
Chapter 3
Extensions of Valuations to Quantized
Algebras

3.1 Extension of Central Valuations

We look at skewfields obtained as total quotient rings of algebras defined by genera-
tors and relations. It is of particular interest to consider so-called quantized algebras
stemming from noncommutative geometry because we hope to use valuation theory
in the construction of a kind of divisor theory in noncommutative geometry.

Consider a field K with valuation ring Ov � K having maximal ideal mv � Ov

and residue field kv D Ov=mv. Let A be a connected positively graded K-algebra,
A D K ˚ A1 ˚ : : : ˚ An ˚ : : :, where each Ai is a finite dimensional K-space and
A D KŒA1�, A1 D ˚n

iD1Kai . We view A as an algebra given by generators and
relations:

0 ! R ! K < X1; : : : ; Xn >
��! A ! 0

where K < X1; : : : ; Xn > is the free K-algebra on fX1; : : : ; Xng and � is given by
�.Xi/ D ai ; i D 1; : : : ; n. The ideal of relations R is homogeneous in the usual
gradation of K < X1; : : : ; Xn >. We can also consider the ungraded case where
A is a finitely generated K-algebra with generators a1; : : : ; an and � defined as
before but then R is not homogeneous is the usual gradation of K < X1; : : : ; Xn >.
Restriction of � to Ov < X > defines a graded subring ƒ of A with ƒ0 D Ov

0 ! R \ Ov < X >! Ov < X > �!
res�

ƒ ! 0

It is clear that � maps wv < X > to wvƒ which is a graded ideal of ƒ. We write:
ƒ D ƒ=wnƒ and R D .R\ Ov < X >/ C wv < X > =wv < X >, so we arrive at
the following commutative diagram with exact rows:
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176 3 Extensions of Valuations to Quantized Algebras

0 �� R �� kr < X >
�

�� ƒ �� 0

0 �� R \ Ov < X > ��
� �

��

��

Ov < X > ��
� �

��

��

ƒ �� ��
� �

��

0

0 �� R �� K < X >
�

�� A �� 0

When R is generated by p1.X/; : : : ; pd .X/ as a two-sided ideal, then we may
assume pi .X/ 2 Ov < X > up to multiplying by some constant but it does not fol-
low that R\Ov < X > is generated as a (two-sided) ideal by fp1.X/; : : : ; pd .X/g,
nor that R is generated by the reduced expressions p1.X/; : : : ; pd .X/, obtained by
reducing coefficients at mv.

3.1.1 Definition

We say that R (or A) reduces well at Ovor that ƒ defines a good reduction, if R
is generated as an ideal by fp1.X/; : : : ; pd .X/g.

Let us write fK for the �-valuation filtration of K associated to v and define a
�-filtration fK < X > by putting: for � 2 � , f�K < X >D .f�K/ < X >. The
latter is a strong filtration on K < X > with f0K < X > equal to Ov < X >. A left
ideal J of Ov < X > is said to be v-comaximal of for all � 2 � , J \ .f�K/ <

X >D .f�K/J .

3.1.2 Lemma

If the ideal L of Ov < X > generated by p1.X/, pd .X/ is v-comaximal then R
reduces well at Ov.

Proof. Since fK < X > is a strong filtration and for any r 2 f�K < X >

for some � 2 � yields f��1K < X > r 2 R \ f0K < X >, we have that
R D K < X > .Ov < X > \R/. Let L0 be the left ideal in Ov < X > generated
by fp1.X/; : : : ; pd .X/g; then we have L0K < X >D R since L0K < X > is
the two-sided ideal generated by fp1.X/; : : : ; pd .X/g. For x 2 f0.L0K < X >/

there is a � 2 � such that xf��1 K < X >� L as well as xf��1 K < X >�
f��K < X > since x 2 f0K < X >. Therefore we arrive at xf��1 K < X >�
L \ f��1 K < X >D .f��1 K/L by the v-comaximality of L. From this it follows
thatf�K < X > xf�� K < X >� .f�K/.f��1K/L D L hence x 2 L.
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Then we obtain:

L � R \ Ov < X >D f0R D f0.L
0K < X >/ � L

arriving at R \ Ov < X >D L being the two-sided ideal in Ov < X > generated
by fp1.X/; : : : ; pd .X/g; from this it follows easily that R is the two-sided ideal
generated by the reductions pi .X/ of pi .X/. ut

In case the reduced relations p1.X/; : : : ; pd .X/ determine a simple algebra then
the Ov-reduction is necessarily a good reduction, indeed the ideal .p1.X/; : : : ;

pd .X// is now maximal in kv < X > hence R D .p1.X/; : : : ; pd .X//.

3.1.3 Corollary

If A D An.K/ is the n-th Weyl algebra defined as K < Xi ; Yi ; i D 1; : : : ; n >

=.YiXi � Xi Yi � 1; XiXj � Xj Xi ; Yi Yj � Y iYj / then the reduced relations define
An.kv/ which is known to be a simple algebra (if char.kv/ D 0) so the reduction at
Ov is good if char.kv/ D 0.

As we have already pointed out the results concerning good reduction are valid
in the ungraded case, but it is interesting to look at positively filtered algebras since
any finitely generated K-algebra inherits a standard filtration via � W K < X >!
A; Xi 7! ai , from the gradation filtration of the free algebra K < X >. So, let us
assume again that the K-algebra A is given by generators and relation via

.�/ W 0 ! R ! K < X >! A ! 0

Let FA be the generator filtration of A induced by the gradation filtration of K <

X > making � W K < X >! A; Xi 7! ai , into a strict filtered morphism. On R
we may consider the induced filtration FR D R \ FK < X >. Then (*) is a strict
exact sequence that is to say that the image filtration on R is exactly the filtration
induced by FK < X > and this yields exactness of G.�/ W 0 ! G.R/ ! G.K <

X >/ ! GFA.A/ ! 0. In fact we have the following:

3.1.4 Lemma

With notation as above, G.A/ D GFA.A/ is defined by:

0 ! PR ! K < X >
G.�/�! G.A/ ! 0
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where PR is the left ideal of K < X > generated by the Pp for all p 2 R and Pp is
the highest degree component of p in the decomposition of p in the gradation of
K < X >. For the Rees ring eA with respect to FA we obtain:

0 ! eR ! K < X >� �!
�

eA ! 0

where � corresponds to � W K < X >! A on the Rees object level.

Proof. See e.g. [40, Proposition 1.1.5. p. 10]. ut

3.1.5 Theorem

If G.A/ reduces well with respect to Ov, say PR is generated as a two-sided ideal
by q1.X/; : : : ; qq.X/ then there are p1.X/; : : : ; pd .X/ in K < X > such that
R D .p1.X/; : : : pd .X// and Ppi .X/ D qi .X/ for i D 1; : : : ; d , such that R (i.e.
A) reduces well with respect to Ov.

Proof. Choose p0
i .X/ 2 R such that qi .X/ is the homogeneous part of highest

degree in the decomposition of p0
i .X/, for i D 1; : : : ; d . Pick � 2 f��1K for

� 2 �C large enough (how large will be clear in the sequel) and replace Xi by
�Xi; i D 1; : : : ; d . Put degqi .X/ D m. Then �mp0

i .X/ D qi .�X/ C �‰.�X/

where ‰ has degree lower than m; put this equal to pi .�X/ for i D 1; : : : ; d . In
the new variables �Xi ; i D 1; : : : ; d , the homogeneous part of highest degree of
pi .�X/ is exactly qi .�X/ and pi .�X/ is in R because �mp0

i .X/ is a relation for
A. By choosing � large enough we may assume that the coefficients appearing in
�‰.�X/ are contained in Ov so that pi .�X/ 2 Ov < �X >. Obviously qi.�X/

viewed in K < �X >D K < X > still generates the ideal of relations of G.A/.
Now consider the two-sided ideal I in K < X > generated by pi .X/, then I � R.
By construction we have PI D PR so I � R then yields I D R (for example see
[51, 52]). Indeed if r 2 R � I then Pr D i for some � 2 I hence r � � 2 R
and in FmR with m < n where r 2 FnR � Fn�1R, thus .r � �/ P D i1 with
�1 2 Fm1I then r � � � �1 2 R and in FmiR with m1 < m, and so on, leads to
r � � � �1 � : : : � �t D 0 since FR is a positive filtration, i.e. r 2 I as claimed.
The good reduction assumption for G.A/ means that PR \ Ov.X/ is generated as a
two-sided ideal by q1.X/; : : : ; qd .X/. Taking .R \ Ov < X >/: in Ov < X > we
obtain:

.R \ Ov < X >/: � PR \ Ov < X >

Since qi.X/ is the highest homogeneous part of pi .X/ 2 R \ Ov < X > it is clear
that .R \ Ov.X//: contains qi .X/ and is an ideal of Ov.X/ (because if h.X/ is a
homogeneous element of .R\Ov < X >/: then it is the leading term of some h.X/

in R \ Ov.X/ and a nonzero h.X/:x for some x 2 Ov < X >D G.Ov.X// is the
leading term of h.X/x for some x with �.x/ D x and h.x/x 2 R \ Ov < X >).
Hence we obtain: .R \ Ov < X >/: D PR \ Ov < X >.
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The Ov < X >-ideal J generated by the pi .X/ is in R \ Ov < X > and
qi .X/ 2 PJ � .R\Ov < X >/: D PR\Ov < X > yielding: PJ D .R\Ov < X >/:.
As before: J D R \ Ov < X > follows and this states exactly that R (hence A)
reduces well at Ov.

The filtration fA defined by f�A D .F�K/ƒ will be used for extending the
valuation v of K to some quotient ring of ƒ.

3.1.6 Lemma

1. Let A be graded and � D Z and assume A is gr-simple, then the filtration fA

is separated and Gf .A/ is strongly graded. If ƒ is a domain then Gf .A/ is a
domain and ƒ is a domain.

2. If A is not graded but simple then the statement of 1 holds too.
3. For a non-discrete � assume that A has a PBW-basis fa1; : : : ; ad g i.e. the

fa1; : : : ; ad g can be ordered such that elements of A have a unique expression
as ordered polynomials in the generators a1; : : : ; ad . Then the statements of 1
are still true.

Proof. 1. Consider I D \f.f��1K/ƒ; � 2 �Cg. Clearly KI � I; IK � I hence
AI � I and IA � I since Kƒ D A. Thus I is a graded ideal of A hence I D 0.
That Gf .A/ is strongly graded follows from fA being a strong filtration. If ƒ is
a domain, then from Lemma 1.8.9 it follows that Gf .A/ is a domain and then A

is domain too.
2. In the ungraded situation but with A simple the statements of 1 follow in an

almost identical way.
3. If we can establish that fA is �-separated then it is again a strong filtration and

the statements in (1) follow in the same way. Suppose fA is not separated, that is
there in an x 2 A such that for every � 2 � such that x 2 F�A there is a ı < � in
� such that x 2 fıA too! So for x 2 .f�K/ƒ this means x 2 .fıK/ƒ for some
ı < � . Assume that fa1; : : : ; ad g is a PBW -basis for A in the ordering given
by the indices . Then x D P

	i a
i D P


i a
i with 	i 2 f�K; 
i 2 fıK . Pick

c 2 f��1K such that c	i 2 Ov but not all in mv and c
i 2 mv (because ı < � ).
Adapting a common multi-index notation (i.e. inserting some zero-coefficients 	i

or 
i when necessary) we obtain
P

.c	i �c
i /a
i D 0. This relation is non-trivial

since not all coefficients are in mv, but that contradicts the P WB-basis property
of fa1; : : : ; ad g. Hence such x does not exist so for every z 2 A there exists a
� 2 � such that z 2 f�A and z 62 f�A with � < � , or fA is separated. ut

Since we consider �-valuations on K the �-filtration defined on a K-algebra A is
not Zariskian i.e. eA need not be Noetherian, so we cannot use results or Zariskian
filtration here. We consider a separated �-filtration fA on a ring A and S an Ore
set of A such that �.S/ consists of regular elements of GF .A/ D G.A/. We define
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the localized filtration FS�1A by putting x 2 F�S�1A if there exists an s 2 S , s of
degs D � 2 � , such that sx 2 f�� A.

3.1.7 Proposition

With notation as before, FS�1A is a �-filtration of S�1A, �-separated, inducing
fA on A.

Proof. Since �.S/ consists of regular elements of G.A/ also S consists of regular
elements of A. If x 2 F�S�1A then sx 2 f��A for some s 2 S with deg�.s/ D � ;
there is a ı 2 � such that sx 2 fıA but sx 62 fı0A for ı0 < ı. Hence x 2 F��1ıA

and x 62 Fı0A with ı0 < ��1ı. This follows from the uniqueness of � , suppose sıx 2
fı�A and s� x 2 f�� A with � ¤ � , say � < � in � . By the Ore condition there is an
s˛ such that s˛sı D as� with a 2 A, where the index of the s0s refers to the degree
of the �.s/. Since �.s� / is regular in G.A/ we must have that deg�.a/ D ˛ı��1

in � . Then 0 ¤ s˛sıx D a˛ı��1 s� x 2 a˛ı��1 f��A � f˛ı� A; on the other hand we
also have that s˛sıx 2 s˛fı� A � f˛ı� A, so if we assume ı� to be the lowest in
� such that sıx 2 fı�A then from � < � we reach a contradiction because ˛ı� is
then the lowest containing s˛sıx (as �.s˛sıx/ D �.s˛/�.sıx/. If x; y 2 F�S�1A

then sıx 2 fı� A, s�y 2 f�� A for some sı; s� 2 S ; then sıy 2 Fı�S�1A for s� sı D
a�ı��1 s� for some s� 2 S; a�ı��1 2 A yields s� sıy D a�ı��1 s�y 2 f�ı��1 Af�� A

hence s� sıy 2 f�ı� A, consequently: s� sı.x C y/ D s� .sıx/ C s� sıy 2 f�ı� A,
or x C y 2 F�S�1A, proving that the F� S�1A are additive subgroups. Now for
x 2 F�S�1A; y 2 F�S�1A we have s˛x 2 f˛� A; sˇy 2 fˇA. Write a˛� for s˛x

and pick s� 2 S such that s�a˛� D a0sˇ where a0 2 f�˛�ˇ�1 A follows from
�.a0/�.sˇ/ D �.s�/�.a˛� / and dega˛� � ˛� , hence deg�.a0/ � �˛�ˇ�1. Now
s�s˛xy D s�a˛� y D a0sˇy with sˇy 2 fˇ�A yields s�s˛xy 2 f�˛�ˇ�1 Afˇ�A �
f�˛�� A. Putting s�s˛ D s�˛ yields xy 2 F�� S�1A, so FS�1A is a filtration. The
filtration is separated because for x 2 S�1A there is an sı 2 S such that sıx 2 fı� A

and if ı� is such that sıx 62 f� 0A for � 0 < ı� then x 62 F�S�1A for � < � (observe
that F�S�1A \ A D f�A because for a 2 A \ F�S�1A some sıa 2 fı� A so
deg�.a/ � � , hence FS�1A induces fA on A). ut

Next we look at the Weyl skewfield D1.K/ and a �-valuation Ov in K .

3.1.8 Theorem

Every �-valuation Ov of K extends to a noncommutative valuation ring ƒv of
D1.K/.

Proof. In view of Proposition 1.8.10.3 it suffices to construct a separated �-filtration
on D1.K/ extending the valuation filtration of K such that the associated graded
ring is a domain. In fact we only have to construct a �-separated filtration on
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A1.K/ extending v on K such that the associated graded ring is a domain because
by Proposition 3.1.7 we can extend this to the localized filtration at the Ore set
A1.K/� (the Weyl algebra is an Ore domain) provided �.A1.K/�/ consists or
regular elements. Now ƒ D A1.Ov/ defines a good reduction of A1.K/ at Ov and
ƒ D A1.kv/ is a Weyl algebra over the residue field kv, hence a domain. Thus
the filtration f v

A; .K/ defined by f v
� A1.K/ D .f� K/A1.Ov/ has the properties

mentioned in (3) of Lemma 3.1.6 and the elements of �.A1.K/�/ form exactly the
set of homogeneous elements of Gf .A1.K// D A1.kv/� where Gf .K/ D kv� and
these form even an Ore set because A1.kv/ is an Ore domain (and kv� is central
in Gf A1 and they are certainly regular in Gf .A1.K//. For the localized filtration
FD1.K/ of f A1.K/ the associated graded GF D1.K/ is the graded quotient ring of
A1.kv/� which is D1.kv/� and a domain! ut

3.1.9 Observation

In the foregoing � is abelian because it comes from Ov on the commutative K . We
shall see later that any valuation on Dn.K/ is in fact abelian!

We can extend the foregoing theorem to K-algebras with a PBW -basis as
follows.

3.1.10 Proposition

Let A be a K-algebra with PBW -basis fa1; : : : ; ad g and ƒ D Ov < a1; : : : ; ad >.
Suppose that A is an Ore domain with skew field of fractions Q.A/ and that ƒ D
ƒ=mvƒ is a domain then v extends to a noncommutative valuation of Q.A/.

Proof. Define fA by f�A D .f� K/ƒ for every � 2 � . Statement (3) from
Lemma 3.1.6 yields that fA is a �-separated filtration and Gf .A/ is a domain.
We have that �.A�/ is a graded Ore set of Gf .A/ in fact �.A�/ is the set of
homogeneous elements (nonzero) of Gf .A/; indeed if a; b 2 h.Gf .A//� then there
are a0; b0 2 A� such that a0b D b0a by the Ore condition for A� and since Gf .A/

is a domain �.a0b/ D �.a0/�.b/ D �.b0/�.a/ D �.b0a/, or �.a0/b D �.b0/a. For
x 2 Gf .A/ say x D x�1 C: : :Cx�n with x�i 2 hGf .A/�. There is an s1 2 hGf .A/�,
s1x�1 D y1a, hence s1x D y1a C s1x�2 C : : : C s1x�n with a 2 hGf .A/� and
y1 2 hGf .A/�.

Then take s2 2 hGf .A/� such that s2s1x�2 D y2a with y2 2 hGf .A/�, then
s2s1x D s2y1a C y2a C s2s1x�3 C : : : C s2s1x�n . Repeating this n times we arrive
at s1; : : : ; sn 2 hGf .A/� such that sn : : : s1x D ya with y 2 Gf .A/�, so hGg.A/�
is an Ore set in Gf .A/. Thus fA defines FQ.A/ by localization and the associated
graded ring of Q.A/; GF .Q/ is the localization of Gf .A/ at hGf .A/� which is a
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domain (and in fact a gr-skewfield Qcl.ƒ/�). Therefore F0Q.A/ is a �-valuation
ring extending v on K to Q.A/. ut

We have a similar result for Dubrovin valuations using now Theorem 1.8.11.

3.1.11 Proposition

Let A be a K-algebra with PBW-basis fa1; : : : ; ad g and put ƒ D Ov<a1; : : : ; ad >.
If A is a prime Goldie ring such that ƒreg maps to regular elements of ƒ D ƒ=mv

and ƒ is a prime Goldie ring than v extends to a Dubrovin valuation on the simple
Artinian Qcl.A/.

Proof. The filtration fA defined by f�A D .f�K/ƒ is again separated and strong,
hence Gf .A/ is strongly graded by � over Gf .A/0 D ƒ. The homogeneous
elements of Gf .K/ are central units in Gf .A/ and Gf .A/ D Gf .A/0Gf .K/, hence
Gf .A/ is also a prime Goldie ring. A regular element of A, x say, may be multiplied
by a 
 2 K to a regular element 
x of ƒ, such that 
x 62 mvƒ. Hence �.
x/ is
regular in ƒ hence in Gf .A/, since �.
/ is regular in Gf .A/; �.
x/ D �.
/�.x/

hence �.x/ is regular in Gf .A/. Then fA extends to the localized filtration FS�1A,
where S D Areg and S�1A is a simple Artinian ring. The associated graded ring of
S�1A is G.S/�1Gf .A/ which is again a prime Goldie ring as it is an order in the
simple Artinian ring T �1Gf .A/ where T D Gf .A/reg (Gf .A/ is prime Goldie). In
fact �.S/�1Gf .A/ D Qcl.Gf .A/0/Gf .K/ where Qcl.Gf .A/0/ is simple Artinian.
In view of Theorem 1.8.11 we obtain that F0S�1A is a Dubrovin valuation ring. ut

The extension problem for valuations of K to K-algebra appearing as simple
Artinian or skewfield quotient rings of algebras given by generators and relations
has now been reduced to finding “good reductions” or more directly to the existence
of an Ov-order ƒ defining a suitable filtration on A that extends well to a localized
filtration of Qcl.A/. This comes down to the verification of domain or prime Goldie
properties of the associated graded ring. This method applied to the Weyl field, but
also to other interesting examples.

3.1.12 Observation

In all of the following situation the extension result for valuations Ov � K to the
quotient ring of the K-algebra is valid.

(a) The quantum plane A D K < X; Y > =.XY � qYX/ and Ov � K such that q

is a unit in Ov.
(b) The quantized Weyl algebra A1.K; q/ defined as K < X; Y > =.XY �qYX�1/

and Ov � K containing q as a unit.
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(c) The enveloping algebra U.g/ for a finite dimensional Lie algebra g over K .
(d) Quantum 2 � 2-matrices defined as K < a; b; c; d > with relations: ba D

q�2ab; ca D q�2ac; bc D cb; db D q�2bd; dc D q�2cd; ad � da D .q2 �
q�2/bcx.

(e) The conformal sl2-enveloping algebra in the sense of L. Le Bruyn given as
K < X; Y; Z > modulo the relations:

�

XY � aYX D Y; ZX � aXZ D Z

YZ � cZY D bX2 C Y

at Ov containing a; b; c as units.
(f) Let A be as in Proposition 3.1.10 but assuming now that ƒ is Auslander regular

(cf. [40]) and positively graded over a field of characteristic zero. Then it is
known that ƒ is a domain and the extension result follows.

The results in this section open the possibility for developing a valuation and divisor
theory on quantized algebras, these are deformations of classical algebras depending
on certain parameters (as in Observation 3.1.12 above).

3.2 Discrete Valuations on the Weyl Skewfield

In this section K is a field of characteristic zero and A1.K/ is the first Weyl algebra,
A1.K/ D K < x; y >D K < X; Y > =.YX � XY � 1/. We know that A1.K/

is a simple Noetherian non-Artinian, Ore domain and it has a skewfield of fractions
D1.K/ called the first Weyl field. For An.K/ D A1.K/ ˝ : : : ˝ A1.K/ we have a
skewfield of functions Dn.K/.

The Bernstein filtration of A1.K/ is defined by putting degx D degy D 1,
i.e. F0A1.K/; FnA1.K/ D K ˚ Kx ˚ Ky; : : : ; FnAn.K/ D .F1A1.K//n; : : :. It
is a separated Z-filtration with GFA1.K/ Š KŒX; Y �, we let � be the principal
symbol map of F . On D1.K/ we consider the quotient filtration FD1.K/, then
GFD1.K/ D Qg.KŒX; Y �/, the graded quotient field of KŒX; Y �. Since the latter
is a domain we know that F0D1.K/ is a valuation ring of D1.K/ and the valuation
filtration of it coincides with FD1.K/; the corresponding valuation vB is called
the Bernstein valuation ring of D1.K/. To a discrete valuation v of D1.K/ there
corresponds a noncommutative valuation ring ƒv and a valuation filtration fvD1.K/

with .fvD1.K//0 D ƒv.

3.2.1 Observation

If ƒv is a valuation ring of a skewfield � then the following statements are
equivalent for a; b 2 ��.
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1. ƒva � ƒvb.
2. v.a/ � v.b/.
3. aƒv � bƒv.

Proof. (an expansion of Lemma 1.3.2.8).

1. ) 2 If ƒva � ƒvb than a D 
b for some 
 2 ƒv then v.a/ D v.
/ C v.b/

yields v.a/ � v.b/.
2. ) 3: From v.a/ � v.b/ it follows that v.b�1a/ � 0 or b�1a 2 ƒv and aƒv �

bƒv follows.
3. ) 2: and 3: ) 1: follow by symmetry from the foregoing. ut
Recall that two discrete valuations v1 and v2 are said to be equivalent if there exist
n and m in Z such that nv1.x/ D mv2.x/ for every x 2 �.

Let us recall how the valuation function v W �� ! � is constructed from a
valuation ring ƒ of �. Put P � ƒ equal to the ideal P D fx 2 ƒ; x�1 62 ƒg.
For 
 2 ƒ define .P W 
/ D f.a; b/ 2 � � �; a
b 2 P g and call 
1 ' 
2 if
.P W 
1/ D .P W 
2/. Let ŒP W 
� denote the class of .P W 
/ with respect to
the foregoing equivalence relation. On the set of equivalence classes � introduce
the total order induced by the inclusion ordering on the set of .P W 
/; 
 2 �.
The function v W �� ! �; x 7! ŒP W 
� is well-defined. Multiplication of � induces
a multiplication in � making � into a totally ordered group. The valuation ring ƒv

coincides with ƒ and P D wv.

3.2.2 Proposition

A valuation v on a skewfield � has rank one exactly when ƒv is maximal as a proper
subring of � (this extends Proposition 1.2.12 to the noncommutative case).

Proof. If v has rank (1) then � is Archimedean (cf. Proposition 1.3.1.4). If ƒv is not
maximal let ƒ0 ¥ ƒv be a proper subring of �, suppose a 2 ƒ0 � ƒv and consider
b 2 �� �ƒ0. Since v.a/; v.b/ < 0, the Archimedean property yields that there is an
n 2 N such that v.a�n/ � v.b�1/, or ba�n 2 ƒv with an 2 ƒ0 and b 2 ƒva

n � ƒ0,
contradiction. Conversely, if ƒv is maximal then htwv D 1. Indeed, any nontrivial
prime P ¤ wv is a completely prime ideal (since left ideals of ƒv are idreals!).
Moreover S D ƒv � P is an Ore set of ƒv since for given s 2 D; ƒ 2 
v we have
s
 2 sƒv D ƒv2 or s
 D 
0s for some 
0 2 ƒv. Now ƒv ¤ S�1ƒv. It is clear
that S�1ƒv ¤ � since .S�1ƒv/P is a proper ideal of S�1ƒv. Maximality of ƒv

thus entails ht.wv/ D 1. If rk� > 1 then � contains a convex subgroup C . Put
P D fx 2 ƒ; v.a/ 2 C g. It is easily verified that P is a prime ideal of ƒv and also
P ¤ wv because C ¤ �C, this would contradict ht.wv/ D 1. ut

A slight extension of the final part of the foregoing proof yields also a proof of
the following.
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3.2.3 Observation

Nonzero prime ideals P of ƒv correspond bijectively to nontrivial convex subgroups
of � . Normal convex subgroups of � correspond to prime ideals of ƒv which are
invariant under inner automorphisms of �.

When studying valuations on Dn.K/ one may restrict to abelian � . It is known
that every valuation on a finite dimensional skewfield is abelian but for Dn.K/ this
result is somewhat surprising. They are in some sense very noncommutative rings,
in fact they even contain free subalgebras of any countable rank! The result is due
to J. Shtipel’man but we follow L. Makar-Limanov’s proof.

3.2.4 Theorem

Let v be a �-valuation on D1.K/ then � is abelian.

Proof. Write A1.K/ D K < x; y >� D1.K/ D K.< x; y >/. Take r ¤ 0 in
A1.K/ and suppose that v.xr/ ¤ v.rx/, say v.rx/ > v.xr/ (in the other case the
proof is formally similar). Then for Œx; r� D xr � rx we have v.Œx; r�/ D v.xr/.
By an easy induction argument we then obtain: v.Œx; ��n.r// D v.xnr/. For every
r 2 A1.K/ there is an e D e.r/ such that Œx; ��e.r/ D 0 (because every
r 2 An.K/ has a unique finite polynomial expression in x and y with powers in
x before powers in y and Œx�� lowers the y-degree because xy � yx D �1).
Thus we obtain v.0/ D v.Œx; ��er/ D v.xer/ but that is a contradiction since
xer ¤ 0. Since � is generated as a group by the semigroup v.A1.K// it follows
from v.x/ C v.r/ D v.r/ C v.x/ that v.x/ 2 Z.�/. In fact the foregoing establishes
that v.f / 2 Z.�/ for every f such that every r 2 A1.K/ is annihilated by some
power of Œf; ��, in particular this holds for all f 2 KŒx�. Since � is totally ordered
�m� D ��m for some m entails �� D �� hence Z.�/ is root-closed in � . Now
assume r 2 A1.K/ is such that v.r/ 62 Z.�/. Since GKdim.A1.K// D 2 it follows
that for any s 2 A1.K/ we have a relation: †xij ri sj D 0 with xij 2 KŒx� (the
GK dimension bounds the transcendence of the ring, so the r and s cannot be
algebraically independent over KŒx�). At least two monomials in this relation have
the same valuation, otherwise v.†xij ri sj / would necessarily be the valuation of
the unique monomial in it having minimal valuation but that could not be equal to
�1. Say v.xi0j0r

i0 sj0/ D v.xi1j1r
is sj1/, then either some v.sk/ 2 Z.�/ < v.r/ >

or v.rl / 2 Z.�/ < v.s/ > with k; l larger than zero, because v.xij / 2 Z.�/ by
foregoing remarks. In either case we obtain that some power of v.r/ commutes with
some power of v.s/. Since � is totally ordered .�n� D ��n entails �� D �� ) it
then follows that v.r/ and v.s/ commute. This holds for arbitrary s 2 A1.K/, hence
it contradicts v.r/ 62 Z.�/. Consequently Z.�/ D � or � is abelian. ut
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3.2.5 Corollary

Every valuation of Dn.K/ is abelian.

Proof. Dn.K/ is the n-fold tensor product of copies of D1.K/, its value group is a
subgroup of a product of the value groups v.D1.K// which is an abelian group. ut

3.2.6 Remark and Project

The above proof is elementary except for the key result about the GK-dimension.
For the general theory about GKdim we may refer to G. Krause and T. Lenagan, [34]
or C. Nǎstǎsescu and F. Van Oystaeyen [53]. It would be an interesting project to
relate GKdim and valuation theory further, or perhaps the GKtd (Gelfand–Kirrilov
transcendence degree) could be used instead of GKdim. The driving conjecture
could be that for a skewfield of GK-dim� D n and a valuation v of � of rank m we
would have GKdim� D n�m, �, the residue skewfield of v. Also it seems possible
to extend the foregoing theorem to skewfields obtained as skewfields of fractions of
enveloping algebras of nilpotent Lie algebras.

3.2.7 Lemma

There are no discrete K-valuations of D1.K/ with residue field K .

Proof. Suppose v is a discrete valuation of D1.K/ with valuation ring ƒv and
ƒv=wv D K . Write wv D .�/. If a; b 2 ƒv then for each n 2 N there are
polynomials f .�/ and g.�/ with coefficients in K such that:

v.a � f .�// � n and v.b � g.�// � n

Since f .�/ and g.�/ commute we obtain that ab � ba is in f v�nD1.K/ and this
holds for all n 2 N. Since ƒv cannot be commutative as it has D1.K/ for its quotient
skewfield ab ¤ ba for some a; b 2 ƒv and then ab � ba is not in f v�ND1.K/ for
some N 2 N. ut

3.2.8 Lemma

For any �-valuation v on D1.K/ we have that v.Œx; y�/ > v.xy/ D v.x/ C v.y/.

Proof. Since � is abelian v.xy/ D v.yx/. Hence for the valuation filtration degree:
deg�v.xy � yx/ < deg�v.xy/. Therefore v.xy � yx/ > v.xy/ D v.x/ C v.y/. ut
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3.2.9 Corollary

From xy � yx D �1 we obtain that v.x/ C v.y/ < 0 (see the foregoing lemma). If
v.x/ > v.y/, then v.xCy/ D v.y/ and we may generate A1.K/ as K < xCy; y >.
In other words we may assume that A1.K/ is generated by x and y with Œy; x� D 1

and v.x/ D v.y/ < 0.
The valuation vB corresponding to the Bernstein filtration factors over the

principal symbol map �B W D1.K/ ! Qg.KŒX; Y �/. In fact there is only one such
discrete valuation up to equivalence.

3.2.10 Proposition

If v is a discrete K-valuation of K.X; Y / such that v�B is a nontrivial discrete
K-valuation of D1.K/ then v�B is equivalent to the valuation vB induced by the
Bernstein filtration.

Proof. Suppose a; b 2 D1.K/ are such that deg�B.b/ < deg�B.a/. Then
v.�B.a// D v.�B.a C b// D v�B.a C b/ � minfv�B.a/; v�B.b/g. If v�B.a/ ¤
v�B.b/, then equality holds, thus v�B.a/ < v�B.b/. In particular when �B.b/ is
homogeneous in K.X; Y / of strictly negative degree, then v�B.b/ � 0. For every
homogeneous element x of K.X; Y / of degree zero (this is always �B of some
element of D1.K/) in Qg.KŒX; Y �/ we thus have v.x/ D 0. For a 2 D1.K/ we
have deg�B.a/ D n, then v�B.a/ D v.�B.ay�n/�B.yn// D 0 C nv�B.y/ as �B

is multiplicative. Consequently v�B D .v�B.y//:deg�B hence v�B is equivalent to
the Bernstein valuation defined by deg�B . ut

We write K. X
Y

/ for GB.D1.K//0 and let v be a discrete K-valuation on D1.K/

with v.x/ D v.y/ < 0. Let ƒv be the valuation ring of v with maximal ideal wv and
residue skewfield �v. From Lemma 3.2.8 we may derive that �v is commutative;
indeed if a; b 2 ƒv � wv then v.Œa; b�/ > v.a/ C v.b/ D 0 or ab � ba 2 wv and thus
�v D ƒv=wv is commutative. Consequently Gv.D1.K// is commutative and of the
form �vŒT; T �1� Š �vZ.

The valuation filtration f v
D1.K/ induces a filtration on GB.D1.K//0 D K. X

Y
/,

f v
i .K. X

Y
// D f v

i D1.K/\ƒB=.f v
i D1.K/\wB/. This is an exhaustive filtration but

it need not be separated.

3.2.11 Lemma

With notation as above, f vK. X
Y

/ is separated if and only if �B.z/ D 1 entails
v.z/ � 0. In case f vK. X

Y
/ is not separated then \i f

v
i K. X

Y
/ D K. X

Y
/.
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Proof. Put I D \i f
v

i K. X
Y

/. If �B.x/ ¤ 0 is in I then there exists a y 2 D1.K/

such that: �B.z/ D �B.y/ and v.y/ > v.z/ (choose y in f v
i D1.K/ for appropriate i .)

Then �B.yx�1/ D 1 but v.yz�1/ > 0. Conversely if z 2 D1.K/ is such that �B.z/ D
1 and v.z/ > 0 then for all n 2 N we have: 1 D .1 � zn/ C zn. Thus 1 2 f v�nK. X

Y
/,

then for all n � 0 we obtain that f v�nK. X
Y

/ D K. X
Y

// as desired. ut
From here on we assume that K is algebraically closed. We say that v is F B -

compatible if f vK. X
Y

/ is a separated filtration, i.e. �B.z/ D 1 yields v.z/ � 0.

3.2.12 Proposition

A discrete K-valuation on D1.K/ that is F B -compatible is determined by its
restriction to the subfield K. X

Y
/ in D1.K/.

Proof. A pseudo-homogeneous element of A1.K/ is one having a homogeneous
expressions in x and y (this is not unique since yx D xy C 1 but that is
harmless here). Consider f 2 A.K/ and write f D f1 C f2 where f1 is
pseudo-homogeneous of degree deg�B.f / and deg�B.f2/ < dega�B .f /. From
�B.f =f1/ D 1 it follows that v.f / � v.f1/ since v is assumed to be F B -compatible.
Thus, v.f / � minfv.f1/; v.f2/ with equality whenever v.f1/ ¤ v.f2/, yields
v.f / D minfv.f1/; v.f2/g.

In case f is pseudo-homogeneous of degree n, say f D Pn
iD0 ai x

i yn�i , then
v.fy�n/ D v.g/ where we put g D Pn

iD0 ai .xy�1/i . If for example v.fy�n/ >

v.g/ then �B.fy�n=g/ D 1 and v.fy�n=g/ > 0 leads to a contradiction. Otherwise
look at �B.g=fy�n/ D 1. Then v.f / D v.g/ C nv.y/ and the proof is finished. ut

The discrete K-valuations of K.T /; T D X
Y

are well-known i.e. v is either trivial
or v corresponds to an ˛ 2 K . In the first case v is equivalent to the valuation of
the Bernstein filtration, meaning that for all z 2 A1.K/, v.z/ D �deg�B.z/v.y/.
By the foregoing proposition the F B -compatible valuations are determined by three
parameters p D v.x/ D v.y/ 2 Z � N, q D v. x

y
� a/ 2 N � f0g; a 2 K�.

Given p; q; a then there is at most one discrete K-valuation of D1.K/ compatible
with the Bernstein filtration such that v.x/ D v.y/ D p and v. x

y
� a/ D q. From

foregoing remarks it follows that v, if it exists, may be calculated in the following
way. To calculate v of f 2 A1.K/ at first decompose f into pseudo-homogeneous
elements, say f D Pn

iD0 fi and put v.f / D minfv.fi /; i D 0; : : : ; ng. To calculate
v on a pseudo-homogeneous fn, of degree n, put v.fn/ D np C va.�B.fn//q where
va is the graded K=valuation on K. X

Y
/ŒY; Y �1� such that va.Y / D 0; va. X

Y
�a/ D 1.

It is also possible to define v.fn/ D v0
a.�B.fn// where v0

a is he graded valuation of
K. X

Y
/ŒY; Y �1� such that v0

a. X
Y

�a/ D q; v0
a.Y / D p. We observe that K. X

Y
/ŒY; Y �1�

is a graded field (gr-field) in the sense that every homogeneous element different
from 0 is invertible; a gr-valuation is associated to a gr-valuation ring, being a graded
subring such that for every homogeneous element of the gr-field, say z, either z
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or z�1 is in the subring. A gr-valuation of K. X
Y

/ŒY; Y �1� is always induced by a
valuation of K.X; Y / which is a graded valuation in the sense that v.z/ � 0 if and
only if v.zn/ � 0 for every homogeneous component n. Graded valuations are not
studied in detail in this work, we refer to [38, 66].
We are now ready to prove the existence theorem.

3.2.13 Theorem

Let v be defined by p; q; a as above and assume that q � �p then v is a discrete
K-valuation of the Weyl field D1; .K/.

Proof. It suffices to verify the valuation properties on elements of A1.K/. If f; g

are pseudo homogeneous of different degree then: v.f C g/ D minfv.f /; v.g/g
holds by definition; if f; g have the same degree but f C g ¤ 0, then v.f C g/ D
np C va.�B.f C g//q � np C minfva.�B.f //; va.�B.g//gq D min.v.f /; v.g/g.
In the situation that f; g are not pseudo-homogeneous the relation follows by
decomposition into pseudo-homogeneous elements and the definition of v.
For pseudo-homogeneous f and g we write:

f D
n
X

iD0

ai x
i yn�i and �B.f / D f

g D
m
X

iD0

bj xj ym�j and �B.g/ D g

fg D
mCn
X

iD0

i
X

j D0

cj ix
j yi�j ; h D

mCn
X

iD0

i
X

j D0

cj i X
j Y i�j

For the Weyl algebras it is a well-known fact that:

h D
r
X

kD0

.�1/k 1

kŠ

@kf @kg

@Xk@Y k

where r is the integral part of nCm
2

. It is now straightforward to calculate

v.fg/ D minfv
i
X

j D0

cj ix
j yi�j ; i D 0; : : : ; m C ng

D minfip C va.�B.

i
X

j D0

cj ix
j yi�j //q; i D 0; : : : ; m C ng
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D minf.n C m � 2k/p C va

 

@kf @kg

@Y k@Xk

!

q; k D 0; : : : ; rg

D minf.n C m C 2k/p C .va.f / � k C va.g/ � k/q; k D 0; : : : ; rg
D .n C m/p C va.f g/q C minfk.�2p � 2q/; k D 0; : : : ; rg
D v.f / C v.g/

The last equality follows from va

�

@kf @kg

@yk @xk

�

� va.f / � k C va.g/ � k. Now more

generally, if f D Pn
iD0 fi ; g D Pm

iD0 gi , then let k and l be maximal such that
we have v.f / D v.fk/; v.fk/; v.g/ D r.gl /. Then v.fg/ � v.

PkCl
j D0 fj gkCl�j / D

v.fkgl / D v.fk/ C v.gl / D v.f / C v.g/.
The other inequality follows from: v.

Pi
j D0 fj gi�j / � v.f / C v.g/ for all i D

0; : : : ; k C l . ut
It is clear from foregoing proof that v will not be a valuation if q > �p, so we

suppose hereafter that q � �p. The valuation filtration f v defines a commutative
associated graded ring and we can calculate this explicitly. For f and g as in the
proof we have:

fg � gf D
X

i;j

dij xi yj

Again it follows that:

h D
r
X

kD1

.�1/kC1 1

kŠ

 

@kf @kg

@Xk@Y k
� @kf @kg

@Y k@Xk

!

r being the integral part of nCm
2

. Hence we obtain: v.fg � gf / D minf.n C m �
2k/p C va.

@kf

@Xk

@g

@Y k � @kf

@Y k

@kg

@Xk /q; k D 1; : : : ; rg.

Now: va

�

@kf

@Xk

@g

@Y k � @kg

@Y k

@kg

@Xk

�

> va.f /Cva.g/�2k, thus v.fg�gf / > v.f /C
v.g/!

The residual field of an F B -compatible K-valuation does not only turn out to be
commutative, it is actually a purely transcendent extension of degree one of K . From
a transcendence (Gelfand–Kirillov) argument it would follow that the transcendent
degree is one but for pure transcendence some arithmetical information is needed in
the proof.

3.2.14 Theorem

Let q � �p and v given by p; q; a. The residue field �v Š K.t/ with t D . x
y

�
a/lyk , where �kp D lq is the least common multiple of �p and q.



3.2 Discrete Valuations on the Weyl Skewfield 191

Proof. First we observe that v is a K.t/ valuation because v.t � ˇ/ D 0 for all
ˇ 2 K and K is algebraically closed. Indeed, it is clear that v.t � ˇ/ � 0,
the leading pseudo homogeneous term of t � ˇ is equal to the one of t which
is equal to:

Pl
iD0.

l
i
/.�a/l�i xi yk�i . It follows that at least one of the pseudo-

homogeneous terms in the decomposition of t � ˇ must have v-value equal to zero,
hence v.t � ˇ/ D 0. Next we show for f; g 2 A1.K/ such that v.f / D v.g/

there is an h 2 K.t/ such that v.g�1f � h/ > 0. Since v.f / is obtained as
v.fi / for some pseudo homogeneous part fi of f we may assume that f is
pseudo-homogenous. Take F; G in A1.K/ such that f G D gF ; there is a pseudo-
homogenous A 2 A1.K/ such that v.A/ D v.G/ D v.F /. If there are F1; G1 in
K.t/ such that v.FA�1 � F1/ > 0 and v.GA�1 � G1/ > 0 then g�1f � F1G

�1
1 D

g�1.f G1 � gF1/G�1
1 D g�1.g.FA�1 � F1/ � f .GA�1 � G1//G�1

1 . Consequently:
v.g�1f � F1G

�1
1 / > �v.g/ C v.g/ � v.G1/ D 0. From the foregoing it follows that

we may select h such that v.g�1f � h/ > 0 with v.f / D v.g/ and both f; g are
assumed to be pseudo-homogenous. We arrive at:

v.f / D pdeg�B.f / C qva.�B.f //

v.g/ D pdeg�B.g/ C qva.�B.g//

The integer .deg�B.f /�deg�B.g//.�p/ D va.�B.f .g//q is a common multiple of
�p and q. Thus we obtained an n 2 Z such that: nk D deg�B.f /�deg�B.g/; nl D
va.�B.f =g//.

We now calculate �B.
f

g
y�nk/ D .T � a/nl h.T / with h.T / 2 K.T /; T D X

Y
,

and � D h.a/ ¤ 0.
If �B.f =g/ ¤ �B.� tn/, then v.

f

g
� � tn/ D nkp C va..h.T / � �/.T � a/nl /q,

and the latter is strictly bigger than nkpCnlq D 0. In case �B.f =g/ D �B.� tn/ we

may assume that � D 1 and n 2 N. Clearly, then tn D Pln
iD0

�

ln
i

�

.�a/ln�i xi ykn�i

C terms having a strictly positive value.

Since both f and the term
Pln

iD0

�

ln

i

�

.�a/ln�i xi gykn�i are pseudo homo-

geneous and have the same image under the principal symbol map they must
be equal! (in the Weyl algebra every element has a unique pseudo-homogeneous
decomposition with powers of x preceding powers of y). Hence, modulo terms with
value strictly larger than v.f / D v.g/ we obtain:

f � gtn D
ln
X

iD0

�

ln

i

�

.�a/ln�i Œxi ; g�ykn�i

If g D Pm
j D0 aj xm�j yj then Œxi ; g� is equal to

m
X

j D0

aj

0

@

min.i;j /
X

kD0

.�1/k i Š

.i � k/Š
.
j

k
/xm�j Ci�kyj �k

1

A



192 3 Extensions of Valuations to Quantized Algebras

Therefore: v.f � gtn �Pmin.lnm/

kD1 Rk > v.f / D v.g/, where

Rk D .�1/k

ln
X

iDk

�

ln

i

�

.a/ln�i i Š

.i � k/Š

0

@

m
X

j Dk

aj

�

j

k

�

xm�j Ci�kykn�iCj �k

1

A

Calculate:

v.Rk/ D .kn C m � 2k/p C va

 

ln
X

iDk

�

ln

i

�

.�a/ln�i i Š

.i � k/Š
T i�k

!

q

C va

0

@.�1/k

m
X

j Dk

aj

�

j

k

�

T m�j

1

A q

The first value we need to know is ln � k since we recognize the kth-derivative of
.T � a/ln. The second value equals:

va

0

@

1

kŠ
.�1/k

m
X

j Dk

aj

j Š

.j � k/Š
T �j �1

1

A

D va

0

@

m
X

j Dk

aj .k � j � 1/ : : : .�j C 1/.�j /T �j �1

1

A

D va

 

ak

dT k

 

m
X

iD0

aj T k�j �1

!!

� va

0

@

m
X

j D0

aj T �j

1

A � k D va.�B.g// � k

So we obtain for all k that: v.Rk/ D v.g/ � 2k.p C q/ which is strictly larger than
v.g/ if p C q < 0. Thus if p C q < 0 then v.

f

g
� Gn/ > 0.

For the case where p C q D 0 and �B.f =g/ D �B.tn/ we finish the proof
by induction on n. Observe that t D x � ay and k D l � 1. If n D 0 then
�B.f / D �B.g/ and thus f D g since both f and g are pseudo homogeneous.
Then suppose �B.f =g/ D �B.tn/. Previous calculation establishes that: f

g
� tn D

g�1
�

Pmin.n;m/

kD1 Rk

�

plus terms of strictly positive value.

For each k there is a �k 2 K.t/ such that: v.g�1Rk ��k/ > 0 either by induction
in case �B.g�1Rk/ D �B.ˇtn�2k/ for some ˇ 2 K� or by the first part of the proof
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in case �B.g�1Rk/ ¤ �B.ˇtn�2k/ for any ˇ 2 K�. Finally we arrive at:

0

@tn C
min.n;m/
X

kD1

�k

1

A 2 K.t/ and v.
f

g
� .tn C

min.n;m/
X

k>1

�k// > 0

ut

3.3 Some Divisor Theory for Weyl Fields Over
Function Fields

In this section we let K be an algebraic function field of degree one over an
algebraically closed k � K of characteristic zero, i.e. K is the function field of
a nonsingular projective curve C over k.

Points on the curve C correspond bijectively to the discrete k-valuations of K

and each such valuation induces a valuation filtration f vK on K . This filtration
extends to A1.K/ and to f v

D1.K/ as observed earlier. The associated graded
ring of f v

D1.K/ is exactly D.k/ŒT; T �1�; T a central variable. Hence f v
D1.K/

is a valuation filtration corresponding to a discrete noncommutative valuation ring
f v

0 D1.K/. In a sense the constant field k is now replaced by D1.k/ but we will point
out some essential new features related to this “skewfield of constants”.

3.3.1 Proposition

If v is a D1.k/-valuation of D1.K/, then:

for aij 2 K; i D 0 : : : ; n; j D 0; : : : ; m W

v

0

@

n;m
X

i;j D0

aij xi yj

1

A D minfv.aij /I i D 0; : : : ; n; j D 0; : : : ; mg

Proof. Write a D Pn
iD0

Pm
j D0 aij xi yj ; p D minfv.aij /; i D 0; : : : ; n; j D

0; : : : ; mg.
Since x; y 2 D1.k/ the equality v.a/ � p is obvious. Let ı.a/ 2 N be the

filtration degree of a in the Bernstein filtration of A1.K/. If ı.a/ D 0 then the
claim holds. So we assume that the claim holds for b 2 A1.K/ with ı.b/ < d . We
calculate:

v.xa � ax/ D v

0

@

n
X

iD0

m
X

j D0

jaij xyj �1

1

A

D minfv.aij /; j ¤ 0g
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v.ya � ay/ D v

0

@�
n
X

iD0

m
X

j D0

iaij xi�1yj

1

A

D minfv.aij ; i ¤ 0g

Now v.xa � ax/ � v.a/ � p and similarly v.va � ay/ � p. The foregoing implies
that v.a/ is smaller than minfv.ya �ay/; v=.a �ay/g, hence v.a/ � p or v.a/ D p

follows. ut
Since we assume that k is algebraically closed in K we have that k D \vfOv; Ov

a discrete valuation ring of Kg. We may look at the ring R obtained as the
intersection \vƒv for all discrete D1.k/-valuation rings of D1.K/. For a k-valuation
Ov of K we have a nontrivial D1.k/-valuation ƒv extending v to D1.K/ it is given
by v on A1.K/ as in the foregoing proposition.

We have that D1.k/ � R but R is not equal to D1.k/. Look at .X C a/�1 since
v.X Ca/ is at most zero we have that v.X Ca/�1 is at least zero, hence .X Ca/�1 2
R for every a 2 K � k. Clearly .X C a/�1 2 R is not invertible in R so R is not
a skewfield, yet it has many invertible elements e.g. .ax C y/.x C ay/�1. As an
intersection of valuation rings R has the property that every one-sided ideal of R

is an ideal of R, moreover R is invariant under inner automorphism of D1.K/. A
formal sum D D P0

v2C nvv with nv 2 Z almost all being zero, is called a divisor
of C . When we chose ƒv to represent v of C (C the curve of K.k/) we define a
divisor for D1.K/ as

P0
v nvv. To an element q 2 D1.K/ we associate a principal

divisor: div.q/ D P

v v.q/v. Divisors for D1.K/ are partially ordered by:
P0

v nvv >
P0

v mvr if and only if nv � mv for all v. So the ring R may be obtained by putting
R D fq 2 D1.K/; div.q/ � 0g. A divisor for D1.K/; D is said to be positive if
D > 0.

3.3.2 Lemma

A positive divisor is principal, i.e. if D > 0 then D D div.r/ for some r 2 R.

Proof. It will be sufficient to establish that for each v 2 C there is an r 2 R such
that div.r/ D v, that is v.r/ D 1 and w.r/ D 0 for every w ¤ v in C . Take
a 2 K such that v.a/ D �1 and write div.a/ D D1 � D2 with D1 and D2 being
both positive divisors. The Riemann–Roch theorem on C yields the existence of
an integer N such that for any divisor D on C of degree (being the sum of the
nv appearing in the divisor) larger than N we have: dimkL.D/ D degD C 1 � g,
where L.D/ D ff 2 K; div.f / C D > 0g and g is the genus of the curve C . Fix a
positive divisor D3 of degree larger than N such that every valuation with nonzero
coefficient in D2 appears with zero coefficient in D3 (note: v appears in D2). Then
it is easily checked that:

dimkL.D3 C v/ D 1 C dimkL.D3/
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So there must be a nonzero b in L.D3 C v/ � L.D3/. Consequently v.b/ D �1 D
v.a/; moreover for all w 2 C �fvg we have that maxfw.a/; w.b/g � 0. Now define:
r D .a�1x C b�1/.a�1x C b�1 C y/ in D1.K/. If w is a k-valuation of K different
from v, then:

w.a�1x C b�1/ D minfw.a�1/; w.b�1/g
D �maxfw.a/; w.b/g

w.a�1X C b�1 C y/ D minfw.a�1/; w.b�1/; 0g
D �maxfw.a/; w.b/g

Thus from w ¤ v we obtain w.r/ D 0. On the other hand

v.a�1x C b�1/ D minf1; 1g D 1

v.a�1x C b�1 C y/ D minf1; 1; 0g D 0

Hence v.r/ D 1 and div.r/ D v as desired. ut
This leads to a rather beautiful structure result on R.

3.3.3 Theorem

The ring R is a principal ideal domain.

Proof. As a first step we establish that the sum of two cyclic ideals is again cyclic.
Hence consider Ra and Rb. For all v 2 C and r; r 0 2 R we have: v.ra C r 0b/ �
minfv.ra/; v.r 0b/g � minfv.a/; v.b/g D v.c/ for some c 2 R. Thus ra C r 0b 2 Rc

or Ra C Rb � Rc. Write a D fg�1; b D f 0g�1 with f; f 0; g in A1.K/.

Let us fix an integer n larger than the Bernstein filtration degree of f and put:
b0 D xnf 0g�1. Then Rb D Rb0 and

v.a C b0/ D v.f C xnf 0/ � v.g/

D minfv.f /; v.f 0/g � v.g/

D minfv.a/; v.b/g D v.c/

Consequently: Rc � R.a C b0/ � Ra C Rb0 � Ra C Rb, hence Ra C Rb D Rc.
From the first step it follows that every finitely generated ideal is cyclic and for
every b 62 Ra we have Ra C Rb D Rc with 0 < div.c/ < div.a/. Consequently
any ascending chain of (left, right) ideals must terminate thus R is Noetherian and
then every ideal is finitely generated (on the left) hence principal.
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3.3.4 Corollary

The ring R is a Noetherian domain with quotient division ring D1.K/.

Proof. As observed in the theorem R is a Noetherian domain hence it has a classical
ring of fractions which is a skewfield. If q 2 D1.K/, then div.q/ D D1 � D2 for
positive divisors D1; D2. From the lemma it follows that there are r1 and r2 in R

such that div.r1/ D D1; div.r2/ D D2. It follows that qr2r
�1
1 2 R is invertible in R

as it has the zero divisor for its divisor. Therefore q 2 Qcl.R/ and D1.K/ D Qcl.R/

follows. ut
To a divisor D on D1.K/ we associate a space L.D/ D fq 2 D1.K/; div.q/ C

D > 0g. In particular L.0/ D R and each L.D/ is an R-bimodule. The ideals of
R are exactly the L.D/ with D < 0. The theorem states that any L.D/ Š R as
an R-bimodule. For D1 < D2 we have L.D1/ � L.D2/. We let ƒv D F v

0 D1.K/

be the discrete valuation ring of D1.K/ corresponding to F v
D1.K/ and we write

�v � ƒv for its unique maximal ideal, mv D R \ �v.
Observe that mv D L.�v/ is a maximal ideal of R and the correspondence v 2

C ! mv � R defines a bijective correspondence between points of C and the set
of maximal ideals �.R/ of R. The following expands on this relation.

3.3.5 Proposition

With notation as above: ƒv D Rmv , the localization of R at the maximal ideal mv.

Proof. For q 2 ƒv write div.q/ D D1 � D2 where D1 and D2 are positive divisors
having disjoint supports (no valuation appears with a nonzero coefficient in both D1

and D2, this is of course always possible). Again we find r1 and r2 in R such that
div.r1/ D D1; div.r2/ D D2. Consequently q D ur1r

�1
2 for some unit u of R. Since

v.q/ � 0 we cannot have r2 2 mv, hence q 2 Rmv . On the other hand the Rmv � ƒv

is obvious so equality follows: ut

3.3.6 Theorem

If D1 < D2 then dimD;.k/.L.D2/=L.D1// equals the degree of the divisor D2 �D1.

Proof. Form the foregoing proposition it follows that �v is the extension of mv � R

to ƒv and R=mv ! ƒv=�v is an isomorphism. In particular R=mv Š D1.k/ and
R D D1.k/ C mv. Let us write F vR for the filtration induced on R by F v

D1.K/.
For the associated graded rings we have: Gv.D1.K// Š D1.k/ŒT; T �1� and we may
restrict this isomorphism to the associated graded ring of F vR and obtain Gv.R/ Š
D1.k/ŒT �1�. It is straightforward to verify for every v 2 C and every divisor D



3.4 Hopf Valuation Filtration 197

on D1.K/ we have: L.D/ D mvL.D C v/. Then it follows from this that L.D C
v/=L.D/ Š R=mv ˝R L.D C v/ Š R=mv Š D1.k/. For D1 < D2 the left
dimension overD1.k/ of the space L.D2/=L.D1/ may thus be counted as the degree
of the divisor D2 � D1 (note that in a similar way this degree also equals the right
D1.k/-dimension, so that left and right dimension of the bimodule L.D2/=L.D1/

are actually equal in this situation). ut
The foregoing Riemann–Roch type theorem is independent of the genus of C , the

formula proved actually corresponds to stating that this is a “genus-less” situation,
a remark that may be related to the noncommutative geometry of A1.K/.

If we consider the Bernstein filtration then D1.k/ is not in F B
0 R D F B

0

D1.K/ \ R. We may compare the Bernstein filtrations on D1.K/ and R; in some
sense R is a rather big subring of D1.K/, perhaps unexpected for the intersection of
all D1.k/-valuation (discrete) rings of D1.K/.

3.3.7 Proposition

With respect to the Bernstein filtrations: GB.R/ D GB.D1.K//.

Proof. It is known that GB.D1.K// is just the graded quotient field of
GB.A1.K// D KŒX; Y �. Consider p in KŒX; Y �m, p D Pm

iD0 ai XY m�i and
look at p�1 2 GB.D1.K//. Consider q D Pm

iD0 ai xym�i 2 A1.K/ and write
div.q/ D D1 � D with D1 and Dz positive. Pick r 2 R such that div.r/ D D2,
say r D fg�1 with f; g 2 A1.K/ and let n 2 N be larger than the degree
of g in the Bernstein filtration. Now put a D .rxnq//.rxn C 1/�1. Obviously
�.a/ D p. For all v 2 C we obtain: v.rxn C 1/ D minfv.r/; 0g because of the
choice of n. Then we obtain div.a/ D D1 and thus a 2 R. Finally, if m > 0 then
r 0 D .q C 1/�1 is in R and we have �.r 0/ D p�1. Thus Q

g

Cl.KŒX; Y �/ � G.R/ and
also G.D1.K// D Q

g

Cl.KŒX; Y �/ entail G.R/ D G.D1.K//. ut
The results may be generalized to Dn.k/-valuations of Dn.K/ but we do not go into
this here leaving it as an exercise for the zealous reader.

3.4 Hopf Valuation Filtration

The guiding principle in foregoing sections is that an extension of valuation theory
to K-algebras can be obtained from a value function on A extending a valuation v
of K with corresponding filtrations FA, resp. fK . The ring FoA, where 0 is the
neutral element of the value group � , is an order in A over Ov, and it enjoys certain
properties like being a separated prime, a Dubrovin valuation, a noncommutative
valuation ring, depending on properties of the value function. However we may
look at a strong filtration FA and ask other structural properties of A possibly in
combination with some properties of the value function, e.g. we may look at Hopf
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algebras or quantum groups A and ask F0A to be also a Hopf algebra over Ov. In
this way we shall define Hopf valuations and their filtrations.

3.4.1 Definition. Good � -Filtrations on K -Vector Spaces

Consider a field K with a separated �-filtration fK for some totally ordered
group � . The category of �-filtered vector spaces over K is denoted by K-filt. A �-
filtration on a K-vector space V; F V is a good filtration if there exist sets fv˛; ˛ 2
Ag; f�˛ 2 �; ˛ 2 Ag such that for � 2 � we have: F� V D P

˛2A f���˛ Kv˛.
It is clear that fv˛; ˛ 2 Ag is a set of K-generators for V . In the sequel fK will
be a strong filtration, in fact a valuation filtration. Then from f���˛ Kv˛ 2 F� V

it follows that v˛ 2 F�˛ V for all ˛ 2 A; moreover, for every � 2 � we also
have that F�V D f� KF0V . Hence, if F V is a good filtration then without loss
of generality we may assume that fv˛; ˛ 2 Ag is taken in F0V and for � 2 � ,
F�V D P

˛2A f�Kv˛. If F0V is free over F0K with basis fwi ; i 2 J g then F V

may be given by F�V D P

i2J f�Kwi . If fK is a valuation filtration then it is
strong and f0K D Ov is a valuation ring so torsion free finitely generated Ov-
modules will be free.

For detail on Hopf algebras we refer to [20, 31]. We let H be a K-Hopf
algebra with counit " W H ! K , comultiplication � W H ! H ˝ H and antipode
S W H ! H . A �-filtered Hopf algebra is a K-Hopf-algebra H with a filtration
FH such that "; �; S are filtered morphisms, e.g.

1. ".F�H/ � F� K D f� K , for all � 2 � .
2. S.F�H/ � F� H , for all � 2 � .
3. �.F� H/ � P

�C�D� F� H ˝ F�H , for all � 2 � .

The condition (3) just expresses that � is a filtered morphism if H ˝H is equipped
with the tensor filtration defined by putting

F� .H˝H/ D P

�C�D� F� H˝F�H; � 2 �:

We write F 0
0 H D P

�<0 F�H , F 0
� H D P

�<� F�H for � 2 � .

3.4.2 Proposition

Let H be a Hopf algebra over K with Hopf filtration FH , then G.H/ is a �-graded
Hopf algebra. If FH extends fK then G.H/ D k� ˝k F0H with Hopf structure
deriving from F0H (via F0H=F 0

0 H/ making it into a graded Hopf algebra over the
gr-field k� (where k is the residue field of K).
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Proof. Observe that F0H is a sub-Hopf algebra of H over f0K D Ov. Indeed,
�.F0H/ � P

�2� F� H ˝ F�� H but since F�H D f� K ˝ F0H for all � 2 � ,
it follows that �.F0H/ � F0H ˝ F0H ; the restriction of " to F0H defines the
Ov-linear "jF0H and the k�-linear " on G.H/ extending F0H=F 0

0 H ! K . Since
S jF0H defines the k�-linear S W G.H/ ! G.H/, all claims in the proposition
follows easily. ut

Note that for a Hopf filtration FH the inclusion K ,! H is a filtered morphism;
for a strong Hopf filtration FH the condition of extending fK is equivalent to
F0H \ K D f0K .

Now we consider a Hopf algebra H over K with a �-valuation ring Ov D D in
K; the valuation of Ov is v W K� ! � and we also write v W K ! � [ f1g by
putting v.0/ D 1. The residue field of v will be denoted by k.

A Hopf valuation function extending v is a function �	 W H �!�! � [ f1g,
usually viewed as a Hopf valuation filtration function 	 W H �!�! � [ f�1g,
satisfying:

HV.1 We have 	.h/ D �1 if and only if h D 0.
HV.2 We have 	.1/ D 0.
HV.3 For h 2 H; 
 2 K; 	.
h/ D 	.
h/ D 	.h/ � v.
/.
HV.4 For g; h 2 H , 	.gh/ � 	.g/ C 	.h/.
HV.5 For g; h 2 H; 	.g C h/ � maxf	.g/; 	.h/g.
HV.6 For h 2 H; 	.S.h// � 	.h/; 	.".h// � 	.h/.
HV.7 For h 2 H , �.h/ D †h1 ˝ h2 (Sweedler notation) 	.h/ �

inffmax†f	.h1/ C 	.h2/gg, where max† is taken over the terms in a fixed
expression of �.h/ while inf is over all possible decompositions of �.h/. By
	.h/ � inff�; � 2 A � �g we just mean that if � � � for � 2 A then 	.h/ � � .

3.4.3 Proposition

If 	 is a Hopf valuation function then we have equality in HV.7, in fact:

	.h/ D inffmax†f	.h1/ C 	.h2/gg D inffmax†f	.".h1// C 	.h2/gg
D inffmax†j	.h1/ C 	.".h2//g

Proof. Indeed, from �.h/ D †h1˝h2 we may derive: h D †".h1/h2 D †h1".h2/.
Applying HV.3 leads to:

	.h/ � max†f	.".h1/h2/g D max†f	.".h1// C 	.h2/g .�/

Since (*) holds for any decomposition of �.h/ we obtain:

	.h/ � inffmax†f	.".h1// C 	.h2/gg



200 3 Extensions of Valuations to Quantized Algebras

and by this we just mean that 	.h/ � max†.: : :/ for all possible decompositions
of �.h/. Now using HV.6 this leads to: 	.".h1// C 	.h2/ � 	.h1/ C 	.h2/, or
	.h/ � inffmax†.	.".h1// C 	.h2/g. This proves:

	.h/ D inffmax†f	.h1/ C 	.h2/gg
D inffmax†f	.".h1// C 	.h2/gg
D inffmax†f	.h1/ C 	.".h2//gg

where now we may interpret inf in the classical way, because 	.h/ is smaller than
all maxf: : :g and bigger than all � 2 � smaller than all max†f: : :g. Hence HV.7
entails the existence of the inf as defined. The last equality following by using h D
†h1".h2/. ut

3.4.4 Theorem

Hopf filtration functions 	 W H ! � [f�1g, satisfying HV.1,. . . ,HV.7, correspond
bijectively to the separated Hopf filtrations FH extending the valuation filtration
fK of the valuation v.

Proof. Start from a Hopf valuation filtration function 	 W H �!�! � [ f�1g
satisfying HV.1,. . . ,HV.7. For � 2 � put F� H D fh 2 H; 	.h/ � �g Properties
HV.5 and HV.3 entail that F� H is an additive subgroup of H , containing 0 because
of HV.1. From HV.2, HV.4 and HV.5 it follows that FH is a filtration of the ring
H . Putting h D 1 in HV.3 entails 	.
/ D �v.
/ for 
 2 K , hence FH extends
the valuation filtration fK corresponding to v. For h 2 H we have h 2 F	.h/H ,
hence FH defines an exhaustive filtration of H . From HV.6 we obtain that S and
" are filtered maps of degree zero with respect to FH . In case FH would not be
separated, then there is a nonzero z 2 H such that for every � 2 � such that
z 2 F� H we have z 2 F 0

� H . In any case z 2 F	.z/H but if z 2 F�H with
� < 	.z/, then by definition of F�H it means that 	.z/ � � , contradiction. Thus
FH is separated. Now consider h 2 H; �.h/ D †h1 ˝ h2, then Proposition 3.4.3
entails: 	.h/ D inffmax†f	.h1/ C 	.h2/gg. For �.F�H/ � P

�2� F� H ˝ F���H

it suffices to establish this for � D 	.h/, any h 2 H (indeed 	 like v is assumed to
be surjective). If ı > 	.h/ D � , then for some decomposition �.h/ D P

h1 ˝ h2

we have ı � max†f	.h1/ C 	.h2/g, and this comes down to:

�.h/ 2
X

�2�

F�H ˝ Fı�� H .�/

Recall that FH is a strong filtration hence for every � 2 �; F� H D F� KF0H D
f�KF0H . For the tensor filtration on H ˝ H defined by FH we have:

F�.H ˝H/ D
X

�2�

F��� H ˝F� H D
X

�2�

F��� KF� KF0H ˝F0H D F� H ˝F0H
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From (�) we obtain �.h/ 2 FıH ˝F0H for every ı > 	.h/. As a D-module F0H is
flat, indeed over a valuation domain every finitely generated torsion free modules is
projective and every projective is free. Thus F0H is the direct limit of free modules
of finite rank, thus flat. Consequently: \ı.FıH ˝DF0H/ D .\ıFı/˝DF0H . Either
	.h/ is equal to some max†f	.h1/ C 	.h2/g for a certain decomposition �.h/ D
†h1 ˝H2 in which case (�) applies with ı D 	.h/ and there is nothing left to prove,
or else 	.h/ appears as the inf of elements max†f	.h1/ C 	.h2/g 2 � (observe that
max† is over a finite set). In view of the remark after this proof, separatedness of
FH yields F	.h/ D \ı>	.h/FıH . Therefore we obtain �.h/ 2 F	.h/H ˝ F0H

and it follows that FH is a Hopf filtration. Conversely if FH is a separated Hopf
filtration extending fK0, then for x ¤ 0 in H there is a unique � 2 � such that
x 2 F� H � F 0

� H . The function 	 W H ! � [ f�1g defined by 	.0/ D �1
and for x ¤ 0, 	.x/ D inff� 2 �; inf�H g is well-defined and surjective since FH

extends fH and v is surjective. We may view 	.x/ as the “filtration degree” with
respect to FH . Verifying the properties HV.1,. . . ,HV.7 is easy enough. ut

3.4.5 Remark

If FR is a separated filtration on a ring R and A is a subset of � such that � D
inff˛; ˛ 2 Ag 2 � [ f�1g, then F�R D \˛2AF˛R. Indeed if x 62 F�R there is
a unique ı 2 � such that x 2 FıR but x 62 Fı0R for any ı0 < ı in view of the
separatedness. Then � < ı because ı � � and x 2 FıR leads to x 2 F�R which is
excluded. Hence ˛0 < ı for sone ˛0 2 A and thus x 62 F˛0 R yields x 62 \˛2AF˛R.

From now on we consider a separated Hopf filtration FH extending fK

associated to a valuation v of R with associated Hopf valuation function 	. We
have seen that F0H is a Hopf algebra over D D f0K and it is an order of H in
the sense that KF0H D K ˝D F0H D H . For h 2 H we define Ih � K by
putting Ih D f
 2 K; 
h 2 F0H g. The next proposition establishes that 	 may be
calculated from data in K .

3.4.6 Proposition

For h 2 H , 	.h/ D v.Ih/, in particular for h D 
 2 K; 	.
/ D �v.
/. If 	1; 	2

correspond to Hopf filtrations F 1H resp. F 2H , then F 1
0 H � F 2

0 H is equivalent to
	2 � 	1.

Proof. Let FH be the Hopf filtration corresponding to 	; note that surjectivity of
	 implies F�H ¤ F�H for � ¤ � in � . Indeed if � 2 � hen � D 	.z/ for some
z 2 H and z 2 F	.z/H but z 62 F	.h/H , i.e. F� H ¤ F�H for all � < � . Now take
h 2 H then h 2 F�H � F 0

� H for some � 2 � , in fact � D ı.h/. If 
 2 K is
such that 
h 2 F0H then 	.
h/ D 	.h/ � v.
/ � 0. From � D 	.h/ � v.
/ it
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follows that 	.
/ � �� or Ih � f�� K . Since f�� K is obviously in Ih D f��K , so
v.Ih/ D � D ı.h/ follows (in general we may define v.L/ for an Ov-submodule L

of K as �maxf�v.
/; 
 2 Lg if the maximum exists in � where �v is the principal
symbol map for fK). For the second statement observe that F 1H and F 2H are
strong filtrations hance F 1

0 H � F 2
0 H entails F 1

� H � F 2
� H for all � 2 � and

	2 � 	1 follows. Conversely from 	2 � 	1 it follows that F 1
0 H D fh 2 H; 	1.h/ �

0g � F 2
0 H D fh 2 H D fh 2 H; 	2.h/ � 0g. ut

For h 2 F0H we have ".h/ 2 D and if v.".h// D � then we may divide h by

 2 K with v.
/ D � and we still have that ".
�1/ 2 D but we do not know whether

�1h 2 F0H . If a suitable set of K-generators for H , B say, can be selected such
that the D-module generated by f
�1

i hi ; hi 2 Bg is a D-ring then we may obtain
a method to construct D-orders in H . Elements of H which are candidates for the
ones with best divisibility properties are those h 2 H such that ".h/ D 0, i.e. the
elements of the augmentation ideal. The advantage of Theorem 3.4.4 is that 	 is
known if we know the Hopf order F0H and conversely. In case H D KG for a
finite group G the knowledge of a Zassenhaus valuation on G does not determine
unambiguously a Hopf valuation on KG nor a Hopf order of KG. Indeed the
construction of Larson orders different from DG in KG, cf.[35], exactly shows
that different orders may be constructed from the same Zassenhaus valuation of G.
Theorem 3.4.4 applied to H D KG entails that DG and a nontrivial Larson orderL,
DG ¤ L ¤ KG, correspond to different Hopf valuation functions on KG but these
take the same values on some K-basis of the Hopf algebra, e.g. G in KG. It turns
out that some basis is better than another! In the sequel we obtain a construction
method for (maximal) orders of Larson-type in any finite dimensional (semisimple)
Hopf algebra, and a description in terms of some suitably selected basis; we include
some examples with number theoretical flavour.

Consider the K-space H=K and define d	 W H=K ! � [ f�1g by putting
d	.h/ D 	.h � ".h//, where h is the class of h in H=K . We may define d	 on H

by putting d	.h/ D 	.h � ".h//. Taking into account that d	.
/ D �1 for every

 2 K . We call d	 the derived valuation function of 	.

3.4.7 Lemma

With notation as above, either 	.h/ D 	.".h// or 	.h/ D d	.h/, in other words
d	.h/ < 	.h/ only if 	.h/ D 	.".h// and ".h/ ¤ 0.

Proof. From h D .h � ".h// C ".h/ if ".h/ ¤ 0, we obtain: 	.h/ �
maxfd	.h/; 	.".h//g. By definition of d	 we also have: d	.h/ � maxf	.h/; 	.".h//g.
Combination of these inequalities yields either 	.h/ D 	.".h// or else 	.h/ D
d	.h/. The second statement in the lemma is now clear. Recall that " is a filtered
morphism, hence 	.".h// � 	.h/. ut

The properties of d	 are modifications of those of 	.
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3.4.8 Proposition

With notation and conventions as before the function d	 satisfies the following
properties.

DV.1 For h 2 H , d	.h/ D �1 if and only if h 2 K .
DV.2 For 
 2 K; h 2 H , d	.
h/ D d	.h/ � v.
/.
DV.3 For g; h 2 H; d	.gh/ � maxfd	.g/ C 	.h/; 	.g/ C d	.h/g. In case ".g/ D

".h/ D 0, hen d	.gh/ � d	.g/ C d	.h/.
DV.4 For g; h 2 H , d	.g C h/ � maxfd	.g/; d	.h/g.
DV.5 For h 2 H , d	.Sh/ � d	.h/.
DV.6 For h 2 H � K with ".h/ D 0 and �.h/ D †h1 ˝ hh, d	.h/ �

inffmax†fd	.h1/ C d	.h2/g.

Proof. The proof of DV.1, DV.2, DV.4 is straightforward.

DV.3 The first statement follows from:

gh � ".gh/ D .g � ".g//h C ".g/.h � ".h//

Hence: 	.gh/ � maxf	.g�".g/h/; 	.".g//.h�".h//g. Now HV.4 and 	.".g// �
	.g/ yields the statement. In case ".g/ D ".h/ D 0 we may assume g 62 K and
we have d	.g/ D 	.g/, d	.h/ D 	.h/ and HV.4 applies.

DV.5 Follows from d	.Sh/ D 	.Sh � ".Sh// � 	.h � ".h// D d	.h/.
DV.6 Since ".h/ D 0, d	.h/ D 	.h/ and the claim follows from [HV.7]. ut
To a Hopf valuation filtration function ı there corresponds a Hopf order H.	/ D
fh 2 H; 	.h/ � 0g D F0H , to d	 we may associate H.d	/ D D ˚ fh 2 "�1.D/ W
�1 < d	.h/ � 0g [ f0g.

3.4.9 Observation

With notation as above: H.d	/ D H.	/. Indeed it is clear if h 2 H.d	/ with h 2
Ker" then 	.h/ � 0, hence h 2 H.	/; if h 62 ker" then 	.h/ D 	.".h// entails
	.h/ � 0 because ".h/ 2 D. hence H.d	/ � H.	/. Conversely if 	.h/ � 0 then
	.h � ".h// � maxf	.h/; 	.".h/g D 	.h/ � 0, thus H.	/ � H.d	/ follows, hence
H.	/ D H.d	/.

3.4.10 Definition

A D-order in a finite dimensional K-algebra A, ƒ say, is called a moderate order if
it is integral over D and the prime radical rad.ƒ/ is a finite D-module.
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Note

In the definition of moderate order given in [2] it is forgotten to remind that
orders are assumed to be integral! The term “Hopf order” used before only refers
to the property KH.	/ D H but from now on we shall restrict attention to 	

corresponding to orders H.	/ which are integral over D.
So we look at Hopf valuation functions 	 � 	0 with associated H.	0/ � H.	/

and assuming H.	/ is a moderated order. Let us write m D mv for the maximal
ideal of D D Ov. Pick a K-basis B D fb1 D 1; b2; : : : ; bng in H.	0/ and we may
assume without loss of generality that ".b2/ D : : : D ".bn/ D 0.

Define HB.	/ to be the D-algebra generated by 1, md	.bi /bi , i D 1; : : : ; n. Since
	.md	 .bi /bi / D 0, it follows that HB.	/ � H.	/ hence HB.	/ is integral over D.
Since 1 and the md	 .bi /bi for i D 2; : : : ; n are again a K-basis for H it follows that
KHB.	/ D H , hence HB.	/ is a D-order of H .

We are now interested in the discrete case, so we suppose D is a discrete
valuation ring of K from hereon, we may also assume ch.K/ D 0 but that is not
really necessary.

3.4.11 Proposition

With notation as before, if D is a discrete valuation ring of K then H.	0/, HB.	/,
H.	/ are finite D-modules.

Proof. Since KradH.	/ is a nil ideal of H it is in radH and therefore nilpotent
hence radH.	/ D H.	/ \ radH and similar for radH.	0/, radHB.	/. Thus
rad.	0/ D H.	0/ \ radH , radHB.	/ D HB.	/ \ radH.	/ and we obtain H.	0/ �
H.	/ and HB.	/ � H.	/ � H , where we denoted R for R=radR. Now H

is semisimple Artinian with center L1 ˚ : : : ˚ Ld say, each Li the center of a
simple component Si of H . The center of H.	/, also for H.	0/ and HB.	/ is
integral over D hence in the integral closure of D in L1 ˚ : : : Ld and therefore
it is a finitely generated D-module, thus also Noetherian. In any case for all three
D-orders it follows by a result of G. Cauchon that they are finitely generated
D-modules because they are finite over their center since it is Noetherian (P.I. rings
with Noetherian center) and the center is a finite D-module as observed above.
Since rad.	/ is a finite D-module, so are radH.	0/ and radHB.	/, consequently the
statement of the proposition follows. ut

3.4.12 Corollary

There is a K-basis B in H.	0/ such that HB.	/ D H.	/.
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Proof. Since H.	/ is finitely generated as a D-module it is free of finite rank over D

and it has a basis, B say. Without loss of generality we may assume B D fb0 D 1;

b2; : : : ; bng with ".b2/ D ".b3/ D : : : D ".bn/ D 0. Now (writing m D .�/ � D)
look at �ˇi bi where ˇi D 	0.bi /. This yields a K-basis in H.	0/, say B0, such that
HB0 .	/ contains B hence DŒB�, consequently HB0 .	/ D H.	/. ut

From the foregoing it follows that if there is a (finitely generated) Hopf order
over D, say H 0, containing H.	0/ then we may construct it from some K-basis
contained in H.	0/. Now let us forget H.	/, but start from a D-basis B of H.	0/,
this is also a K-basis for H , and make the D-order HB.	0/ and then try to check
we obtain a finitely generated D-module which is a Hopf-order. In case H.	0/ is
not a maximal Hopf order, the foregoing corollary suggested we can find a maximal
one by the HB -construction but for some K-basis B in H.	0/, not necessarily for
a D-basis of H.	0/! Nevertheless we shall show in a series of examples that this
method leads to new Hopf orders in many cases.

3.4.13 Example. The Sweedler Hopf Algebra

Consider the Sweedler Hopf algebra over the rational fields Q, say H D QŒx; y�

with relations x2 D 1; y2 D 0 and xy C yx D 0, and put:

".x/ D 1; S.x/ D x; �.x/ D x ˝ x;

".y/ D 0; S.y/ D xy; �.y/ D 1 ˝ y C y ˝ x

Let D D Zp the localization of Z at the prime ideal .p/ and m D .p/. Define
H.m/ D Zp C Zp.x � 1/ C n�ny C m�nxy, for every n � 0; H.0/ D HZp . It is
easily verified that H.n/ is a Hopf order in H . If HZp D ZpŒx; y� is in some Hopf
order H.	/ then 	.x�1/ � 0 and from 	.S.h// � 	.h/ it follows that 	.xy/ � 	.y/

and 	.y/ � 	.xy/ by taking h D y resp. h D xy. Thus 	.xy/ D 	.y/. So we put
	.y/ D 	.xy/ D �n with n � 0 and 	.x � 1/ D 0 is then the Zp-subalgebra
of H generated by b	.b/.b � ".b// for b in the chosen basis for HZp , has Zp-basis
a; x � 1; ��ny; ��nxy and it is exactly the H.n/ we defined.

3.4.14 Example. The Taft Algebras Over Q

Let HT .n/ be the Taft algebra over K D Q, i.e. HT .n/ D QŒx; y� with xn D 1;

yn D 0 and xy C yx D 0, where we put:

".x/ D 1; S.x/ D xn�1; �.x/ D x ˝ x;

".y/ D 0; S.y/ D �xn�1; �.y/ D 1 ˝ y C y ˝ x

Then HT .n/.�1/ D Zp C Pn�1
iD1 Zp.x � 1/ C Pn�1

iD0;j D1 Zp��j xyj is a Hopf
order on HT .n/ with Zp-basis fx.��1y/j , i; j D 0; : : : ; n � 1g. We can construct



206 3 Extensions of Valuations to Quantized Algebras

HT .n/.�1/ from HT .n/ by constructing 	 by putting 	.xn�1 � 1/ D 0, i D
1; : : : ; n � 1, 	.yj / D 1, j D 1; : : : ; n � 1. In checking that HT .n/.�1/ is an
Hopf order only �.��j xj yj / 2 HT .n/.�1/ ˝ HT .n/.�1/ needs some work; this
follows from the following lemma.

3.4.15 Lemma

In HT .n/, from all 0 � i; j < n we have: �.xi ; yi / D xi yi ˝ .xi � 1/ C xi yi ˝
1 CPj

�D1 ˛�

�

j
�

�

xiCrCj �v ˝xi yr C1 ˝xi yj C .xiCj � 1/ ˝xi yj , where: for j

even, ˛r D 0 when r is odd and ˛� D .r�1/.r�3/:::

.j �1/.j �3/.j �rC1/
when r is even, for j odd,

˛r D r.r�2/:::

j.j �2/:::.j �rC1/
if r is odd and ˛r D .r�1/.r�3/:::

j.j �2/:::.j �1C2/
if r is even.

Proof. Since � is an algebra morphism �.xi yj / D �.x/i �.y/j D .xi ˝ xi /.y ˝
1�x˝y/j . Applying the binomial formula and taking into account that yx D �xy,
yields the result in a straightforward way. ut

The group-like elements we have to consider are just the g � 1 .".g/ D 1/.
Therefore the following numerical lemma will be useful.

3.4.16 Lemma

Let g be any element in a Q-algebra A, then for any natural number n we have the
equality:

.g � 1/n D gn C ˛n�1.�1/.g � 1/n�1 C ˛n�2.�1/2.g � 1/n�2

C : : : C ˛n�i .�1/i .g � 1/n�i C : : :

C˛2.�1/n�2.g � 1/2 C ˛1.�1/n�1.g � 1/ C cn.�1/n

where

˛n�1 D �

n
1

�

; ˛n�2 D �

n
2

�� ˛n�1
�

n
1

�

; : : :

˛n�i D �

n
i

� � ˛n�1

�

n�1
i�1

�

� ˛n�2

�

n�2
i�2

�

� : : :

�˛n�.i�1/

�

n�.i�1/

1

�

and cn D 1 � ˛n�1 � ˛n�2 � ˛n�3 � : : : � ˛1

Proof. The proof is by induction on n. If n D 2, then

.g � 1/2 D g2 C ˛1.�1/.g � 1/ C c2.�1/2

˛1 D
�

2
1

�

and c2 D 1 � ˛1 D 1 � 2 D �1.
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Suppose now that it is true for all n � k, it is true for n D k C 1. Since it is true
for n D k, then we can write:

.g � 1/kC1 D gkC1 C .˛0
k�1 C 1/.�1/.g � 1/kC

.˛0
k�2 � ˛0

k�1/.�1/2.g � 1/k�1 C : : : C
.˛0

k�.iC1/ � ˛0
k�1/.�1iC1/.g � 1/k�i C : : : C

˛2.�1/n�2.g � 1/2 C .˛0
1 � ˛0

2/.�1/k�i .g � 1/2C
.ck � ˛0

1/.�1/k.g � 1/ � ck.�1/kC1

where

˛0
k�1 D

�

k

1

�

; ˛0
k�2 D

�

k

2

�

� ˛0
k�1

�

k

1

�

; : : : ;

˛0
k�i D

�

k

i

�

� ˛0
k�1

�

k � 1

i � 1

�

� ˛0
k�2

�

k � 2

i � 2

�

� : : : � ˛0
k�.i�1/

�

k � .i � 1/

1

�

and ck D 1 � ˛0
k�1 � ˛0

k�1 � ˛0
k�2 � ˛0

k�3 � : : : � ˛0
1. To complete the proof we

prove ˛k�i � ˛0
k�.iC1/ � ˛0

k�1; ˛k D ˛0
k�1 C 1 and ˛1 D ck � ˛0

1. First we prove

by induction that ˛k�i D ˛0
k�.iC1/ � ˛0

k�i . Since ˛k D
�

kC1
1

�

; ˛0
k�1 D

�

k
1

�

, then

˛k D ˛0
k�1 C 1. Since

˛k�1 D
�

k C 1

2

�

�˛k

�

k

1

�

D
�

k C 1

2

�

�˛0
k�1

�

k

1

�

�
�

k

1

�

D
�

k

2

�

�˛0
k�1

�

k

1

�

and

˛0
k�2 � ˛0

k�1 D
�

k

2

�

� ˛0
k�1

�

k

1

�

then ˛k�2 � ˛0
k�1. Suppose now this is true for all j < i , then

˛k�1 D
�

k C 1

i C 1

�

� ˛k

�

k

i

�

� ˛k�1

�

k � 1

i � 1

�

� : : : � ˛k�.i�1/

�

k � .i � 1/

1

�

D
�

k C 1

i C 1

�

�
�

k

i

�

� ˛0
k�1

	�

k

i

�

�
�

k � 1

i � 1

�


� ˛0
k�2

	�

k � 1

i � 1

�

�
�

k � 2

i � 2

�


� : : :

� ˛0
k�.i�1/

	�

k � i

2

�

�
�

k � .i � 1/

1

�


� ˛0
k�i

�

k � .i � 1/

1

�

˛k�i D
�

1

i C 1

�

� ˛0
k�1

�

k � 1

i

�

� ˛0
k�2

�

k � 2

i � 1

�

� : : :
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� ˛0
k�.i�1/

�

k � .i � 1/

2

�

� ˛0
k�i

�

k � .i � 1/

1

�

D ˛0
k�.i�1/ � ˛0

k�i

Using ˛k�i D ˛0
k�.iC1/ � ˛0

k�i we can prove that ˛1 D ck � ˛0, then

˛ D
�

k C 1

k

�

� ˛k

�

k

k � 1

�

� ˛k�1

�

k � 1

k � 2

�

� : : :

�˛k�1

�

k � i

k � .i � 1/

�

� : : : � ˛2

�

2

1

�

D 1 � ˛0
k�1 � ˛0

k�2 � ˛0
k�3 � : : : � ˛0

k�i � : : : � 2˛0
1

D ck � ˛0
1

Using ˛k�1 D ˛0
k�.iC1/ � ˛0

k�i we find that ˛1 D ck � ˛0
1, then ckC1 D 1 � ˛k �

˛k�1 � ˛k�2 � : : : � ˛1 D ck .

3.4.17 Remark

1. ˛n�i D .�1/iC1
�

n
i

�

.
2. ˛n�i D .�1/iC1˛i .
3. If n D p

i1
1 p

i2
2 : : : pis

s where p1; : : : ; ps are nonequal prime numbers, then

p
ij
j j˛

p
il
l

; 0 � j; l � s and j ¤ l and p
ij
j 6 j ˛

p
ij
j

.

4. If n D ps; s � 1 then ps�i j˛pi ; ˛pi .ps�i �1/ and ps�iC1 6 j ˛pi ; ˛pi .ps�i �1/.

Proof. 1. We prove it by induction.
If i D 1, then ˛n�1 D �

n
1

� D .�1/2
�

n
1

�

. Suppose it is true for all i � k � 1,
then

˛n�k D �

n
k

� � ˛n�1

�

n�1
k�1

�

� ˛n�2

�

n�2
k�2

�

� : : :

�˛n�.k�1/

�

n�.k�1/

1

�

˛n�k D �

n

k

� � k
�

n

k

�C k.k � 1/=2
�

n

k

� � : : :

: : : � .�1/kk
�

n
k

�

If k is odd, then: ˛n�k D .�1/kC1
�

n
k

�

. If k D 2s is even, then:

˛n�k D �

n

k

�� 2k
�

n

k

�C 2k.k � 1/=2
�

n

k

� � : : :

C2k.k � 1/.k � 2/ : : : .k=2/=..k=2/ � 1/Š
�

n
k

�

� 2k.k � 1/.k � 2/ : : : ..k=2/ C 1/=.k=2/Š
�

n
k

�

D �

n
k

�

�

1 � 2
�

k
1

�

C 2
�

k
2

�

� : : : C 2
�

k
s�1

�

�
�

k
s

��
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2. If n D pq then ˛p D .�1/n�pC1pq.pq � 1/ : : : .pq � p C 1/=pŠ D qz. In
fact, no factor pq � i; 1 � i � p � 1 can be divided by p, otherwise i D sp, a
contradiction.

3. If n D ps then ˛pi D .�1/n�pi C1ps.ps � 1/ : : : .ps � pi C 1/=pi Š D ps�i z. In
fact, no factor pi � t , 1 � t � pi � 1 can be divided by pl with l � i without
reducing pl by a factor of .pi � 1/Š, otherwise i D kpi , a contradiction.

4. Similar to (3). ut

3.4.18 Proposition

Consider a numberfield K=Q and let D be a discrete valuation ring of K extending
Zp � Q (here Zp is the location of Z with respect to the prime p). Let e D v.p/

be the absolute ramification index of K . Consider a finite dimensional Hopf algebra
H over K and let G D G.H/ be its finite group of group-like elements. If 	 is any
Hopf valuation filtration function on H extending v then we have:

1. 	.g/ D 0 for g 2 G such that the order 0.g/ of g in G is not a power of p.
2. 	.g/ � e.ps � ps�1/�1 if the order of g is ps .

Proof. This follows from (3) and (4) in Remark 3.4.17. Indeed if 0.g/ ¤ ps then
it is a multiple of at least two different primes and none of these can divide all ˛’s
in the formula given in Lemma 3.4.16, hence in that case 	.g/ D 0. On the other
hand if n D ps then p will be a divisor of all ˛’s in the formula in Lemma 3.4.16
but p2 will not divide ˛ps�1 . From Lemma 3.4.16 we may obtain an expression for
.�	.g/.g � 1//n, i.e.: with n D ps :

.�	.g//n D ˛n�1.�1/�	.g/.�	.g/.g � 1//n�1 C : : :

: : : C ˛P s�i �.n�ps�i /	.g/.�1/ps�i

.�	.g/.g � 1//ps�i C : : :

It follows from this that p D d�.n�ps�1/	.g/ for some d 2 D, therefore e � .ps �
ps�1/	.g/. ut

3.4.19 Remark

1. For H D KG, G a finite group, and 	 corresponding to a Larson order (i.e.
a Hopf order HB.	/ corresponding to the basis f1; 1 � g; g 2 Gg), then the
conditions in Proposition 3.4.17 do reduce to the conditions also found by Larson
in [35]. Note that in [35] the author proves that the constructed orders (of Larson-
type) in RG are in fact finitely generated D-modules without the assumption that



210 3 Extensions of Valuations to Quantized Algebras

they are constructed in an integral D-order. The proof is more combinatorial in
nature.

2. The conditions (2) in Proposition 3.4.18 make it clear that the realization of a
certain 	 forces rather demanding ramification properties of v, e.g. for 	.g/ D 1

one needs e � ps � ps�1; ps D 0.g/.
Recall the definition of the generalized Taft algebra with respect to a root of

unity �, say �n D 1. Put HT .n/ equal to the K-algebra generated by x and y

satisfying xn D 1, yn D 0 and xy D �yx, with Hopf algebra structure given by:

".x/ D 1; S.x/ D xn�1; �.x/ D x ˝ x

".y/ D 1; S.y/ D ���1xn�1y; �.y/ D 1 ˝ y ˝ y ˝ x

3.4.20 Example

Let D be a discrete valuation ring of K; � 2 D.
In case n ¤ ps for x � 1, then

HT .�n/ D D C
n�1
X

iD1

D.x � 1/i C
n�1
X

iD0;j D1

D��j n.x � 1/i yj

is a Hopf order.
In case n D ps , �m.ps�ps�1/jp and �mj.� � 1/ in D, then

HT .�ps/ D D C
n�1
X

iD1

D��im.x � 1/i C
n�1
X

iD0;j D1

D��im�j n.x � 1/i yj

is a Hopf order.
Observe that .� � 1/ps D p

Pps�1
iD1 .˛i =p/.� � 1/i (Lemma 3.4.16) and then

.� � 1/ps 2 .p/ � �.ps�ps�1/m, where psm < e C ps�1m; e D v.p/.
A full proof of the claims can be obtained via the quantum binomial formula

(see [31]) applied to f D ��m.g � 1/, and via a careful coefficient calculation in
an expression for Xt f s , t; s 2 N. We omit these technical details here. Let us just
provide a concrete case where all of the above phenomena are clear.

3.4.21 Example

Take p D 2 and look at the localization of Z2Œ�� at � � 1 where � D 4
p�1 D p

i .
For D we take ZŒ.� � 1/1=5�..��1/1=5/. In this case � D .� � 1/1=5, .2/ D .�5/,
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v.�/ D 1, e D v.2/ D 5, v.� � 1/ D 5, �8 D 1. So we have .� � 1/8 2 .2/ and
.2/ � .� � 1/ � .�/ � D. The constructions in Example 3.4.20 apply in this case.

Let us conclude with an example showing the effect of base change.

3.4.22 Example

We start with the situation of Example 3.4.13 but with K a number field such that
�mj2 in D. Put H.m; n/ D DŒf; ��, f D ��m.g � 1/; � D ��nh. Then H.m; n/

is a Hopf algebra of rank 4 over D with:

�.f / D f ˝ g C 1 ˝ f

f � C �f D ��; where 2 D ��m with � 2 D

�.f �/ D f � ˝ 1 C 1 ˝ f � C f ˝ g� C � ˝ fg

�.�/ D 1 ˝ � C � ˝ g

f � � � D �g�

We may also define H.n/ as in Example 3.4.13, it is of rank 4 over D with
basis f1; g�1; ��nh; ��nghg. Both H.m; n/; H.n/ contain the Hopf order DŒg; h�

(viewed as H.	0/ in Proof of 3.4.12).
Now H.n/ is of the form HB j	j with respect to B D f1; g � 1; h; ghg and

H.m; n/ with respect to B 0 D f1; g�1; h; .g�1/hg, and these orders are obviously
different.
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