Chapter 1
It’s About Time

Imagine a world without time. . .

Can’t do it? The egregious difficulty you have certainly experienced with such
a Herculean stretch of imagination shows that the notion of time is so deeply
entrenched in our mental models of the world that completely eliminating it is hardly
possible.

Time plays a central role in everyday life, where thoughts, actions, and statements
often include temporal references: “I’m going on vacation tomorrow”, “I have to
finish this job by the end of the week”, “John is always late”. Time is also a favorite
object of philosophical inquiry, and a subject of religious speculation. The very
notion of time pervades science and engineering.

Physics has dated the beginning of our universe to time .7 — approximately
13.7 billion years ago. Philosophy and religion, as well as physics itself, speculate
about the state of affairs before 7. Past and future seem perfectly well defined
notions at the level of intuition, but, whereas mathematics can treat the past as
“future with reversed sign”, physics establishes — with the second principle of
thermodynamics — that the arrow of time does not go backward.

Engineering, concerned with the invention of systems that operate in the physical
world and have some purpose, has to deal with several different notions of time:
it affects human life, hopefully improving it; it applies knowledge about the laws
of physics; it develops and analyzes mathematical models of the world; and, at
least indirectly, it refers to speculations offered by philosophers, since philosophy
is rooted in, is used to analyze, and in one way or another impacts our lives. For
example, when engineering a subway system, the time saved by travelers using the
transportation is a major driver in determining the routes and the frequency and
speeds of trains. In addition, braking and acceleration times impact the passengers’
safety and comfort, and are to be included in mathematical models of the cars.

Computer science has rapidly become pervasive in engineering and, as a conse-
quence, in everyday life. Cars, for example, embed many electronic components,
and also systems in many other different domains — banking, medical care,

C.A. Furia et al., Modeling Time in Computing, Monographs in Theoretical Computer 1
Science. An EATCS Series, DOI 10.1007/978-3-642-32332-4_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 It’s About Time

transportation, etc. — depend, directly or indirectly, on the assistance of computing
devices.

The proliferation of computing devices in the modern world is evident every-
where. What is, instead, less apparent is how the relatively short history of
computing has produced novel problems and challenges in dealing with time, and
solutions to them when designing systems with computational components.

This book has precisely the goal of analyzing this situation: on the one hand,
computers are devices subject to physical laws like every other physical object;
therefore, they can be modeled in terms of the motion of electrons in semiconductors
and electromagnetic waves. On the other hand, computers work in widely diverse
application domains, which implies dramatically different notions of time and its
flow. For instance, users of automated teller machines certainly do not need a model
of the electrons that flow in the circuits controlling the withdrawal of money; on
the contrary, the users are concerned with the machine’s responsiveness and expect
to be able to receive money within a few seconds. Similar dualities occur in many
other situations where people interact with computer-controlled devices.

The fundamental conceptual tool for coping with heterogeneous concerns in
complex situations is abstraction, which consists of focusing on what is relevant
in a certain context and for a certain purpose, while neglecting irrelevant details.
Abstraction pervades computer science, which often has to deal with interacting
multifarious domains as suggested by the examples above. Unsurprisingly, the
models applied in computer science are often more diverse and heterogeneous than
those in other sectors of engineering such as electrical or mechanical engineering,
whose application domains are fairly established and well understood.

Abstraction of time is a special, and crucial, case: the roles and perceptions of
time are heterogeneous, spanning very different domains — sometimes including
psychological aspects (“happy times flow faster”’) — and hence models of time follow
a great variety of approaches and have spawned diverse notations and formalisms.

At one extreme, given that computers are physical objects, we could model and
analyze their behavior according to the physical laws of electromagnetism, which
describe the flow of electrons through semiconductors or even the evolution of their
quantum states.

At the other extreme, the theory of computation is fundamentally based on drastic
abstractions of time, almost to the point of removing it completely from the models:
in many traditional applications, only the results of a computational process matter,
not so much how long it takes to obtain them. This was true with the slow batch
computer systems of the past, when users input a collection of punched cards and
came back after 1 day to pick up the printout of the results; but it also happens with
the fast interactive computers of the present, when users perceive only the overall
responsiveness of the system, and the time of each individual operation is negligible.
In these scenarios, computational processes are abstracted as functions from input
to output data.

Between these two extremes there is a continuum of abstractions and models,
based on application environments, design goals, and preferences of the designers.
Let us sketch a few examples, developed in greater detail throughout the book.



1 It’s About Time 3

When moving from the point of view of electronic circuit design to that of
hardware architecture, we apply discretization, namely the change from continuous
to discrete domains. This applies both to time and to other domains used in the
formal models. Discretization can be seen as a tool for mathematical analysis via
numerical computation, which has burgeoned also in domains where time and
dynamics are not primary concerns, for instance in the finite element methods for
static analysis of structures.

Computational complexity theory defined another major historical approach to
modeling time in computing. In some sense, computational complexity fills the
“abstraction gap” of purely functional models, as it describes how long compu-
tations take, independently of what output they produce. Take, for instance, the
problem of sorting a sequence of elements. First, we can describe and implement
a few algorithms that obtain the desired result. Then, we classify the algorithms
according to their complexity, preferring the most efficient ones, which require,
say, a time proportional to n - logn for every sequence with n elements. The
computational complexity abstraction of time sharply departs from the traditional
approaches in other fields of engineering, where system behavior is modeled by
the evolution of state as a function of time. For example, the laws of mechanics
describe the position and velocity of masses as functions of time, from which one
can compute the time and space required by, say, a car to reach a full stop from a
given initial speed.

However, the traditional view of computation as a sequential process that starts
from some initial state, reads some input, and produces an output after some time is
inadequate to model systems where computational elements work in collaboration
with modules of different kinds. This is the case with so-called “reactive systems”,
which are often embedded. Reactive systems include computing devices as parts of
a more complex system where different processes, with different dynamics, interact
and coordinate with one another towards a common goal, or compete to access
limited shared resources. Also, when the computations must obey quantitative
timing constraints (e.g., “the shared resource cannot be occupied for longer than
100 seconds”, “as a consequence of an alarm the system must be shut down within
ten seconds”), the systems are called “real time”.

The structure of reactive systems can be highly complex and they may include
heterogeneous components that require diverse mathematical models. Often, the
external environment, whose behavior is only partially controllable or observable,
plays a prominent role in interacting with the other system components. The
environment often includes users and actors — human or otherwise. For example, a
car is a complex system made of interacting mechanical and electronic components,
which interacts with a much larger and complex environment consisting of other
cars, drivers, pedestrians, roads, and so on. Modeling, analyzing, and designing such
systems requires the ability to formalize quite different features and their mutual
interactions.

If we focus on time modeling, we notice how many different notions of time
belong to different levels of abstraction. In the example of cars in traffic, there
are, among other notions of time, those of revolutions per minute of the engines,



4 1 It’s About Time

processor clocks in the electronic embedded components, reaction times of drivers,
schedules of traffic lights, and so on. Such notions of time have quite different
features and therefore require different mathematical models: the microseconds of
electronic signals; the hours needed to go from city to city; the precisely determined
time necessary to reach a full stop; the uncertain reaction time of average drivers
from the instant an obstacle appears on the road to when the brake pedal is pushed.
All these “times” belong to the same big picture; competent designers must be
able to analyze their dynamics in isolation whenever possible, but also be able to
understand their interactions when relevant — for instance, when documenting the
behavior of brakes from the user’s perspective.

Heterogeneity, however, is not always an issue: a special class of systems consists
of collections of homogeneous components that cooperate towards a common goal.
This is the case, for example, with multiple identical pistons and cylinders in a car,
which together have more power than a single cylinder could have, or of the parallel
processors in a multi-core machine. With homogeneous components, coordination
and synchronization become the main modeling and design concerns.

In response to the advent and rapid ongoing evolution of heterogeneous reactive
systems, the scientific community has developed a rich collection of formalisms,
notations, and techniques to deal with the various aspects of timing analysis. The
introduction and evolution of the modeling notations has inevitably often been
haphazard and demand-driven, corresponding to the evolving needs of applications.
As aresult, publications describing specific approaches, methods, and tools abound,
but there is a lack of comprehensive systematic analyses that investigate general
issues and survey the peculiarities of the different contributions.

Filling this void is the main goal of this book, which aims at fostering the critical
thinking of readers towards:

* Understanding the subtleties of system dynamics when analyzing problems and
investigating possible solutions (we will see that time is often “hidden” in models
that do not feature it explicitly);

e Evaluating and comparing models and approaches and selecting the most
appropriate ones for the specific needs (we will see that, unlike in other fields
of engineering, the “best” formalisms are not always evident; on the contrary,
tailoring and integrating existing solutions may be necessary in some new cases).

To achieve these goals, the book develops in two main directions. It presents
some fundamental categories useful for comparing and evaluating modeling nota-
tions encapsulating time. These categories include issues such as whether time is
modeled as a discrete or a dense domain. The book’s other, orthogonal, direction
is historical, which starts with a review of the traditional time models in science
and engineering in general, and in computer science in particular. The presentation
continues with more recent models that address specifically the situation of complex
systems where computing devices interact with subsystems of other types. In this
respect, it is important to emphasize how an interdisciplinary approach is becoming
more and more relevant in modern system design: with the exception of very
few highly specialized fields, it is essential that software designers understand the



1 It’s About Time 5

application domain and, conversely, domain engineers have a working knowledge
of the computing subsystem’s behavior and of its interactions. The same interdisci-
plinary approach may be relevant also for the general public, beyond the technicians
and engineers, since, as we emphasized before, human-computer interaction is a
primary attribute of many complex systems.

Within this global picture, time plays a fundamental role, on the one hand being
the unifying variable that spans the life of the whole universe, on the other hand
showing itself in so many different ways and forms to the various actors of the
universe’s life, from subnuclear particles that exist for a few nanoseconds to stars
that “die” billions of years after they “have been born”, from the pace of a human
heart to the time needed to obtain a university degree.

In correspondence with the above directions, the book is structured into three
introductory chapters and two parts, and concluded by a short epilogue. After this
introduction, Chap. 2 presents the notions of formalism and model in general terms,
and some of their fundamental classification criteria; it also briefly discusses the
fundamentals of propositional and predicate logic, which should help make the rest
of the book self-contained for a reasonably large readership.

Chapter 3 is a cornerstone of the whole book, as it introduces a taxonomy
of essential issues of modeling time in diverse systems. The presentation of the
numerous formalisms in the rest of the book recurrently refers to these “dimensions”
to compare and contrast different models on a common ground.

Part I contains a concise summary of the models of time that are traditional in
engineering and the natural sciences, including traditional computer science. It is
meant to provide heterogeneous readers with a homogeneous background.

Part II covers advanced and specialized formalisms specifically developed to
support time modeling in heterogeneous software-intensive systems. The aim of
Part II is not to offer an exhaustive list of the innumerable contributions available
in the literature; this would be a Herculean task, but also probably of little value.
On the contrary, the presentation privileges depth over exhaustiveness, and focuses
on significant semantic subtleties of a few important formalisms and critical issues,
rather than cataloging every minimal variation of the basic approaches. Readers
interested in additional details will still find detailed, commented bibliographic
references at the end of each chapter. We hope that this presentation style will
help readers extend the analysis to other paradigms or approaches not included
in the main text. Chapters 7-9 discuss three main and complementary families of
formalisms: those based on finite state machines; Petri nets; and those extending
mathematical logic. Chapter 10 is about process algebras — widely used to model
concurrency, but less prominently so in timing analysis. Chapter 11 presents “dual-
language approaches” which combine two notations with different characteristics
to model and verify complex systems (model checking frameworks are the most
popular applications of dual-language approaches).

Chapter 12 concludes the book with summarizing remarks and hints towards
future developments and challenges.

The book’s content focuses on the way formalisms can be used to model system
behavior and properties and on their expressive power — also in the informal sense



6 1 It’s About Time

of naturalness and ease of use. Analysis and verification techniques and tools for
the various formalisms have, in contrast, a more limited coverage, as the book is
not meant to focus on verification techniques. Nevertheless, every chapter in Part 11
includes a section that mentions analysis and verification techniques and tools based
on the notations introduced in the chapter.

1.1 Bibliographic Remarks

While it is arguable that Homo sapiens began thinking about time shortly after
the development of natural language, ancient philosophers were the first whose
observations have been recorded and preserved to this day, and have influenced the
evolution of science and engineering. The rest of this section gives a very sketchy
outline of some of these ideas [8, 10].

The Greek pre-Socratic (and pre-sophistic) naturalist philosophers of the fifth
and fourth centuries B.C. suggested informal models of universal time. Some of
them, most notably Heraclitus and his followers, predicated a notion of time that
is “monotonic” (using modern terminology) in that it never repeats itself; others,
most notably those from Parmenides’s school, considered time an illusion devoid of
physical reality. Among Parmenides’s disciples, Zeno of Elea has become famous
for his paradoxes on the advancement of time; some critical behaviors in the formal
analysis of systems have been named after him (see Sect.3.6). Many philosophers
following the Greek naturalists have adopted, and refined, either Parmenides’s or
Heraclitus’s ideas about time; some thinkers, such as Vico in the seventeenth century
or Nietzsche in the nineteenth, have developed an intermediate view where time
undergoes real progress but periodically repeats itself.

Kant’s gnoseology describes time as an a priori concept, ingrained in the human
mind and hence usable as a universal reference in describing the physical world.
This view bolstered the development of classical Newtonian mechanics; when
Einstein generalized Newton’s models with his Theory of Relativity, he also had
to perfect its philosophical underpinnings to account for the fact that different
observers measure time differently according to their relative motion. Contemporary
physics, with its experiments and speculations, keeps on questioning the traditional
views of time and introduces new, original explanatory models.

Literature developed around original notions of time is also abundant, as
it includes a large part of science-fiction books and movies that entertain the
possibility of time-travel; since it is impossible to cite even a fraction of these
many books, let us just mention the irresistible description of the problems of
grammar related to time travel in Douglas Adams’s “The Restaurant at the End of
the Universe” [1]. The notion of time in science has also inspired some major literary
masterpieces, such as some of Borges’s short stories [3], and several of Calvino’s
novels [4,5].

The rest of this book offers many specific technical references on time. More
general examples of recent papers that discuss some “philosophical” aspects of



References 7

time with technical rigor include Alur and Henzinger’s well-known surveys [2, 7]
(the second survey, [7], shares the title with this chapter), Koymans [9], and
Schreiber [11]. Finally, the same basic motivations that spawned our survey
paper [6] also guided us in developing this book.

References

(98] Do =

W

10.
. Schreiber, F.A.: Is time a real time? An overview of time ontology in informatics. In: Halang,

11

. Adams, D.: The Restaurant at the End of the Universe. Pan Macmillan, London (1980)
. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Real Time: Theory in

Practice. Lecture Notes in Computer Science, vol. 600, pp. 74—106. Springer, Berlin/New york
(1992)

. Borges, J.L.: Collected Fictions. Penguin, New York (1969)
. Calvino, I.: Cosmicomics. Harcourt Brace, New York (1968). Original Italian title: Le

cosmicomiche

. Calvino, I.: t Zero. Harcourt Brace, New York (1969). Original Italian title: 7i con zero
. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing: a taxonomy

and a comparative survey. ACM Comput. Surv. 42(2), 1-59 (2010). Article 6

. Henzinger, T.A.: It’s about time: real-time logics reviewed. In: Sangiorgi, D., de Simone, R.

(eds.) Proceedings of the 9th International Conference on Concurrency Theory (CONCUR’98).
Lecture Notes in Computer Science, vol. 1466, pp. 439-454. Springer, Berlin/New York (1998)

. Hetherington, S. (ed.): Epistemology: The Key Thinkers. Continuum, London/New York

(2012)

. Koymans, R.: (Real) time: a philosophical perspective. In: de Bakker, J.W., Huizing, C.,

de Roever, W.P., Rozenberg, G. (eds.) Proceedings of the REX Workshop: “Real-Time: Theory
in Practice”. Lecture Notes in Computer Science, vol. 600, pp. 353-370. Springer, Berlin/New
York (1992)

Russell, B.: A History of Western Philosophy. Simon and Schuster, New York (1967)

W.A., Stoyenko, A.D. (eds.) Real Time Computing. NATO ASI, vol. F 127, pp. 283-307.
Springer, Berlin/New York (1994)



2 Springer
http://www.springer.com/978-3-642-32331-7

Modeling Time in Computing

Furia, C.A; Mandrioli, D.; Morzenti, A.; Rossi, M.
2012, XV, 424 p., Hardcover

ISBN: @78-3-642-32331-7



	Chapter 1 It's About Time

	1.1 Bibliographic Remarks
	References




