
Preface

High-dimensional spaces arise naturally as a way of modelling datasets with many
attributes. Such a dataset can be directly represented in a space spanned by the
attributes, with each record of the dataset represented as a point in the space with its
position depending on its attribute values. Such spaces are not easy to work with
because of their high dimensionality: our intuition about space is not reliable, and
measures such as distance do not provide as clear information as we might expect.

High-dimensional spaces have not received as much attention as their appli-
cations deserve, partly for these reasons. Some areas where there has been sub-
stantial research are: images and video, with high-dimensional representations
based on one attribute per pixel; and spaces with highly non-convex clusters. For
images and video, the high dimensionality is an artifact of a direct representation,
but the inherent dimensionality is usually much lower, and easily discoverable.
Spaces with a few highly non-convex clusters do occur, but are not typical of the
kind of datasets that arise in practice.

There are at least three main areas where complex high dimensionality and
large datasets arise naturally. The first is data collected by online retailers (e.g.
Amazon), preference sites (e.g. Pandora), social media sites (e.g. Facebook), and
the customer relationship data of all large businesses. In these applications, the
amount of data available about any individual is large but also sparse. For
example, a site like Pandora has preference information for every song that a user
has listened to, but this is still a tiny fraction of all of the songs that the site cares
about. A site like Amazon has information about which items any customer has
bought, but this is a small fraction of what is available.

The second is data derived from text (and speech). The word usage in a set of
documents produces data about the frequency with which each word is used. As in
the first case, all of the words used in a given document are visible, but there are
always many words that are not used at all in it. So such datasets are large (because
easy to construct), wide (because languages contain many words), and sparse
(because any document uses a small fraction of the possible words).

The third is data collected for a security, defence, law enforcement or intelli-
gence purpose; or collected about computer networks for cybersecurity. Such
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datasets are large and wide because of the need to enable as good solutions as
possible by throwing the data collection net wide. This third domain differs from
the previous two because of greater emphasis on the anomalous or outlying parts
of the data rather than the more central and common place.

High-dimensional datasets are usually analyzed in two ways: by finding the set
of clusters they contain; or by looking for the outliers—almost two sides of the
same coin. However, these simple strategies conceal subtleties that are often
ignored. A cluster cannot really be understood without seeing its relationships to
other clusters ‘‘around’’ it; and outliers cannot be understood without under-
standing both the clusters that they are nearest to, and what other outliers are
‘‘around’’ them. The development of the idea of local outliers has helped with this
latter issue, but is still weak because a local outlier is defined only with respect to
its nearest non-outlying cluster.

In this book we introduce two ideas that are not completely new, but which
have not received as much attention as they should have, and for which the
research results are partial and scattered. In essence, we suggest a new way of
thinking about how to understand high-dimensional spaces using two models: the
skeleton which relates the clusters to one another, and boundaries in empty space
which provides a new perspective on outliers, and on outlying regions.

This book should be useful to those who are analyzing high-dimensional spaces
using existing tools, and who feel that they are not getting as much out of the data
as they could; also their managers who are trying to understand the path forward in
terms of what is possible, and how they might get there. The book assumes either
that the reader has a reasonable grasp of mainstream data mining tools and
techniques, or does not need to get into the weeds of the technology but needs a
sense of the landscape. The book may also be useful for graduate students and
other researchers who are looking for open problems, or new ways to think about
and apply older techniques.
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