
Chapter 3
Dimensions of the Time Modeling Problem

Modeling is all about abstraction: select which aspects should be included in the
model, the details of their descriptions, and the form the descriptions should take.
Models of time, in particular, must consider several distinctive issues that have to
do with the nature of time and how it is represented. This chapter presents these
dimensions of the time modeling problem within the general framework of the book.

Some of the dimensions denote issues that are pervasive in the modeling of
time in the literature, for example, the use of discrete or continuous time domains.
Others shed light on aspects specific to some classes of formalisms, for example,
the presence of an explicit or implicit reference to time.

The dimensions will guide the presentation and comparison in the following
chapters of how the various notations model time; they will focus the presentation
on the most significant instances and equip readers with references and skills useful
for analyzing any other formalism that includes some notion of time, beyond those
detailed in this book. Correspondingly, the dimensions can guide a knowledgeable
choice – and possibly a tailoring – of the notation most appropriate to specific
modeling needs (as will be briefly discussed in the epilogue).

The “dimensions” of this chapter, however, informally refer to aspects that
are neither necessarily exhaustive nor independent. Unlike the dimensions in an
orthonormal mathematical basis, some dimensions of time modeling depend on
each other, with the result that only certain combinations are sometimes possible,
reasonable, or relevant in practice. The following chapters will illustrate the
dependencies among different dimensions in several concrete examples.

3.1 Discrete Versus Dense Time Domains

A first natural categorization of the formalisms dealing with time-dependent
systems is between the use of discrete and dense sets as domains for the “time
variable”.
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28 3 Dimensions of the Time Modeling Problem

Recall that a discrete set consists of isolated points whereas a dense set, ordered
by “<”, is such that for every two points t1; t2, with t1 < t2, there is always another
point t3 in between: t1 < t3 < t2. In the scientific literature and applications,
the most widely adopted discrete time models are natural and integer numbers –
denoted by N and Z, respectively – whereas the typical dense models are rational
and real numbers – denoted by Q and R, respectively. For instance, differential
equations normally assume the real (or even the complex) numbers as variable
domains, whereas difference equations are defined over integers. Computing devices
are formalized through discrete models when their behavior is paced by a clock, so
that it is natural to measure time by counting clock ticks.

In addition to the well-known classification into discrete and dense domains, a
few more accurate distinctions are useful for better evaluating and comparing the
various formalisms available in the literature and those that will be proposed in the
future.

3.1.1 Continuous Versus Non-continuous Time Models

Dense domains include both continuous and non-continuous sets. For some models,
the distinction is relevant and must be considered.

The notion of continuous domain originated from the observation that there exist
incommensurable physical quantities: two values v1, v2 are incommensurable if
there exist no integers n, m such that n � v1 D m � v2; hence the ratio v1=v2 is not a
rational number in the dense non-continuous set Q. For example, the diameter and
the circumference of every circle are incommensurable, and the irrational number
� denotes their constant ratio. Other irrational numbers are introduced to denote the
results of operations naturally applicable to every rational number whose results are
not rational, such as the square root of 2. The extension of a dense non-continuous
set such as Q with all irrational numbers gives a continuous domain; the real and
complex numbers are the most widely known and used continuous domains.

The problem with incommensurable quantities is relevant also when measuring
time: the periods of two clocks that are not perfectly synchronous are likely incom-
mensurable. We do not have to look for contrived examples of this phenomenon: the
solar day and year are indeed incommensurable time spans. Adopting a continuous
set as the time domain makes it possible to model incommensurable times precisely,
thus making the analysis more general and uniform; for example, showing that
a model has behaviors with certain characteristics may be simpler under the
assumption of a continuous time domain.

On the other hand, the greater generality of continuous domains becomes an
obstacle when performing numerical and algorithmic analyses of the models,
because irrational numbers (which are the overwhelming majority in a continuous
set) have no finite representation as series of digits; hence a digital computer can
only rely on approximations of their exact values in terms of rational numbers.
The finite precision of the approximations must allow for the computation of
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solutions with an error that is acceptable for the application domain. For example,
the incommensurability of day and year requires an approximation to construct
calendars. The simple convention of approximating 1 year to 365 days introduces
a considerable drift, which accumulates and becomes unacceptable after only a few
years; the Julian calendar introduced a more precise approximation using a leap year
every 4 years; the Gregorian calendar further refined the approximation (years that
are exactly divisible by 100 are not leap years unless they are exactly divisible by
400) but still introduces an error of 1 day every few thousand; in general, every
approximation introduces a drift between calendar and astronomical day after a
sufficiently long period of time.

Another, more specific, context in which the distinction between continuous
and merely dense time domains is relevant is the algorithmic analysis of timed
models: some sophisticated time analysis algorithms work correctly only under the
restriction that certain time parameters of the model are rational. We will mention
examples of such algorithms when discussing timed automata in Chap. 7 and Petri
nets in Chap. 8.

3.1.2 Bounded, Finite, and Periodic Time Models

System modeling often assumes behaviors that may proceed indefinitely in the
future (and maybe in the past), so it is natural to model time as an unbounded set.
This typically complicates the analysis of system properties, which may become
undecidable1 in the general case because no observation over a finite amount of
time can be conclusive about the longer-term behavior (see Sect. 3.8.2 for more
comments on the aspect of decidability).

There are significant cases, however, where all relevant system behavior can be
a priori enclosed within a bounded “time window”. For instance, braking a car to a
full stop requires at most a few seconds; thus, if we want to model and analyze the
behavior of an antilock braking system, there is no loss of generality if we assume
as a temporal domain, say, the real range Œ0; 60� seconds. In many cases, a restriction
to bounded time highly simplifies algorithmic analysis and simulation.

When a domain is not only bounded but also discrete, it becomes finite. For
systems where the time domain and every other domain are finite, all system
properties are, in principle, decidable, because behavioral analysis reduces to the
enumeration of a finite number of system configurations. If a domain is not discrete
but only bounded, its discretization – that is, the discrete approximation of its
values – may support an exhaustive analysis of system behavior that is precise

1A property is decidable if there exists an algorithmic procedure that can determine, in finite time,
whether the property holds in any given system model; otherwise, it is undecidable. Chapter 6
introduces the notion with more precision for readers unfamiliar with the theory of computability.
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enough to replace the exact analysis on dense domains. Section 3.1.3 discusses the
widely used sampling technique to achieve discretization.

A special case of unbounded behavior occurs when a system is periodic, that
is, recurrently returns to certain states during its evolution. The time between two
consecutive visits to a repeated state is called period. Since the evolution over an
unbounded time domain consists entirely of infinite repetitions of the period, the
analysis of a periodic system’s behavior reduces to the analysis over bounded time:
the properties holding over the whole time domain follow from the behavior over a
single finite period.

The well-known problem of studying the termination of computer programs
illustrates how periodicity can simplify timing analysis. Determining whether a
generic program halts for a given input boils down to timing analysis: “determine
if there exists a time t such that the program, run with the given input, stops after
t time units”. Termination is undecidable in the general case: the best we can do is
run the program with the input, but then we can never conclude that it will not halt
in the future if it has not halted after a finite (arbitrarily large) amount of time. If,
however, we observe that the system behavior is periodic, then there exists a period
� such that the state of the computation – which comprises the memory and the
input – is the same at all times t1; t1 C �; t1 C 2�; t1 C 3�, and so on indefinitely.
If termination only depends on the state, nontermination over a single period entails
nontermination everywhere, because the behavior over a period characterizes the
overall behavior.

Section 3.8.3 mentions several analysis techniques that rely on periodicity and
finiteness of behaviors and domains to achieve automation by means of exhaustive
enumeration. Bounded model checking, presented in Chap. 11, is a prime example
of such techniques with significant practical impact.

3.1.3 Hybrid Systems

The discussion about dense vs. discrete domains of the present section focuses
on time, but system models must select discrete or dense domains also for other
state components and variables. Chapter 2, for example, presented some models
of physical systems where all domains – e.g., time, speed, and position – are
continuous. Computing systems, in contrast, are usually modeled with discrete time
(paced by the clock) and state (sequences of digital bits).

Combining discrete time with discrete state variables and dense time with dense
state domains is a common choice, but alternatives exist: hybrid system models
combine discrete and dense domains. All combinations are possible: discrete time
and dense state space, dense time and discrete state space, and even cases where
the time model integrates discrete and dense components of time, or discrete and
dense state domains coexist. Indeed, there are several circumstances in which hybrid
models are the natural choice; they are mainly, but not exclusively, related to the
problem of integrating heterogeneous components.
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Fig. 3.1 A square-wave form over dense time

Fig. 3.2 A continuous behavior sampled

A typical example is a system consisting of a power plant controlled by some
digital computing device. Differential equations on continuous time are a natural
model for the physical process (for example, a chemical reaction or the production
of electric power). The digital computer has a discrete, possibly finite, state space
over a discrete time domain. The two components interact through devices such as
samplers and holders.

More generally, dense and discrete domains coexist in hybrid models in different
ways:

• Components with a discrete – possibly finite – set of states evolve over a dense
time domain. In such cases, behaviors are graphically described as square wave
forms and evolve as piecewise constant functions of time, as shown in Fig. 3.1.

• Sampling the state at regular (discrete) intervals provides an approximation of the
behavior of state variables over a continuous time domain, as pictured in Fig. 3.2.
A classic problem of control and information theory is how to guarantee that the
approximation introduced by sampling does not lose any relevant information
about the continuous-time behavior. Some sections of Chaps. 7 and 9 discuss the
role of sampling techniques for operational and descriptive temporal models.

• The time domain is hybrid when it consists of a discrete sequence of “macro-
steps”, but between each pair of discrete steps there exist finer-grain dynamics
modeled over dense time. This setting accommodates, for example, the abstrac-
tion of electronic components into logic gates – discussed in Chap. 5 – as well as
discrete-time systems with time-outs that can occur asynchronously. Finite-state
automata augmented with dense-timed clock variables, such as the timed and
hybrid automata of Chap. 7, are more general examples of this type of hybridism.

Example 3.1. The braking system mentioned in Example 2.3 is a hybrid model:
the system senses the information coming from the wheels in the form of variables



32 3 Dimensions of the Time Modeling Problem

varying over continuous time and state domains (e.g., angular speed and friction)
and processes it through a digital embedded device that computes, in real time, the
ideal pressure to be applied to the calipers. Processing the continuous components
with a digital system – with finite precision and synchronized to a discrete clock
– requires sampling and approximating the information coming from the sensors;
then, the actuators translate the discrete series of values output by the computer to
the calipers, which operate over “physical” continuous time. �

We will go back to the issue of hybrid models in Sect. 3.7, when discussing
composition of modules.

Exercise 3.2 (|). Which of the following systems or processes are naturally
described by a hybrid model? What are the discrete and the dense/continuous
components? To which of the three aforementioned classes of hybrid models do
the systems naturally belong?

• A thermostat controlling the temperature of a room by turning on and off heating.
• The controller of a railroad junction.
• The emission of light from a heated chemical element. �

3.2 Ordering Versus Metric

A formalism may permit the expression of metric constraints on time, or, equiva-
lently, of constraints that exploit the metric structure of the underlying time model
(if it has any).

A domain (possibly a time domain) has a metric when it is equipped with a notion
of distance, that is a measure function d.t1; t2/ associated with pairs of points t1; t2
of the domain that satisfies the properties of

(i) Nonnegativity: d.t1; t2/ � 0;
(ii) Identity of indiscernibles: d.t1; t2/ D 0 if and only if t1 D t2;

(iii) Symmetry: d.t1; t2/ D d.t2; t1/;
(iv) Subadditivity (also called triangle inequality): d.t1; t3/ � d.t1; t2/ C d.t2; t3/.

The typical time domains – the usual discrete and dense numerical sets N, Z, Q,
R – all have a “natural” metric in terms of Euclidean distance between two points:
d.t1; t2/ D jt1 � t2j.

Although all common choices for time domains possess a metric, an issue is
whether the language in which the system is described permits using the same form
of metric information as that embedded in the underlying time domain. For instance,
some languages allow for stating that an event p (e.g., “push button”) must precede
temporally another event q (e.g., “take picture”), but do not include constructs to
specify how much time elapses between the occurrence of p and that of q; thus,
they cannot distinguish between the case in which the delay between p and q is one
time unit from the case in which the delay is 100 time units. Languages where the
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relative ordering of events is expressible, but metric constraints are not, support a
purely qualitative notion of time, as opposed to the quantitative time expressible
with metric languages.

Example 3.3 (Parallel and real-time systems). In purely parallel systems, the cor-
rectness of a computation only depends on the relative ordering of computational
steps, irrespective of their absolute distances. Reactive systems, where a controller
component evolves concurrently with the controlled environment, are often purely
parallel in this sense. For the formal description of such systems, a purely qualitative
language is sufficient. Real-time systems also usually perform in parallel, but
their correctness depends as well on the time distance between events; thus, the
complete model of real-time systems requires quantitative languages, supporting
the expression of metric constraints.

As a simple example of purely parallel system, consider two tasks T1 and
T2 that exchange messages. T1 can perform an action a only after receiving a
datum from T2; and T2 produces the datum by performing another action b. This
data dependency forces the ordering of actions a and b: a follows one or more
occurrences of b, independently of the relative speed of the two tasks or of the
transmission channel.

The same two-task system becomes real time if T2 produces data at a fixed rate
of n actions b per second and puts them in a buffer composed of a single slot, and
we want to avoid the situation where T2 tries to put a datum in a full buffer. T1 then
has to be fast enough: a specification of correct behavior may require, in addition to
actions a following actions b, that no execution of a takes more than 1=n seconds.

�

Following the difference between purely parallel and real-time systems, the
research in the field of formal languages for system description has evolved from
dealing with purely qualitative models to the more difficult task of expressing and
reasoning about metric constraints. Consider, for instance, two sequences �1 and �2

of events p and q, where exactly one event per time step occurs,

�1 D p q p q p q : : : ;

�2 D p p q q p p q q : : : ;

that share the following property, expressible without referencing any metric
information: “every occurrence of p is eventually followed by an occurrence of
q”; in contrast, “p occurs in every instant” is a qualitative property that is false for
both behaviors. Some metric properties, instead, discriminate between �1 and �2,
as in “every occurrence of q is followed by another occurrence of q after two time
steps”, which holds for �1 but not for �2.

The notion of invariance under stuttering is an alternative characterization of
the properties expressible qualitatively. Consider, for example, the discrete-time
behavior �3 consisting of the following sequence of states, one per time step:

�3 D s1 s2 s3 s4 s5 s6 s7 s8 : : : :
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A time step i such that si D siC1 is called a “stuttering” step; for example, the
first step in sequence �2 is stuttering (if we interpret it as a sequence of states rather
than as a sequence of events). Adding or removing stuttering steps from a behavior
does not affect the qualitative properties it satisfies. If two behaviors are identical up
to the addition or removal of any number of stuttering steps, the two behaviors are
called stutter-equivalent or equivalent under stuttering. For example, behaviors �1,
�2 above are stutter-equivalent: every odd instant of time corresponds to a stuttering
step in �2, and �1 equals �2 with all stuttering steps removed.

Stutter equivalence is an equivalence relation; the equivalence classes it induces
precisely identify classes of behaviors that share identical qualitative properties.
Note that stutter invariance is defined for discrete time models only.

Exercise 3.4 (|). Argue that the property

“sequences of events a and sequences of events b alternate” (3.1)

is qualitative, whereas the property

“events a and b strictly alternate” (3.2)

is quantitative. �

Exercise 3.5. With reference to Exercise 3.4, characterize the set of behaviors
corresponding to (3.1) and show that any two members of the set are stutter-
equivalent. Then, characterize the set of behaviors corresponding to (3.2) and show
that there exist behaviors which are stutter-equivalent to elements of the set but are
not in the set. �

3.2.1 Total Versus Partial Ordering

The discussion so far assumed time and other domains with a total ordering: for
every pair of distinct elements x, y in the domain, either x precedes y in the ordering
(usually written x < y), or y precedes x (y < x). The definition of dense sets, in
particular, is simpler for totally ordered domains, and so is the definition of a metric.
There are circumstances, however, where sets with only partial ordering – where
neither x < y nor y < x for some distinct elements x, y – are the best choice for
the temporal domain in a system model.

Example 3.6. Modern cars implement several functions on their on-board embed-
ded electronics as software. The antilock braking system mentioned in Sect. 3.1.2
is a common example; another subsystem electronically controlled is the one
responsible for moving the car windows. Each subsystem must meet its timing
requirements: among other things, the braking system must release the breaks
within, say, 1=10 second whenever the wheels are blocked and the vehicle is
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moving, and the motorized windows must shut completely within, say, 7 s whenever
a passenger clicks the button. In an overall model of the car, the events “wheels
become blocked” and “breaks released” are strictly ordered, and so are the two
other events “button clicked” and “windows become closed”. However, there is no
reason to define an order between events of the braking subsystem and events of the
window control: the events in the overall system are only partially ordered, and so
are the instants of time when they may occur. �

The above example suggests that partial orderings arise naturally when com-
posing the behavior of subsystems into composite systems with heterogeneous
components: the events happening in different subsystems are usually unrelated,
and synchronization among subsystems relies on explicit “messages” sent at the
subsystems’ interface. Part II of the book will present some notations that introduce
partial orders when composing unrelated events, as well as others that always define
a total order among events. Section 3.3 discusses another dimension that relies on
the notion of total and partial ordering.

3.2.2 Time Granularity

System models with metric time usually possess a “natural” time scale, correspond-
ing to the abstraction level of the temporal behavior in the model. In Example 3.6,
the braking system operates within fractions of seconds, whereas the window system
is paced by an order of magnitude slower time scale. The notion of time granularity
captures this idea of “time scale”, and different components in a composite system
have different time granularities when their natural time scales differ, possibly by
orders of magnitude.

In some sense, time granularity is a form of hybridism (see Sect. 3.1.3), which
is frequent in complex composite systems where processes that evolve in the order
of seconds or minutes – or even days or months (such as a chemical process, or a
process at a hydroelectric power plant) – are controlled by fast digital electronic
devices. In principle, a continuous time domain, such as the real numbers, can
accommodate system models with arbitrarily heterogeneous time granularities: con-
version among different time units is always possible, with possibly an arbitrarily
small loss of precision if some units happen to be incommensurable (see Sect. 3.1.1).

If, however, the underlying time domain is discrete, the approximation error
introduced when converting the coarser time units can be non-negligible and raise
subtle semantic issues. Consider, for instance, the sentences

Every month, if an employee works, then she gets her salary.

and

Whenever an employee is assigned a job, this job should be completed within three days.
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If the sentences are part of the same specification of an office system, we have to
find a way to reconcile their time units. A discrete temporal domain with the day
as time unit seems a natural choice, because the other time unit, the month, is of
coarser granularity. However, a simple change of time units from months to days
alters the meaning of the quantification “every”: the specification “every month, if
an employee works, then she gets her salary” has a different meaning than “every
day, if an employee works, then she gets her salary”, because working for 1 month
means working for 22 variable days during the month, whereas getting a monthly
salary means that there is one fixed customary day of every month when salaries
for the whole month get paid. A change in the time unit (from months to days) is
insufficient to capture the correct meaning of the original sentence.

In the other example, your boss states that “this job has to be finished within three
days from now” at 4 P.M. on 16 June 2012. What does she mean exactly? “This job
has to be finished within 3 � 24 � 60 � 60 seconds counting from now”, or “this job
has to be finished by 6 P.M. on 19 June 2012”, or even “this job has to be finished
by midnight on 19 June 2012”? Each interpretation may be valid, depending on the
context of the claim.

Chapter 9 presents an approach to deal rigorously with different time granulari-
ties in the context of temporal logics.

Example 3.7. Consider the following structurally similar sentences:

• Tomorrow, I will eat.
• Tomorrow, I will work.
• Tomorrow, I will go to the bank to pay my monthly bills.
• Tomorrow, I will stay in the city.

Depending on the time unit used to interpret the sentences, the meaning of
“Tomorrow, I will. . . ” changes from sentence to sentence. In particular, if we
introduce the finer granularity of hours, the first two sentences read as “Tomorrow
there will be some (few) hours when I will be eating” and “Tomorrow there will
be some hours (say, eight) when I will be working”; the third sentence probably
translates to “Tomorrow there will be one hour during which I will pay my bills”;
the fourth one likely refers to the fact that “Tomorrow, during all hours of the day I
will be somewhere in the city”. The different meanings of the verbs (“eat”, “work”,
“go”, “stay”) hint at different scopes (“some”, “all”, “one”) in terms of hours during
the day. �

Exercise 3.8 (|). Determine the most appropriate time units to interpret the fol-
lowing sentences:

• Tomorrow, I will work, and then I will go out.
• Tomorrow, I will have two classes, separated by a short break.
• Tomorrow, I will be on vacation. �

Exercise 3.9 (|). A hydroelectric power production system consists of a reservoir,
an electric production station, and pipes connecting the dam of the reservoir to the
power station; sluice gates to control the amount of water to be sent to the power
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Fig. 3.3 A linear (a) and a branching (b) time model

station; and controlling devices which manage the sluice gates and the turbines that
generate the power (e.g., to keep the frequency constant).

Consider a model of the global behavior of the system including the dynamics
of the reservoir in terms of the amount of water coming in (from incoming rivers
and the rain) and flowing out (from the pipes), the amount of power delivered by
the plant, the control goals for the power supplied and water consumed, and the
behavior of the digital controllers.

Which time unit would you use for each component of such a model? How would
you combine them into a unique model? �

3.3 Linear Versus Branching Time Models

The terms linear and branching refer to the structures on which formal languages
are interpreted: linear-time formalisms are interpreted over linear sequences of
states, whereas branching-time formalisms are interpreted over trees of states. In
other words, a system description adopting a linear notion of time refers to linear
behaviors, where the future evolution, from a given state at a given time, is always
unique. Conversely, branching-time interpretations refer to behaviors structured
in trees, where each “present state” may evolve into different “possible futures”.
Assuming discrete time, Fig. 3.3 pictures a linear sequence of states and a tree of
states, over six time instants.

Linear behaviors are special cases of trees. Conversely, trees represent sets of
linear behaviors that share common prefixes (i.e., that are prefix-closed). Under this
duality, linear and branching models can be put on a common ground and compared;
this has been extensively done in the literature.
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In Fig. 3.3, the linear model (a) defines a total ordering of the symbols
s0; s1; : : : ; s5, whereas the branching model (b) induces a partial ordering of s0; s1;a;

: : : ; s5;b . Incidentally, the figure also suggests a metric on the time domain, so
that symbols such as s1;a and s1;b are, in principle, not ordered but mark the same
absolute time. If we ignore the metric information, we have a genuinely partial order
where pairs such as s1;a and s1;b or s1;a and s3;d are unordered and it is undefined
whether one occurs before or after the other.

The meaning of the branches in a branching-time model depends on the context
and the system modeled. For example, the branch from s0 to s1;a and s1;b in Fig. 3.3b
may capture the fact that the system spawns two new parallel processes, whose
behavior is described in each branch independently of the other. In a different
interpretation, the same branch may describe a nondeterministic choice between two
alternatives: each path in the tree is a totally ordered sequence of events or states that
may happen in one of the possible computations, but elements in different branches
have no order because they belong to mutually exclusive alternatives. Section 3.4
gives more details on such interpretations of branching time in the presence of
nondeterministic computations.

Linear or branching semantic structures are then matched in the formal languages
by corresponding syntactic elements that can express properties of specific features
of the interpretation. This is possible, in principle, with all formal languages, but it is
especially relevant for logic languages, and for temporal logics in particular. Linear-
time temporal logics are interpreted over linear structures, and express properties
of behaviors with unique futures, such as “if event p happens, then event q will
happen eventually in the future”. On the other hand, branching-time temporal logics
are interpreted over tree structures, and state properties of branching futures, such
as “if event p occurs, event q will occur along some of the originating branches”.
Chapter 9 discusses similar examples in greater depth with reference to temporal
logics.

It is also possible to have semantic structures that are branching in the past,
where different pasts merge into a unique present. Branching-in-the-past models
are, however, uncommon in practical applications, so we will not deal with them.

Exercise 3.10 (|). Consider a formalization of the game of chess in which a state
is a given configuration of the pieces on the board, time instants coincide with moves
of the players, and at every time instant there is a transition from the current state
to the next one, determined by the move. Discuss whether linear or branching-time
models adequately represent the following:

• A single match;
• The set of all matches starting with a given opening (e.g., all matches starting

with the “Danish gambit” opening);
• A chess problem, such as: “starting from the given configuration, white to move

and checkmate in three moves”. �
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3.4 Deterministic, Nondeterministic, and Probabilistic
Models

Linear time and branching time are features of languages and of the structures on
which those are interpreted, whereas deterministic, nondeterministic, and proba-
bilistic behaviors are attributes of the systems modeled or analyzed.

3.4.1 Deterministic Versus Nondeterministic Models

Consider systems including a notion of input, which evolve over time by reading
the input, and changing the current state accordingly. A system is deterministic
whenever the current value of state and input uniquely determine the future state.
For instance, a light switch is a deterministic system, where pressing the button
(input) when the light is in state off yields the unique possible future state of light
on. Notice that, for a given input sequence, the initial state completely determines
the behavior of a deterministic system.

Conversely, systems are nondeterministic if they can evolve to different future
states from the same present state and input by making arbitrary “choices”. For
example, a resource arbiter is nondeterministic if it responds to two requests happen-
ing at the same time by “choosing” arbitrarily whom to grant the resource first, and
the same pair of simultaneous requests may result in a different choice every time.

Example 3.11 (Ada’s rendezvous). The rendezvous mechanism of the Ada pro-
gramming language is a significant example of nondeterminism applied to the
synchronization of parallel tasks. Consider two client tasks Producer and Consumer
that depend on a server task Buffer to perform operations Put and Get respectively.
In the Ada framework, when Buffer is ready to execute both Put and Get (i.e.,
it is neither full nor empty and there are pending requests – entry calls in
Ada terminology), it chooses any of them nondeterministically. This behavior is
embodied in the semantics of the accept statement. Figure 3.4 has a typical example
of Ada code using this feature. Whenever the execution of Buffer reaches the select
statement, all conditions (“guards”) expressed by the when clauses are checked to
determine which ones are enabled. If multiple when conditions hold and there are
pending requests from other tasks for the corresponding entry, the system arbitrarily
selects, in a nondeterministic fashion, one of the enclosed accept statements to be
executed. The actual choice is resolved either by the compiler or by the operating
system. Programmers must build programs which behave correctly independently
of how the nondeterministic choices are actually resolved. �

We will further discuss the semantics of Ada’s rendezvous mechanism in
Sect. 3.7.

A notation with nondeterministic features supports a high level of abstraction,
where details that pertain solely to the implementation, such as the precise order of
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Fig. 3.4 The rendezvous
mechanism in Ada

execution of tasks, are hidden as nondeterministic choices. At the same time, the
lack of control over such lower-level details introduces subtleties which may make
a full understanding of system behavior more difficult. For instance, in the loop of
the Fig. 3.4 there is no control over the choice of pending request served at each
iteration: the Buffer may always favor Put over Get, leaving the Consumer task
waiting idly for a time that is related to the capacity of the buffer. In extreme cases
– for instance, if the accept statements are not under the control of suitable when
conditions or such conditions are always true – a process may even “starve” while
waiting on an entry call because the server always selects other processes (we will
discuss the notion of a starving process in Chap. 8).

More generally, nondeterminism is a powerful abstraction mechanism for
incomplete knowledge in the description of systems. The sources of incompleteness
and the semantics of the nondeterminism abstraction may vary with the application
context.

In the example of Fig. 3.4, it is undetermined which accept statement should be
executed when both are enabled. Similarly, system requirements may not commit
to selecting from possible acceptable alternatives, with the objective of not over-
constraining the implementation policies. For instance, a requirement of the type

When signal S occurs, the system must react by signaling T no later than ten seconds and
no sooner than five seconds.

is met by systems that always produce T after 8 s, by other systems that react
after 6 s in certain conditions and after 9 s in others, as well as by many other
implementations.

Another context in which nondeterminism can formalize incomplete knowledge
occurs in search problems in unstructured spaces or, more generally, where there
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is no a priori criterion for selecting from different options. Think, for example, of
searching a generic graph or tree for nodes with certain properties.

Systems embedded in an external environment whose behavior is only partially
known – power plants, distributed social groups, and so on – may also avail of
nondeterministic abstractions to model imperfect knowledge of the environment.

The semantics of nondeterministic choice also depends on the application context
and on the nature of knowledge incompleteness to be dealt with. For instance,
in Example 3.11, the programmer may be oblivious to how the runtime system
will choose from among enabled accept statements; hence he must guarantee
that the program will meet its requirements for all possible operational conditions
encompassed by its nondeterministic choice. Symmetrically, many generic search
algorithms are modeled as nondeterministic visits of data structures: a visit is
successful when there exists some sequence of nondeterministic choices that leads
to the searched element.

We refer to the first type of nondeterminism – where every nondeterministic
choice must produce an acceptable behavior – as universal nondeterminism (in
analogy with universal logic quantification). Conversely, we will call the second
type of nondeterminism – where it is sufficient that one nondeterministic choice
leads to a valid solution – as existential nondeterminism. The following chapters
will show various application contexts of nondeterministic abstractions and models,
with references to the classification just introduced.

3.4.2 Nondeterministic Versus Probabilistic Models

A nondeterministic system can evolve into different future states from the same
current state and input. The choice of which future state to take is arbitrary, and all
possible alternatives are considered. In other words, nondeterminism is a convenient
abstraction for sets of alternatives that can happen over different runs.

Probabilistic systems (also called “stochastic systems”) can also choose from
among different future states for a given current state and input. Unlike nonde-
terministic systems, however, the choice relies on probability distributions: the
system selects the next state by drawing a value from a distribution and proceeding
accordingly. An unbiased coin is an obvious example of a probabilistic system
without input. Each state corresponds to the coin showing heads or tails. Flipping
the coin moves the system to the next state, which is heads with probability 1=2

and tails with probability 1=2. The probability distribution associated with each
transition induces a probability distribution on sets of behaviors. For example, the
set of sequences of coin flips such that the first two draws are both head has a
probability of 1=2 � 1=2 D 1=4.

Nondeterministic and probabilistic models are both concerned with representing
incomplete information about the system’s behavior: in the nondeterministic case
there is no information at all about how choices are resolved, whereas in the prob-
abilistic case the probability distribution gives a measure of the partial information
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available. This quantitative difference results in a sharp conceptual difference in
the types of questions addressed in the analysis of the two families of models and,
consequently, in the type of mathematics needed to perform such an analysis. The
analysis of nondeterministic models addresses “yes/no” questions about whether
every possible behavior meets some requirements (such as “all pending requests are
served within three seconds”) or, symmetrically, whether there exists any behavior
that achieves a certain goal. The analysis of probabilistic models addresses typically
quantitative questions about the “likelihood” of certain events happening or not
happening. For example, we can ask if “pending requests are served within three
seconds 90 % of the time” – or, equivalently, with a probability of at least 90 %.

The conceptual difference between nondeterministic and probabilistic models
persists even if we compare nondeterministic transitions to probabilistic ones with
uniform probability. For example, the unbiased coin described above could also be
modeled as a series of nondeterministic transitions that arbitrarily choose between
heads and tails. The difference between the probabilistic and the nondeterministic
model of the coin lies in the different weights given to possible sequences of flips. In
the nondeterministic model, every sequence is on equal ground with all the others;
an unbounded sequence of heads, for example, is perfectly legitimate behavior. In
the probabilistic model, in contrast, different sequences have different probabilities
and hence different likelihoods of happening. An unbounded sequence of heads, in
particular, has zero probability of happening; hence it is essentially ruled out by the
abstraction of the model.

Probabilistic modeling is a natural choice for systems whose dynamics are known
only partially and empirically or are too complex to model exactly. Most physical
phenomena happening in the natural world are of this type. For example, geological
data may suggest the probability of an earthquake of a certain magnitude happening
in a certain region during 1 year. Systems including human users are also often
conveniently modeled with probabilities, for example, to quantify the chance that
an operator performs a sequence of events in an incorrect, unsafe order, or to model
the accesses to a Web server resulting from users visiting a certain HTML page.

The design of probabilistic algorithms is another, more sophisticated, application
area within computing, where probabilistic models of timing properties are widely
deployed. It turns out that several computationally complex algorithmic tasks can
be sped up significantly by randomizing certain choices during the computation.
Probabilistic algorithms give correct answers only with certain finite probabilities;
in practice, however, this probability can often be made arbitrarily close to 1, so as
to favorably leverage the trade-off between time spent computing and correctness
of the result. Section 6.4 describes some examples of probabilistic computational
models and algorithms.

The examples of nondeterministic and probabilistic behavior discussed so far
focused on the choice from among different future states, but the same abstractions
apply to the choices of waiting times, delays, and other time intervals. For example,
in a communication protocol for handshaking (such as TCP’s three-way handshake
in Example 2.1), the event “acknowledge” always follows deterministically the
event “start connection”, but the time elapsing between an occurrence of “start
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connect” and the corresponding occurrence of “acknowledge” is nondeterministic
and varies according to the conditions of the communication network. In general,
purely nondeterministic models consider arbitrary delays between a minimum
Tmin and a maximum Tmax (which can be 0 and 1 if every delay is possible),
whereas probabilistic models associate a probability distribution T with the interval
ŒTmin; Tmax� such that the delay is t 2 ŒTmin; Tmax� with probability T .t/.

The term “stochastic” sometimes specifically refers to the application of prob-
abilistic models to delays and timing information, as opposed to “probabilistic”
models where the choice is of different future states. This terminology is, however,
not universally accepted, and different research areas often use different conven-
tions. This book uses the attributes “probabilistic” and “stochastic” as synonyms.

Finally, notice that, as with nondeterminism, probabilistic behavior may abstract
incomplete knowledge of different origins: the input provided by the environment
to the system may be known only statistically (the uncertainty may be in the
input values or in its timing), and the system itself may react according to a
deterministic or a probabilistic policy. When both system and environment have
stochastic behavior, the overall model of systems embedded in the environment
follows probabilities that depend on those of each component – this corresponds
to the notion of conditional probability. Chapter 6 and the following ones describe
various forms of probabilistic models, for different sources of uncertainty.

Exercise 3.12. Consider multiple consecutive iterations of the Buffer loop in
Fig. 3.4 such that, at every iteration, both guards Count > 0 and Count < MAX are
true and there are pending requests for both Get and Put. Assume that Buffer always
spends one time unit to perform a Get and two time units to perform a Put.

• Build a branching-time behavior consisting of a tree that summarizes all possible
sequences of events over four iterations.

• Describe the set of linear-time behaviors representing the same sequences of
events as the tree.

• Under the same conditions, what are the minimum and maximum times Buffer
takes to execute ten consecutive loop iterations?

• Assume that there are always some pending requests for both Get and Put by
some client; how much time, at most, must elapse before a call for a Get is
certainly served? How much time for a call for a Put? �

Exercise 3.13. Consider again multiple consecutive iterations of the Buffer loop
in Fig. 3.4 such that, at every iteration, both guards Count > 0 and Count < MAX
are true and there are pending requests for both Get and Put. Assume that, at every
iteration, the Buffer chooses to execute Put with probability p D 40 % and Get with
probability q D 60 %.

• What is the probability that Put has never been executed after ten loop iterations?
• How many iterations are needed to guarantee that both operations have been

executed at least once with probability greater than 95 %?
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• What values for the probabilities p and q minimize the number of iterations to
guarantee that both operations have been executed at least once with probability
greater than 90 %? �

Exercise 3.14 (�). Consider again multiple consecutive iterations of the Buffer
loop in Fig. 3.4 such that, at every iteration, both guards Count > 0 and
Count < MAX are true and there are pending requests for both Get and Put. Assume
that, at every iteration, the Buffer chooses to execute Put and Get deterministically
in strict alternation. Every execution of Put and Get takes time whose probability is
uniformly distributed in the interval Œ10; 20� milliseconds.

• What is the average duration of ten loop iterations?
• What is the probability that executing ten loop iterations takes more than 120 ms?

(Hint: the exercise is simpler if the interval Œ10; 20� is taken to be discrete rather than
continuous). �

3.4.3 Deterministic, Probabilistic, and Nondeterministic Versus
Linear- and Branching-Time Models

There is a natural coupling between, on one side, deterministic systems and linear
models, and, on the other side, nondeterministic or probabilistic systems and branch-
ing models. In linear-time models the future of any instant is unique, and hence the
modeled system is deterministic, whereas in branching-time models each instant
branches into different futures, corresponding to possible nondeterministic choices.

This natural correspondence notwithstanding, determinism and linearity of time
are distinct concepts, which target different concerns. For instance, linear-time
models are often preferred – even for nondeterministic systems – for their intuitive-
ness and simplicity. The discussion of Petri nets in Chap. 8 will provide examples
of linear time domains expressing the semantics of nondeterministic formalisms.
On the other hand, branching-time models can describe sets of computations of
deterministic systems for different input values. For instance, the branches of a tree
can describe all possible computations of an array sorting algorithm, where each
branch corresponds to a choice made by the algorithm on the basis of comparisons
between array elements. Analyzing the tree gives measures of the minimum,
maximum, and average execution times.

3.5 Implicit Versus Explicit Time Reference

Some languages for the description of temporal properties make explicit reference
to temporal items (attributes or entities of “type time”, such as the occurrence times
of events and the durations of states or actions), whereas other formalisms leave
such references implicit in their syntax.
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To illustrate, consider the case of pure first-order predicate calculus to specify
system behavior and its properties, as done in some examples of Chap. 2. Formulae
explicitly refer to terms ranging over the time domain and combine them with quan-
tifiers; such formulae give properties where explicit time references are frequent,
such as in the sentence

For every instant of time t , the safe is open if and only if there exists another time instant u,
smaller than t and at least as large as t � 3, such that the correct code has been entered at u.

which corresponds to a part of formula (2.6) in Chap. 2. On the contrary, formulae
of classic temporal logic, despite its name, do not mention any temporal quantities
explicitly, and express temporal properties in terms of an implicit “current time” and
the ordering of events with respect to it; for example, a simple sentence in this style
reads

If the correct code is entered [implicitly assuming the adverb now], then the safe will open
sometime in the future, and then it will close again.

Most formalisms adopt some kind of intermediate approach between the
extremes of purely explicit and purely implicit references. For instance, many types
of abstract machines can specify explicitly the duration of activities with implicit
reference to their starting time (Statecharts, discussed in Chap. 7, and Petri Nets,
presented in Chap. 8, are two representative examples). Other languages inspired
by temporal logic (such as MTL, presented in Chap. 9) keep its basic approach of
referring any formula to an implicit current instant (the now time) but can explicitly
express time distances with respect to it. Such logics can express properties such as

If the correct code is entered [now], then the safe will open immediately, and then it will
close again after exactly three time units.

Using implicit references to time instants – in particular an implicit now – is quite
natural and convenient when modeling so-called “time-invariant systems”, which
are the majority of real-life systems: in most cases, in fact, the system behavior does
not depend on the absolute value of time but only on the relative time distances.
Therefore, expressing explicitly where the now is located along the time axis is
irrelevant for such system models.

Example 3.15 (Explicit and implicit time). Sentences stating historical facts typi-
cally use explicit time references2:

• During the year 1625, a dramatic famine struck Europe; the famine lasted until
the beginning of the year 1630.

• The starving population was an easy target for an epidemic of plague, which
began in 1629 and lasted until 1631.

• During the years 1625–1631, life expectancy dropped from 50 to 37 years.

2The following three sentences refer to some real historical facts mentioned in Alessandro
Manzoni’s The Betrothed; the dates and figures are plausible but not necessarily accurate.
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Observations about morals usually use implicit time references to convey
timelessness:

• Every lie is eventually uncovered.
• You can fool some of the people all of the time, and all of the people some of the

time, but you cannot fool all of the people all of the time.3

Engineering artifacts are often time-invariant systems, naturally described with
an implicit “now”:

• The speed of a braking car decreases proportionally relative to the time since
when braking starts (see Example 2.3).

• The discharge time of a capacitor attached to a resistor depends only on the
resistor’s resistance, the capacitor’s capacity, and the initial charge accumulated,
irrespective of the absolute time when discharging starts (the example is devel-
oped further in Chap. 4). �

Exercise 3.16 (|). Analyze the following sentences in natural language, and deter-
mine the kind of implicit or explicit time references they contain.

• World War II lasted 6 years from 1939.
• The last death of a US president in office occurred in 1963.
• The final agreement must be signed within 30 days from the subscription of the

letter of intent.
• After he reached the age of 60, he was never in good health for more than

3 months.
• A vast majority of the “baby boomers” will not be able to retire before the age of

65.
• Life expectancy has steadily increased in the last three centuries, and it is now

over 80 years in a few countries.
• You tried your best, and you failed miserably. The lesson is, never try. �

3.6 The Time Advancement Problem

The problem of time advancement arises when the model of a timed system exhibits
behaviors that do not progress past some instant. Usually, such standstill behaviors
do not correspond to any physical “real” phenomena; they may be the consequence
of some incompleteness and inconsistency in the formalization of the system, and
must thus be ruled out.

The simplest manifestation of the time advancement problem arises when
transitions that occur in null time are possible. For instance, several automata-
based formalisms such as Statecharts and timed versions of Petri nets support such

3This quotation is usually attributed to Abraham Lincoln, but this is allegedly apocryphal.
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abstract zero-time transitions (see Chaps. 7 and 8). Although truly instantaneous
actions are physically unfeasible, they nonetheless are useful abstractions for events
that take an amount of time which is negligible with respect to the overall dynamics
of the system; pushing a button is an example of an action whose actual duration
can usually be ignored and that can thus be represented abstractly as a zero-time
event. When zero-time transitions are allowed, an infinite number of such transitions
may accumulate in an arbitrarily small interval, thus modeling a fictitious infinite
computation where time does not advance past the interval. Behaviors where time
does not advance are usually called “Zeno” behaviors, from the ancient philosopher
Zeno of Elea4 and his paradoxes on time advancement. From a rigorous point of
view, even the notion of behavior as a function – whose domain is time and whose
range is the system state (see Chap. 4) – is ill-defined with zero-time transitions: if
the transition is instantaneous, the system is both at the source state and at the target
state in the same instant.

Even if actions are non-instantaneous, Zeno behaviors can still occur if time
advances only by arbitrarily small amounts. Consider, for instance, a system that
produces an unbounded sequence of events pk , for k 2 N; each event pk happens
exactly tk time units after the previous one (i.e., pk�1). If the series of the relative
times tk (that is, the infinite sum

P
k tk of the time distances between consecutive

events) converges to a finite limit t , then the absolute time never surpasses t ; in
other words, time stops at t , while an infinite number of events occur in the finite
time between any tk and t .

Zeno behaviors exist also for continuous-valued time-dependent functions of
time that vary smoothly. Take, for instance, the real-valued function of time

b.t/ D
8
<

:

exp
�
� 1

.t�t0/2

�
sin

�
1

t�t0

�
t ¤ t0 ;

0 t D t0 :
(3.3)

b.t/ is very smooth, as it possesses continuous derivatives of all orders. Nonetheless,
its sign changes an infinite number of times in any interval containing the time
instant t0; therefore, if we consider the event of function b.t/ changing its sign, an
unbounded sequence of such events takes place before t0, without time advancing
past t0; natural notions such as “the last or next instant at which the sign of b

changes” are not defined at time t0, and, consequently, we cannot describe the
system by relating its behavior to such – otherwise well-defined – notions. Indeed,
as will be explained precisely in Chap. 9 when discussing temporal logics, absence
of Zenoness may be obtained through the mathematical notion of analyticity, which
is even stronger than infinite derivability.

Even when Zeno behaviors are ruled out, and hence time progresses, the
occurrence of an unbounded number of events in intervals of fixed finite length may
lead to “irregular” behaviors that complicate the analysis. For example, the distance

4Circa 490–425 B.C.
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between consecutive events may get indefinitely smaller while time diverges, such
as in the harmonic sequence defined by tkC1 D tk C 1=k. These behaviors are
called “Berkeley”, after the philosopher George Berkeley5 and his investigations
arguing against the notion of infinitesimal. Systems with Berkeley behaviors cannot
be controlled by digital controllers operating with a fixed sampling rate since the
behaviors cannot be suitably discretized. On the other hand, several real-life systems
cannot guarantee an a priori bound on the “speed” of events; hence their model must
include Berkeley behaviors.

Some well-known problems of – possibly – concurrent computation such as
termination, deadlocks, and fairness can be considered as dual problems to time
advancement, because they describe processes that fail to advance their states, while
time keeps on flowing. Examples of these problems and their solutions are discussed
with reference to a variety of formalisms in Part II of the book.

Two different approaches manage the time advancement problem: we refer to
them as “a priori” and “a posteriori” methods. In a priori methods, the syntax or the
semantics of the formal notation is restricted beforehand, in order to guarantee that
every system model is exempt from time advancement problems by construction.
For instance, in some notations every transition must necessarily take a positive time
greater than some fixed value c. A less restrictive assumption, which guarantees a
good level of abstraction while still avoiding a priori the risk of Zeno and even
Berkeley behaviors, allows for only finite sequences of zero-time transitions that
are followed by an event that takes a minimum fixed time. This view does not
explicitly restrict the number of events occurring in any finite time, but ensures that
no infinite sequence ever accumulates. It is well suited, for instance, for expressing
a sequence of logic gate switches in a hardware processor that occur within a single
clock interval.

A posteriori methods, in contrast, deal with time advancement issues only after
the system specification has been built; the specification is analyzed against a formal
definition of time advancement, in order to check that all of its actual behaviors
do not run into the time advancement problem. A posteriori methods may be
particularly useful for detecting possible criticalities in the behavior of real systems
already built. For instance, the oscillations exhibited by a mathematical model with
a frequency that goes to infinity within a finite time interval, as in the function b.t/

mentioned in (3.3) above, may be the symptom of some instability in the modeled
physical system, in the same way a physical quantity – say, a temperature or a
pressure – that tends to infinity within a finite time in the model is the symptom
of a serious possible failure in the real system.

The same “duality” – a priori avoidance vs. a posteriori verification – is often
assumed to deal with the symmetric problem of process advancement.

5Kilkenny, 1685–Oxford, 1753.
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Exercise 3.17. Consider a system whose state s evolves according to the function
of time s.t/ D sin.!t2/. How would you classify such a behavior? A Zeno
behavior? A Berkeley behavior? None of them? �

Exercise 3.18. An unbounded sequence of events occur each at time t1; t2; : : : ; ti ;

tiC1; : : :, where

tk D
(

0 k D 1 ;

tk�1 C dk�1 k > 1 :

Define, if possible, a sequence of values d1; d2; d3; : : : such that the resulting
sequence of events is:

1. Zeno and all events but the first occur at irrational times;
2. Zeno and all events occur at integer times;
3. Non-Zeno and Berkeley;
4. Zeno and Non-Berkeley;
5. Non-Berkeley and all events but the first occur at irrational times;
6. Non-Berkeley and all events occur at integer times. �

3.7 Concurrency and Composition

Most real systems – as the term itself suggests – are complex enough that it is
useful, if not outright unavoidable, to model, analyze, and synthesize them as the
composition of several subsystems. Such a composition/decomposition process may
be iterated until each component is simple enough to be analyzed directly.

Composition and decomposition, also referred to as modularization, are general
and powerful design principles in any field of engineering. In particular, in the case
of – mostly sequential – software design, they have originated a rich collection of
techniques and language constructs, from subroutines to abstract data types and
object orientation.

The application of the same principles of modularity to concurrent and timed
systems is definitely less mature, and in fact only a few programming languages
deal explicitly with concurrency. From a programming language viewpoint, the
central issue with the modeling of concurrency is the synchronization of activities
(embodied in different constructs such as processes, tasks, and threads) when
they access shared resources or exchange messages. The etymology of the word
“synchronization” is quite descriptive of the timing issues that are at stake:
“synchronization” combines the Greek words ��� (which means “together”)
and �	o�o� (which means “time”), and in fact, concurrent activities evolve in
parallel independently, until they must synchronize and meet at the same time.
Synchronization may require that faster activities slow down and wait for the slower
activities to meet themselves at the “same time”.

When the concurrent activities of the modules are heterogeneous in nature,
formally modeling the synchronization of components becomes even more intricate
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because of the difficulty of coming up with a uniform time model. For instance, a
plant, a vehicle, and a group of people can each be one module, interacting with
other modules for monitoring and control implemented in hardware and software.
Consequently, time references can be implicit for some activities and explicit
for others; also, the overall system model might include parts in which time is
represented simply as an ordering of events and parts that are described through
a metric notion of time; finally, the system may even be hybrid, with different
components referring to time domains of different natures (discrete or continuous).

It is often convenient to distinguish, within concurrent components, between the
environment and the system embedded into it, which typically monitors, controls, or
manages the environment. We will see that the models of, and the roles attached to,
system and environment significantly vary with notations and application domains.
In some cases, the environment models an independent external entity that only
supplies stimuli to the system, which inputs them; the system’s inputs from the
environment may be modeled as nondeterministic sequences of events. In other
cases, the environment is just one of the components of an overall global system, and
it forms a feedback loop with the other modules both by providing them with input
and by reacting to their output. Models of the first type, where the environment is an
independent external module, are called open systems (that is, open to the external
environment), whereas models of the second type are called closed systems.

The following subsections provide a basic classification of the approaches
dealing with the concurrent composition of timed units.

3.7.1 Synchronous Versus Asynchronous Composition

Synchronous and asynchronous compositions are two paradigms for combining the
temporal evolution of concurrent modules.

Synchronous composition constrains state changes of the various units to occur
at the very same time, or at time instants that are strictly and rigidly related. Time
models with synchronous composition naturally refer to discrete time domains,
although exceptions are possible where the overall system synchronizes over a
continuous time domain.

Conversely, in asynchronous composition, each unit can progress independently
of the others. In this view, there is no need to know in which state each unit is at
every instant; in some cases this is even impossible: for instance, if we are dealing
with a system that is geographically distributed over a wide area and the state of a
given component changes in a time period that is shorter than that needed to send
information about the state to other components. A similar situation occurs in totally
different realms, such as the global stock market, where the differences in local
times at locations all over the world make it impossible to define certain states about
the market, such as when it is “closed”.

While units progress independently most of the time, the “real” synchronization
of asynchronously composed systems occurs with dedicated events at special
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“meeting points”, and according to specific rules. The rendezvous mechanism of
the Ada programming language, which we mentioned in Sect. 3.4.1 for its nonde-
terministic features, is a typical example of synchronization between asynchronous
tasks: a task owning a resource (the Buffer in Example 3.11) waits to grant it until
it receives a request thereof; symmetrically, a task that needs to access the resources
raises a request (an entry call) and waits until the owner is ready to accept it.
When both conditions are verified (an entry call is issued and the owner is ready
to accept it) the rendezvous occurs, and the two tasks are synchronized. At the
end of the entry execution by the owner, the tasks split again and continue their
asynchronous execution. As we saw in Sect. 3.4, Ada combines this mechanism
with a nondeterministic choice in case two or more different rendezvous are possible
between the task owning the resources and those asking for their use at a given time.

Many formalisms feature some kind of asynchronous composition. Among these,
Petri nets (described in depth in Chap. 8) exhibit similarities with the Ada task
system.

Unsurprisingly, asynchronous composition is usually more complex to formalize
precisely than synchronous composition. Chapters 7, 8, and 10 present several
representative approaches to this problem.

Exercise 3.19. Consider the standard concurrency libraries of the following
general-purpose programming languages:

• C (processes);
• Java (threads);
• C# (threads);
• Eiffel (processors and SCOOP).

Are the models of parallelism they implement synchronous or asynchronous?
What kinds of synchronization mechanisms do they offer? Do you know any
programming language or modeling notation that features a purely synchronous
concurrency model? �

3.7.2 Message Passing Versus Resource Sharing

Another major classification of the mechanisms to compose and coordinate con-
current system components is into message passing and resource sharing. The two
terms are rather self-explanatory: in message-passing coordination, components
exchange messages over communication channels (such as buffers or pipes) to
synchronize; in resource-sharing coordination, different components have access
to the same resources (such as memory locations), and communication takes place
when a unit reads from the shared space what another unit has written. “Google
Docs” is an example of Internet-based application with shared concurrent access by
multiple users, whereas email is a typical message-passing mechanism.
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At lower levels of abstraction, communication will ultimately involve concurrent
access to some shared resource. For example, in a high-level programming language
with routine parameters passed by reference, the passage of actual parameters is akin
to a message-passing communication mechanism even when it is implemented by
means of sharing of global variables, accessed in a disciplined way. Even email com-
munication involves several implementation steps where buffers, communication
channels, and other resources are shared in the various stages of the transmission.

At higher abstraction levels of applications, however, message passing and
resource sharing feature different and peculiar properties, and involve some clear
trade-offs. Both types of coordination support asynchronous interaction among
activities (processes, threads, and so on), though, in principle, they could both
be deployed in fully synchronous systems. Message passing, on the one hand,
decouples the timing of concurrent activities almost completely; an email message,
for instance, might never be received. Resource sharing, on the other hand, usually
requires stricter coordination rules, in particular to manage read and write access
rights; this makes it more likely that some activities have to wait explicitly before
accessing the shared resources.

Many modeling formalisms with some notion of module composition feature
coordination modeling primitives that correspond to message-passing mechanisms
(for example, channels and send/receive message primitives), to memory-sharing
ones (for example, global variables), or to both. Chapters 4 and 10 describe some
relevant examples.

In terms of other dimensions of time modeling, both message-passing and
resource-sharing synchronization influence the ordering of events. For instance,
reading an email message is possible only after it has been sent and subsequently
delivered; the order is partial because messages need not be read in the same order
in which they were sent. On the other hand, synchronization strategies may also
depend on metric aspects of time in parallel systems with real-time requirements.

Exercise 3.20. Consider the following functional programming languages:

• Haskell;
• Erlang;
• Scala.

What kind of coordination mechanism do they offer: message passing or memory
sharing? �

3.8 Analysis and Verification Issues

Formal models must be amenable to analysis to be useful, so that probing the models
can determine whether the systems will behave as expected and will possess the
desired features. The characterizing properties that the model (and then the system)
must exhibit are often called requirements; hence the task of checking that a given
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model satisfies a set of requirements is called verification. Although this book is
not about verification, the discussion and comparison of formalisms must refer to
several notions related to verification and, more generally, formal analysis. The rest
of the current section presents these notions, which have broad scope, focusing the
discussion on their relevance to timed models.

3.8.1 Expressiveness

The notion of expressiveness refers to the possibility of characterizing extensive
classes of properties; it is a fundamental criterion for the classification of formal
languages. A language L1 is more expressive than another language L2 if the
sentences of L1 can define sets of behaviors that no sentence of L2 can identify
precisely, whereas everything definable with L2 is definable with L1 as well. This
informal definition implies that the expressiveness relation among languages is
a partial order, as there are pairs of formal languages whose expressive power
is incomparable: for each language, there exist properties that can be expressed
only with the other language. In other cases, different formalisms have the same
expressive power; hence they can express the very same properties with different
syntax. Expressiveness only deals with the logical possibility of expressing proper-
ties; hence it differs from other – somewhat subjective, but nonetheless very relevant
– characterizations such as conciseness, readability, naturalness, and ease of use.

Several of the other dimensions of time modeling often mutually influence the
expressiveness of the formalisms. For example, a language that can only constrain
the ordering of events is less expressive, by definition, than a similar language that
includes primitives to declare the temporal distance between consecutive events.
In other cases, the possibility of expressing metric constraints depends on other
dimensions; for example, classic temporal logic, presented in Chap. 9, can express
time distances – even if somehow cumbersomely – only over discrete time domains.

3.8.2 Decidability and Complexity

Although in principle one might prefer the “most expressive” formalism, in order
not to be restrained in what can be expressed, there is a fundamental trade-off
between expressiveness and another important characteristic of a formal notation:
decidability. A certain property is decidable for a formal language if there exists
an algorithmic procedure that is capable of determining, for any model formalized
in that language, whether the property holds or not in the model. Therefore, the
verification of decidable properties is – at least in principle – a totally automated
process. The trade-off between expressiveness and decidability arises because prop-
erties may become undecidable with more expressive languages. The verification of
undecidable properties can only resort to semi-automated or manual methods, or to
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partial techniques such as testing and simulation. “Partial” means that the results of
the analysis may be incomplete or incorrect for a subset of all possible behaviors of
the models.

Let us consider the property of termination to illustrate the trade-off between
expressiveness and decidability. The verification problem reads as follows: given
any program expressed in a programming language L, determine if it will terminate
for every possible input. Termination is a temporal property, where time can feature
implicitly (“The program will eventually halt”) or explicitly (“There exists a future
time t such that the program will halt at t”). Whether termination is decidable
depends on the expressiveness of the programming language L.

As discussed in Chap. 6, general-purpose programming languages, such as
C and Lisp, achieve maximum expressiveness, and consequently termination is
undecidable for programs in such languages. If, however, the expressive power is
sufficiently restricted, termination becomes decidable. For example, the termination
of programs written in a subset of C where dynamic memory allocation, recursion,
and the preprocessor are disabled is decidable, because such programs use an a
priori bounded amount of memory. This subset is, however, less expressive than the
full language, and many C programs cannot be encoded under these restrictions.

While decidability is just a “yes/no” property, complexity analysis provides, in
the case where a given property is decidable, a measure of the computational effort
required by an algorithm to decide whether the property holds or not for a model.
The computational effort is typically measured in terms of the amount of memory
or time required to perform the computation, as a function of the length of the input
(that is, the size of its encoding). Chapter 6 presents more details about this classical
view of computational complexity.

3.8.3 Analysis and Verification Techniques

There exist two broad families of verification techniques: those based on exhaustive
enumeration procedures, and those based on syntactic transformations like deduc-
tion or rewriting, typically in the context of some axiomatic description. Although
large, these two classes do not cover the whole spectrum of verification algorithms,
which comprises very different techniques and methods; here, however, we limit
ourselves to sketching a minimal definition of these two basic techniques.

Exhaustive enumeration techniques are mostly automated, and are based on
the exploration of graphs or other structures representing an operational model of
the system, or of the space of all possible interpretations for formulae expressing the
required properties. A typical example of this kind of technique is model checking,
illustrated in Chap. 11.

Techniques based on syntactic transformations typically address the verification
problem by means of logic deduction. These techniques can be applied when the
model, its requirements, or both are in descriptive form; then the verification may
consist of successive applications of deduction schemata, until the requirements
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are shown to be a logical consequence of the system model. Mathematical logic
is a classic example of formalism focused on syntactic transformations, as shown
in Chap. 2. Chapter 2 also exemplified how applying deduction schemata incurs
in a trade-off between expressiveness and decidability: simple propositional logic
supports deduction schemata where every expressible property is decidable, but
its expressive power is limited to simple behaviors. The much more expressive
predicate logic is therefore preferable for complex system specification, but no
verification technique can decide the validity of every sentence of predicate logic.
Chapter 9 will discuss similar trade-offs for logics supporting a notion of time.

3.8.3.1 Summing Up

This chapter presented some dimensions that characterize languages and methods
for the modeling and analysis of timed systems. The dimensions will support the
presentation of the languages in the rest of the book, and will help readers classify,
compare, and evaluate other similar notations, and possibly even derive new ones if
needed. The dimensions of this chapter are not orthogonal, and indeed we discussed
many examples of mutual influence and dependence among them. The dimensions
are also often qualitative, in that a rigid classification of every language against
every dimension would often be vacuous, unsubstantiated, or even misleading for
widely different notations with heterogeneous scopes. The rest of the book explicitly
discusses the most relevant dimensions for each notation; when doing so in Part II
of the book, the keywords referring to the dimensions discussed are graphically
EMPHASIZED and referenced in the index with sub-entries corresponding to the
formalisms under discussion. Dealing with the dimensions not mentioned explicitly
is a useful exercise that will improve your understanding of the book’s content.

3.9 Bibliographic Remarks

Koymans discusses the nature of time domains for real-time modeling [18]. Some
textbooks consider hybrid systems in a general setting [22, 29]. A few authors
address the issue of different time granularities [6, 8, 28]. The classical theory
of sampling considers the equivalence between continuous-time signals and their
discrete-time samplings [4, 9]. Wirth [30] first pointed out the difference between
purely parallel and real-time systems.

The concept of invariance under stuttering was introduced by Lamport [21]
and characterized for temporal logics [19, 24]. The differences between linear-
and branching-time models were discussed extensively in classic references on
temporal logics [10,11,18,20] and real-time logics [1]; Koymans [18], in particular,
mentioned branching-in-the-past time models. Classic temporal logic with the
notion of an implicit current time was introduced by philosophers [17]. Pnueli
pioneered its usage as a modeling tool in computing [26]. Abadi and Lamport
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introduced the attribute “Zeno” to describe behaviors where time stops; by analogy,
we suggested the attribute “Berkeley” to characterize a different category of time
advancement problems [13, 14]. Notions of nonstandard real analysis allow for a
simpler approach to model and reason about Zenoness in the presence of zero-time
transitions [15].

Fairness and other concurrency problems are described in various texts on
parallel programming [2, 3, 12]. Most software engineering books elucidate the
notions of requirements and verification [16, 25, 27].

The main features of the Ada programming language are described in many texts,
such as Booch and Bryan [5]. A first critical semantic analysis of the rendezvous
mechanism and a possible formalization by means of Petri nets was published by
Mandrioli et al. [7, 23].
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