Chapter 3
Extensions of Valuations to Quantized
Algebras

3.1 Extension of Central Valuations

We look at skewfields obtained as total quotient rings of algebras defined by genera-
tors and relations. It is of particular interest to consider so-called quantized algebras
stemming from noncommutative geometry because we hope to use valuation theory
in the construction of a kind of divisor theory in noncommutative geometry.

Consider a field K with valuation ring O, C K having maximal ideal m, C O,
and residue field k, = O, /m,. Let A be a connected positively graded K-algebra,
A=K®A ®...®A,®..., whereeach 4; is a finite dimensional K-space and
A = K[A], Ay = ®/_,Ka;. We view A as an algebra given by generators and
relations:

0>R—>K<X,.... X, >—->A4—-0

where K < Xi,..., X,, > is the free K-algebraon {X},..., X,} and x is given by
w(X;) = a;,i = 1,...,n. The ideal of relations R is homogeneous in the usual
gradation of K < Xj,..., X, >. We can also consider the ungraded case where
A is a finitely generated K-algebra with generators ay,...,a, and m defined as
before but then R is not homogeneous is the usual gradation of K < X,..., X, >.
Restriction of 7 to O, < X > defines a graded subring A of A with Ay = O,

0->RNO, <X>>0,<X>—A—->0

resmw
It is clear that 7 maps w, < X > to w, A which is a graded ideal of A. We write:

A=A/wy,AandR=(RNO, <X >)+w, <X > /w, <X >, s0 we arrive at
the following commutative diagram with exact rows:
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176 3 Extensions of Valuations to Quantized Algebras

0 R k,<X>;-Aﬁ-O

0 — RNO,<X> — O)<X> — A —= 0

0 R K<X> —— A ——0

T

When R is generated by p;(X),..., ps(X) as a two-sided ideal, then we may
assume p; (X) € O, < X > up to multiplying by some constant but it does not fol-
low that RN O, < X > is generated as a (two-sided) ideal by { p;(X), ..., ps(X)},
nor that R is generated by the reduced expressions 7,(X), ..., 7,(X), obtained by
reducing coefficients at m,,.

3.1.1 Definition

We say that R (or A) reduces well at O,or that A defines a good reduction, if R
is generated as an ideal by {p,(X), ..., p;(X)}.

Let us write fK for the ["-valuation filtration of K associated to v and define a
Ifiltration fK < X > by putting: fory e I', f, K < X >= (f,K) < X >.The
latter is a strong filtrationon K < X > with /oK < X >equalto O, < X >. A left
ideal J of O, < X > is said to be v-comaximal of forall y € ', J N (f, K) <
X >=(/,K)J.

3.1.2 Lemma

If the ideal L of O, < X > generated by p;(X), ps(X) is v-comaximal then R
reduces well at O,.

Proof. Since fK < X > is a strong filtration and for any r € f, K < X >
for some y € T yields f,-1K < X >r € RN ffK < X >, we have that
R=K<X> (0, <X >nNR).Let L’ be the left ideal in O, < X > generated
by {p1(X),..., pa(X)}; then we have L'K < X >= R since L'K < X > is
the two-sided ideal generated by {p1(X), ..., ps(X)}. Forx € fo(L'K < X >)
there is a y € I such that xf,~K < X >C L aswell as xf,— K < X >C
f-yK < X >since x € foK < X >. Therefore we arrive at xf,~1 K < X >C
LN f,-1K <X >= (f,~1K)L by the v-comaximality of L. From this it follows
thatf, K < X > xf_,K <X >C (f,K)(f,—1K)L = Lhencex € L.
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Then we obtain:
LCRNO, <X>= fR= fo(LK <X>)CL

arrivingat R N 0, < X >= L being the two-sided ideal in O, < X > generated
by {pi1(X),..., pa(X)}; from this it follows easily that R is the two-sided ideal
generated by the reductions p; (X) of p; (X). O

In case the reduced relations p(X), ..., P, (X) determine a simple algebra then
the O,-reduction is necessarily a good reduction, indeed the ideal (p;(X),....
P4(X)) is now maximal in k, < X >hence R = (p,(X),...,7,(X)).

3.1.3 Corollary

If A = A,(K) is the n-th Weyl algebra defined as K < X;,Y;,i = 1,...,n >
JYiXi = XY, —1,X,X; — X;X;,Y;Y; —YiY;) then the reduced relations define
A, (k,) which is known to be a simple algebra (if char(k,) = 0) so the reduction at
0, is good if char(k,) = 0.

As we have already pointed out the results concerning good reduction are valid
in the ungraded case, but it is interesting to look at positively filtered algebras since
any finitely generated K-algebra inherits a standard filtration viaw : K < X >—
A, X; — a;, from the gradation filtration of the free algebra K < X >. So, let us
assume again that the K-algebra A is given by generators and relation via

*#¥): 0> R—>K<X>>A4—->0
Let FA be the generator filtration of A induced by the gradation filtration of K <
X > makingw7 : K < X >> A, X, — q;, into a strict filtered morphism. On R
we may consider the induced filtration FR = R N FK < X >. Then (*) is a strict
exact sequence that is to say that the image filtration on R is exactly the filtration

induced by FK < X > and this yields exactness of G(x) : 0 > G(R) - G(K <
X >) - Gp4s(A) — 0. In fact we have the following:

3.1.4 Lemma
With notation as above, G(A) = Gg4(A) is defined by:

. G(m)
0>R—>K<X>—GA)—0
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where R is the left ideal of K < X > generated by the p forall p € R and p is
the highest degree component of p in the decomposition of p in the gradation of
K < X >. For the Rees ring A with respect to F'A we obtain:

O—>7§—>K<§>”T>Z—>O
b

where 7 correspondsto 7 : K < X >— A on the Rees object level.

Proof. See e.g. [40, Proposition 1.1.5. p. 10]. O

3.1.5 Theorem

If G(A) reduces well with respect to O,, say R is generated as a two-sided ideal
by q1(X),...,q4(X) then there are p;(X),...,ps(X) in K < X > such that
R = (pi1(X),... pa(X)) and p;(X) = ¢;(X) fori = 1,...,d, such that R (i.e.
A) reduces well with respect to O,.

Proof. Choose p/(X) € R such that g;(X) is the homogeneous part of highest
degree in the decomposition of p{(X), fori = 1,....d. Pick u € f,~1K for
y € D'y large enough (how large will be clear in the sequel) and replace X; by
uXi,i = 1,....d. Put degq;(X) = m. Then " p/(X) = q;(uX) + p¥(uX)
where W has degree lower than m; put this equal to p;(uX) fori = 1,...,d. In
the new variables uX;,i = 1,...,d, the homogeneous part of highest degree of
pi(nX) is exactly ¢; (uX) and p; (nX) is in R because u™ p!(X) is a relation for
A. By choosing y large enough we may assume that the coefficients appearing in
W (uX) are contained in O, so that p;(uX) € O, < uX >. Obviously g; (uX)
viewed in K < uX >= K < X > still generates the ideal of relations of G(A).
Now consider the two-sided ideal 7 in K < X > generated by p; (X), then I C R.
By construction we have I = Rsol C R then yields I = R (for example see
[51,52]). Indeed if r € R — I then7 = i forsomet € [ hencer —t € R

and in F,,R with m < n where r € F,R — F,_R, thus (r —¢) = = i; with
ty € Fp, I thenr —t—1; € R and in F,,;;’R with m; < m, and so on, leads to
r—t—1u; —...— 1 = 0since FR is a positive filtration, i.e. r € I as claimed.

The good reduction assumption for G(A) means that R N 0,(X) is generated as a
two-sided ideal by ¢;(X),...,q4(X). Taking (RN O, < X >) in O, < X > we
obtain:

(RNO,<X>CRNO, <X >

Since ¢; (X)) is the highest homogeneous part of p;(X) € RN O, < X > itisclear
that (R N 0,(X))" contains ¢, (X) and is an ideal of O,(X) (because if £(X) is a
homogeneous element of (RN O, < X >) then it is the leading term of some /(X))
in R N 0,(X) and a nonzero /1 (X).x for some X € 0, < X >= G(0,(X)) is the
leading term of /(X )x for some x with 0(x) = X and h(x)x € RN O, < X >).
Hence we obtain: (RN O, < X >) =RNO, < X >.
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The O, < X >-ideal J generated by the p;(X) isin RN O, < X > and
gi(X) e J C(RNO, < X >) =RNO, < X >yielding: / = (RNO, < X >)-.
As before: J = RN O, < X > follows and this states exactly that R (hence A)
reduces well at O,.

The filtration fA defined by f,A = (F,K)A will be used for extending the
valuation v of K to some quotient ring of A.

3.1.6 Lemma

1. Let A be graded and ' = 7Z and assume A is gr-simple, then the filtration A
is separated and G s (A) is strongly graded. If A is a domain then Gr(A)isa
domain and A is a domain.

2. If A is not graded but simple then the statement of 1 holds too.

3. For a non-discrete I" assume that A has a PBW-basis {a,...,as} i.e. the
{ai,...,aq} can be ordered such that elements of A have a unique expression
as ordered polynomials in the generators ay,...,a,. Then the statements of 1
are still true.

Proof. 1. Consider I = N{(f,~1K)A,y € I'y+}. Clearly KI C I,IK C I hence
Al Cc I'and IA C I since KA = A. Thus [ is a graded ideal of 4 hence I = 0.
That Gy (A) is strongly graded follows from fA being a strong filtration. If Ais
a domain, then from Lemma 1.8.9 it follows that G r(A) is a domain and then A
is domain too.

2. In the ungraded situation but with A simple the statements of 1 follow in an
almost identical way.

3. If we can establish that fA is ['-separated then it is again a strong filtration and
the statements in (1) follow in the same way. Suppose fA is not separated, that is
there in an x € A such that forevery y € I' such that x € F}, A thereisad < y in
I' such that x € f;5A4 too! So for x € (f, K)A this means x € (fsK)A for some
8 < y. Assume that {a;,...,as} is a PBW -basis for A in the ordering given
by the indices . Then x = Y §at = Y na- with & € f,K,n; € fsK. Pick
¢ € f,—1 K such that ¢§; € O, butnot all in m, and cn; € m, (because § < y).
Adapting a common multi-index notation (i.e. inserting some zero-coefficients §;
or 1; when necessary) we obtain Y_(c&; —cn;)at = 0. This relation is non-trivial
since not all coefficients are in m,, but that contradicts the P W B-basis property
of {ay,...,aq}. Hence such x does not exist so for every z € A there exists a
y € I'suchthatz € f,Aandz & f,A with 4 <y, or fAis separated. O

Since we consider I'-valuations on K the I'-filtration defined on a K-algebra A is
not Zariskian i.e. A need not be Noetherian, so we cannot use results or Zariskian
filtration here. We consider a separated I'-filtration fA on a ring A and S an Ore
set of A such that o(S) consists of regular elements of Gr(A) = G(A). We define



180 3 Extensions of Valuations to Quantized Algebras

the localized filtration FS~"' A by putting x € F, S~ 4 if there exists an s € S, s of
degs = v € I', such that sx € f;, A.

3.1.7 Proposition

With notation as before, FS™'A4 is a T'-filtration of S™'A4, I"-separated, inducing
fAon A.

Proof. Since o(S) consists of regular elements of G(A4) also S consists of regular
elements of A. If x € F,S™'A then sx € f,,A for some s € S with dego(s) = ;
there is a § € T such that sx € fsA but sx & fy A for 8’ < §. Hence x € F,—i54
and x ¢ Fy A with §' < t='8. This follows from the uniqueness of y, suppose ssx €
JsyAand sox € f,r Awith T # y,say r < y in I'. By the Ore condition there is an
S such that s,s5 = as, with a € A, where the index of the s’s refers to the degree
of the o'(ss). Since o (s, ) is regular in G(A) we must have that dego(a) = ado™!
in . Then 0 # $48sX = Ag55—186X € dgso—1 for A C fusc A; on the other hand we
also have that sos5x € So fsy A C fusy A, so if we assume §y to be the lowest in
I' such that ssx € f5,A then from 7 < y we reach a contradiction because ady is
then the lowest containing sy s5x (as 0 (se55x) = 0 (s¢)0(ssx). If x,y € F,S7'4
then ssx € fsy A, 5,y € foy A for some ss,5, € S; then ssy € ngS_lA for s; 55 =
a.55-15p for some s; € S,a.5,-1 € Avyields s;5sy = ar5,-15,y € frspm1 Afpy A
hence 555y € frs,A, consequently: s;55(x + y) = 5:(55x) + 58559 € frsy A,
or x +y € F,S7'A, proving that the F,S™' 4 are additive subgroups. Now for
x € F,S7'A,y € F;S7'A we have sox € fuy A, 58y € [fpa. Write aqy for sqx
and pick s, € S such that s, a4, = a’sp where a’ € f,,,5-14 follows from
o(a')o(sg) = 0(s,)0(aqy) and degay, < ay, hence dego(a’) < payf~'. Now
SuSaXy = Spdayy = a'sgy with sgy € fg. A yields s,8,Xy € fq,p-1A4fp:A C
Suayr A. Putting 5,50 = 5, yields xy € FWS_IA, so FS™'A is a filtration. The
filtration is separated because for x € S™! A there is an 55 € S such that ssx € fs, A
and if §y is such that ssx ¢ f,7A for y’ < 8y then x ¢ F,S™'A for t < y (observe
that F,S7'AN A = f,Abecause fora € AN F,S7'A4 some ssa € f5;A so
dego(a) < 7, hence FS™'A induces fA on A). O

Next we look at the Weyl skewfield D;(K) and a I'-valuation O, in K.

3.1.8 Theorem

Every I'-valuation O, of K extends to a noncommutative valuation ring A, of
Dy (K).

Proof. In view of Proposition 1.8.10.3 it suffices to construct a separated I"-filtration
on D;(K) extending the valuation filtration of K such that the associated graded
ring is a domain. In fact we only have to construct a I'-separated filtration on
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A;(K) extending v on K such that the associated graded ring is a domain because
by Proposition 3.1.7 we can extend this to the localized filtration at the Ore set
A (K)* (the Weyl algebra is an Ore domain) provided o (A;(K)*) consists or
regular elements. Now A = A;(0,) defines a good reduction of A;(K) at O, and
A = Aj(k,) is a Weyl algebra over the residue field k,, hence a domain. Thus
the filtration f"A, (K) defined by fA(K) = (f, K)Ai(O,) has the properties
mentioned in (3) of Lemma 3.1.6 and the elements of o (A (K)*) form exactly the
set of homogeneous elements of G s (A;(K)) = A;(k,)I" where G (K) = k,I" and
these form even an Ore set because A;(k,) is an Ore domain (and k,I" is central
in GyA; and they are certainly regular in G (A ;(K)). For the localized filtration
FD|(K) of fA|(K) the associated graded Gr D (K) is the graded quotient ring of
A (k,)T which is Dy (k,)T" and a domain! O

3.1.9 Observation

In the foregoing I' is abelian because it comes from O, on the commutative K. We
shall see later that any valuation on D, (K) is in fact abelian!

We can extend the foregoing theorem to K-algebras with a PBW-basis as
follows.

3.1.10 Proposition

Let A be a K-algebra with PBW -basis {aj,...,as}and A = O, < ay,... aq >
Suppose that A is an Ore domain with skew field of fractions Q(A4) and that A =
A/m,A is a domain then v extends to a noncommutative valuation of Q(A).

Proof. Define fA by f,A = (f,K)A for every y € I'. Statement (3) from
Lemma 3.1.6 yields that fA is a I'-separated filtration and G s(A) is a domain.
We have that o(A*) is a graded Ore set of Gr(A) in fact 6(A4*) is the set of
homogeneous elements (nonzero) of G s (A); indeed if @, be h(G r(A))* then there
are a’,b’ € A* such that a’b = b’a by the Ore condition for A* and since G 7 (A)
is a domain o (a’b) = o(a’)o(b) = o(b')o(a) = o(b'a), or o(a’)b = o(b')a. For
x € Gr(A)say x = xy,+...+x,, withx,, € hG r(A)*. Thereisans; € hG s (A)*,
S1Xy, = Y14, hence s;x = y1a@ + s1Xy, + ... + 81x,, witha € hG;(A)* and
Y1 € hGr(A)*.

Then take s, € hGs(A)* such that s251x,, = y,a with y, € hGr(A)*, then
$281X = $2Y14 + y2a + $281Xy; + ... + 5281X,,. Repeating this n times we arrive
atsi,...,8, € hGr(A)* such thats, ...s;x = ya with y € Gs(A)*, so hG4(A)*
is an Ore set in G s (A). Thus fA defines FQ(A) by localization and the associated
graded ring of Q(A), Gr(Q) is the localization of G y(A) at hG ;(A)* which is a
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domain (and in fact a gr-skewfield Q¢ (A)T"). Therefore FyQ(A) is a I'-valuation
ring extending v on K to Q(A4). O

We have a similar result for Dubrovin valuations using now Theorem 1.8.11.

3.1.11 Proposition

Let A be a K-algebra with PBW-basis {a1,...,a4} andput A = O,<ay,...,as>.
If A is a prime Goldie ring such that A, maps to regular elements of A = A/m,

and A is a prime Goldie ring than v extends to a Dubrovin valuation on the simple
Artinian Q(A).

Proof. The filtration fA defined by f, A = (f, K)A is again separated and strong,
hence G (A) is strongly graded by T' over G;(A)y = A. The homogeneous
elements of G s (K) are central units in G r (4) and G s (A) = G (A)oG s (K), hence
G s (A) is also a prime Goldie ring. A regular element of A4, x say, may be multiplied
by a A € K to aregular element Ax of A, such that Ax & m,A. Hence o(Ax) is
regular in A hence in G (A), since o(A) is regular in G (A),0(Ax) = o(A)o(x)
hence o (x) is regularin G 7 (4). Then fA extends to the localized filtration FS~' 4,
where S = Ay, and ST!A is a simple Artinian ring. The associated graded ring of
S7'Ais G(S)7'G s (A) which is again a prime Goldie ring as it is an order in the
simple Artinian ring 77'G y(A) where T = G s (A)reg (G 7 (A) is prime Goldie). In
fact 0(S)'G s (A) = Qu(G s (A))G s (K) where Qu(G 7 (A)) is simple Artinian.
In view of Theorem 1.8.11 we obtain that F,S ~' A is a Dubrovin valuation ring. O

The extension problem for valuations of K to K-algebra appearing as simple
Artinian or skewfield quotient rings of algebras given by generators and relations
has now been reduced to finding “good reductions” or more directly to the existence
of an O,-order A defining a suitable filtration on A that extends well to a localized
filtration of Q¢ (A). This comes down to the verification of domain or prime Goldie
properties of the associated graded ring. This method applied to the Weyl field, but
also to other interesting examples.

3.1.12 Observation

In all of the following situation the extension result for valuations O, C K to the
quotient ring of the K-algebra is valid.

(a) The quantumplane A = K < X,Y > /(XY —gYX) and O, C K such that g
is a unit in O,,.

(b) The quantized Weyl algebra A; (K, g) definedas K < X,Y > /(XY —qYX—1)
and O, C K containing ¢ as a unit.
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(c) The enveloping algebra U(g) for a finite dimensional Lie algebra g over K.

(d) Quantum 2 x 2-matrices defined as K < a,b,c,d > with relations: ba =
g %ab,ca = q2ac,bc = cb,db = q7*bd,dc = g *cd,ad — da = (¢*> —
g ?)bcx.

(e) The conformal sl,-enveloping algebra in the sense of L. Le Bruyn given as
K < X,Y, Z > modulo the relations:

XY —aYX =Y. ZX —aXZ =27
YZ—cZY =bX?+Y

at O, containing a, b, ¢ as units.

(f) Let A be as in Proposition 3.1.10 but assuming now that A is Auslander regular
(cf. [40]) and positively graded over a field of characteristic zero. Then it is
known that A is a domain and the extension result follows.

The results in this section open the possibility for developing a valuation and divisor
theory on quantized algebras, these are deformations of classical algebras depending
on certain parameters (as in Observation 3.1.12 above).

3.2 Discrete Valuations on the Weyl Skewfield

In this section K is a field of characteristic zero and A (K) is the first Weyl algebra,
A(K)=K <x,y>= K < X,Y > /(YX — XY — 1). We know that 4;(K)
is a simple Noetherian non-Artinian, Ore domain and it has a skewfield of fractions
D;(K) called the first Weyl field. For A,(K) = Aj(K) ® ... ® A;(K) we have a
skewfield of functions D, (K).

The Bernstein filtration of A;(K) is defined by putting degx = degy = 1,
ie. FOA(K), FAi(K) = K® Kx @ Ky,..., [,A,(K) = (FIA(K)",.... It
is a separated Z-filtration with GrA|(K) =~ K[X,Y], we let o be the principal
symbol map of F. On D;(K) we consider the quotient filtration FID;(K), then
GrD(K) = Q%(K[X,Y]), the graded quotient field of K[X, Y]. Since the latter
is a domain we know that FyID;(K) is a valuation ring of D, (K) and the valuation
filtration of it coincides with FID;(K); the corresponding valuation vp is called
the Bernstein valuation ring of D (K). To a discrete valuation v of D;(K) there

corresponds a noncommutative valuation ring A, and a valuation filtration f,ID;(K)
with (/,D1(K))o = A,.

3.2.1 Observation

If A, is a valuation ring of a skewfield A then the following statements are
equivalent for a,b € A*.
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1. Aya C Ab.
2. v(a) = v(b).
3. al, C bA,.

Proof. (an expansion of Lemma 1.3.2.8).

1. = 21If A,ja C A,b than a = Ab for some A € A, then v(a) = v(A) + v(b)
yields v(a) > v(b).

2. = 3. From v(a) > v(b) it follows that v(b~'a) > O orb~'a € A, and aA, C
bA, follows.

3. = 2.and 3. = 1. follow by symmetry from the foregoing. O

Recall that two discrete valuations v; and v, are said to be equivalent if there exist
n and m in Z such that nv; (x) = mv,(x) for every x € A.

Let us recall how the valuation function v : A* — [ is constructed from a
valuation ring A of A. Put P C A equal to the ideal P = {x € A,x~' & A}.
For A € A define (P : A) = {(a,b) € A x A,arb € P}andcall A; >~ A, if
(P : A1) = (P : Ay). Let [P : A] denote the class of (P : A) with respect to
the foregoing equivalence relation. On the set of equivalence classes I' introduce
the total order induced by the inclusion ordering on the set of (P : 1),A € A.
The functionv : A* — T, x > [P : A] is well-defined. Multiplication of A induces
a multiplication in I" making I" into a totally ordered group. The valuation ring A,
coincides with A and P = w,.

3.2.2 Proposition

A valuation v on a skewfield A has rank one exactly when A, is maximal as a proper
subring of A (this extends Proposition 1.2.12 to the noncommutative case).

Proof. 1If v has rank (1) then I is Archimedean (cf. Proposition 1.3.1.4). If A, is not
maximal let A’ 2 A, be a proper subring of A, suppose a € A’ — A, and consider
b € A*—A’.Since v(a), v(b) < 0, the Archimedean property yields that there is an
n € Nsuch that v(a™) > v(b™'), orba™ € A, witha" € A’ and b € A,a" C A,
contradiction. Conversely, if A, is maximal then 2tw, = 1. Indeed, any nontrivial
prime P & w, is a completely prime ideal (since left ideals of A, are idreals!).
Moreover S = A, — P is an Ore set of A, since for givens € D, A € 4, we have
sA € sA, = Aporsi = A's forsome A’ € A,. Now A, & STIA,. It is clear
that S~'A, # A since (S7'A,)P is a proper ideal of S™!'A,. Maximality of A,
thus entails it (w,) = 1. If rkI" > 1 then I' contains a convex subgroup C. Put
P = {x € A,v(a) € C}.Itis easily verified that P is a prime ideal of A, and also
P S w, because C # '™, this would contradict ht(w,) = 1. O

A slight extension of the final part of the foregoing proof yields also a proof of
the following.
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3.2.3 Observation

Nonzero prime ideals P of A, correspond bijectively to nontrivial convex subgroups
of I'. Normal convex subgroups of I" correspond to prime ideals of A, which are
invariant under inner automorphisms of A.

When studying valuations on D, (K) one may restrict to abelian I'. It is known
that every valuation on a finite dimensional skewfield is abelian but for D, (K) this
result is somewhat surprising. They are in some sense very noncommutative rings,
in fact they even contain free subalgebras of any countable rank! The result is due
to J. Shtipel’man but we follow L. Makar-Limanov’s proof.

3.2.4 Theorem

Let v be a I'-valuation on D; (K) then I' is abelian.

Proof. Write A|(K) = K < x,y >C Di(K) = K(< x,y >). Taker # 0in
A (K) and suppose that v(xr) # v(rx), say v(rx) > v(xr) (in the other case the
proof is formally similar). Then for [x,r] = xr — rx we have v([x, r]) = v(xr).
By an easy induction argument we then obtain: v([x, —]"(r)) = v(x"r). For every
r € Ai(K) there is an e = e(r) such that [x,—]¢(r) = 0 (because every
r € A,(K) has a unique finite polynomial expression in x and y with powers in
x before powers in y and [x—] lowers the y-degree because xy — yx = —1).
Thus we obtain v(0) = v([x,—]°r) = v(x°r) but that is a contradiction since
x¢r # 0. Since T is generated as a group by the semigroup v(A;(K)) it follows
from v(x) + v(r) = v(r) + v(x) that v(x) € Z(I"). In fact the foregoing establishes
that v(f) € Z(T") for every f such that every r € A;(K) is annihilated by some
power of [ f, —], in particular this holds for all f € K[x]. Since I' is totally ordered
y™o = oy™ for some m entails yo = oy hence Z(I') is root-closed in I". Now
assume 7 € A (K) is such that v(r) ¢ Z(T"). Since GKdim(A;(K)) = 2 it follows
that for any s € A;(K) we have a relation: Zx;;r's/ = 0 with x;; € K[x] (the
GK dimension bounds the transcendence of the ring, so the r and s cannot be
algebraically independent over K[x]). At least two monomials in this relation have
the same valuation, otherwise v(Zx;;r's/) would necessarily be the valuation of
the unique monomial in it having minimal valuation but that could not be equal to
—00. Say v(x, j,r0s70) = v(x;, j,r’ss/1), then either some v(s¥) € Z(I') < v(r) >
or v(r') € Z(T') < v(s) > with k,/ larger than zero, because v(x;;) € Z(I') by
foregoing remarks. In either case we obtain that some power of v(r) commutes with
some power of v(s). Since I is totally ordered (y"o = oy” entails yo = oy) it
then follows that v(r) and v(s) commute. This holds for arbitrary s € A;(K), hence
it contradicts v(r) & Z(I"). Consequently Z(I') = I" or I' is abelian. O
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3.2.5 Corollary

Every valuation of D, (K) is abelian.

Proof. 1, (K) is the n-fold tensor product of copies of D; (K), its value group is a
subgroup of a product of the value groups v(ID; (K)) which is an abelian group. 0O

3.2.6 Remark and Project

The above proof is elementary except for the key result about the G K-dimension.
For the general theory about G K dim we may refer to G. Krause and T. Lenagan, [34]
or C. Nastasescu and F. Van Oystaeyen [53]. It would be an interesting project to
relate GK dim and valuation theory further, or perhaps the GKtd (Gelfand—Kirrilov
transcendence degree) could be used instead of GKdim. The driving conjecture
could be that for a skewfield of GK-dimA = n and a valuation v of A of rank m we
would have GKdimA = n—m, A, the residue skewfield of v. Also it seems possible
to extend the foregoing theorem to skewfields obtained as skewfields of fractions of
enveloping algebras of nilpotent Lie algebras.

3.2.7 Lemma

There are no discrete K -valuations of D (K) with residue field K.

Proof. Suppose v is a discrete valuation of D;(K) with valuation ring A, and
A,/w, = K. Write w, = (7). If a,b € A, then for each n € N there are
polynomials f () and g(sr) with coefficients in K such that:

via— f(r)) >nandv(b —g(w)) > n

Since f(m) and g(7) commute we obtain that ab — ba is in f*,ID;(K) and this
holds for all n € N. Since A, cannot be commutative as it has D; (K) for its quotient
skewfield ab # ba for some a,b € A, and then ab — ba is notin f~,D;(K) for
some N € N. O

3.2.8 Lemma

For any I'-valuation v on D (K) we have that v([x, y]) > v(xy) = v(x) + v(y).

Proof. Since T is abelian v(xy) = v(yx). Hence for the valuation filtration degree:
dego,(xy — yx) < dego,(xy). Therefore v(xy — yx) > v(xy) = v(x) + v(y). O
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3.2.9 Corollary

From xy — yx = —1 we obtain that v(x) + v(y) < 0 (see the foregoing lemma). If
v(x) > v(y), thenv(x+y) = v(y) and we may generate A (K)as K < x+y,y >.
In other words we may assume that A; (K) is generated by x and y with [y, x] =1
and v(x) = v(y) < 0.

The valuation vp corresponding to the Bernstein filtration factors over the
principal symbol map o : D1 (K) — Q,(K[X,Y]). In fact there is only one such
discrete valuation up to equivalence.

3.2.10 Proposition

If v is a discrete K-valuation of K(X,Y) such that vop is a nontrivial discrete
K-valuation of D (K) then vop is equivalent to the valuation vp induced by the
Bernstein filtration.

Proof. Suppose a,b € D;(K) are such that degop(b) < degog(a). Then
v(og(a)) = v(op(a + b)) = vop(a + b) > min{vog(a),vop(b)}. If vog(a) #
vo (D), then equality holds, thus vog(a) < vog(h). In particular when o (b) is
homogeneous in K(X, Y) of strictly negative degree, then vog(b) > 0. For every
homogeneous element x of K(X,Y) of degree zero (this is always op of some
element of D;(K)) in Q%(K[X,Y]) we thus have v(x) = 0. For a € D;(K) we
have degop(a) = n, then vog(a) = v(og(ay™")op(y")) = 0 + nvop(y) as op
is multiplicative. Consequently vop = (vop(y)).degop hence vop is equivalent to
the Bernstein valuation defined by degop. O

We write K(%) for Gp(D;(K))o and let v be a discrete K-valuation on D;(K)
with v(x) = v(y) < 0. Let A, be the valuation ring of v with maximal ideal w, and
residue skewfield A,. From Lemma 3.2.8 we may derive that A, is commutative;
indeed if a,b € A, —w, then v([a, b]) > v(a) +v(b) = 0 orab —ba € w, and thus
A, = A,/w, is commutative. Consequently G, (D, (K)) is commutative and of the
form A, [T, T7'] = A, Z.

The valuation filtration f'ID;(K) induces a filtration on Gg(D(K))o = K (%),
fiV(K(é)) = f'Di(K)NAg/(f;"Di(K)Nwg). This is an exhaustive filtration but
it need not be separated.

3.2.11 Lemma

With notation as above, 'K (%) is separated if and only if op(z) = 1 entails
v(z) < 0. In case fVK(é) is not separated then ﬂifiVK(é) = K(%).
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Proof. Put I = ﬂifiVK(é). If op(x) # Ois in [ then there exists a y € D;(K)
such that: 03(z) = 0g(y) and v(y) > v(z) (choose y in f;"ID;(K) for appropriatei.)
Thenop(yx~') = 1 butv(yz™!) > 0. Conversely if z € D;(K) is such that o5 (z) =
1 and v(z) > O then foralln € Nwe have: 1 = (1 —z") + Z". Thus 1 € f_VnK(é),
then for all n > 0 we obtain that /7, K(%) = K(%)) as desired. O

From here on we assume that K is algebraically closed. We say that v is F 2-
compatible if /'K (%) is a separated filtration, i.e. o5 (z) = 1 yields v(z) > 0.

3.2.12 Proposition

A discrete K-valuation on I;(K) that is FZ-compatible is determined by its
restriction to the subfield K (%) in D (K).

Proof. A pseudo-homogeneous element of A;(K) is one having a homogeneous
expressions in x and y (this is not unique since yx = xy + 1 but that is
harmless here). Consider f € A(K) and write f = fi + f, where f; is
pseudo-homogeneous of degree degop(f) and degop(f2) < degae,(f). From
op(f/f1) = litfollows thatv(f) < v(f;) since vis assumed to be F Z-compatible.
Thus, v(f) > min{v(f1),v(f2) with equality whenever v(f1) # v(f2), yields
W(f) = min{u(£i), v(£)}- o

In case f is pseudo-homogeneous of degree n, say f = Y |_,a;x'y"~', then
v(fy™) = v(g) where we put g = > /_,a;(xy~")". If for example v(fy™") >
v(g)thenop(fy™/g) = landv(fy™/g) > 0leads to a contradiction. Otherwise
look at op(g/fy™") = 1. Then v(f) = v(g) + nv(y) and the proof is finished. O

The discrete K-valuations of K(7'), T = % are well-known i.e. v is either trivial
or v corresponds to an o € K. In the first case v is equivalent to the valuation of
the Bernstein filtration, meaning that for all z € A;(K), v(z) = —degop(2)v(y).
By the foregoing proposition the F Z-compatible valuations are determined by three
parameters p = v(x) = v(y) € Z—N,q = v(% —a) € N—-{0},a € K*.
Given p, g, a then there is at most one discrete K-valuation of D;(K) compatible
with the Bernstein filtration such that v(x) = v(y) = p and v(i —a) = q. From
foregoing remarks it follows that v, if it exists, may be calculated in the following
way. To calculate v of f € A;(K) at first decompose f into pseudo-homogeneous
elements, say f =Y i_, f; and put v(f) = min{v(f;),i = 0,...,n}. To calculate
v on a pseudo-homogeneous f,, of degree n, put v(f,) = np + v, (05 (f,))g where
Vg 1s the graded K =valuation on K(%)[Y, Y ~!such thatv,(Y) = 0, va(§ —a) =1.
It is also possible to define v( f,) = v/, (o5(f,)) where v, is he graded valuation of
K()[Y.Y "] such that v, (¥ —a) = .V, (Y) = p. We observe that K (£)[Y, Y ']
is a graded field (gr-field) in the sense that every homogeneous element different
from 0 is invertible; a gr-valuation is associated to a gr-valuation ring, being a graded
subring such that for every homogeneous element of the gr-field, say z, either z
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or 77! is in the subring. A gr-valuation of K (%)[Y ,Y~!] is always induced by a

valuation of K(X,Y) which is a graded valuation in the sense that v(z) < 0 if and
only if v(z,) < 0 for every homogeneous component n. Graded valuations are not
studied in detail in this work, we refer to [38, 66].
We are now ready to prove the existence theorem.

3.2.13 Theorem

Let v be defined by p, q,a as above and assume that ¢ < —p then v is a discrete
K-valuation of the Weyl field Dy, (K).

Proof. 1t suffices to verify the valuation properties on elements of A;(K). If f, g
are pseudo homogeneous of different degree then: v(f + g) = min{v(f), v(g)}
holds by definition; if f, g have the same degree but f + g # 0, thenv(f + g) =
np +vq(op(f + €))g = np + min{v,(05(f)), va(0s(g))}q = min(v(f), v(g)}.
In the situation that f, g are not pseudo-homogeneous the relation follows by
decomposition into pseudo-homogeneous elements and the definition of v.

For pseudo-homogeneous f and g we write:

/= Zaixiy"_i andop(f) = f
i=0

m
g=Y bjx/y"/andog(g) =7
i=0

m—+n i m—+n i
TED 0 ITHICNED 3 PR
i=0 j=0 i=0 j=0

For the Weyl algebras it is a well-known fact that:

d 1 o fokg
_ D LA -
h _kg( D k! dXkaY*k

n+m

where r is the integral part of *

. It is now straightforward to calculate

i
v(fg) = min{VZCjixjyi_j,i =0,...,m+n}
=0

i
= min{ip + vu(aB(Z cjixjyi_j))q,i =0,...,m+n}
j=0
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k7 ak—
=min{(n + m —2k)p + v, (%) q,k=0,....r}
=min{(n +m + 2k)p + va(f) —k +vo(g) —k)qg.k =0,....r}
=m+mp—+ve(f2)qg +min{k(—2p —2¢).k =0,...,r}

=v(f) +v(g)

The last equality follows from v, (akf al' ) > vy (f) —k + vs(g) — k. Now more

dyk gxk
generally, if /' = 37/ fi,g = >/_ &, then let k and / be maximal such that
we have v(f) = v(fi), v(fi), v(g) = r(g)- Then v(fg) < W(X}L{ figesi—)) =
v(figr) = v(fi) +v(g) = v(f) +v(g).
The other inequality follows from: V(le=o figi—j) =v(f)+v(g)foralli =
k41 O

It is clear from foregoing proof that v will not be a valuation if ¢ > —p, so we
suppose hereafter that ¢ < —p. The valuation filtration fV defines a commutative
associated graded ring and we can calculate this explicitly. For f and g as in the
proof we have:

fe—gf =) diyx'yl
I

Again it follows that:

1 (o fokg ok fokg
k+1_~
h= Z( D ( aXkayk  gykaxk

r being the integral part of ’“LT’” Hence we obtain: v(fg — gf) = min{(n + m —

0 Jag ad d
2K)p +va e 3% = 55§k = 1...r.

k = k5 gkz —

Now: v, (gx—{ ;)Y—gk - gY—igX—ﬁ) > v, (f)+ve(@) =2k, thusv(fg—gf) > v(f)+
v(g)!

The residual field of an F Z-compatible K -valuation does not only turn out to be
commutative, it is actually a purely transcendent extension of degree one of K. From
a transcendence (Gelfand—Kirillov) argument it would follow that the transcendent
degree is one but for pure transcendence some arithmetical information is needed in
the proof.

3.2.14 Theorem

Let g < —p and v given by p, g, a. The residue field A, = K(¢) with t = (; —
a)'yk, where —kp = lq is the least common multiple of —p and g.
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Proof. First we observe that v is a K(¢) valuation because v(t — ) = 0 for all
B € K and K is algebraically closed. Indeed, it is clear that v(t — ) > O,
the leading pseudo homogeneous term of ¢t — B is equal to the one of ¢ which
is equal to: Z, O( )(—a) 7 x" y*=7 Tt follows that at least one of the pseudo-
homogeneous terms in the decomposition of t — B must have v-value equal to zero,
hence v(t — f) = 0. Next we show for f,g € A;(K) such that v(f) = v(g)
there is an & € K(t) such that v(g='f — h) > 0. Since v(f) is obtained as
v(f;) for some pseudo homogeneous part f; of f we may assume that f is
pseudo-homogenous. Take F, G in A, (K) such that fG = gF'; there is a pseudo-
homogenous A € A;(K) such that v(4) = v(G) = v(F). If there are Fi, G; in
K(t) such that v(FA™' — F{) > 0 and W(GA™' — G;) > Othen g~ f — F1G{! =
g N (fGI—gF)G' = g7 (g(FA™' — F1) — f(GA™' — G1))G". Consequently:
v(g™' f = FiG[") > —v(g) +v(g) —v(G1) = 0. From the foregoing it follows that
we may select i such that v(g~! f — h) > 0 with v(f) = v(g) and both f, g are
assumed to be pseudo-homogenous. We arrive at:

v(f) = pdegog(f) + qva(os(f))
v(g) = pdegop(g) + qva(op(g))

The integer (degop (f)—degop(g))(—p) = va(op(f(g))g is a common multiple of
—p and g. Thus we obtained an n € Z such that: nk = degop(f)—degop(g),nl =

va(08(f/8))-

We now calculate og(fy_”k) = (T —a)"h(T) with h(T) € K(T).T = ¥,
andy = h(a) # 0. ,

Ifo5(f/g) # on(y1"), then v(£ —yi") = nkp + va(W(T) = y)(T —a)")q,
and the latter is strictly bigger thannkp+nlg = 0.Incase o5 (f/g) = op(yt") we
may assume that y = 1 and n € N. Clearly, then " = ZI”_O ([") (—a)/n=ix! ykn=i
+ terms having a strictly positive value.

Since both f and the term Y " ([l") (—a)"~ I x'gy*"= are pseudo homo-
geneous and have the same image under the principal symbol map they must
be equal! (in the Weyl algebra every element has a unique pseudo-homogeneous
decomposition with powers of x preceding powers of y). Hence, modulo terms with
value strictly larger than v( f') = v(g) we obtain:

In
n In n—ip i n—i
f—gt"= Z( : )(—a)’ [x'. g]y*
i=o \ !
Ifg = Z _oa;x™ "/ yJ then [x, g] is equal to

min(i,j)

- l m— 1= -
2| 2 Vg k),(k)x Srkyik
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Therefore: v( f — gt" — kailil"m) R; > v(f) = v(g), where

In

In o ! “ I\ ik it i
sz(_l)kZ(l )(a)ln (l_k)' X;Caj (i)x Jj+ kyk +j—k
j=

i=k

Calculate:

V(Rk) = (kl’l +m— Zk)p =+ v, (;( ln) (_a)/n—l (l ik)'Tl_k) q

+ Vg (—1)kZaj (i)T’”‘j q

j=k

The first value we need to know is /n — k since we recognize the k™-derivative of
(T — a)™. The second value equals:

1 k ¢ -/' —j—1
Va F(_l) JZ:;{GJ (]—k)'T

m

=va | Y oajk—j—=1...(=j + DEHT
j=k

a* (v k—j—1
= Vq ? ZajT
i=0
> [ Y0, 77 |~k = va(on(e)) — &
j=0

So we obtain for all k that: v(Rx) = v(g) — 2k(p + ¢) which is strictly larger than
v(g)if p+¢g <0.Thusif p+¢q < Othenv(ﬁ—G”) > 0.

For the case where p + ¢ = 0 and o3(f/g) = op(¢") we finish the proof
by induction on n. Observe that t = x —ay and k = [ — 1. If n = 0 then
op(f) = op(g) and thus f = g since both f and g are pseudo homogeneous.
Then suppose op(f/g) = op(t"). Previous calculation establishes that: % —t" =

g ! (ZZ‘E"'") Rk) plus terms of strictly positive value.

For each k there is a y; € K(t) such that: v(g~' Ry —yx) > 0 either by induction
in case 03(g ' Ry) = op(Bt"~2F) for some B € K* or by the first part of the proof
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in case o(g7 ' Ry) # op(Bt"~2F) for any B € K*. Finally we arrive at:

min(n,m) f min(n,m)
"+ Z Vi | € K(¢) and v(E - "+ Z Vi) >0
k=1 k>1

3.3 Some Divisor Theory for Weyl Fields Over
Function Fields

In this section we let K be an algebraic function field of degree one over an
algebraically closed k C K of characteristic zero, i.e. K is the function field of
a nonsingular projective curve C over k.

Points on the curve C correspond bijectively to the discrete k-valuations of K
and each such valuation induces a valuation filtration 'K on K. This filtration
extends to Aj(K) and to f'D;(K) as observed earlier. The associated graded
ring of f'D(K) is exactly D(k)[T,T~'], T a central variable. Hence f'I;(K)
is a valuation filtration corresponding to a discrete noncommutative valuation ring
JoD1(K). In a sense the constant field k is now replaced by ID; (k) but we will point
out some essential new features related to this “skewfield of constants”.

3.3.1 Proposition

If v is a D; (k)-valuation of D (K), then:

fora;; € K,i=0...,n,j=0,....m:

n.m
v Z aijx'y’ | = min{v(a;;);i =0,...,n,j =0,...,m}
ij=0

Proof. Write a = Y ', ZTZOaijxiyj,p = min{v(a;;),i = 0,....n,j =
0,...,m}.

Since x,y € Dy (k) the equality v(a) > p is obvious. Let 6(a) € N be the
filtration degree of a in the Bernstein filtration of A;(K). If §(a) = O then the
claim holds. So we assume that the claim holds for b € A (K) with §(b) < d. We
calculate:

n m
vixa—ax) =v| Y Y jajxy ™

i=0 j=0

= min{v(a;;), j # 0}
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n m
viya—ay)=v|=Y Y ia;x'""'yl

i=0 j=0
= min{v(a;;,i # 0}

Now v(xa —ax) > v(a) > p and similarly v(va —ay) > p. The foregoing implies
that v(a) is smaller than min{v(ya —ay),v/(a—ay)}, hence v(a) < porv(a) = p
follows. O

Since we assume that k is algebraically closed in K we have that k = N,{0O,, O,
a discrete valuation ring of K}. We may look at the ring R obtained as the
intersection N, A, for all discrete D (k)-valuation rings of D; (K). For a k-valuation
O, of K we have a nontrivial D (k)-valuation A, extending v to D (K) it is given
by v on A;(K) as in the foregoing proposition.

We have that D;(k) C R but R is not equal to ID; (k). Look at (X + a)~! since
v(X +a) is at most zero we have that v(X +a)~! is at least zero, hence (X +a)~! €
R for every a € K — k. Clearly (X + a)~! € R is not invertible in R so R is not
a skewfield, yet it has many invertible elements e.g. (ax + y)(x + ay)™'. As an
intersection of valuation rings R has the property that every one-sided ideal of R
is an ideal of R, moreover R is invariant under inner automorphism of D;(K). A
formal sum D = Y/ _. n,v with n, € Z almost all being zero, is called a divisor
of C. When we chose A, to represent v of C (C the curve of K(k)) we define a
divisor for D, (K) as Z’v n,v. To an element ¢ € D;(K) we associate a principal
divisor: div(g) = Y, v(¢)v. Divisors for D; (K) are partially ordered by: >/ n,v >
Zi m,r if and only if n, > m, for all v. So the ring R may be obtained by putting
R = {g € D(K),div(g) > 0}. A divisor for D;(K), D is said to be positive if
D > 0.

3.3.2 Lemma

A positive divisor is principal, i.e. if D > 0 then D = div(r) for some r € R.

Proof. Tt will be sufficient to establish that for each v € C there is an r € R such
that div(r) = v, thatis v(r) = 1 and w(r) = O for every w # v in C. Take
a € K such that v(a) = —1 and write div(a) = D; — D, with Dy and D, being
both positive divisors. The Riemann—Roch theorem on C yields the existence of
an integer N such that for any divisor D on C of degree (being the sum of the
n, appearing in the divisor) larger than N we have: dimy L(D) = degD + 1 — g,
where L(D) = {f € K,div(f) + D > 0} and g is the genus of the curve C. Fix a
positive divisor D3 of degree larger than N such that every valuation with nonzero
coefficient in D, appears with zero coefficient in D3 (note: v appears in D,). Then
it is easily checked that:

dimg L(D3 +v) = 1 + dimg L(D3)
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So there must be a nonzero b in L(D3; + v) — L(D3). Consequently v(h) = —1 =
v(a); moreover for all w € C — {v} we have that max{w(a), w(b)} > 0. Now define:
r=@'x+ba'x+b7"+y)inD;(K).If wis a k-valuation of K different
from v, then:
w(a 'x + b7 = min{w(a™ ), wb ™)}
= —max{w(a), w(b)}
wa@ 'X +b7' 4+ y) = min{w(a™ ), w(® "), 0}
= —max{w(a),w(b)}

Thus from w # v we obtain w(r) = 0. On the other hand

vi@ 'x +b7) =min{l, 1} = 1
vi@ 'x +b7 '+ y) = min{l,1,0} =0

Hence v(r) = 1 and div(r) = v as desired. O

This leads to a rather beautiful structure result on R.

3.3.3 Theorem

The ring R is a principal ideal domain.

Proof. As a first step we establish that the sum of two cyclic ideals is again cyclic.
Hence consider Ra and Rb. Forall v € C and r,r’ € R we have: v(ra + r'b) >
min{v(ra),v(r'b)} > min{v(a),v(b)} = v(c) for some ¢ € R. Thusra+r'b € Rc
or Ra + Rb C Rc. Writea = fg~'.b = f'g~ ! with £, f/, g in A;(K).

Let us fix an integer n larger than the Bernstein filtration degree of f and put:
b' = x" f’g~'. Then Rb = Rb' and
via+b") =v(f +x"f)—v(g)
min{v(f). v(f")} —v(g)
min{v(a), v(b)} = v(c)

Consequently: Rc C R(a+b") C Ra+ Rb' C Ra + Rb, hence Ra + Rb = Rc.
From the first step it follows that every finitely generated ideal is cyclic and for
every b ¢ Ra we have Ra + Rb = Rc with 0 < div(c) < div(a). Consequently
any ascending chain of (left, right) ideals must terminate thus R is Noetherian and
then every ideal is finitely generated (on the left) hence principal.
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3.3.4 Corollary

The ring R is a Noetherian domain with quotient division ring D; (K).

Proof. As observed in the theorem R is a Noetherian domain hence it has a classical
ring of fractions which is a skewfield. If ¢ € D;(K), then div(q) = D; — D, for
positive divisors Dy, D,. From the lemma it follows that there are r; and r; in R
such that div(ry) = Dy, div(r,) = Ds. It follows that gror;! € R is invertible in R
as it has the zero divisor for its divisor. Therefore ¢ € Q¢ (R) and D (K) = Q¢ (R)
follows. O

To a divisor D on D;(K) we associate a space L(D) = {q € D;(K),div(q) +
D > 0}. In particular £(0) = R and each £(D) is an R-bimodule. The ideals of
R are exactly the £(D) with D < 0. The theorem states that any £(D) = R as
an R-bimodule. For D; < D, we have L(D;) C L(D,). We let A, = F/D(K)
be the discrete valuation ring of D (K) corresponding to F'ID;(K) and we write
m, C A, for its unique maximal ideal, m, = R N 7.

Observe that m, = L£(—v) is a maximal ideal of R and the correspondence v €
C — m, C R defines a bijective correspondence between points of C and the set
of maximal ideals 2(R) of R. The following expands on this relation.

3.3.5 Proposition

With notation as above: A, = R,,,, the localization of R at the maximal ideal m,.

Proof. For g € A, write div(q) = D — D, where D and D, are positive divisors
having disjoint supports (no valuation appears with a nonzero coefficient in both D,
and D», this is of course always possible). Again we find r| and r, in R such that
div(r;) = Dy, div(r2) = D,. Consequently ¢ = uryr; ! for some unit u of R. Since
v(g) > 0 we cannot have r, € m,, hence ¢ € R,,,. On the other hand the R,,, C A,
is obvious so equality follows: O

3.3.6 Theorem

If Dy < D, then dimp x)(L(D>)/L(D1)) equals the degree of the divisor D, — D;.

Proof. Form the foregoing proposition it follows that 7, is the extension of m, C R
to A, and R/m, — A,/m, is an isomorphism. In particular R/m, = D;(k) and
R = Dy (k) + m,. Let us write F"R for the filtration induced on R by F'D;(K).
For the associated graded rings we have: G, (D1 (K)) = D, (k)[T, T~'] and we may
restrict this isomorphism to the associated graded ring of F¥R and obtain G, (R) =
Dy (k)[T™". It is straightforward to verify for every v € C and every divisor D
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on D;(K) we have: L(D) = m,L(D + v). Then it follows from this that £L(D +
v)/L(D) = R/m, @r L(D +v) = R/m, = Di(k). For D; < D, the left
dimension over D (k) of the space £(D;)/L(D) may thus be counted as the degree
of the divisor D, — D (note that in a similar way this degree also equals the right
D, (k)-dimension, so that left and right dimension of the bimodule £(D,)/L(D;)
are actually equal in this situation). O

The foregoing Riemann—Roch type theorem is independent of the genus of C, the
formula proved actually corresponds to stating that this is a “genus-less” situation,
a remark that may be related to the noncommutative geometry of A (K).

If we consider the Bernstein filtration then D;(k) is not in FOB R = FOB
Dy (K) N R. We may compare the Bernstein filtrations on D;(K) and R; in some
sense R is a rather big subring of D (K), perhaps unexpected for the intersection of
all Dy (k)-valuation (discrete) rings of Dy (K).

3.3.7 Proposition

With respect to the Bernstein filtrations: Gg(R) = Gp(D;(K)).

Proof. 1t is known that Gg(D;(K)) is just the graded quotient field of
Gp(A1(K)) = K[X,Y]. Consider p in K[X,Y],, p = Y ' ga; XY™ and
look at p~! € Gp(D(K)). Consider ¢ = > /L a;xy™" € Aj(K) and write
div(q) = Dy — D with Dy and D, positive. Pick r € R such that div(r) = D,
say r = fg~! with f,g € A|(K) and let n € N be larger than the degree
of g in the Bernstein filtration. Now put a = (rx"g))(rx" + 1)~!. Obviously
o(a) = p.Forall v € C we obtain: v(rx" 4+ 1) = min{v(r), 0} because of the
choice of n. Then we obtain div(a) = D; and thus a € R. Finally, if m > 0 then
r'=(¢+1)""isin R and we have o(r') = p~'. Thus Q%,(K[X,Y]) C G(R) and
also G(D(K)) = QF,(K[X,Y]) entail G(R) = G(D;(K)). O

The results may be generalized to D, (k)-valuations of D, (K) but we do not go into
this here leaving it as an exercise for the zealous reader.

3.4 Hopf Valuation Filtration

The guiding principle in foregoing sections is that an extension of valuation theory
to K-algebras can be obtained from a value function on A extending a valuation v
of K with corresponding filtrations FA, resp. fK. The ring F, A, where O is the
neutral element of the value group I', is an order in 4 over O,, and it enjoys certain
properties like being a separated prime, a Dubrovin valuation, a noncommutative
valuation ring, depending on properties of the value function. However we may
look at a strong filtration F'A and ask other structural properties of A possibly in
combination with some properties of the value function, e.g. we may look at Hopf
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algebras or quantum groups A and ask FyA to be also a Hopf algebra over O,. In
this way we shall define Hopf valuations and their filtrations.

3.4.1 Definition. Good T -Filtrations on K -Vector Spaces

Consider a field K with a separated ['-filtration fK for some totally ordered
group I'. The category of I'-filtered vector spaces over K is denoted by K-filt. A I"-
filtration on a K-vector space V, F'V is a good filtration if there exist sets {vy, o €
A} {y« € T, € A} such that for y € T we have: F,V = Y 1 fy—y, KVa.
It is clear that {v,, ¢ € A} is a set of K-generators for V. In the sequel fK will
be a strong filtration, in fact a valuation filtration. Then from f,_, Kv, € F,V
it follows that v, € F,, V for all « € A; moreover, for every y € I' we also
have that F,V = f, KFyV. Hence, if F'V is a good filtration then without loss
of generality we may assume that {v,,a € A} is taken in FyV and for y € T,
F)V =3 yea fyKve. If FyV is free over Fo K with basis {w;,i € J} then FV
may be given by F,V = > .., f,Kw;. If fK is a valuation filtration then it is
strong and foK = O, is a valuation ring so torsion free finitely generated O,-
modules will be free.

For detail on Hopf algebras we refer to [20, 31]. We let H be a K-Hopf
algebra with counit ¢ : H — K, comultiplication A : H — H ® H and antipode
S : H — H. A I'-filtered Hopf algebra is a K-Hopf-algebra H with a filtration
FH suchthate, A, S are filtered morphisms, e.g.

1. e(F,H) C F,K = f,K,forally € I'.
2. S(F,H) C F,H, forally € I'.

3. A(FyH) C Y.y yrey FoH ® F.H forall y € T.

The condition (3) just expresses that A is a filtered morphism if H ® H is equipped
with the tensor filtration defined by putting

F,(H®H) =Y F,H®F,H,y €.

ot+T=y

We write FPH =Y. _ F,H, F°H =Y __ F,H fort € T.

y<0 y<t

3.4.2 Proposition

Let H be a Hopf algebra over K with Hopf filtration FH, then G(H) is a I'-graded
Hopf algebra. If FH extends fK then G(H) = kI" ®; FyH with Hopf structure
deriving from FyH (via FoH/ F(?H ) making it into a graded Hopf algebra over the
gr-field kT" (where k is the residue field of K).
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Proof. Observe that FoH is a sub-Hopf algebra of H over fpK = O,. Indeed,
A(FyH) C Zyer F,H ® F_,H butsince F,H = f,K ® FyH forall y € T,
it follows that A(FyH) C FoH ® FyH; the restriction of ¢ to FyH defines the
O,-linear ¢| Fo H and the kT-linear € on G(H) extending FyH/F)H — K. Since
S|FoH defines the kI'-linear S : G(H) — G(H), all claims in the proposition
follows easily. O

Note that for a Hopf filtration F'H the inclusion K < H is a filtered morphism;
for a strong Hopf filtration FH the condition of extending fK is equivalent to
FoHNK = foK .

Now we consider a Hopf algebra H over K with a I'-valuation ring O, = D in
K; the valuation of O, is v : K* — T and we also write v : K — T" U {oco} by
putting v(0) = oo. The residue field of v will be denoted by k.

A Hopf valuation function extending v is a function —¢ : H —» ' U {00},
usually viewed as a Hopf valuation filtration function £ : H —» " U {—o0},
satisfying:

HV.1  We have £(h) = —oo if and only if 7 = 0.

HV.2 Wehave £(1) = 0.

HV3 Forhe H A € K,E(Ah) = E(Ah) = E(h) —v(A).

HV4 Forg,he H,&(gh) <&(g) +&(h).

HV.S Forg,he H E(g+ h) <max{é(g),&(h)}.

HV.6  Forh e H E(S(h) < £(h). E(s(h)) < E(h).

HV.7 For h € H, A(h) = Xh; ® hy (Sweedler notation) £(h) >
inf{maxg{&(hy) + &(hy)}}, where maxy is taken over the terms in a fixed
expression of A(h) while inf is over all possible decompositions of A(h). By

g(h) > inf{y,y € A C I'} we just mean thatif 0 < y fory € Athen&(h) > 0.

3.4.3 Proposition

If & is a Hopf valuation function then we have equality in HV.7, in fact:

§(h) = inf{maxs{§(h1) + §(h2)}} = inf{maxs{§(e(h1)) + §(h2)}}
= inf{maxs|§ (h1) + §(e(h2))}

Proof. Indeed, from A(h) = Xhy®h, we may derive: h = Xe(hy)hy = Zhie(hy).
Applying HV.3 leads to:

§(h) = maxg{&(e(h)ha)} = maxs{é(e(h)) + §(h2)} (*)

Since (*) holds for any decomposition of A(/) we obtain:

§(h) = inf{maxs{§(e(h1)) + §(h2)}}
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and by this we just mean that £(h) < maxx(...) for all possible decompositions
of A(h). Now using HV.6 this leads to: &(e(h1)) + E(h2) < &(hy) + E(h2), or
&(h) < inf{maxx(&(e(h1)) + &(h2)}. This proves:

£(h) = inf{maxs{&(h1) + £(h2)}}
= inf{maxs{£(e(h1)) + £(h2)}}
= inf{maxx{&(h) + £(e(h2))}}

where now we may interpret inf in the classical way, because £ (%) is smaller than
all max{...} and bigger than all 0 € I" smaller than all maxx{...}. Hence HV.7
entails the existence of the inf as defined. The last equality following by using & =
Shie(hy). O

3.4.4 Theorem

Hopf filtration functions § : H — ' U{—o0}, satisfying HV.1,... ,HV.7, correspond
bijectively to the separated Hopf filtrations F'H extending the valuation filtration
fK of the valuation v.

Proof. Start from a Hopf valuation filtration function § : H —» ' U {—o0}
satisfying HV.1,... . HV.7. For y € T" put F, H = {h € H,§(h) < y} Properties
HV.5 and HV.3 entail that F), H is an additive subgroup of H, containing 0 because
of HV.1. From HV.2, HV.4 and HV.S it follows that FH is a filtration of the ring
H. Putting » = 1 in HV.3 entails £(A) = —v(A) for A € K, hence FH extends
the valuation filtration fK corresponding to v. For h € H we have h € F¢y)H,
hence FH defines an exhaustive filtration of H. From HV.6 we obtain that S and
¢ are filtered maps of degree zero with respect to FFH. In case FH would not be
separated, then there is a nonzero z € H such that for every y € I' such that
z € F,H we have z € F)H. In any case z € Fy)H butif z € F,H with
y < &(2), then by definition of F), H it means that £(z) < y, contradiction. Thus
FH is separated. Now consider 4 € H, A(h) = Xh; ® h,, then Proposition 3.4.3
entails: £ (h) = inf{maxs{£(h) + §(h»)}}. For A(F,H) C Y ..t FFH® F,_H
it suffices to establish this for y = &£(h), any 7 € H (indeed £ like v is assumed to
be surjective). If § > £(h) = y, then for some decomposition A(h) = > h ® hy
we have § > maxyg{&(h) + £(h,)}, and this comes down to:

A(hye > F.H® F5 H (%)

el

Recall that FH is a strong filtration hence forevery y € I', F, H = F,KFyH =
Jy K FoH . For the tensor filtration on H ® H defined by FH we have:

F(H®H)=)Y F, (H®F,H =Y F, (KF,KFkH®FoH = F,H®F,H

o€l o€l
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From (x) we obtain A(h) € FsH ® FyH forevery § > £(h). Asa D-module Fy H is
flat, indeed over a valuation domain every finitely generated torsion free modules is
projective and every projective is free. Thus FyH is the direct limit of free modules
of finite rank, thus flat. Consequently: Ns(Fs H®p FoH) = (NsF5)®p FoH . Either
&(h) is equal to some maxs{&(hy) + £(hy)} for a certain decomposition A(h) =
¥h, ® H, in which case (x) applies with § = &(h) and there is nothing left to prove,
or else £(h) appears as the inf of elements maxs{&(h) + £(h2)} € T (observe that
maxy is over a finite set). In view of the remark after this proof, separatedness of
FH yields Fey = Nss¢anyFsH. Therefore we obtain A(h) € FegnH ® FoH
and it follows that F'H is a Hopf filtration. Conversely if FH is a separated Hopf
filtration extending fKj, then for x # 0 in H there is a unique y € I" such that
x € F,H — F;)H. The function § : H — I' U {—o0} defined by £(0) = —o0
and for x # 0, £(x) = inf{r € I',inf; H} is well-defined and surjective since FH
extends fH and v is surjective. We may view &£(x) as the “filtration degree” with
respect to F'H . Verifying the properties HV.1,... , HV.7 is easy enough. O

3.4.5 Remark

If FR is a separated filtration on a ring R and A is a subset of I" such that y =
infilo, 0 € A} € I' U {—o0}, then F, R = NgeaFyR. Indeed if x ¢ F, R there is
a unique § € T such that x € FsR but x ¢ Fy R for any § < § in view of the
separatedness. Then y < § because § < y and x € F3R leads to x € F, R which is
excluded. Hence oy < § for sone oy € A and thus x ¢ F, R yields x & Nyea Fo R.

From now on we consider a separated Hopf filtration FH extending fK
associated to a valuation v of R with associated Hopf valuation function &. We
have seen that FyH is a Hopf algebra over D = fyK and it is an order of H in
the sense that KFoH = K ®p FoH = H.For h € H we define I, C K by
putting I, = {A € K, Ah € FyH}. The next proposition establishes that £ may be
calculated from data in K.

3.4.6 Proposition

Forh € H, £(h) = v(I}), in particular for h = A € K,E(A) = —v(A). If £, &
correspond to Hopf filtrations F' H resp. F?H , then FOl H C FOZH is equivalent to
& < &1

Proof. Let FH be the Hopf filtration corresponding to &; note that surjectivity of
¢ implies F, H # F.H fory # tinT.Indeed if 0 € T hen 0 = £(z) for some
z€ Handz € Fep)H butz & FrgyH, ie. F, H # F.H forall t < 0. Now take
h € Hthenh € F,H —F)f)H forsome y € I',in facty = §(h). If A € K is
such that Ah € FyH then E(Ah) = £(h) —v(A) < 0. From y = &(h) < v(}) it
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follows that £(A) < —y or I, C f_, K. Since f_, K is obviouslyin I, = f_, K, so
v(Iy) = y = §(h) follows (in general we may define v(L) for an O,-submodule L
of K as —max{0,(1), A € L} if the maximum exists in I" where o, is the principal
symbol map for fK). For the second statement observe that F'H and F?H are
strong filtrations hance Fj H C FjH entails F)H C F}H forall y € T' and
& < & follows. Conversely from & < & it follows that FolH ={he HE&(") <
0} C FgH =the H =1{he H,&(h) <0}. O

For h € FyH we have ¢(h) € D and if v(e(h)) = y then we may divide & by
A € K withv(1) = y and we still have that e(A~") € D but we do not know whether
A~'h € FyH. If a suitable set of K -generators for H, B say, can be selected such
that the D-module generated by {1, 'h;,h; € B} is a D-ring then we may obtain
a method to construct D-orders in H. Elements of H which are candidates for the
ones with best divisibility properties are those 4 € H such that ¢(h) = 0, i.e. the
elements of the augmentation ideal. The advantage of Theorem 3.4.4 is that £ is
known if we know the Hopf order FyH and conversely. In case H = KG for a
finite group G the knowledge of a Zassenhaus valuation on G does not determine
unambiguously a Hopf valuation on KG nor a Hopf order of KG. Indeed the
construction of Larson orders different from DG in KG, cf.[35], exactly shows
that different orders may be constructed from the same Zassenhaus valuation of G.
Theorem 3.4.4 applied to H = KG entails that DG and a nontrivial Larson order L,
DG & L & KG, correspond to different Hopf valuation functions on KG but these
take the same values on some K -basis of the Hopf algebra, e.g. G in KG. It turns
out that some basis is better than another! In the sequel we obtain a construction
method for (maximal) orders of Larson-type in any finite dimensional (semisimple)
Hopf algebra, and a description in terms of some suitably selected basis; we include
some examples with number theoretical flavour.

Consider the K-space H/K and define de : H/K — T' U {—oo} by putting
dg(ﬁ) = &(h — e(h)), where h is the class of / in H/K. We may define dg on H
by putting d¢(h) = &(h — e(h)). Taking into account that d¢(A) = —oo for every
A € K. We call d¢ the derived valuation function of £.

3.4.7 Lemma

With notation as above, either §(h) = £(e(h)) or §(h) = dg(h), in other words
de(h) < £(h) only if £(h) = £(e(h)) and e(h) # 0.

Proof. From h = (h — e(h)) + e(h) if e(h) # 0, we obtain: £(h) <
max{dz(h), & (e(h))}. By definition of d¢ we also have: dt(h) < max{§(h),§(e(h))}.
Combination of these inequalities yields either £(h) = &(e(h)) or else &E(h) =

dg(h). The second statement in the lemma is now clear. Recall that ¢ is a filtered
morphism, hence £(e(h)) < &(h). O

The properties of d; are modifications of those of .
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3.4.8 Proposition

With notation and conventions as before the function d; satisfies the following
properties.

DV.1 Forh € H,d:(h) = —ocoifand onlyif 1 € K.

DV2 Fork e K.h e H,d(Ah) = de(h) — v(A).

DV.3  Forg,h € H,d:(gh) < max{de(g) + §(h),£(g) + ds(h)}. In case e(g) =
e(h) = 0, hen d¢(gh) < d¢(g) + de(h).

DV4 Forg, h € H,d:(g + h) < max{d:(g), de:(h)}.

DV.5 Forh € H,ds(Sh) < ds(h).

DV.6 Forh € H — K with e(h) = 0 and A(h) = Zh; ® hy, de(h) >
inf{maxys{d(h1) 4 de(h2)}.

Proof. The proof of DV.1, DV.2, DV.4 is straightforward.

DV.3  The first statement follows from:
gh—e(gh) = (g —e(g)h + &(g)(h — e(h))

Hence: £(gh) < max{£(g—e(g)h),E(e(g))(h—e(h))}. Now HV.4 and £ (e(g)) <
£(g) yields the statement. In case €(g) = e(h) = 0 we may assume g ¢ K and

we have d:(g) = £(g), de(h) = £(h) and HV.4 applies.
DV.5 Follows from d:(Sh) = £(Sh —e(Sh)) < &E(h — e(h)) = de(h).
DV.6  Since g(h) = 0, d¢(h) = £(h) and the claim follows from [HV.7]. O

To a Hopf valuation filtration function § there corresponds a Hopf order H(§) =
{h € H,£(h) <0} = FyH, to dg we may associate H(d;) = D @ {h € e (D) :
—oo < dg(h) <0} U {0}.

3.4.9 Observation

With notation as above: H(dg) = H(£). Indeed it is clear if h € H(d:) with h €
Kere then £(h) < 0, hence h € H(§); if h & kere then §(h) = &(e(h)) entails
&(h) < O because e(h) € D. hence H(d:) C H(§). Conversely if £(h) < O then
E(h —e(h)) < max{&(h),&(e(h)} = E(h) <0, thus H(§) C H(d;) follows, hence
H() = H(dy).

3.4.10 Definition

A D-order in a finite dimensional K-algebra A, A say, is called a moderate order if
it is integral over D and the prime radical rad(A) is a finite D-module.
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Note

In the definition of moderate order given in [2] it is forgotten to remind that
orders are assumed to be integral! The term “Hopf order” used before only refers
to the property KH(§) = H but from now on we shall restrict attention to &
corresponding to orders H (¢) which are integral over D.

So we look at Hopf valuation functions § < &, with associated H (&) C H(§)
and assuming H () is a moderated order. Let us write m = m, for the maximal
ideal of D = O,. Pick a K-basis B = {b; = 1,by,...,b,} in H(&) and we may
assume without loss of generality that e(by) = ... = ¢(b,) = 0.

Define Hp(£) to be the D-algebra generated by 1, m%®)p; i =1,... n. Since
E(m%PDp;) = 0, it follows that Hg(£) C H(£) hence Hp(£) is integral over D.
Since 1 and the m%®)p; fori = 2,... n are again a K-basis for H it follows that
KHpg(§) = H,hence Hp(§) is a D-order of H.

We are now interested in the discrete case, so we suppose D is a discrete
valuation ring of K from hereon, we may also assume ch(K) = 0 but that is not
really necessary.

3.4.11 Proposition

With notation as before, if D is a discrete valuation ring of K then H (&), Hp(§),
H () are finite D-modules.

Proof. Since KradH (§) is a nil ideal of H it is in rad H and therefore nilpotent
hence radH(§) = H(§) N radH and similar for radH (&), radHg(§). Thus
rad(§y) = H (&) NradH,radHp(§) = Hp (&) NradH (&) and we obtain H (&) C
H(E) and Hz(§) C H(§) C H, where we denoted R for R/radR. Now H
is semisimple Artinian with center L; & ... @ L, say, each L; the center of a
simple component S; of H. The center of H(£), also for H(&) and Hp(§) is
integral over D hence in the integral closure of D in L; @ ... L, and therefore
it is a finitely generated D-module, thus also Noetherian. In any case for all three
D-orders it follows by a result of G. Cauchon that they are finitely generated
D-modules because they are finite over their center since it is Noetherian (P.I. rings
with Noetherian center) and the center is a finite D-module as observed above.
Since rad(£) is a finite D-module, so are rad H (&) and rad H 3 (¢), consequently the
statement of the proposition follows. O

3.4.12 Corollary

There is a K-basis B in H (&) such that Hg(§) = H(§).
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Proof. Since H (&) is finitely generated as a D-module it is free of finite rank over D
and it has a basis, B say. Without loss of generality we may assume B = {by = 1,

by, ...,b,} with e(by) = e(b3) = ... = e(b,) = 0. Now (writingm = () C D)
look at 7% b; where B; = &y(b;). This yields a K-basis in H (&), say Bo, such that
Hp, (§) contains B hence D[B], consequently Hp, (§) = H(§). O

From the foregoing it follows that if there is a (finitely generated) Hopf order
over D, say H’', containing H (&) then we may construct it from some K -basis
contained in H(&)). Now let us forget H (&), but start from a D-basis B of H (&),
this is also a K-basis for H, and make the D-order Hp (&) and then try to check
we obtain a finitely generated D-module which is a Hopf-order. In case H (&) is
not a maximal Hopf order, the foregoing corollary suggested we can find a maximal
one by the H pg-construction but for some K-basis B in H (&), not necessarily for
a D-basis of H(&;)! Nevertheless we shall show in a series of examples that this
method leads to new Hopf orders in many cases.

3.4.13 Example. The Sweedler Hopf Algebra

Consider the Sweedler Hopf algebra over the rational fields Q, say H = Q|[x, y]
with relations x? = 1, y?> = 0 and xy + yx = 0, and put:

ex)=1,5(x)=x,A(x) =xQx,
e(y) =0,85() =xy. A(y) =1®y+y®x

Let D = Z, the localization of Z at the prime ideal (p) and m = (p). Define
H(m) =7, +Zy(x —1) +n""y + m™"xy, foreveryn > 0, H(0) = Hy,. Itis
easily verified that H(n) is a Hopf order in H. If Hz, = Z,[x, y] is in some Hopf
order H(§) then £(x—1) < Oand from &(S(h)) < &(h) it follows that E(xy) < £(y)
and £(y) < &(xy) by taking h = y resp. h = xy. Thus £(xy) = £(y). So we put
§(y) = §(xy) = —n withn > 0 and §(x — 1) = 0 is then the Z,-subalgebra
of H generated by b*®)(b — £(b)) for b in the chosen basis for Hy,,, has Z,-basis
a,x — 1, 77"y, 77" xy and it is exactly the H(n) we defined.

3.4.14 Example. The Taft Algebras Over Q
Let Hr(n) be the Taft algebra over K = Q, i.e. Hr(n) = Q[x, y] with x" = 1,
y" =0and xy + yx = 0, where we put:

e(x)=1,Sx)=x"1LAKX) =x®x,
e(») =0,S() =—x""A) =1®y+y®x

Then Hr(n)(=1) = Z, + Y02 Z,(x — 1) + Z?;(l),j=1 Zym~/xy’ is a Hopf
order on Hr(n) with Z,-basis {x(x~'y)/, i, j =0,...,n — 1}. We can construct
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Hr(n)(—1) from Hy(n) by constructing £ by putting £(x"~' — 1) = 0,i =
I,....n—1,6(7) = 1,j = 1,...,n — 1. In checking that Hr(n)(—1) is an
Hopf order only A(zw =/ x/y/) € Hr(n)(—1) ® Hr(n)(—1) needs some work; this
follows from the following lemma.

3.4.15 Lemma

In Hr(n), fromall 0 < i,j <n wehave: A(x',y) =x"y @ (x' = 1) +x'y' ®
1+Y7 e, (i)xi+’+/_v®xiy’+ 1®x'y/ +(x'T/ —1)®x'y/, where: for j

(r—=1)(r—=3)...

even, o, = 0 when r is odd and o, = T390 =FD

r(r=2)... (r—=1)(r=3)...
JG=2)..—r+1) iG=2..G—1+2)
Proof. Since A is an algebra morphism A(x'y/) = A(x)' A(y)) = (x' @ x')(y ®
1—x®y)’. Applying the binomial formula and taking into account that yx = —xy,
yields the result in a straightforward way. O

when r is even, for j odd,

o = if risodd and o, = if r is even.

The group-like elements we have to consider are just the g — 1 (e(g) = 1).
Therefore the following numerical lemma will be useful.

3.4.16 Lemma

Let g be any element in a Q-algebra A, then for any natural number n we have the
equality:

(g—1D"=g"+ a1 (=D)(Eg—D""+aa(-1)*(g— 1"
+oF i (=D)i(g=1D)" ..
+ar(=1)"2(g = D* +ar (=" (g = 1) + cu(=1)"

where
et = (1) = (1) = (7).
__ (n n—1 n—2
Un—i = (z)_a” T\i—1 Ol,,_z(l 2)

—Qp—(i—1) (” (; 1)) and Chp = - Qp—1 —0p—2 —Qp—3 — ... =]
Proof. The proof is by induction on n. If n = 2, then
(-1 =g +a(=1)(Eg—-1)+c(-1)

o =(})ade=1-a =1-2=-1,
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Suppose now that it is true for all n < k, it is true for n = k + 1. Since it is true
for n = k, then we can write:

(& —DF =g 4 (o + D(=D)(g — DF+
(o) — a,’(_l)(—l)z(g — D+
(oz]/c_(H_l) — oz]/c_l)(—li“)(g — D+
w(—1)"2(g — 1)? + (f — ah) (=1 (g — 12+
(cx —aD(=DF(g = 1) — cx (1) !

/ k / k / k
ak—l = 1 ’ak—z = 2 - ak—l 1 LR

, K, (k—-1\ , (k-2 , k—(i—1)
ak—i = l' - ak—l l' _ 1 - ak—Z l' _ 2 T ak—(l—l) 1

and¢p = 1 —ap_; —o_; —op_, —op_3 — ... —aj. To complete the proof we

prove o —; — “/L—(i+1) — oo = op_; + 1and o) = ¢ — . First we prove
. . _ / /7 . — k+1 / — k

by induction that ax—; = O —(i+1) — X—j Since o = ( 1 ) SO = (1)’ then

or = oy _, + 1. Since

() () (e
and &y — ey = (g)_a’/“l (I;)

then o —p — “1/6—1- Suppose now this is true for all j < i, then

(2o () ()
= (1) () == () (2]
(S N
s (5570 ()
R (iil)_“i‘l (ki_l)_“;”(l;:lz)_”‘
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—Ol/ (k_(i_l))_ / (k_(l_l))
k—(@i—1) 5 i 1

7 /
= Op_(i—1) — ¥—;

: ) 7 o
Using aj—; = O _(i+1) — O—; We can prove that ®y = ¢ — o/, then

(k1 k k—1
o= ( : )—ak (k_l)—ak_l (k_z)_...
k—i 2
—Uk—1 (k—(l—l))__az(l)

_ I / / / /
=l—-o_—o_,—ap_3—...—ap_; —...— 2]

cr —

Using ay—; = a,’(_(H_l) — oy _; we find that o) = ¢ —af, thencpyy =1 — o —
Ojp—1 —Of— — ... — 0] = Cf.

3.4.17 Remark

1 o = (—1) ("),
2. Oy—i =( 1)i+1

3. If n = p’llplzz. . pls where py,.. ., Ps are nonequal prime numbers, then

pj ot x,,O<]Z<sand] ;élandpj fo iz

4. 1fn = p*,s = 1 then p* o, i (p—i_y) andps N o (i

Proof. 1. We prove it by induction.
Ifi =1, thena,—; = () = (=1)* (). Suppose it is true forall i <k — 1,

then
-1 -2
ok = (}) = 1 (Z—l) — Un—2 (Z—z) -

—(k—1
ey ("D

e = (1) =k (}) + k(k =1)/2(}) =
o (DR (1)
If k is odd, then: o, = (=1)**! (7). If k = 25 is even, then:

i = (3) =2k (}) +2k(k —1)/2(}) —
+2k(k — D)(k—2).. (k/2)/((k/2) — D! (
— 2k(k = 1)(k =2)...((k/2) + 1)/ (k/2)!

= (-2()+2(5) - +2(5) - (1))

0)
1y
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2.1fn = pgthena, = (—1)" Pt pg(pg —1)...(pg — p + 1)/p! = gz. In
fact, no factor pg —i,1 <i < p — 1 can be divided by p, otherwise i = sp, a
contradiction. .

3.Ifn = p'thena, = (=1)" P Fps(p*—1)...(p* = p' + 1)/p't = p*'z.In
fact, no factor pi —t,1<t< pi — 1 can be divided by p[ with [ < i without
reducing p' by a factor of (p’ — 1)!, otherwise i = kp', a contradiction.

4. Similar to (3). O

3.4.18 Proposition

Consider a numberfield K /Q and let D be a discrete valuation ring of K extending
Z, C Q (here Z, is the location of Z with respect to the prime p). Let e = v(p)
be the absolute ramification index of K. Consider a finite dimensional Hopf algebra
H over K and let G = G(H) be its finite group of group-like elements. If £ is any
Hopf valuation filtration function on H extending v then we have:

1. £(g) = 0 for g € G such that the order 0(g) of g in G is not a power of p.
2. £(g) < e(p* — p* ") lif the order of g is p*.

Proof. This follows from (3) and (4) in Remark 3.4.17. Indeed if 0(g) # p° then
it is a multiple of at least two different primes and none of these can divide all «’s
in the formula given in Lemma 3.4.16, hence in that case £(g) = 0. On the other
hand if n = p* then p will be a divisor of all «’s in the formula in Lemma 3.4.16
but p? will not divide « p—1. From Lemma 3.4.16 we may obtain an expression for
(7¥@ (g —1))", ie.: withn = p*:

(né(g))n — a,,_l(—l)nf(g)(nf(g)(g — 1))+
et apei TP TR ()T (@ (g — 1)

It follows from this that p = d7®=7""5® for some d € D, therefore e > (p* —
P HE(9). O

3.4.19 Remark

1. For H = KG, G a finite group, and £ corresponding to a Larson order (i.e.
a Hopf order Hp(§) corresponding to the basis {I,1 — g,g € G}), then the
conditions in Proposition 3.4.17 do reduce to the conditions also found by Larson
in [35]. Note that in [35] the author proves that the constructed orders (of Larson-
type) in RG are in fact finitely generated D-modules without the assumption that
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they are constructed in an integral D-order. The proof is more combinatorial in
nature.

2. The conditions (2) in Proposition 3.4.18 make it clear that the realization of a
certain ¢ forces rather demanding ramification properties of v, e.g. for £(g) = 1
one needs e > p* — p*~!, p* = 0(g).

Recall the definition of the generalized Taft algebra with respect to a root of
unity p, say p” = 1. Put Hr(n) equal to the K-algebra generated by x and y
satisfying x” = 1, y” = 0 and xy = pyx, with Hopf algebra structure given by:

ex)=1,5x)=x"1LAx) =x®x
() =LS»)==—p"*""TyAD)=10y®y®x

3.4.20 Example

Let D be a discrete valuation ring of K, p € D.
In case n # p* for x > 1, then

n—1 n—1
Hr(-n)=D+Y Dx—1)+ Y Dr/"(x-1)y
i=1 i=0,j=1

is a Hopf order.
Incasen = p’, Jr’"(ps_f’ﬁl)|p and 7" |(p — 1) in D, then

n—1 n—1
Hry(-p’)=D + Z Dr7im(x — 1) + Z Dr~immin(x — 1) yJ
i=1 i=0,j=1

is a Hopf order.

Observe that (p — 1)”’ = p Zip;_ll(a,-/p)(p —1)' (Lemma 3.4.16) and then
(p— 1P € (p) C a7 where p'm < e + p*'m,e = v(p).

A full proof of the claims can be obtained via the quantum binomial formula
(see [31]) applied to f = 7~ (g — 1), and via a careful coefficient calculation in
an expression for X’ f*, ¢, s € N. We omit these technical details here. Let us just
provide a concrete case where all of the above phenomena are clear.

3.4.21 Example

Take p = 2 and look at the localization of Z,[p] at p — 1 where p = ~v/—1 = +/i.
For D we take Z[(p — 1)"/3]((,1ys). In this case 7 = (o — D'/5, (2) = (7°),
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v(ir) = 1,e =v(2) = 5, v(p—1) = 5, p* = 1. So we have (p — 1)® € (2) and
(2) C (p—1) C () C D. The constructions in Example 3.4.20 apply in this case.
Let us conclude with an example showing the effect of base change.

3.4.22 Example

We start with the situation of Example 3.4.13 but with K a number field such that
a™2in D.Put H(m,n) = D[f, x], f = 77" (g —1), x = n~"h. Then H(m,n)
is a Hopf algebra of rank 4 over D with:

Af)=f®g+1®f
fx+ xf =vy, where2 =vy"” withv € D
A= r®1+1® fr+fRgx+x® f¢g
AD=1®@x+r®¢g
fx—x=vgx

We may also define H(n) as in Example 3.4.13, it is of rank 4 over D with
basis {1, g—1, 77" h,n"gh}. Both H(m,n), H(n) contain the Hopf order D|g, /]
(viewed as H (&) in Proof of 3.4.12).

Now H(n) is of the form Hpg|&| with respect to B = {1,g — 1,h,gh} and
H(m,n) with respectto B’ = {1, g—1, h, (g— 1)h}, and these orders are obviously
different.
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