
Chapter 2
Languages and Interpretations

Everybody is familiar with the notion of language – at least to the extent that they
can speak one. The scope of language, however, extends well beyond interhuman
verbal exchange, and comprises any form of communication that takes place
according to some rules. Natural languages originate in the natural world to support
communication among people; the spoken languages – such as English, Italian,
and Chinese – are obvious examples, but non-verbal natural idioms – such as
gestures, pictures, and music – are also common. This book is about a different
kind of language: artificial languages designed for the description and analysis of
phenomena – in particular, their temporal aspects. The choice of artificial languages
is also vast and varied, ranging from mathematical notation – algebra, graphs,
mathematical logic – to programming languages – such as Java and Haskell – and
communication protocols – such as Internet’s TCP and HTTP.

Whether natural or artificial, every language is structured as a collection of sen-
tences. Each sentence is an arrangement of elementary blocks from the language’s
alphabet. Often, the alphabet is finite and its elements are combined into linear
sentences, such as the English alphabet and sentences, but infinite alphabets or more
complex arrangements are also possible – for example, the alphabet of all sounds is
uncountably infinite, and sentences develop bidimensionally in most visual graphic
languages.

2.1 Syntax and Semantics

The definition of a language covers its syntax and its semantics. The rules of
syntax define how to build correct sentences from the alphabet; in other words,
syntax defines which sentences, from among all possible combinations of alphabet
elements, are well-formed (acceptable sentences of the language) and which are
not. Consider, for example, the English language. The English vocabulary defines
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10 2 Languages and Interpretations

all valid combinations of letters into words; the English grammar describes the rules
to build sentences out of words, as in

A sentence consists of a noun phrase followed by a verb phrase. The noun phrase is a noun
(possibly preceded by a determiner such as an article) or a pronoun. The verb phrase is a
verb (possibly followed by a noun phrase such as an object). The number of the noun in the
noun phrase and of the verb in the verb phrase must agree.

The English grammar and vocabulary collectively describe the syntax of the
language. Another example is the syntax of programming languages, such as Java:

A block is a sequence of elements within braces. Each element is a statement, a local class
declaration, or a local variable declaration.

Semantics associates a meaning to every syntactically well-formed sentence of
a language; in other words, semantics connects the sentences – which are symbols
– to an interpretation – which is the content they express, and which can belong to
any domain, such as those of measurements, decisions, references to facts, and so
on. For example, the natural language sentence

In case of fire, do not use the elevator.

expresses a suggestion (possibly, an order) about how to behave in the case of a
fire to minimize the risk of personal injury. The Java semantics associates with the
sentence

if (x > 3) f x = x + 1; g else f x = x � 1; g
a behavior that depends on the variable x: if it evaluates to a value greater than
3, increment it; otherwise decrement it.

The semantics of a sentence is ambiguous if the sentence may have multiple
different meanings. For example,

Eats shoots and leaves.

may refer to a panda (whose diet consists of bamboo shoots and leaves) or to
a gunman (who fires his weapon after eating, and then abandons the place),
according to whether we interpret “shoots and leaves” as nouns or verbs. Conversely,
syntactically different sentences may convey the same meaning according to the
semantics. For example, the three sentences

The gardener sprays water on the roses.
The gardener sprays the roses with water.
Water is sprayed on the roses by the gardener.

all essentially convey the same picture even if they combine words according to
different structures. In a formal setting, the two sets of linear equalities

(
x D 5 ;

y D 6 ;

(
x D 5 ;

y D x C 1 ;

indicate the same pair of values for x and y, but with different syntax.
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2.2 Language Features

Given that the notion of language is very broad, very different classification criteria
for languages are possible, according to the features of interest within a certain
scope. For instance, understandability is very relevant in a teaching context, whereas
conciseness is important when space is a concern.

Chapter 3 presents the dimensions that are specific to the central topic of the
book, namely time modeling. The current section illustrates more generic features,
applicable to languages independently of their application domains, which will also
recur in the book’s presentation of modeling languages.

2.2.1 Formality

The syntax and semantics of most natural languages are informal: even when there
are standardized vocabularies and grammars, they lack absolute precision, and
their interpretation may be ambiguous or subjective, so that the well-formedness
or the meaning of certain sentences depends on the context in which they are
used. Imprecision is the price to pay for naturalness: the attribution of meaning
to sentences and idioms evolve without regulation, according to social customs
and recurring practices; hence syntactic and semantic rules must accommodate
unpredictable changes and the specialization of a stable language into dialects,
jargons, and slangs.

In contrast, formal languages such as mathematics have been defined with an
unambiguous syntax and a very precise semantics, so that the fact that a sentence
such as Z �

0

cos.x/dx D 0

is well formed and true is not subject to dispute.
Between the two extremes of natural languages and mathematics, there are

several intermediate degrees of formality. Even if mathematics ultimately is fully
formal, the presentation of mathematical theories and results often embeds mathe-
matical notation in natural language text, such as in the book you are reading and in
every other scientific textbook. In other cases, a language may have a formal syntax
but a semantics that omits or overlooks some details. Such notations are often called
“semiformal” languages.

Example 2.1 (UML). The Unified Modeling Language (UML) graphical notation
is a diagrammatic notation widely used in software engineering. The UML standard
defines the syntax of diagrams quite precisely, but their semantics only in natural
language. This increases the flexibility of the notation, but it also implies that the
meaning of UML diagrams is not always unambiguous. Take, for example, the UML
sequence diagrams of Fig. 2.1.
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Fig. 2.1 UML sequence diagrams describing the “three-way handshake” of the TCP protocol

The UML diagrams are syntactically correct, and they arguably describe the
“three-way handshake” of the TCP communication protocol in the cases (a) in which
the communication is successfully established and (b) in which a time-out occurs
after the syn message. This meaning is, however, only conveyed informally, and
even within the level of abstraction provided by the diagrams several aspects have
multiple possible interpretations. For example, the UML standard does not provide
a precise meaning for the combination of the diagrams, so what happens if the
syn-ack message is received after the time-out is triggered (is the communication
successfully established or not?) is not well defined: our own intuition and knowl-
edge of the protocol leads us to conclude that the communication is not successfully
established, but this is not prescribed by the semantics of UML. �

Programming languages are also often defined only semiformally. While there
are standard notations to formalize syntax – the Backus-Naur form or variants
thereof – their semantics is often described only informally using natural language.
This is not only a matter of form, because informality in the definition of
programming languages has the same drawbacks as it does in natural languages:
the recurring practices take the place of a formal semantics in defining the correct
“meaning”, with the result that different, possibly incompatible, “dialects” of
a language develop according to the compilers or techniques programmers use. Even
widely used and standardized languages such as C have had to face these problems.
Indeed, a complete and completely formal semantics is available only for a few
general-purpose programming languages.
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2.2.2 Medium

A language medium is the usual means by which sentences of the language are
expressed. The preferred media of natural languages are speech and writing – with
syllabic alphabets for most Western languages and ideogrammatic notations for
several Asian languages – but they often encompass other complementary media
such as gestures and facial expressions.

For more formal languages such as those described in this book, the primary
medium is textual, over a finite alphabet (typically including Latin and Greek
alphanumerical characters). A textual syntax is often supplemented by a graphical
one, whose semantics may have different degrees of formality. One of the recurring
themes of the book is the analysis of the most-delicate aspects that hamper the
definition of a sound formal semantics, or make the semantics counterintuitive.

2.3 Languages for System Modeling

A system is a collection of components that work together within an environment to
perform one or more functions.1 To analyze and design systems, it is fundamental
to construct system models: abstract representations of systems, which include their
essential features and support analysis and prediction of their behavior.

A system model has several aspects:

Structure: the components in the system, and how they are connected and
communicate (with one another and with the environment).

Behavior: how the components work, and how they interact with one another and
with the environment.

Requirements: the function and goals that the system should achieve (relative to
the environment).

“Modeling languages” are suitable notations to describe system models. Some
modeling languages are sufficiently rich to be applicable to every aspect of the
model; others target a specific one.

This book describes many modeling languages, with particular emphasis on
models of dynamic systems: systems characterized by their behavior over time. We
will develop the theme of time modeling thoroughly in the book; Fig. 2.2 suggests a
very preliminary and informal view of the activity. Two equally informal examples
follow.

1In fact, the word “system” derives from the Greek words ��� (“together”) and ����	� (“to put,
to compose”).
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Fig. 2.3 The structural model of a simple banking system

Example 2.2. Figure 2.3 is an informal graphical model of the structure of a system
where users interact with a personal computer through an input keyboard and an
output printer; the computer can read and write a local file system.

The system behavior is also described informally, using natural language: the
user is inserting the data about a collection of checks into the computer, where
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a bank management system runs. For every check, she types the bank account
numbers of the drawer and the recipient on the keyboard; then she types the amount
and commits. Upon commit, the banking system records the information in the
archive stored in the file system and prints a receipt slip for auditing.

The system requirements specify that the user click commit only if the system
signals that the drawer’s account has enough money. Notice that the requirements
refer to the system as a whole, including the user whose behavior they constrain to
achieve a defined goal. �

Example 2.3. As an example of a system where timing is central, consider the
dynamics of a braking car. A simple mathematical description models the car as a
point mass of P kilograms, and its braking interaction with the road as a kinetic
friction with friction coefficient of 
m/s2. Then, the system dynamic behavior
specifies the car speed v.t/ at generic time t , assuming that the speed is v0 when
the braking starts, with the equation

v.t/ D v0 � 	t: (2.1)

An example of requirements for such a system is that if V denotes the maximum
speed of the car, the breaking always takes no longer than T seconds and D

meters. We can determine if the system behaves according to the requirements by
analyzing (2.1) with the tools of elementary calculus and mechanics. �

2.4 Operational and Descriptive Languages

The principle of “separation of concerns” is an engineering cornerstone, as it enables
the analysis of complex systems by separating different dimensions. A special
instance of the general principle is the “what vs. how” prescription about how
to structure the engineering of a system: first define what to achieve, and then
detail how to achieve it. Figure 2.2 adheres to this prescription by separating the
requirements (what the system has to achieve) from the structural and behavioral
design (how the system meets the requirements). At a lower level of abstraction,
the duality between specification and implementation mirrors the one between
requirements and design.

Modeling languages often target only one of several concerns. Some languages
are explicitly designed, or simply better suited, for describing system behavior as
sequences of transitions between configurations; we call these languages “oper-
ational”. Other notations lend themselves to describing and formalizing system
requirements abstractly; we call these languages “descriptive”.

Abstract machines and dynamical systems are paradigmatic examples of oper-
ational notations, which describe the evolution of the state as a reaction to the
input stimuli; for this reason, state-based is a synonym of operational. Logic is
instead a classic instance of descriptive language, which formalizes properties and
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closed open

correct code entered

three minutes elapsed

Fig. 2.4 A two-state
machine describing the safe
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implications. The classification into operational and descriptive is, however, largely
a matter of style and conventions, and the same language can often describe both
transitions between configurations and system properties, as the following example
demonstrates.

Example 2.4 (Natural language model of a safe).

Operational formulation: When the last digit of the correct security code is
entered, the safe opens; then, if the safe remains open for three minutes, it
automatically closes.

Descriptive formulation: The safe is open if and only if the correct security code
has been entered no more than three minutes ago. �
The remainder of the current chapter gives a few sketchy examples of operational

and descriptive notations; the rest of the book gives a much more extensive and
systematic presentation of several formalisms in both categories.

2.4.1 Operational Formalisms

Example 2.3 is distinctly operational, because Eq. (2.1) describes the evolution of
the state (the speed v) over time from an initial value (v0). Correspondingly, the
derived behavior is also operational; for example, the displacement x.t/ of the car
at time t is computed through elementary kinematics as

x.t/ D
Z t

0

.v0 � 	t/ dt D v0 t � 	

2
t2 ; (2.2)

which is valid only until the car reaches a full stop at time v0=	.
The possible states (that is, the values of x and v over time) in the car

example range over a bounded interval of the real numbers. In contrast, the
operational description of the safe in Example 2.4 suggests only two distinct states,
corresponding to the safe being open or closed; the actions of opening the safe
and closing it correspond to transitions between the two states. Figure 2.4 gives
a graphical representation of the safe’s operational model using a widely used
graphical convention – which the rest of the book will use and improve on several
occasions.

The operational model of Fig. 2.4 is very abstract, as the two transitions summa-
rize actions that consist of sequences of simpler events. For example, entering the
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Fig. 2.5 A state machine refining the model of Fig. 2.4

three-digit code does not happen instantaneously, but one digit at a time; if one of the
digits is incorrect, a new typing of the code must start over. Correspondingly, we can
introduce two intermediate states to “count” the number of correct digits entered.
Similarly, we can refine the elapsing of three minutes of time into a sequence of
intermediate states, one per minute. Figure 2.5 represents this more detailed model
with the same graphical notation of Fig. 2.4.

Exercise 2.5. Extend the safe operational model of Fig. 2.5 to accommodate:

• A command “stay open”, which resets the time-out counter when the safe is open.
• A command “leave open”, which stops the time-out counter until another

command “close now” is issued.
• A security mechanism that, whenever an incorrect digit is entered, makes it

impossible to enter a new code for the next two minutes.
• A further security mechanism that guarantees that the user is notified of the

incorrectness of the code only after all digits have been entered. �

General-purpose imperative programming languages – C, Pascal, Java, Eiffel,
etc. – essentially are operational notations, as their programs consist of instructions
that change the state when executed. Indeed, a common approach to defining the
formal semantics of programming languages is operational: the effect of each
instruction is defined in terms of how it affects the state (memory) of an abstract
machine (e.g., a formalization of the Java Virtual Machine for Java). In contrast,
logic programming languages – such as Prolog and Curry – indirectly describe
computations through the defining properties of their output; hence it is natural to
formalize their semantics with some form of logic.

2.4.2 Descriptive Formalisms: Mathematical Logic

Mathematical logic originates from the efforts of ancient philosophers (Aristotle,
in particular) to model the rules of reasoning rigorously. Logic is a very versatile
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language, suitable for describing facts and properties, and hence a fundamental
descriptive notation. This section presents the basics of mathematical logic and gives
an idea of the kind of descriptive models that logic can express.

2.4.2.1 Propositional Logic

Propositional logic (also called “propositional calculus”) is the simplest variant
of mathematical logic, at the core of every more expressive logic language.
Propositional logic sentences are called “formulae”. Formulae are built out of a
countable infinite alphabet of “propositional letters” (or simply “propositions”),
which are just character identifiers such as

A; B; : : : ; X; : : : ; open; closed; : : : ;

1 minute elapsed; : : : ; Train 1 faster than Train 2; : : : :

Propositional letters are combined with “logical connectives” (also called logical
“operators”), : (“not”), ^ (“and”), _ (“or”), ) (“implication”), and ” (“dou-
ble implication”, “co-implication”, or “equivalence”), according to the following
rules:

(i) Every propositional letter L is a well-formed formula;
(ii) If F , G are well-formed formulae, then the following are well-formed

formulae:

(a) :F (“not F ”),
(b) F ^ G (“F and G”),
(c) F _ G (“F or G”),
(d) F ) G (“F implies G”),
(e) F ” G (“F if and only if G”).

When multiple connectives are present in the same formula, the binding power
decreases, in the same order as above, from : down to ”; as in mathematics,
parentheses are used to enforce a different order of application of connectives. Thus,
for example,

A ^ B ) C ” :D

is the same as
..A ^ B/ ) C / ” .:D/ :

Given a well-formed formula in propositional logic, an interpretation is an
assignment of a value in the domain fTrue; Falseg to every predicate letter
appearing in the formula. The assigned values are truth values, because they declare
which propositions hold and which do not in the interpretation. The truth value
of a formula follows from the interpretation of its propositions according to the
following rules (which mirror the natural language meaning of logic connectives):
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:F is True if and only if F is False;
F ^ G is True if and only if both F and G are True;
F _ F is True if and only if F or G, or both, are True;
F ) G is True if and only if F is False, or else

both F and G are True;
F ” G is True if and only if F and G are both True,

or both False.

Exercise 2.6. The rules show that some of the connectives are redundant, in that
they are subsumed by the others. More precisely, two formulae are equivalent if, for
every interpretation of propositions, they are always both True or both False. Show
that:

• Every double implication A ” B is equivalent to .A ) B/ ^ .B ) A/.
• Every implication A ) B is equivalent to :A _ B .
• De Morgan’s laws: Every disjunction A _ B is equivalent to :.:A ^ :B/, and

every conjunction A ^ B is equivalent to :.:A _ :B/. �

A propositional logic formula is “valid” when it evaluates to True for every
interpretation of the propositions; it is “satisfiable” when it evaluates to True for
some interpretation (at least one). A valid formula is True entirely on the basis of
its propositional structure, independently of any interpretation; for example, A_:A

is valid because every propositional letter evaluates to True or False.

Example 2.7 (Propositional logic model of the safe). The simple descriptive model
of the safe (Example 2.4) translates into a propositional formula over the proposi-
tions open, closed, and correct code entered within three minutes:

.open ) :closed/ ^

.open ) correct code entered within three minutes/
(2.3)

Consider an extension of the safe model, where a command “stay open” forces
the safe to stay open indefinitely. The propositional logic model would accommo-
date this extended behavior with new propositions to represent the command and
whether the safe was opened in the past:

open ”

0
BB@

correct code entered within three minutes

_
0
@ safe opened in the past

^
stay open issued since last opening

1
A

1
CCA : (2.4)

�

The semantics of propositional logic defines the truth value of a composite
formula from the truth value of its simpler components, down to the propositional
letters. “Deduction systems” leverage this feature to derive the truth value of every
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formula from a set of simpler ones, in a calculational fashion. The basic formulae
are called “axioms” and define some a priori knowledge about the system modeled:
every axiom is a formula assumed to be true. The deduction system’s inference rules
describe how to derive new true formulae from the axioms. The inference rules are
typically independent of the modeled system, which only affects the axioms, and are
universal for the chosen logic. True formulae derived by applying some inference
rules are called “theorems” in mathematical logic jargon.

Deduction systems can also provide an alternative definition of the semantics
of propositional logic, where we can “calculate” properties of systems specified
in propositional logic by applying inference rules to a set of standard axioms in
addition to those specific to the system description. It is sufficient to use the universal
inference rule of “Modus Ponens”,

If a formula F holds and the implication F ) G holds, then the formula G holds,

and consider for any formulae F , G, and H the axioms

(AX1) F ) .G ) F /;
(AX2) .F ) .G ) H// ) ..F ) G/ ) .F ) H//;
(AX3) .:F ) :G/ ) .G ) F /

in addition to the system description axioms. In the case of the safe of Example 2.7,
the formula

: correct code entered within three minutes ) closed (2.5)

specifying that the safe is closed if the correct code has not been entered
in the last three minutes is a system property. We derive (2.5) from the
axioms of propositional logic and the system-specific axiom (2.3), with
repeated applications of Modus Ponens (we abbreviate open, closed, and
correct code entered within three minutes with O , C , and E).

(D1) O ) E special case of (2.3)
(D2) :.:O/ ) :.:E/ equivalent form2 of (D1)
(D3) :O ) C special case of (2.3)
(D4) .:.:O/ ) :.:E// ) .:E ) :O/ instance of (AX3)
(D5) :E ) :O Modus Ponens with (D2), (D4)
(D6) .:E ) .:O ) C //

) ..:E ) :O/ ) .:E ) C // instance of (AX2)
(D7) .:O ) C / ) .:E ) .:O ) C // instance of (AX1)
(D8) :E ) .:O ) C / Modus Ponens with (D3), (D7)
(D9) .:E ) :O/ ) .:E ) C / Modus Ponens with (D8), (D6)

(D10) :E ) C Modus Ponens with (D5), (D9)
QED

2The equivalence is formally derivable from the same axioms.
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The simplicity of propositional logic stems from the usage of atomic items
(the propositional letters) to indicate arbitrarily complex facts and actions through
their truth values. This very abstract view, however, restricts the expressiveness
of the logic, and makes it often too limited to model and reason about entities
with complex structures and behavior. Even in the simple Example 2.7, we had
to coalesce different types of information into the simple propositional letters: for
example, the proposition correct code entered within three minutes conflates
information about the entering of the code with the fact that the code was correct,
and with timing information about when it last happened. This is not very flexible
and generalizes poorly. What happens, for example, if we want to formalize the
fact that the safe is open at a generic time? If we associate instants of time
with the natural numbers 0; 1; 2; : : :, we can introduce a denumerable sequence of
propositions open 0; open 1; open 2; : : :. Nonetheless, it is impossible to write
formulae that mention all such propositions, and hence explicitly define the state of
the safe at every instant. Things are even worse if we assume a continuum of time
instants, for example, corresponding to the nonnegative real numbers; in this case,
the required number of propositions is not available even in principle.

These observations call for an extension of propositional logic that supports
atomic elements more complex than propositions. In particular, it should support
parametric elements, and the ability to express properties about elements evaluated
for infinitely many different values of the parameters. Such parametric elements are
called “predicates”; predicate logic extends propositional logics to accommodate
them. The rest of this chapter describes the basics of predicate logic, which
underpins many other formal languages discussed in the rest of the book.

2.4.2.2 Predicate Logic

Predicate logic (also called “predicate calculus”, or “first-order logic”) extends
propositional logic with variables, functions, Boolean predicates, and quantifiers.
More precisely, the alphabet of predicate logic includes:

• Symbols for constants a, b, c, . . . ;
• Symbols for variables t , u, v, w, x, y, z, . . . ;
• Symbols for functions f , g, h, . . . ;
• Symbols for predicates P , Q, R, . . . ;
• The logic quantifiers 8 (“for all”, universal quantifier) and 9 (“there exists”,

existential quantifier);
• The same logic connectives as propositional logic.

For notational convenience, the constant, function, and predicate symbols can
include standard mathematical symbols such as C, �, sin, <, D, >, and � , with
their usual syntax (e.g., infix binary operators) whenever useful.

Predicate logic builds well-formed formulae incrementally from the alphabet as
follows. First, constants, variables, and functions are combined into terms:
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(i) A constant c and a variable x are terms;
(ii) If f is an n-ary function and t1; t2; : : : ; tn are n terms, then the function

application f .t1; t2; : : : ; tn/ is a term.

Second, terms and predicates are combined into atomic formulae:

(iii) If P is an n-ary predicate and t1; t2; : : : ; tn are n terms, then P.t1; t2; : : : ; tn/ is
an atomic formula.

Finally, atomic formulae are combined with quantifiers and logic connectives into
well-formed formulae of arbitrary complexity:

(iv) Every atomic formula is a well-formed formula;
(v) If F is a well-formed formula and x is a variable, then both 8x.F / and 9x.F /

are well-formed formulae;
(vi) If F is a well-formed formula, then :F is a well-formed formula;

(vii) If F and G are well-formed formulae and ? is any binary connective of
propositional logic (^, _, ), ”), then F ? G is a well-formed formula.

Example 2.8. Let us show a few examples of well-formed formulae of predicate
calculus.

• Every well-formed propositional formula is also a well-formed predicate for-
mula, because propositional letters correspond to argumentless predicates, and
hence to atomic formulae.

• Every mathematical equality or inequality is a well-formed formula, because
equality and other relational operators are binary predicates (usually written in
the infix form). For example:

– x D x C 1,
– sin2.x/ C cos2.x/ D 1,
– Bernoulli’s inequality: .1 C x/r � 1 C rx.

• More generally, mathematical statements are expressible in the language of
predicate logic. For example:

No natural number equals its successor: 8n.n ¤ n C 1/,
The sine of � is 4 or 2: sin.�/ D 4 _ sin.�/ D 2,
Bernoulli’s inequality holds for every nonnegative integer r and nonnegative

real x: 8r.8x.r 2 Z^ r � 0 ^ x 2 R^ r � 0 ) .1 Cx/r � 1 C rx// : �

While reading the examples above, you have probably tried to figure out which
formulae express true facts and which are false. Intuition based on mathematical
knowledge is sufficient for these simple examples, but being able to do it sys-
tematically for every formula requires the precise semantics of predicate logic.
Given a well-formed first-order formula, an “interpretation” associates a value of
a suitable domain with every variable and constant symbol, and a concrete function
and relation with every function and predicate symbol. In practice, mathematical
symbols and relations will be interpreted to convey the usual meaning adopted in
mathematics. From the interpretation of the basic symbols, we know the value of
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every term, and the truth value of every atomic formula. Finally, the truth value of
a generic formula follows compositionally from the same rules of the propositional
calculus semantics. The only new operators are the quantifiers, whose treatment
requires a few more details:

• In every quantified formula 8x.F / or 9x.F /, F is the quantifier’s “scope”.
• Every occurrence of a variable x within the scope of a quantifier 8x or 9x is

called “bound”; a variable occurrence that is not bound is “free”.3

• A universally quantified formula 8x.F / evaluates to True if F evaluates to true
for every possible interpretation of x.

• An existentially quantified formula 9x.F / evaluates to True if F evaluates to
true for some possible interpretation of x.

In general, the truth value of a formula depends on the interpretation given to
constants, variables, functions, and predicate symbols. With the same definition as in
propositional logic, a well-formed predicate formula is “valid” if it evaluates to True
for every possible interpretation of constants, variables, predicates, and functions; it
is “satisfiable” if it evaluates to True for some interpretation.

Example 2.9. Let us consider the truth value of some of the formulae in
Example 2.8.

• Under the standard interpretation of mathematical functions and predicates over
numerical domains, logic truth coincides with mathematical truth (of course!),

– x D x C 1 evaluates to False, regardless of the value assigned to x by the
interpretation;

– Correspondingly, 8n.n ¤ nC1/ evaluates to True under every interpretation
of n.

• However, under nonstandard interpretations of constants, functions, and predi-
cates, the semantics may become counterintuitive:

– x D x C 1 evaluates to True under the interpretation where C is not an
ordinary sum, but is the function that returns its first argument: xC1 evaluates
to x, and hence the equality holds;

– sin.�/ D 4 _ sin.�/ D 2 is False with the standard interpretation for 2, 4,
� , and sin, but it is True in other interpretations, such as the one when sin
denotes a constant function with value 4.

• A well-formed formula F is “closed” if no variable appearing in F is free. The
truth value of a closed formula is independent of the interpretation of its variables
(but it may still depend on the domain of variables and on the interpretation of
constants, functions, and predicates). For example, 8x.9y.y D x C 2// is True

3For simplicity, assume that different quantifier instances bind variables with different names. This
is without loss of generality, and it helps keep the presentation plain.
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over the domain of natural numbers for the standard interpretation of equality
and sum, regardless of the values chosen for x, y. �

If functions and predicates can have arbitrary interpretations, the semantics of
predicate formulae may seem detached from the practice of mathematics, and of
limited practical utility. In fact, predicate calculus is a very powerful modeling
language, mainly when used in combination with some “first-order theories” that
enforce the intended semantics of functions and predicates. A first-order theory
supplements predicate calculus with a set of axioms. As in the deduction systems
mentioned in the context of propositional logic, axioms are well-formed formulae
that are assumed to be True; in other words, in a first-order theory we only consider
interpretations that satisfy the axioms. Validity and satisfiability are redefined for
a theory T accordingly: a formula is “T -valid” if it evaluates to True in every
interpretation where T ’s axioms also evaluate to True; it is “T -satisfiable” if it
evaluates to True in some interpretation where T ’s axioms evaluate to True. The
details of how to describe the characteristic properties of arithmetic and other
mathematics are quite involved and outside the book’s scope. The rest of the book
will simply assume they are available whenever needed to reconcile intuition with
strictly formal reasoning.

Example 2.10 (Predicate logic model of the safe). With predicate calculus, we can
make the descriptive model of the safe more detailed than in Example 2.7, which
used only propositional logic. To this end, we introduce the two variables t , u to
denote time; for simplicity, we can assume that they vary over the integers, but other
options could be accommodated along the same lines. The propositions for the safe
being open or closed and correct code being entered – used in the propositional
model of Example 2.7 – become predicates with t or u as a parameter, so that their
truth is time-dependent. A predicate formula that specifies the behavior of the safe
is the following:

8t

0
@ .open.t/ ” :closed.t//

^
.open.t/ ” 9u ..t � 3 � u < t/ ^ correct code entered.u///

1
A :

(2.6)
�

Exercise 2.11. Provide a predicate logic extension of the propositional formula
(2.4), along the lines of Example 2.10. �

The various examples have demonstrated the versatility of logic as a descriptive
formalism: the formulae describe systems through their characterizing properties
of interest, rather than as explicit sequences of transitions and reached states.
Anyway, as remarked at the beginning of the current section, the distinction
between operational and descriptive is largely a matter of style. The following
example provides evidence of this fact by sketching an operational model of the
safe formalized with predicate calculus. Similarly, we will discuss the converse
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correspondence between state-based formalisms as models of logic formulae in the
context of temporal logic (Chap. 9) and dual-language approaches (Chap. 11).

Example 2.12 (An operational model with logic). Using the predicates of Exam-
ple 2.10, the following formula translates the state-based operational model of
Fig. 2.4; the first line is the usual mutual exclusion between states (implicit in the
model of Fig. 2.4); the second line describes the transition from closed to open
and the permanence of open for three minutes; the last line specifies that the state
closed does not change unless a correct code is entered (also implicit in the model
of Fig. 2.4):

8t

0
BBBBB@

.open.t/ ” :closed.t//

^ .correct code entered.t/ ) 8u..t C 1 � u � t C 3/ ) open.u///

^
�

8u

�
.t � u � t C 2/

) .open.u/ ^ :correct code entered.u//

�
) closed.t C 3/

�
^ .closed.t/ ^ :correct code entered.t/ ) closed.t C 1//

1
CCCCCA :

(2.7)

The rest of the book will provide plenty of examples of operational and descrip-
tive formalisms; their strong connections with the basic “universal” languages
introduced in the present chapter will be apparent. �

2.5 Bibliographic Remarks

Pinker wrote several fascinating books about the origins, role, and evolution of
natural languages [14–16].

Version 2 of the Unified Modeling Language (UML) is a standard of the Object
Management Group [4, 8, 21]. Stevens discusses TCP and other Internet protocols
in depth [20]. Every compiler construction book discusses the Backus-Naur form or
extensions thereof [1,2,6,22]; Knuth traces back the origins of the notation [10]. The
formalization of the semantics of programming languages now has a rich history
and many comprehensive texts [12, 13, 17, 18]. These books typically abstract away
some of the low-level details of real programming languages, but others have tried
to formalize a specific language in its entirety, as Stärk et al. [19] did for Java.

For more specific references on operational and logic formalisms, see the
bibliographic remarks at the end of other chapters – in particular, Chaps. 4, 5, 7,
8, and 11 for state-based notations and Chaps. 9 and 11 for logic-based formalisms.
Mendelson [11], Enderton [7], and Kleene [9] are classic general introductions to
mathematical logic; Ben-Ari [3] and Bradley and Manna [5] present the same basic
topics from a computer science perspective.
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