Aware Information Systems
	2.1 Introduction
	2.2 Prespecified and Repetitive Processes
	2.2.1 Motivation
	2.2.2 Examples of Prespecified Processes
	2.2.3 Discussion

	2.3 Knowledge-Intensive Processes
	2.3.1 Motivation
	2.3.2 Examples of Knowledge-Intensive Processes
	2.3.2.1 Loosely Specified Processes
	2.3.2.2 Data-Driven Processes

	2.3.3 Discussion

	2.4 Perspectives on a PAIS
	2.4.1 Function Perspective
	2.4.2 Behavior Perspective
	2.4.3 Information Perspective
	2.4.4 Organization Perspective
	2.4.5 Operation Perspective
	2.4.6 Time Perspective

	2.5 Components of a PAIS
	2.5.1 Overview
	2.5.2 Build-Time Environment
	2.5.3 Run-Time Environment
	2.5.3.1 Process Instances and Their Life Cycle
	2.5.3.2 Activity Instances and Their Life Cycle
	2.5.3.3 Worklists and Work Items

	2.6 Summary
	Exercises

