
Chapter 2
Basic Structure of High-Dimensional Spaces

Data is naturally represented geometrically by associating each record with a point
in the space spanned by the attributes. This idea, although simple, raises a number
of challenging problems in practice.

2.1 Comparing Attributes

For any single attribute, it is not necessarily the case that the significance of the
values it can take depends linearly on those values. For example, for an attribute
that measures income, almost all of the values will be between 0 and a few hundred
thousand (almost regardless of currency); however, there will be a few individuals
whose income is three or four decimal orders of magnitude greater than this. Should
this huge difference in income amount be treated as a huge difference in significance?
Perhaps, but there’s at least a case that it should not. One plausible way to address
this would be to discretize attribute values into ranges with semantics; for example,
incomes could be placed into a few categories such as low, medium, well-off, wealthy,
and super-rich.

However, there is then the problem of how to measure differences in the values of
a single attribute between two different records. The significance of a difference does
not follow immediately from an understanding of the significance of a magnitude.
For example, small differences may plausibly be treated as no difference at all.

The most common (dis)similarity measure based on the natural geometric embed-
ding is Euclidean distance—but this measure is built from the squares of the differ-
ences in the values of each individual attribute. It therefore implicitly claims that,
for differences, significance grows much faster (quadratically) than magnitude.

D. B. Skillicorn, Understanding High-Dimensional Spaces, SpringerBriefs 13
in Computer Science, DOI: 10.1007/978-3-642-33398-9_2, © The Author 2012

14 2 Basic Structure of High-Dimensional Spaces

2.2 Comparing Records

When the data has more than one attribute, a new difficulty appears. To compare
two records, we must compare the differences in the values of two or more attributes
measuring different things. How can we combine the difference for each attribute
into a difference between the whole records? There is no straightforward way to do
this—it really is comparing apples and oranges. This applies even if both attributes
are measuring the quantity or number of “the same” underlying objects, for example
dollar amounts or word frequencies. Similarity depends on the range and distribution
of the values that each attribute takes over the whole dataset, not just on the kind of
objects that it describes.

The standard approach, although it is difficult to justify, is normalization. Normal-
ization means converting the raw values for each attribute into a standardized form
that is the same for all attributes. For example, a common approach to normalization,
for each attribute, is to compute the mean and standard deviation of the values of that
attribute across the entire dataset. In the data table or matrix, this means computing
the mean and standard deviation of each column. The values in the column corre-
sponding to the attribute are then converted by subtracting the column mean from
each value, and dividing the result by the column standard deviation. For the entire
set of values of each attribute, subtracting the mean centers them around zero, with
roughly half positive and half negative. Dividing by the standard deviation makes
the ranges of all of the attributes roughly comparable. If the original attribute values
were drawn from a Gaussian distribution, this normalization maps two-thirds of the
values to the range between −1 and +1. This normalization is called z-scoring.

Other normalizations are possible. For example, the values of each attribute could
be mapped into the range 0–1, but the effect depends on the maximum and minimum
values taken by the attribute more than on the distribution of values it possesses in the
dataset. Calculations of the mean could be trimmed, that is some of the largest and
smallest values could be omitted to give a more robust estimate of the distribution
of values.

2.3 Similarity

So now suppose that all of the attributes have been normalized in some reasonable
way. There are still choices about which kind of function will be used to combine
the per-attribute similarities.

By far the most common way to do this combining is to use Euclidean distance
between the points corresponding to each record. Of course, distance is a dissim-
ilarity measure since points that are far apart are not similar to one another—but
the relationship between distance and similarity is straightforward and we can think
about it either way.

Viewed geometrically, using Euclidean distance seems sensible; it’s the way we
think about distance in the real world. But Euclidean distance between the points

2.3 Similarity 15

corresponds to taking the difference in the values for each attribute, squaring it, and
then adding up these squares and taking a square root. The squaring step means
that two records with a large difference in the values of only a single attribute seem
disproportionately far apart because of the impact on the sum of this one term. From
this perspective, Euclidean distance seems less obvious.

Other common distance calculations include: Manhattan distance (sum the differ-
ences for each attribute), or Hamming distance (sum the number of times the values
for each attribute are different, regardless of how much).

There is a practical problem with computing distances or similarities as well. If n
is large (there are many records) then n2 distance calculations need to be done, and
this may simply be too expensive. Fortunately, for the purpose of understanding the
global structure of the data, only the other points fairly close to each point need to
be looked at, and this creates the opportunity for some optimizations that we will
see later. But the quadratic complexity of computing all of the pairwise distances
means that some common approaches do not scale to large, high-dimensional (many
attribute) datasets.

The next layer of complexity comes from the choice of attributes. For most
datasets, it is not clear from the beginning which attributes will turn out to be impor-
tant, so there is a natural tendency to collect any attributes that might be. The pres-
ence of these extra attributes makes the natural geometric space seem to be of higher
dimension than it really is—and this, of course, alters the apparent similarity between
each pair of records. For example, a single extra attribute with uniform random val-
ues for each entry will pull all of the records slightly further apart than they “should”
be, but by a random amount, so blurring the similarity structure.

A more subtle problem happens when a subset of the attributes are measuring
almost the same property but in different ways. At a macroscopic scale, this means
that the values of each pair of attributes in the subset must be highly correlated. The
effect of this redundant subset is that records that differ in this underlying property
seem much more different than they should be, because the difference gets added
into the sum multiple times.

If the set of attributes are well correlated then the solution is obvious—remove all
but one of the attributes from the dataset. This tends not to work in practice—often
two attributes will be strongly correlated over much of their range but uncorrelated
over the rest, and it is not clear whether this latter range is important. Correlation is
also not transitive, which further complicates trying to remove redundant attributes.

Finally, most real-world clusters are actually biclusters, that is, within each subset
of the records similarity depends on only a small subset of the attributes, and this
subset is different for each cluster. Ignoring this property, and computing distances
using all of the attributes, blurs the tightness of each cluster and makes them all
harder to detect. Datasets that contain biclusters are often analyzed with algorithms
that simultaneous try to cluster the records and the attributes. There is an inherent
symmetry in the data in this case: records are similar because of a particular subset
of the attributes, but attributes are also similar because of a particular subset of the
records.

16 2 Basic Structure of High-Dimensional Spaces

Fig. 2.1 Two biclusters
inhabiting different subsets
of dimensions

Figure 2.1 shows two biclusters and illustrates some of the difficulties. Naive
analysis, perhaps based on distance, makes the bottom of both clusters seem similar
so such an algorithm might discover three clusters, the top of each of the visible
clusters, and a third consisting of the bottom halves of both.

2.4 High-Dimensional Spaces

Now we turn to issues that arise because of the high-dimensional nature of the natural
space, issues which test our intuition developed in three-dimensional space. First of
all, in high-dimensional spaces, distances do not behave quite as we expect. Let us
suppose a dataset with m attributes (so an m-dimensional space) and suppose that
the attribute values in each record are divided into three simple categories: large and
positive, large and negative, and close to zero. Now consider records whose attribute
values are equally likely to be one of these three categories. How likely is it that
such a record will be close to the origin in the m-dimensional space? This can only
happen if all of its attribute values are in the close-to-zero category, and the chance
of this is (1/3)m . This is an extremely small probability when m is large. In other
words, if the records have uniformly chosen entries, almost all of them will lie far
from the origin.

Now consider any two records. How likely is it that they are close to each other?
This can only happen if their entries, for every attribute, match; that is, they are both
large and positive, both large and negative, or both close to zero. The probability of
this is, again, (1/3)m and so extremely small when m is large.

2.4 High-Dimensional Spaces 17

In other words, in high-dimensional spaces, uniformly randomly distributed points
are all far from each other. The impact on data with more structure is that the relative
distances from a point to its nearest neighbor and its furthest neighbor are similar,
especially in relation to the absolute distances to both. This is why indexing schemes
such as k-d trees that allow nearest neighbors to be found in low-dimensional spaces
do not scale to high-dimensional spaces—they have an often-ignored exponential
dependence on the dimensionality.

One approach to this problem is to view the space spanned by the attributes as
a vector space instead of a Cartesian space. In this view, each point is regarded as
the endpoint of a vector from the origin. Each point, therefore, has two associated
properties: its distance from the origin, and its direction from the origin. These
aren’t new properties, just a different way of looking at the same set of points, just
like converting from Cartesian to polar coordinates.

However, this new view makes it possible to see that two points (vectors) in the
same direction from the origin might be considered similar even though they end at
quite different distances. Two such points have the same pattern of attribute values
but differ only in the magnitudes of these values, and in a proportional way. The
records are alike in some deeper sense, but one has “more of the same” than the
other. In some situations, this kind of similarity makes a great deal of sense. It is
called cosine similarity because the cosine of the angle between the vectors to two
points a and b is given by

cos θ = a · b

|a| |b|
where the dot denotes the dot product of the two vectors, a1 × b1 + a2 × b2 +
· · · am × bm , and |a| is the norm (length) of the vector a.

Equivalently, each row of the dataset can be divided by its length, as another form
of normalization of the data. This has the effect of mapping the data points into a
kind of hypersphere around the origin. The angle between two vectors is now just
their dot product (since the norms are all now 1). Two vectors that point in roughly
the same direction have a large dot product (close to +1) so the cosine of the angle
between them is large and θ is close to 0◦. Two vectors that are close to orthogonal
have a dot product close to zero and θ is close to 90◦. Two vectors that point in
roughly opposite directions have a dot product close to −1 and θ is close to 180◦.

So cosine similarity gives a different view of similarity, and so of clustering,
based on projecting the data points onto a unit hypersphere. The sphere is still high-
dimensional, so the problems of working in high-dimensional space have not gone
away, but this form of similarity might be more appropriate for some data.

We are interested in datasets in which m is large, but the value of n, the number
of records, is also relevant. There are three cases:

• n is about the same size as m so the dataset matrix is roughly square.
• n is much bigger than m. This tends to be the common case, for in many applications

it is always possible to collect more data, perhaps just by waiting a little longer.
Large values of n make it difficult to compute all pairwise distances, so better

18 2 Basic Structure of High-Dimensional Spaces

algorithms are required to elicit the relationships among points. For example, if
the distance from a to b is large and c is close to b, then it follows that a is far
from c and this distance does not have to be explicitly calculated.

• n is smaller than m. In this case, the data cannot occupy more than an n-dimensional
subspace of the m-dimensional space; in other words, it must be the case that the
data occupies a lower-dimensional manifold in the high-dimensional space. This
is not directly helpful because it is not, in general, possible to know how the lower-
dimensional space is oriented inside the high-dimensional one, but it does help
with some of the structure-discovery algorithms we will describe later.

It is common in the literature to claim that, in this case, a substantial number of
the attributes can be discarded a priori. Although this is sometimes the case, more
often than not it is impossible to discard attributes without deeper analysis.

2.5 Summary

The mapping from dataset records to points in the space spanned by the attributes is a
natural and appealing one, but it contains hidden complexities. For local similarities
to be sensible after such an embedding, choices need to be made about the relative
scaling of the axes (the relationship between magnitude and significance for each
attribute and the relative magnitudes between pairs of attributes). A similarity func-
tion needs to be defined—Euclidean distance seems natural in the geometric setting,
but seems less so when its meaning for record similarity is considered. And high-
dimensional spaces are unintuitive, with distances behaving in unexpected ways.

All of the choices made about embedding and similarity have a large impact on the
resulting models—but there is usually no principled way to make many of them, at
least until the domain is well understood. Such problems are ubiquitous in knowledge
discovery; the usual solution is to iterate the embedding/model-building cycle; and
that is usually what is required here.

http://www.springer.com/978-3-642-33397-2

	2 Basic Structure of High-Dimensional Spaces
	2.1 Comparing Attributes
	2.2 Comparing Records
	2.3 Similarity
	2.4 High-Dimensional Spaces
	2.5 Summary

