
Chapter 1
Elliptic Three-Manifolds and the Smale
Conjecture

As noted in the Preface, the Smale Conjecture is the assertion that the inclusion
Isom.M / ! Diff.M / is a homotopy equivalence whenever M is an elliptic three-
manifold, that is, a three-manifold with a Riemannian metric of constant positive
curvature (which may be assumed to be 1). The Geometrization Conjecture, now
proven by Perelman, shows that all closed three-manifolds with finite fundamental
group are elliptic.

In this chapter, we will first review elliptic three-manifolds and their isometry
groups. In the second section, we will state our main results on the Smale
Conjecture, and provide some historical context. In the final two sections, we discuss
isometries of nonelliptic three-manifolds, and address the possibility of applying
Perelman’s methods to the Smale Conjecture.

1.1 Elliptic Three-Manifolds and Their Isometries

The elliptic three-manifolds were completely classified long ago. They are exactly
the three-manifolds whose universal cover can be uniformized as the unit sphere
S3 in R

4 so that �1.M / acts freely as a subgroup of IsomC.S3/ D SO.4/. The
subgroups of SO.4/ that act freely were first determined by Hopf and Seifert–
Threlfall, and reformulated using quaternions by Hattori. References include [74]
(pp. 226–227), [49] (pp. 103–113), [60] (pp. 449–457), [46, 59].

The isometry groups of elliptic three-manifolds have also been known for a long
time, and are topologically rather simple: they are compact Lie groups of dimension
at most 6. A detailed calculation of the isometry groups of elliptic three-manifolds
was given in [46], and in this section we will recall the resulting groups.

To set notation, recall that there is a well-known twofold covering S3 ! SO.3/,
which is a homomorphism when S3 is regarded as the group of unit quaternions
(see Sect. 4.3 for a fuller discussion). The elements of SO.3/ that preserve a
given axis, say the z-axis, form the orthogonal subgroup O.2/. We will denote
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Table 1.1 Isometry groups of M D S3=G (m > 2, n > 1)

G M Isom.M / I .M /

Q8 Quaternionic SO.3/ � S3 S3

Q8 � Cn Quaternionic O.2/ � S3 C2 � S3

D�

4m Prism SO.3/ � C2 C2

D�

4m � Cn Prism O.2/ � C2 C2 � C2

Index 2 diagonal Prism O.2/ � C2 C2 � C2

T �

24 Tetrahedral SO.3/ � C2 C2

T �

24 � Cn Tetrahedral O.2/ � C2 C2 � C2

Index 3 diagonal Tetrahedral O.2/ C2

O�

48 Octahedral SO.3/ f1g
O�

48 � Cn Octahedral O.2/ C2

I �

120 Icosahedral SO.3/ f1g
I �

120 � Cn Icosahedral O.2/ C2

by O.2/� the inverse image in S3 of O.2/. When H1 and H2 are groups, each
containing �1 as a central involution, the quotient .H1 �H2/=h.�1; �1/i is denoted
by H1 e� H2. In particular, SO.4/ itself is S3

e� S3, and contains the subgroups
S1

e� S3, O.2/�
e� O.2/�, and S1

e� S1. The latter is isomorphic to S1 � S1, but
it is sometimes useful to distinguish between them. Finally, Dih.S1 � S1/ is the
semidirect product .S1 � S1/ ı C2, where C2 acts by complex conjugation in both
factors.

There are twofold covering homomorphisms

O.2/� � O.2/� ! O.2/�
e� O.2/� ! O.2/ � O.2/ ! O.2/ e� O.2/ :

Each of these groups is diffeomorphic to four disjoint copies of the torus, but they
are pairwise nonisomorphic. Indeed, they are easily distinguished by examining
their subsets of order two elements. Similarly, S1 � S3 and S1

e� S3 are diffeo-
morphic, but nonisomorphic.

Table 1.1 gives the isometry groups of the elliptic three-manifolds with non-
cyclic fundamental group. The first column, G, indicates the fundamental group of
M , where Cm denotes a cyclic group of order m, and D�

4m, T �
24, O�

48, and I �
120 are

the binary dihedral, tetrahedral, octahedral, and icosahedral groups of the indicated
orders. The groups called index 2 and index 3 diagonal are certain subgroups of
D�

4m � C4m and T �
24 � C6n respectively. The last two columns give the full isometry

group Isom.M /, and the group I .M / of path components of Isom.M /.
Table 1.2 gives the isometry groups of the elliptic three-manifolds with cyclic

fundamental group. These are the 3-sphere L.1; 0/, real projective space L.2; 1/,
and the lens spaces L.m; q/ with m � 3.

Section 4.3 contains the detailed calculation of isom.M /, the connected com-
ponent of idM in Isom.M /, for the elliptic three-manifolds that contain one-sided
incompressible Klein bottles (the quaternionic and prism manifolds, and the lens
spaces of the form L.4n; 2n � 1/ ), since the notation and some of the mechanics of
this calculation are needed for the arguments in Chap. 4.
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Table 1.2 Isometry groups of L.m; q/

m, q Isom.L.m; q// I .L.m; q//

m D 1 (L.1; 0/ D S3) O.4/ C2

m D 2 (L.2; 1/ D RP
3) .SO.3/ � SO.3// ı C2 C2

m > 2, m odd, q D 1 O.2/�
e� S3 C2

m > 2, m even, q D 1 O.2/ � SO.3/ C2

m > 2, 1 < q < m=2, q2 6� ˙1 mod m Dih.S1 � S1/ C2

m > 2, 1 < q < m=2, q2 � �1 mod m .S1
e� S1/ ı C4 C4

m > 2, 1 < q < m=2, q2 � 1 mod m,
gcd.m; q C 1/ gcd.m; q � 1/ D m

O.2/ e� O.2/ C2 � C2

m > 2, 1 < q < m=2, q2 � 1 mod m,
gcd.m; q C 1/ gcd.m; q � 1/ D 2m

O.2/ � O.2/ C2 � C2

1.2 The Smale Conjecture

Smale [64] proved that for the standard round 2-sphere S2, the inclusion of
the isometry group O.3/ into the diffeomorphism group Diff.S2/ is a homotopy
equivalence. He conjectured that the analogous result holds true for the 3-sphere,
that is, that O.4/ ! Diff.S3/ is a homotopy equivalence. Cerf [11] proved that
the inclusion induces a bijection on path components, and the full conjecture was
proven by Hatcher [24].

A weak form of the (generalized) Smale Conjecture is known. In [46], the
calculations of Isom.M / for elliptic three-manifolds are combined with results on
mapping class groups of many authors, including [2, 5, 6, 56, 57], to obtain the
following statement:

Theorem 1.1. Let M be an elliptic three-manifold. Then the inclusion of Isom.M /

into Diff.M / is a bijection on path components.

This can be called the “�0-part” of the Smale Conjecture. By virtue of this result, to
prove the Smale Conjecture for any elliptic three-manifold, it is sufficient to prove
that the inclusion isom.M / ! diff.M / of the connected components of the identity
map in Isom.M / and Diff.M / is a homotopy equivalence.

The earliest work on the Smale Conjecture was by N. Ivanov. Certain elliptic
three-manifolds contain one-sided geometrically incompressible Klein bottles.
Fixing such a Klein bottle K0, called the base Klein bottle, the remainder of the
three-manifold is an open solid torus, and (up to isotopy) there are two Seifert
fiberings, one for which the Klein bottle is fibered by nonsingular fibers (the
“meridional” fibering), and one for which it contains two exceptional fibers of
type .2; 1/ (the “longitudinal” fibering). As will be detailed in Sect. 4.1 below, the
manifolds then fall into four types:

(I) Those for which neither the meridional nor the longitudinal fibering is
nonsingular on the complement of K0.

(II) Those for which only the longitudinal fibering is nonsingular on the comple-
ment of K0. These are the lens spaces L.4n; 2n � 1/; n � 2.
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(III) Those for which only the meridional fibering is nonsingular on the comple-
ment of K0.

(IV) The lens space L.4; 1/, for which both the meridional and longitudinal
fiberings are nonsingular on the complement of K0.

Cases I and III are the quaternionic and prism manifolds.
Ivanov announced the Smale Conjecture for Cases I and II in [33,34], and gave a

detailed proof for Case I in [35,36]. One of our main theorems extends those results
to all cases:

Theorem 1.2 (Smale Conjecture for elliptic three-manifolds containing
incompressible Klein bottles). Let M be an elliptic three-manifold containing
a geometrically incompressible Klein bottle. Then Isom.M / ! Diff.M / is a
homotopy equivalence.

Theorem 1.2 is proven in Chap. 4, except for the case of L.4; 1/, which is proven in
Chap. 5.

Our second main result concerns lens spaces, which for us refers only to the lens
spaces L.m; q/ with m � 3:

Theorem 1.3 (Smale Conjecture for lens spaces). For any lens space L, the
inclusion Isom.L/ ! Diff.L/ is a homotopy equivalence.

One consequence of the Smale Conjecture is the determination of the home-
omorphism type of Diff.M /. Recall that a Fréchet space is a locally convex
complete metrizable linear space. In Sect. 2.1, we will review the fact that if M

is a closed smooth manifold, then with the C1-topology, Diff.M / is a separable
infinite-dimensional manifold locally modeled on the Fréchet space of smooth
vector fields on M . By the Anderson–Kadec Theorem [4, Corollary VI.5.2], every
infinite-dimensional separable Fréchet space is homeomorphic to R

1, the countable
product of lines. A theorem of Henderson and Schori ([4, Theorem IX.7.3],
originally announced in [28]) shows that if Y is any locally convex space with Y

homeomorphic to Y 1, then manifolds locally modeled on Y are homeomorphic
whenever they have the same homotopy type. Applying this with Y D R

1, our
main theorems give immediately the homeomorphism type of Diff.M /:

Corollary 1.1. Let M be an elliptic three-manifold which either contains an
incompressible Klein bottle or is a lens space L.m; q/ with m � 3. Then Diff.M /

is homeomorphic to Isom.M / � R
1.

Combining this with the calculations of Isom.M / in Table 1.1 gives the following
homeomorphism classification of Diff.M /, in which Pn denotes the discrete space
with n points:

Corollary 1.2. Let M be an elliptic three-manifold, not a lens space, containing
an incompressible Klein bottle.

1: If M is the quaternionic manifold with fundamental group Q8 D D�
8 , then

Diff.M / � P6 � SO.3/ � R
1.
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2: If M is a quaternionic manifold with fundamental group Q8 � Cn, n > 2, then
Diff.M / � P12 � S1 � R

1.
3: If M is a prism manifold with fundamental group D�

4m, m � 3, then Diff.M / �
P2 � SO.3/ � R

1.
4: If M is any other prism manifold, then Diff.M / � P4 � S1 � R

1.

As above, using Table 1.2, we obtain a complete classification of Diff.L/ for lens
spaces into four homeomorphism types:

Corollary 1.3. For a lens space L.m; q/ with m � 3, the homeomorphism type of
Diff.L/ is as follows:

1: For m odd, Diff.L.m; 1// � P2 � S1 � S3 � R
1.

2: For m even, Diff.L.m; 1// � P2 � S1 � SO.3/ � R
1.

3: For q > 1 and q2 6� ˙1 .mod m/, Diff.L.m; q// � P2 � S1 � S1 � R
1.

4: For q > 1 and q2 � ˙1 .mod m/, Diff.L.m; q// � P4 � S1 � S1 � R
1.

We remark that the homeomorphism classification is quite different from the
isomorphism classification. In fact, for any smooth manifold, the isomorphism
type of Diff.M / determines M . That is, an abstract isomorphism between the
diffeomorphism groups of two differentiable manifolds must be induced by a
diffeomorphism between the manifolds [3, 13, 66].

The Smale Conjecture has some other applications, beyond the problem of
understanding Diff.M /. Ivanov’s results were used in [43] to construct examples of
homeomorphisms of reducible three-manifolds that are homotopic but not isotopic.
Our results show that the construction applies to a larger class of three-manifolds.
In [55], Theorem 1.2 was applied to the classification problem for three-manifolds
which have metrics of positive Ricci curvature and universal cover S3.

The Smale Conjecture has attracted the interest of physicists studying the
theory of quantum gravity. Certain physical configuration spaces can be realized
as the quotient space of a principal Diff1.M; x0/-bundle with contractible total
space, where Diff1.M; x0/ denotes the subgroup of Diff.M; x0/ that induce the
identity on the tangent space to M at x0. (This group is homotopy equivalent to
Diff.M #D3 rel @D3/.) Consequently the loop space of the configuration space is
weakly homotopy equivalent to Diff1.M; x0/. Physical significance of �0.Diff.M //

for quantum gravity was first pointed out in [14]. See also [1, 18, 30, 65, 73]. The
physical significance of some higher homotopy groups of Diff.M / was examined
by Giulini [17].

1.3 The Weak Smale Conjecture

For an arbitrary three-manifold M , we may say that M satisfies the Smale
Conjecture if Isom.M / ! Diff.M / is a homotopy equivalence for a Riemannian
metric on M of maximal symmetry (that is, one for which the Lie group Isom.M /

has maximal dimension and maximal number of components). In general, however,
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the SC does not extend beyond the elliptic case. The three-torus T 3 provides a
simple example: Diff.T 3/ has infinitely many components (since taking the induced
outer automorphism on �1.T

3/ defines a continuous surjection from Diff.T 3/

onto GL.3;Z/), but Isom.T 3/ is a compact Lie group so has only finitely many
components. In this example, however, the inclusion isom.M / ! diff.M / of the
connected components of the identity map in Isom.M / and Diff.M / is a homotopy
equivalence. This and other examples motivate us to define the Weak Smale
Conjecture (WSC) for M to be the assertion that the inclusion isom.M / ! diff.M /

is a homotopy equivalence. Note that the SC for M is equivalent to the assertion
that Isom.M / ! Diff.M / is a bijection on path components (the “�0-part” of the
conjecture) and the WSC, a fact used in the previous section to reduce the SC for
elliptic three-manifolds to the WSC.

The WSC holds in some important cases, such as T 3, and the SC even extends
for some classes of nonelliptic three-manifolds. In the remainder of this section, we
will survey what is currently known for the nonelliptic closed orientable cases.

For closed Haken three-manifolds, isom.M / is .S1/k , where k is the rank of the
center of �1.M /. Explicitly, k is 3 when M D T 3, 1 for Seifert-fibered Haken three-
manifolds with orientable quotient orbifold, and 0 otherwise. Work of Hatcher [22]
and Ivanov [31, 32] shows that isom.M / ! diff.M / is a homotopy equivalence,
that is, the WSC (in [22], the results are stated for PL homeomorphisms, but the
Smale Conjecture for S3 extends the results to the smooth category).

Using his “insulator” methodology, ’Gabai [15] proved that the components
of Diff.M / are contractible for all hyperbolic three-manifolds. He deduced the
SC for these manifolds, showing in fact that both Isom.M / ! Diff.M / and
Diff.M / ! Out.�1.M // are homotopy equivalences for finite-volume hyperbolic
three-manifolds (for hyperbolic three-manifolds that are also Haken, this was
already known by Mostow Rigidity, Waldhausen’s Theorem, and the work of
Hatcher and Ivanov already discussed). The same statements have now been proven
by Soma and the third author [47] when M has an H

2 �R or fSL2.R/ geometry and
its (unique, up to isotopy) Seifert-fibered structure has base orbifold the 2-sphere
with three cone points. This is expected to hold for the Nil geometry as well.

As for the non-irreducible case, Hatcher [23, 25] proved that Diff.S2 � S1/

is homotopy equivalent to O.2/ � O.3/ � ˝ O.3/, where ˝ O.3/ is the space
of loops in O.3/. In this case, the product metric is maximally symmetric and
Isom.S2 � S1/ is diffeomorphic to O.2/ � O.3/, but the “rotation” components
involving nontrivial elements of ˝ O.3/ are not isotopic to isometries. The latter is
geometrically obvious since no such element can preserve the geodesics of the form
fxg � S1.

For the remaining non-irreducible three-manifolds, the WSC is known to fail in
most cases. The second and third authors [39] proved that when M has at least
three nonsimply connected prime summands, or one S2 � S1-summand and one
other prime summand with infinite fundamental group, �1.diff.M // is not finitely
generated, so the WSC fails drastically. When M is a connected sum .S2 � S1/#P

with �1.P / finite, the WSC fails at least when �1.P / has order more than 2. For
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by [39], �1.diff.M // has a free abelian summand of rank n�1, where n is the order
of �1.P /. On the other hand, �1.Isom.M // has rank at most 1. This can be seen
using the fibration Isom.M / ! M with fiber Isom.M; x0/ the isometries preserving
a basepoint of M . In the associated exact sequence, �1.Isom.M // ! �1.M / is the
trivial homomorphism, since the trace of any isotopy from the identity to the identity
is a central element of the fundamental group, and �1.M / is a nontrivial free product
so is centerless. Therefore �1.Isom.M; x0// ! �1.Isom.M // is surjective. Now
Isom.M; x0/ is a Lie subgroup of the isometries of the unit tangent 2-sphere of M

at x0, and so the connected component of the identity is a connected subgroup of
SO.3/ and can only be either trivial, S1, or SO.3/ itself (actually, the latter case
cannot occur, since the action of Isom.M; x0/ on M lifts to an action with fixed
point on the Freudenthal endpoint compactification of the universal cover of M ,
which is S3. The fixed point set of this action contains the Cantor set of endpoints,
so has dimension at least 1).

1.4 Perelman’s Methods

It is natural to ask whether the Smale Conjecture can be proven using the
methodology that G. Perelman developed to prove the Geometrization Conjecture.
The Smale Conjecture would follow if there were a flow retracting the space R of all
Riemannian metrics on an elliptic three-manifold M to the subspace Rc of metrics
of constant positive curvature. Here is why this is so. First, note that by rescaling,
Rc deformation retracts to the subspace R1 of metrics of constant curvature 1.
Now, Diff.M / acts by pullback on R1; this action is transitive (given two constant
curvature metrics on M , the developing map gives a diffeomorphism which is an
isometry between the lifted metrics on the universal cover, and since the action of
�1.M / is known to be unique up to conjugation by an isometry, this diffeomorphism
can be composed with some isometry to make it equivariant) and the stabilizer
of each point is a subgroup conjugate to Isom.M /, so R1 may be identified with
the coset space Isom.M /n Diff.M /. On the other hand, R is contractible (M is
parallelizable and one can use a Gram–Schmidt orthonormalization process). So
the existence of a flow retracting R to Rc would imply that Isom.M /n Diff.M /

is contractible, which is equivalent to the Smale Conjecture. Finding a flow that
retracts R to Rc is, of course, the rough idea of the Hamilton–Perelman program.
At the present time, however, we do not see any way to carry this out, due to the
formation of singularities and the requisite surgery of necks, and we are unaware of
any progress in this direction.
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