
Chapter 2
Expressibility of Valued Constraints

In mathematics you don’t understand things. You just get
used to them.
John von Neumann

2.1 Introduction

It has been known for some time that the expressive power of crisp constraints is
determined by algebraic operations called polymorphisms. Moreover, there is a Ga-
lois connection between the set of crisp constraints and the set of operations. This
connection has been successfully used in the last decade for complexity analysis of
crisp constraint languages [42, 46].

This chapter presents a recently developed algebraic theory for the complexity of
valued constraint languages [63, 68], which builds on [65, 274].

2.2 Results

In Sect. 2.3, we survey what is known about the expressive power of crisp con-
straints, describe the concept of the indicator problem and introduce the concept
of a Galois connection. In Sect. 2.4, we show that the question of whether a given
cost function is expressible over a finite language is decidable [65]. In Sect. 2.5, we
present dual results for fractional operations [274]. Putting results from Sects. 2.4
and 2.5 together, Sect. 2.6 presents a Galois connection between sets of valued con-
straints and sets of algebraic closure operations [68].

2.3 Indicator Problem

In this section, we discuss the well-known result that the expressive power of crisp
constraints is characterised by certain algebraic operations called polymorphisms.
We present the construction of an indicator problem, a universal construction for
determining whether a given relation is expressible over a crisp constraint language,

S. Živný, The Complexity of Valued Constraint Satisfaction Problems,
Cognitive Technologies, DOI 10.1007/978-3-642-33974-5_2,
© Springer-Verlag Berlin Heidelberg 2012

31

http://dx.doi.org/10.1007/978-3-642-33974-5_2

32 2 Expressibility of Valued Constraints

and also for determining all polymorphisms of a crisp constraint language. Finally,
we show that there is a Galois connection between the set of relations and the set of
operations.

Recall Theorem 1.2, which states that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms [27, 127, 163]. In other words,
for a relation R and a crisp constraint language Γ , the following holds:

R ∈ 〈Γ 〉 ⇔ Pol(Γ) ⊆ Pol
({R}).

Remark 2.1 The “⇒” implication follows easily from the fact that expressibility
preserves polymorphisms.

This result was obtained by showing that, for any crisp language (that is, set of
relations), there is a universal construction that can be used to determine whether a
relation is expressible in that language, as we now demonstrate.

Definition 2.1 (Indicator Problem) Let Γ be a crisp constraint language over D.
For any natural number n, we define the indicator problem for Γ of order n as
the CSP instance IP(Γ,n) with the set of variables Dn, each with domain D,
and constraints {Ci}1≤i≤q , where q = ∑

R∈Γ |R|n. For each R ∈ Γ , and for each
sequence t1, t2, . . . , tn of tuples from R, there is a constraint Ci = 〈si,R〉 with si =
〈v1, v2, . . . , vm〉, where m is the arity of R, and vj = 〈t1[j], t2[j], . . . , tn[j]〉, 1 ≤
j ≤ m.

Note that, for any crisp constraint language Γ over D, IP(Γ,n) has |D|n vari-
ables, and each corresponds to an n-tuple over D. A concrete example of an indica-
tor problem is given below, and more examples can be found in [164, 166].

Observation 2.1 It is not hard to see from Definitions 2.1 and 1.6 that the solutions
to IP(Γ,n) are the polymorphisms of Γ of arity n [165].

Combining Observation 2.1 with Theorem 1.2 gives:

Corollary 2.1 Let Γ be a crisp constraint language over D. Furthermore, let R =
{t1, t2, . . . , tn} be a relation over D of arity m. Then R is expressible over Γ , R ∈
〈Γ 〉, if, and only if, R is equal to the solutions to IP(Γ,n) restricted to the variables
v1, v2, . . . , vm, where vj = 〈t1[j], t2[j], . . . , tn[j]〉, 1 ≤ j ≤ m.

Note that the choice of variables v1, v2, . . . , vm might not be unique as different
orderings of the tuples of R can result in different lists. We sketch the proof of
Corollary 2.1 since it contains the idea behind the proof of Theorem 1.2.

Proof (Sketch) From Definition 2.1, if R is equal to the solutions to IP(Γ,n) re-
stricted to some subset of variables, then R is expressible over Γ . On the other hand,
assume that R ∈ 〈Γ 〉, and denote by R̄ the set of solutions to IP(Γ,n) restricted to

2.3 Indicator Problem 33

Fig. 2.1 IP(Γ,3)

(Example 2.1)

the variables v1, v2, . . . , vm. It is enough to show that R = R̄. By Observation 1.1,
all projections are polymorphisms of all relations. Hence, by Observation 2.1, all
projections of arity n are solutions of IP(Γ,n). Therefore, R ⊆ R̄ from the choice
of variables v1, v2, . . . , vm. If R 	= R̄, then there must be a solution s to IP(Γ,n)

whose restriction to v1, v2, . . . , vm is not contained in R. By Observation 2.1, all
solutions to IP(Γ,n) are polymorphisms of Γ , and so is s. But by Remark 2.1,
the polymorphism s should be a polymorphism of R, which is a contradiction if
R 	= R̄. �

Remark 2.2 Richard Gault implemented a solver called POLYANNA1 for the indica-
tor problem [126]. An interesting research problem is to investigate various symme-
tries in the indicator problem and try to make use of them in order to solve instances
of the indicator problem more efficiently. However, there is a known worst-case
lower bound on the size of any expressibility gadget [270].

Example 2.1 Let Γ = {P,Q} be a constraint language over D = {0,1}, where P =
{〈0,1〉, 〈1,0〉} and Q = {〈0〉}. Given relation R = {〈0,0〉, 〈0,1〉, 〈1,1〉}, the task is
to determine whether R is expressible over Γ .

Since R consists of three tuples, we construct the indicator problem IP(Γ,3) of
order 3. The variables of IP(Γ,3) are all 3-tuples over D. There are eight 3-tuples
over D, and we denote them by v0 to v7 (cf. Fig. 2.1). Since the relation P is
binary, any two variables vi and vj , which represent the tuples 〈vi1, vi2, vi3〉 and
〈vj1, vj2, vj3〉, respectively, are constrained by P if, and only if, all three tuples
〈vi1, vj1〉, 〈vi2, vj2〉, and 〈vi3, vj3〉 belong to P . In our case the following pairs of
variables are constrained by P : 〈v0, v7〉, 〈v1, v6〉, 〈v2, v5〉, and 〈v3, v4〉. The relation

1http://www.cs.ox.ac.uk/activities/constraints/software/index.html.

http://www.cs.ox.ac.uk/activities/constraints/software/index.html

34 2 Expressibility of Valued Constraints

Q is unary and consists of just one tuple 〈0〉. Therefore, only the variable v0, which
represents the tuple 〈0,0,0〉, is constrained by Q. The construction is illustrated in
Fig. 2.1.

Now consider the tuples represented by the variables v2 and v3. These are
〈0,1,0〉 and 〈0,1,1〉, respectively. If you take these two tuples as columns of a
matrix, then the rows of this matrix contain precisely the tuples from R, that is,
〈0,0〉, 〈0,1〉, and 〈1,1〉. However, projecting the solutions to IP(Γ,3) onto vari-
ables v2 and v3 does not give R, as the tuple 〈1,0〉 does not belong to R. (Some of
the solutions to IP(Γ,3) are shown in Fig. 2.1.) Hence R is not expressible over Γ .
(Note that we could also obtain the same result by choosing, for instance, variables
v4 and v6.)

Recall from Notation 1.8 that, for a crisp constraint language Γ , we denote by
Pol(Γ) the set of all polymorphisms of Γ , that is,

Pol(Γ) = {f | ∀R ∈ Γ,f is a polymorphism of R}.

Notation 2.1 For a set of operations O , we use Inv(O) to denote the set of relations
having all operations in O as polymorphisms, that is,

Inv(Γ) = {R | ∀f ∈ O,f is a polymorphism of R}.

Observation 2.2 The result of Theorem 1.2 can be equivalently stated as follows:
for any crisp constraint language Γ , it holds that 〈Γ 〉 = Inv(Pol(Γ)).

Definition 2.2 (Galois connection [101]) A Galois connection between two sets
A and B is a pair 〈F,G〉 of mappings between the power sets P(A) and P(B),
F : P(A) → P(B) and G : P(B) → P(B), such that for all X,X′ ⊆ A and all
Y,Y ′ ⊆ B the following conditions are satisfied: X ⊆ X′ ⇒ F(X) ⊇ F(X′) and
Y ⊆ Y ′ ⇒ G(Y) ⊇ G(Y ′); X ⊆ G(F(X)) and Y ⊆ F(G(Y)).

Notation 2.2 For any finite domain D, we denote by RD the set of all relations
over D, and we denote by OD the set of all operations over D.

The following easy result shows that the Pol(·) and Inv(·) operators give rise to
an instance of a Galois connection between RD and OD for any finite domain D.

Proposition 2.1 ([234]) If Γ is a set of relations over D and O is a set of operations
over D, then

1. O1 ⊆ O2 ⊆ OD ⇒ Inv(O1) ⊇ Inv(O2).
2. Γ1 ⊆ Γ2 ⊆ RD ⇒ Pol(Γ1) ⊇ Pol(Γ2).
3. Γ ⊆ Inv(Pol(Γ)).
4. O ⊆ Pol(Inv(O)).

2.4 Weighted Indicator Problem 35

In order for a Galois connection to be interesting, one should be able to char-
acterise the closures under the two operators. In particular, we are interested in the
closure of a set of relations and in the closure of a set of operations under the Pol(·)
and Inv(·) operators.

Recall that for a crisp constraint language Γ ⊆ RD , we denote by 〈Γ 〉 the set
of relations that are expressible over Γ . The set 〈Γ 〉 is also known as a relational
clone [234]. For a set of operations F ⊆ OD , we denote by 〈F 〉 the set of operations
from F closed under superposition (also known as composition)2 and containing all
projections (cf. Observation 1.1). The set 〈F 〉 is known as a clone of operations, or
just a clone [234].

A characterisation of this Galois connection for finite sets D is given by the
following two theorems, originally obtained for sets of relations [27, 127].

Theorem 2.1 For any finite set D, and any Γ ⊆ RD , Inv(Pol(Γ)) = 〈Γ 〉.

Theorem 2.2 For any finite set D, and any F ⊆ OD , Pol(Inv(F)) = 〈F 〉.

The situation is summarised in Fig. 2.2. As with any Galois connection [31],
this means that there is a one-to-one correspondence between clones and relational
clones. This result shows that the expressive power of any crisp constraint lan-
guage Γ on a finite set D corresponds to a particular clone of operations on D.
Hence the search for tractable crisp constraint languages corresponds to a search
for suitable clones of operations [42, 163]. This key observation paved the way for
applying deep results from universal algebra in the search for tractable constraint
languages [11, 13, 14, 16, 38, 39, 41, 45].

Post completely described the lattice of relational clones and clones over a two-
element domain [235]. This description has been heavily used recently to obtain
dichotomy complexity classifications of various classes of problems in computer
science and artificial intelligence that can be modelled over Boolean domains. For
more details, see [28, 29]. More on clone theory can be found in [101, 234].

2.4 Weighted Indicator Problem

In this section, we show that there is also a universal construction to determine
whether a given cost function is expressible over a valued constraint language. We
briefly describe the result that the expressive power of valued constraints is deter-
mined by certain algebraic operations called fractional polymorphisms.

Consider the following problem: given a cost function φ of arity m over a domain
D, is φ expressible over a valued constraint language Γ ? We show that this problem
is decidable for every finite Γ . First we prove an upper bound on the number of extra
variables needed to express φ over Γ .

2Let f : Dk → D and g1, . . . , gk : D� → D. The superposition of f and g1, . . . , gk is the �-ary
operation f [g1, . . . , gk](x1, . . . , x�) = f (g1(x1, . . . , x�), . . . , gk(x1, . . . , xl)).

36 2 Expressibility of Valued Constraints

Fig. 2.2 Galois connection between RD and OD

Proposition 2.2 ([65]) If a cost function φ : Dm →Q≥0 is expressible over Γ , then
φ is expressible over Γ using at most |D||D|m hidden variables.

Proof If φ ∈ 〈Γ 〉, then by Definition 1.4, there is a gadget 〈P,v〉, where v =
〈v1, . . . , vm〉, for expressing φ over Γ . For the gadget 〈P,v〉 to express φ, it has
to define φ on each of the |D|m different assignments to v. Let each of these |D|m
assignments be extended to a complete assignment to all variables of P (including

2.4 Weighted Indicator Problem 37

hidden variables) in a way that minimises the total cost. For each hidden variable
v of 〈P,v〉, we can use the list of |D|m values assigned to v by these complete as-
signments to label the variable v. If there are more than |D||D|m hidden variables,
then two of them will receive the same label. However, this implies that one of the
two is redundant, as all constraints involving that variable can replace it with the
other variable without changing the overall cost. Hence we require at most |D||D|m

distinct hidden variables to express φ. �

From this bound on the number of extra variables in a gadget for φ over Γ we
obtain a decidability result. The idea is to try all possible constraints on all possible
subsets of variables, and use linear programming to determine whether there is a
combination of these constraints which works.

Theorem 2.3 ([65]) For a given finite valued constraint language Γ , and a cost
function φ defined over D, the question of whether φ is expressible over Γ is decid-
able.

Proof (Sketch) In order to simplify the presentation, we assume that φ is a finite-
valued cost function. We show how to determine whether there is a gadget for φ

over Γ , that is, whether there is a VCSP(Γ) instance P = 〈V,D,C〉 and a tuple of
variables v such that φ = πv(P). By Proposition 2.2, P has at most K = |D||D|m

extra variables, where m is the arity of φ. Let V be the set of K variables, each asso-
ciated with a different |D|m-tuple of values from D. Let E be the |D|m × K matrix
whose columns are all possible |D|m-tuples of values from D (or equivalently, vari-
ables from V). Observe that there is a |D|m × m submatrix E′ of E consisting of m

columns of E such that the rows of E′ correspond to all possible m-tuples of values
from D. We let v be the list of variables corresponding to the columns of E′.

Let A be the set of all assignments of values from D to the variables from V .
Clearly, |A| = |D|K . We choose |D|m assignments from A that correspond to the
rows of the matrix E and denote them A′.

Let ρ ∈ Γ be a cost function of arity k. For an assignment s ∈ A and a list of
variables u of length k, recall from Definition 1.1 that we denote by ρ(s(u)) the
value of ρ on the list of variables u assigned by s.

The idea is that if φ is expressible over Γ , then there is a set of constraints C such
that φ = πv(P), where P = 〈V,D,C〉. It remains to show what the set of constraints
C is. And this is where linear programming plays its crucial role.

Let C be the list of all possible constraints from Γ applied to variables from V . In
other words, C = 〈C1, . . . ,Cq〉 is an arbitrary but fixed order of the following finite
set: {〈u, ρ〉 | ρ ∈ Γ of arity k, and u is a list of k variables from V

}
.

We write Ci = 〈ui , ρi〉. Clearly,

q =
∑

ρ∈Γ of arity k

Kk.

We define a system of linear equations and inequalities as follows.

38 2 Expressibility of Valued Constraints

For each s ∈A \A′,

q∑

i=1

xiρi

(
s(ui)

) ≥ φ
(
s(v)

) + x0.

For each s ∈A′,
q∑

i=1

xiρi

(
s(ui)

) = φ
(
s(v)

) + x0.

Note that the variable xi represents whether the constraint Ci is used in the gadget P :
if xi = 0, then the constraint Ci is not used; if xi > 0, then xi gives the multiplicity
of the constraint Ci . The variable x0 represents an additive constant up to which the
gadget expresses φ.

From the construction of the system, φ is expressible over Γ if, and only if, there
is a nonnegative solution to this system, which is decidable [256]; see also [7]. �

Remark 2.3 Theorem 2.3 can be extended from finite-valued cost functions to
general-valued cost functions [65]. The construction sketched above is known as
the weighted indicator problem.

Example 2.2 Let Γ = {μ,ψ} be the valued constraint language consisting of two
cost functions defined over the Boolean domain D = {0,1} as follows:

μ(x)
def=

{
0 if x = 0,

1 if x = 1,

and

ψ(x, y)
def=

{−1 if x = y = 1,

0 otherwise.

Let φ be the ternary cost function defined as follows:

φ(x, y, z)
def=

{−1 if x = y = z = 1,

0 otherwise.

The question is whether φ is expressible over Γ , that is, whether φ ∈ 〈Γ 〉. In order
to answer this question, we build an instance of the weighted indicator problem as
described in the sketched proof of Theorem 2.3. The arity m of φ is 3, and hence
if φ is expressible over Γ , then φ is expressible with at most K = |D||D|m = 223 =
28 = 256 variables, by Proposition 2.2. Each variable is uniquely identified by an
8-tuple of values from {0,1}. We denote by V the set of all such variables with the
domain {0,1}.

We denote by v = 〈v1, v2, v3〉 the list of three variables, whose correspond-
ing 8-tuples are t1 = 〈0,0,0,0,1,1,1,1〉, t2 = 〈0,0,1,1,0,0,1,1〉, and t3 =
〈0,1,0,1,0,1,0,1〉 respectively. Consider the matrix whose columns are tuples t1,

2.4 Weighted Indicator Problem 39

t2, and t3. The rows of this matrix are all possible 3-tuples over {0,1}. The intuition
is that we try to find a gadget P for φ over Γ that expresses φ on the variables v1,
v2, and v3, that is, φ = π〈v1,v2,v3〉(P).

Let E be an 8 × 256 matrix whose columns are the tuples corresponding to vari-
ables from V in some fixed order.

We denote by A′ the set of eight assignments of variables from V that are defined
by the rows of the matrix E. The intuition is that for every possible assignment s

of the variables v1, v2, and v3, we are looking for an assignment s′ in A′ which
agrees with s (on v1, v2, and v3) and the cost of s′ is equal to φ(v1, v2, v3) (up to
an additive constant). We denote by A all assignments of variables from V . Clearly,
|A| = 2256.

Now we want to add all possible constraints involving cost functions from Γ . The
unary cost function μ can be applied to any of the 256 variables. The binary cost
function ψ can be applied to any pair of (not necessarily distinct) variables. Since
ψ is symmetric, this gives

(256
2

)+ 256 constraints. In total, we get 2 ∗ 256 + (256
2

) =
33,152 constraints. Hence we have 33,152 variables xi that represent whether the
ith constraint is used (xi > 0) or not (xi = 0); in the former case, the value of xi

represents the multiplicity of the ith constraint. We then can build a system of linear
equations and inequalities as described in the sketch of the proof of Theorem 2.3.

In this particular case, it is not difficult to find a solution to the system of lin-
ear equations and inequalities described above. Let y be the variable corresponding
to the 8-tuple 〈0,0,0,0,0,0,0,1〉. We claim that assigning the value 2 to the con-
straint 〈〈y〉,μ〉 (represented by a variable in our system), assigning the value 1 to
the constraints 〈〈y, x1〉,ψ〉, 〈〈y, x2〉,ψ〉, and 〈〈y, x3〉,ψ〉, and finally assigning the
value 0 to the additive constant x0 = 0 and all other variables is a solution to our
system. For any assignment of the variables v1, v2, and v3, setting y to 0 results in
total cost 0. If all v1, v2, and v3 are assigned 1, setting y to 1 results in total cost
−1. For any other assignment of v1, v2, and v3, setting y to 1 results in total cost
≥ 0. This corresponds exactly to the definition of the cost function φ. This solution
gives a gadget for expressing φ over Γ using only one extra variable.

Recall Theorem 1.3, which states that the expressive power of a valued constraint
language satisfying certain conditions is fully characterised by its polymorphisms
and fractional polymorphisms [65]. In other words, for a cost function φ and a val-
ued constraint language Γ , such that Γ contains a constant function and is closed
under scaling and the feasibility operator, the following holds:

φ ∈ 〈Γ 〉 ⇔ Pol(Γ) ⊆ Pol
({φ}) ∧ fPol(Γ) ⊆ fPol

({φ}).

Remark 2.4 The “⇒” implication follows easily from the fact that expressibility
preserves polymorphisms and fractional polymorphisms [65]; see also [67].

Remark 2.5 We remark on the assumptions of Theorem 1.3. Notice that it is not a
restrictive assumption that every valued constraint language Γ contains a constant
function and is closed under scaling. In practice, this corresponds to adding a fi-
nite constant that does not alter the relative costs, and to taking more copies of the

40 2 Expressibility of Valued Constraints

same constraint. Therefore, this does not change the complexity of solving VCSP
instances over Γ .

We now discuss why it is necessary to assume that Γ is closed under the fea-
sibility operator (or, equivalently, closed under scaling by 0; cf. Remark 1.10) in
order to prove equivalence in Theorem 1.3. If F is a fractional polymorphism of
Γ , then F is also a fractional polymorphism of Feas(Γ). And clearly, any poly-
morphism of Feas(Γ) is a polymorphism of Γ . Hence for any valued constraint
language Γ , Pol(Γ) ⊆ Pol(Feas(Γ)) and fPol(Γ) ⊆ fPol(Feas(Γ)). But this is true
for any Γ independently of whether or not Feas(Γ) ∈ 〈Γ 〉; so every valued con-
straint language Γ satisfies the right-hand side of the equivalence in Theorem 1.3
for Feas(Γ) (that is, Pol(Γ) ⊆ Pol(Feas(Γ)) and fPol(Γ) ⊆ fPol(Feas(Γ))), but
not every valued constraint language Γ satisfies Feas(Γ) ∈ 〈Γ 〉.

Fractional polymorphisms on their own characterise the expressive power of
finite-valued cost functions and, as shown in Theorem 1.2, polymorphisms on their
own characterise the expressive power of crisp cost functions that take only zero and
infinite costs.

The proof of Theorem 1.3 given in [65] is based on an application of Farkas’
Lemma [256] and uses the concept of the weighted indicator problem. For a given
φ and Γ , as sketched above, a system of linear equations and inequalities is built
such that it has a solution if, and only if, φ is expressible over Γ . If this system does
not have a solution, then Farkas’ Lemma guarantees a certificate of unsolvability.
Cohen et al. have shown that the certificate of unsolvability can be turned into a
fractional polymorphism F such that F ∈ fPol(Γ), but F 	∈ fPol({φ}) [65].

2.5 Fractional Clones

In this section, we consider the dual question to the one considered in Sect. 2.4:
given a finite set Ω of fractional operations over a fixed domain D and a fractional
operation F defined over D, determine whether or not F belongs to fPol(Imp(Ω)).
We call this problem the fractional clone membership problem.

Using linear programming, we show that this problem is decidable.

Theorem 2.4 The fractional clone membership problem is decidable.

Proof Let F be a k-ary fractional operation {〈r1, f1〉, . . . , 〈rn, fn〉} such that each
fi is a distinct function from Dk to D, each ri is a positive rational number, and∑n

i=1 ri = k. Let Ω = {F1, . . . ,Fq}.
Now F 	∈ fPol(Imp(Ω)) if, and only if, there is a finite-valued cost function φ

such that Fi ∈ fPol({φ}) for every 1 ≤ i ≤ q , but F 	∈ fPol({φ}).
First we show that if there is such a φ (we call it a separating cost function), then

there is a φ of arity at most m = |D|k . Assume that φ is of arity strictly larger than
m. As there are exactly m different k-tuples over D, any tableau (recall Fig. 1.5)

2.5 Fractional Clones 41

showing that Fi ∈ fPol({φ}), 1 ≤ i ≤ q , and F 	∈ fPol({φ}) has at least one column
that occurs twice. However, this column can be removed and the arity of φ decreased
by 1 by identifying the two arguments corresponding to the two columns. Clearly,
if there is a separating cost function φ of arity strictly smaller than m, then there is
a separating cost function of arity exactly m: we just add dummy variables. Hence
we can assume that φ is of arity exactly m.

Now we can turn the question of the existence of a separating cost function into
a system of linear inequalities. We are looking for |D|m values (costs of φ on all
possible assignments) such that for all 1 ≤ i ≤ q , Fi ∈ fPol({φ}), and F 	∈ fPol({φ)}.
But this is easy as showing that Fi ∈ fPol({φ}) is just a question of satisfying a
system of linear inequalities for all possible tableaux, by Definition 1.10. Similarly,
F 	∈ fPol({φ}) can be expressed as one linear inequality corresponding to the tableau
with m different k-tuples over D and the inequality sign the opposite of that in
Definition 1.10. This finishes the proof, as the question of whether there is a solution
to a system of linear inequalities is decidable [256]. �

The following example illustrates the technique described in the proof of Theo-
rem 2.4.

Example 2.3 Let F1 = {〈1,Min〉, 〈1,Max〉}, F = {〈2,Max〉}, and D = {0,1}. In
order to determine whether F ∈ fPol(Imp(F1)), we build a system of linear inequal-
ities as in the proof of Theorem 2.4. We look for a separating cost function φ of arity
m = |D|2 = 4. Hence we have the |D|4 = 16 variables x0000, x0001, . . . , x1111 cor-
responding to the values of φ on 16 different assignments. There are 16 ∗ 16 = 256
inequalities that make sure that {〈1,Min〉, 〈1,Max〉} ∈ fPol({φ}):

xijkl + xmnop ≥ xabcd + xuvyz,

where a = min(i,m), b = min(j, n), c = min(k, o), d = min(l,p), and u =
max(i,m), v = max(j, n), y = max(k, o), z = max(l,p).

Another inequality makes sure that {〈2,Max〉} 	∈ fPol({φ}). According to the
proof of Theorem 2.4, the tableau consists of four 2-tuples over {0,1}. Hence, the
required inequality is

x0011 + x0101 < x0111 + x0111,

where T = (0011
0101

)
on the left-hand side corresponds to four different 2-tuples

(columnwise), and
(0111

0111

)
on the right-hand side is the application of O to T .

One solution to this system is x00.. = 0 and x01.. = x10.. = x11.. = 1. Notice that
φ is effectively binary as it only depends on its first two arguments: φ(x, y, ·, ·) = 0
if x = y = 0, and φ(x, y, ·, ·) = 1 otherwise. It is straightforward to check that
this is indeed a solution to the system; that is, {〈1,Min〉, 〈1,Max〉} ∈ fPol({φ}), but
{〈2,Max〉} 	∈ fPol({φ}).

42 2 Expressibility of Valued Constraints

2.6 Galois Theory

We have seen in Theorem 1.3 that the expressive power of languages is determined
by the polymorphisms and fractional polymorphisms of the language. However, in
order to obtain a Galois connection similar to the one presented for crisp languages
in Sect. 2.3, we will have to generalise slightly fractional polymorphisms. The main
idea is the following: in the tableau in Fig. 1.5, the upper part corresponds to pro-
jections and the bottom part to operations. We relax the definition so that (in some
cases) both parts can be arbitrary operations.

Recall that a clone of operations, C, is a set of operations on some fixed set D

that contains all projections and is closed under superposition. The k-ary operations
in a clone C will be denoted by C(k).

Definition 2.3 (Weighting) We define a k-ary weighting of a clone C to be a func-
tion ω : C(k) → Q such that ω(f) < 0 only if f is a projection and

∑

f ∈C(k)

ω(f) = 0.

We denote by WC the set of all possible weightings of C and by W(k)
C the set of

k-ary weightings of C.

For any weighting ω, we denote by dom(ω) the set of operations on which ω is
defined.

Since a weighting is simply a rational-valued function satisfying certain inequal-
ities it can be scaled by any nonnegative rational to obtain a new weighting. Simi-
larly, any two weightings of the same clone of the same arity can be added to obtain
a new weighting of that clone.

The notion of superposition for operations can also be extended to weightings in
a natural way, as follows.

Definition 2.4 For any clone C, any ω ∈ W(k)
C and any g1, g2, . . . , gk ∈ C(l), we

define the superposition of ω and g1, . . . , gk , to be the weighting ω[g1, . . . , gk] ∈
W(l)

C defined by

ω[g1, . . . , gk](f ′) def=
∑

f ∈C(k)

f ′=f [g1,...,gk]

ω(f). (2.1)

Example 2.4 Let C be a clone on some ordered set D and let Max and Min be
binary maximum and minimum operations contained in C. Note that C(4) contains
operations such as Max[e(4)

i , e
(4)
j], which returns the maximum of the ith and j th

argument values. Operations of this form will be denoted by Max(xi, xj).

2.6 Galois Theory 43

Let ω be the 4-ary weighting of C given by

ω(f)
def=

⎧
⎪⎨

⎪⎩

−1 if f is a projection, i.e, f ∈ {e(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 },

+1 if f ∈ {Max(x1, x2),Min(x1, x2),Max(x3, x4),Min(x3, x4)},
0 otherwise,

and let

〈g1, g2, g3, g4〉 = 〈
e
(3)
1 , e

(3)
2 , e

(3)
3 ,Max(x1, x2)

〉
.

Then, by Definition 2.4 we have

ω[g1, g2, g3, g4](f) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if f is a projection, i.e., f ∈ {e(3)
1 , e

(3)
2 , e

(3)
3 },

+1 if f ∈
{

Max(x1, x2, x3),Min(x1, x2),

Min(x3,Max(x1, x2))

}
,

0 otherwise.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 2.3 and hence is a
weighting of C.

Example 2.5 Let C and ω be the same as in Example 2.4, but now consider

〈
g′

1, g
′
2, g

′
3, g

′
4

〉 = 〈
e
(4)
1 ,Max(x2, x3),Min(x2, x3), e

(4)
4

〉
.

By Definition 2.4 we have

ω
[
g′

1, g
′
2, g

′
3, g

′
4

]
(f) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 if f ∈ {e(4)
1 ,Max(x2, x3),Min(x2, x3), e

(4)
4 },

+1 if f ∈
⎧
⎨

⎩

Max(x1, x2, x3),Min(x2, x3, x4),

Min(x1,Max(x2, x3)),

Max(Min(x2, x3), x4)

⎫
⎬

⎭
,

0 otherwise.

Note that ω[g′
1, g

′
2, g

′
3, g

′
4] does not satisfy the conditions of Definition 2.3 because,

for example, we have ω[g′
1, g

′
2, g

′
3, g

′
4](f) < 0 when f = Max(x2, x3), which is not

a projection. Hence ω[g′
1, g

′
2, g

′
3, g

′
4] is not a valid weighting of C.

Definition 2.5 If the result of a superposition is a valid weighting, then that super-
position will be called a proper superposition.

Remark 2.6 The superposition of a projection operation and other projection opera-
tions is always a projection operation. So, by Definition 2.4, for any clone C and any
ω ∈ W(k)

C , if g1, . . . , gk ∈ C(l) are projections, then the function ω[g1, . . . , gk] can
take negative values only on projections, and hence is a valid weighting. This means
that a superposition with any list of projections is always a proper superposition.

We are now ready to define weighted clones.

44 2 Expressibility of Valued Constraints

Definition 2.6 A weighted clone, W , is a nonempty set of weightings of some fixed
clone C that is closed under nonnegative scaling, addition of weightings of equal
arity, and proper superposition with operations from C. The clone C is called the
support of W .

Example 2.6 For any clone, C, the set WC containing all possible weightings of C

is a weighted clone with support C.

Example 2.7 For any clone, C, the set W0
C containing all zero-valued weightings of

C is a weighted clone with support C.

We now establish a link between weightings and cost functions, which will allow
us to link weighted clones and languages closed under expressibility.

Definition 2.7 (Weighted Polymorphism) Let φ : Dm → Q≥0 be an m-ary cost
function on some set D and let ω be a k-ary weighting of some clone of opera-
tions C on the set D. We say that ω is a weighted polymorphism of φ if, for any
x1, . . . ,xk ∈ Dr such that φ(xi) < ∞ for i = 1, . . . , k, we have

∑

f ∈C(k)

ω(f)φ
(
f (x1,x2, . . . ,xk)

) ≤ 0. (2.2)

If ω is a weighted polymorphism of φ, we say φ is improved by ω.

Note that if φ is improved by the weighting ω ∈ W(k)
C , then every element of

C(k) must be a polymorphism of φ. Thus weighted polymorphisms capture both
polymorphisms and fractional polymorphisms.

Example 2.8 The submodular multimorphism 〈Min,Max〉 is equivalent to the 2-ary
weighted polymorphism ω defined by

ω(f)
def=

{−1 if f ∈ {e(2)
1 , e

(2)
2 },

0 otherwise.

Remark 2.7 A fractional operation, defined in Definition 1.9 (see also Remark 1.17),
is a weighting, defined in Definition 2.3, that assigns weight −1 to all projections.
We now show that fractional operations and weightings are the same. Consequently,
weighted polymorphisms are the same as fractional polymorphisms. Given a k-ary
weighting ω, let

F = {〈
ω(f),f

〉∣∣f ∈ dom(ω) ∧ f 	= e
(k)
i ,1 ≤ i ≤ k

}
.

Let ci = |ω(e
(k)
i)| be the absolute value of the weight given to the ith projection, and

define ci = 0 if e
(k)
i 	∈ dom(ω). Let c = max1≤i≤k ci . If c = 0, then we define F to

be {〈+1, e
(k)
i 〉}. Otherwise, we add projections to F as follows: we add 〈c+ ci, e

(k)
i 〉

to F , if c + ci > 0, for all 1 ≤ i ≤ k. Finally, we divide all weights in F by c.

2.6 Galois Theory 45

Fig. 2.3 Galois connection between �D and WD

Notation 2.3 We denote by �D the set of all cost functions defined on the set D.

Definition 2.8 For any Γ ⊆ �D , we denote by wPol(Γ) the set of all weightings
of Pol(Γ) that are weighted polymorphisms of all cost functions φ ∈ Γ .

To define a mapping in the other direction, we need to consider the union of the
sets WC over all clones C on some fixed set D, which will be denoted by WD . If we
have a set W ⊆ WD that may contain weightings of different clones over D, then
we can extend each of these weightings with zeros, as necessary, so that they are

46 2 Expressibility of Valued Constraints

weightings of the same clone C, given by

C = Clone(
⋃

ω∈W

dom(ω)).

This set of extended weightings obtained from W will be denoted by W . For any set
W ⊆ WD , we define 〈W 〉 to be the smallest weighted clone containing W .

Definition 2.9 For any W ⊆ WD , we denote by Imp(W) the set of all cost functions
in �D that are improved by all weightings ω ∈ W .

It follows immediately from the definition of a Galois connection [31] that, for
any set D, the mappings wPol(·) and Imp(·) form a Galois connection between WD

and �D , as illustrated in Fig. 2.3. A characterisation of this Galois connection for
finite sets D is given by the following two theorems [68].

Theorem 2.5 For any finite set D, and any finite Γ ⊆ �D , Imp(wPol(Γ)) = 〈Γ 〉.

Theorem 2.6 For any finite set D, and any finite W ⊆ WD , wPol(Imp(W)) = 〈W 〉.

As with any Galois connection [31], this means that there is a one-to-one cor-
respondence between languages closed under expressibility and weighted clones.
Hence, the search for tractable languages over a finite set corresponds to a search
for suitable weighted clones of operations.

The proofs of Theorems 2.6 and 2.5 rely on the application of Farkas’
Lemma [256] and are based on the ideas presented in Sects. 2.4 and 2.5, respec-
tively.

Creed and Živný have used the algebraic theory to classify so-called minimal
Boolean languages [85], thus obtaining (a simpler proof of) the hardness part of the
complexity classification of Boolean languages [67] (cf. Chap. 6), where the original
results from [67] relied on ad hoc gadgets.

2.7 Summary

We have investigated the expressive power of crisp and valued constraints. We have
presented a construction to determine whether a given cost function is expressible
over a given language. We have also presented a construction to determine whether a
given fractional polymorphism belongs to a fractional clone. We have then presented
a general algebraic theory. This algebraic theory allowed for a simpler proof of the
(hardness part of the) classification of Boolean languages [85], and also a simpler
proof of the (hardness part of the) classification of conservative languages [86],
originally obtained in [187, 188] (more in Chap. 7).

2.7 Summary 47

2.7.1 Related Work

Galois connections for various variants of the CSP have been considered in the
literature [31, 255].

2.7.2 Open Problems

The most interesting open problem is the structure of weighted clones. Due to the
presented Galois connection, this would immediately shed some light on the com-
plexity of VCSPs.

http://www.springer.com/978-3-642-33973-8

	Chapter 2: Expressibility of Valued Constraints
	2.1 Introduction
	2.2 Results
	2.3 Indicator Problem
	2.4 Weighted Indicator Problem
	2.5 Fractional Clones
	2.6 Galois Theory
	2.7 Summary
	2.7.1 Related Work
	2.7.2 Open Problems

