Chapter 2
Nakiterpiosin

Shuanhu Gao and Chuo Chen

2.1 Background

For decades, ranchers in central Idaho were puzzled by a mysterious birth defect in
their flocks of sheep. A percentage of their lambs, ranging from 1 % to 20 %, were
born with only one eye. The Poisonous Plant Research Laboratory of the US
Department of Agriculture started to investigate this “malformed lamb disease”
in 1954. During the 11 years of work, they found that ewes grazing on corn lily
(Veratrum californicum) on the 14th day of gestation gave birth to cyclopic lambs,
while the ewes were left unaffected [1]. They further found that cyclopamine (3)
was responsible for the one-eyed face malformation and veratramine (4) led to leg
deformity (Chart 2.1). The molecular target of 3 was identified 30 years later to be
smoothened (Smo) [2]. Smo is a seven-pass transmembrane protein that regulates
the activity of the Hedgehog (Hh) signal transduction pathway. Since Hh signaling
is central to stem cell differentiation and tissue homeostasis, and 10 % of basal cell
carcinoma and medulloblastoma patients carry hyperactive mutant Smo, small
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Chart 2.1 C-nor-D-homosteroids and the first two Hedgehog antagonists in clinical trials

molecules that suppress Hh signaling have been pursued as a new class of thera-
peutics for cancer and neurodegenerative diseases [3]. Several small-molecule Smo
inhibitors, including vismodegib (or GDC-0449, §) by Genentech [4], IPI-926
(6, a cyclopamine derivative) by Infinity Pharmaceuticals [5], BMS-833923 (XL139)
by Bristol-Myers Squibb [6], LDE225 and LEQ506 by Novartis [7], PF-04449913
by Pfizer, and TAK-441 by Millennium Pharmaceuticals, are now under clinical
evaluation [8].

Structurally, 3 and 4 belong to a special class of steroids in which the C-ring is
contracted and D-ring expanded by one carbon via a C-13 — C-12 migration. For
decades, the C-nor-D-homosteroids were found only in plants. It was not until 2003
that the first marine-originated members, nakiterpiosin (1) and nakiterpiosinone (2),
were reported by Uemura and coworkers [9] as part of a study of coral black disease.
From 1981 to 1985, large patches (up to 1,000 m in length) of cyanobacteriosponges
Terpios hoshinota were observed in Okinawa [10]. These thin, encrusting sponges
aggressively compete with corals for space by epizoism. Uemura and coworkers
hypothesized that T. hoshinota killed the covered corals by secreting toxic
compounds. Searching for these toxins, they isolated 0.4 mg of 1 and 0.1 mg of
2 from 30 kg of the sponges. Both compounds inhibited the growth of P388 mouse
leukemia cells with an ICs, of 10 ng/mL.

2.2 Synthesis of the 6,6,5,6 Steroidal Skeleton

The unique molecular skeleton of the C-nor-D-homosteroids represents significant
challenges for organic chemists. The structure elucidation and the total synthesis
of cyclopamine (3, also known as 11-deoxojervine), jervine (11-oxo-3), and
veratramine (4) are important milestones in steroid chemistry. Many synthetic
strategies were developed in the 1960s—1970s for these targets. Notably, Masamune
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Scheme 2.1 The biomimetic approaches to C-nor-D-homosteroids

and Johnson documented the synthesis of jervine and veratramine, respectively,
in 1967 [11, 12]. Together with Masamune’s previous report of the conversion of
jervine to cyclopamine by a Wolff reduction, these reports are the first syntheses of
these three steroidal alkaloids [13]. In addition, a formal synthesis was reported
by Kutney in 1975 [14] and an efficient approach by Giannis in 2009 [15]. The
development of the synthetic approaches to this unique 6,6,5,6 steroidal skeleton is
summarized below.

2.2.1 The Biomimetic Approaches

The biomimetic approach to the core skeleton of C-nor-D-homosteroid was first
developed by the Merck research group (Scheme 2.1) [16]. In the Merck procedure,
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the C-12 position of hecogenin was first activated as a mesylate (7) or a tosyl-
hydrozone (10). While treating 7 with a base gave a mixture of rearranged products
8 and 9, thermolysis of 10 gave only 9. It was proposed that the C-13 — C-12
migration of 10 was accompanied by a concerted deprotonation of H-17 to provide 9
selectively. This method was later modified by Mitsuhashi [17], Schering-Plough
[18], and Giannis [19]. In particular, Giannis has demonstrated that a combination of
the Comins reagent and DM AP effectively promotes the rearrangement of a series of
steroid derivatives that fail to undergo rearrangement under other reported
conditions. It should also be noted that ketone 12 served as the common intermediate
for Masamune and Johnson in their synthesis of 11-ox0-3 and 4. Ketone 12 was
initially obtained from the degradation of 4 by Masamune [20]. Mitsuhashi prepared
11 by degrading hecogenin.

2.2.2 The Ring-by-Ring Approaches

Johnson has developed two linear approaches to synthesize the C-nor-D-homosteroid
skeleton (Scheme 2.2). In his first approach [21], tetralone 19, obtained from reduction
of 2,5-dimethoxynaphthalene, was used as the source of the C,D-rings. The B- and
A-rings were constructed by sequential Robinson annulations (19 — 20 — 21). The
C11,12 olefin was then introduced to provide 22. Ozonolysis of 22 followed by an
aldol reaction of the resulting dialdehyde gave 23. Subsequent deformylation and
deoxygenation afforded the cyclopamine skeleton 24.

In Johnson’s second approach [12b], the C-ring was introduced directly with the
desired ring size. Starting from Hagemann’s ester (25), which served as the source
of the D-ring, a Knoevenagel condensation was used to introduce the C-ring
(25 — 26). After decarboxylation and D-ring aromatization, the B- and A-rings
were introduced stepwise by Robinson annulations (26 — 27 — 28). A series of
reduction and aromatization reactions were then performed to deliver racemic 12.
Johnson’s asymmetric synthesis of veratramine (4) was accomplished by adopting
Mitsuhashi’s procedure [17a]. Finally, the side chain of 12 was functionalized by an
epoxide—aldehyde rearrangement.

In contrast to the Johnson’s D — A-ring construction approach, Brown devised an
A — D-ring construction approach [22]. Starting from Wieland—Miescher ketone
(30), a common source of the A, B-rings in the de novo synthesis of steroids, the
C-ring was introduced via hydrazone allylation, ozonolysis, aldol condensation, and
olefin isomerization (31 — 32). The D-ring was assembled by a reductive alkylation
of enone 32 followed by an aldol condensation to give 33 after deprotection.

2.2.3 Miscellaneous

During the synthesis of an indenone derivative, Hoornaert found that AICl; catalyzed
the dimerization of indenone 34 to form truxone 35 (Scheme 2.3) [23]. Attempts to
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Scheme 2.2 The ring-by-ring approaches to C-nor-D-homosteroids

induce the retrodimerization of 35 by photolysis resulted in a decarbonylation
through a Norrish type I cleavage to give 36. The subsequent photolytic, disrotatory
retro-electrocyclization reaction and a thermal, suprafacial 1,5-sigmatropic benzoyl
shift afforded 38 that bears a C-nor-D-homosteroid skeleton.

The thermally and Lewis acid-promoted transannular Diels—Alder reactions
have proven to be a powerful tool for the synthesis of steroids and other natural
products [24]. A research team led by Takamura, Arimoto, and Uemura utilized this
reaction to assemble the polycyclic skeleton of nakiterpiosin (1) [25]. Heating
macrolide 39 at 160 °C gave 40 and 41 as a mixture of diastereomers in good yields.
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Scheme 2.3 Miscellaneous approaches to C-nor-D-homosteroids

Pattenden reported a tandem cyclization approach for the synthesis of estrone in
2004. Later, they further demonstrated that this strategy could be used to generate
the veratramine skeleton [26].

We recently developed a convergent approach that comprises a carbonylative
Stille coupling [27, 28] and a photo-Nazarov cyclization reaction [29-31] for the
synthesis of nakiterpiosin [32]. Several highly acid- and base-sensitive functional
groups were tolerated under these nearly neutral reaction conditions. We found that
using a stoichiometric amount of Pd(PPh3), and 1 atmosphere of CO, triflate 46,
and stannane 47 could be coupled to give the corresponding enone in 66 % yield.
The steric hindrance of both coupling components rendered the carbonylative
coupling significantly challenging. The employment of CuCl as an additive and
DMSO as the solvent accelerated the reaction considerably, thus making the desired
reaction outcompete the decomposition pathways. Attempts to add LiCl to facilitate
the reaction led to the elimination of the bromide. The beneficial role of CuCl in
Stille reactions was first discovered by Liebeskind and later studied by Corey [33].
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Chart 2.2 The synthetic strategy for nakiterpiosin

It is believed that the copper salts facilitate transmetalation by generating a highly
reactive organocuprate intermediate.

The Nazarov cyclization of vinyl aryl ketones involves a disruption of the
aromaticity, and therefore, the activation barrier is significantly higher than that of
the divinyl ketones. Not surprisingly, the Lewis acid-catalyzed protocols [30]
resulted only in decomposition to the enone derived from 46, 47, and CO. Pleasingly,
however, photolysis [31] readily delivered the desired annulation product 48 in
60 % yield. The photo-Nazarov cyclization reaction of aryl vinyl ketones was
first reported by Smith and Agosta. Subsequent mechanistic studies by Leitich and
Schaffner revealed the reaction mechanism to be a thermal electrocyclization
induced by photolytic enone isomerization. The mildness of these reaction
conditions and the selective activation of the enone functional group were key to
the success of this reaction.

2.3 Synthesis of Nakiterpiosin

As described above, our synthetic strategy involves the convergent construction of
the central cyclopentanone ring with a carbonylative cross-coupling reaction and a
photo-Nazarov cyclization reaction (Chart 2.2). The electrophilic coupling compo-
nent 51 was synthesized by an intramolecular Diels—Alder reaction [34] and the
nucleophilic coupling component 52 by a vinylogous Mukaiyama aldol reaction [35].

The structure of nakiterpiosin was originally assigned as 49 by Uemura based on
NMR experiments [9]. Puzzled by the inconsistency of the C-20 stereochemistry of
49 with that of cyclopamine (3) and veratramine (4), we first set out to probe the
relative stereochemistry of nakiterpiosin. Our model studies indicated the potential
misassignment of the C-6, C-20, and C-25 stereogenic centers [32]. We next
considered the biogenesis of the halogen atoms of nakiterpiosin to rationalize the
C-6 and C-20 stereochemistry (Chart 2.3) [36]. We envisioned that the C-21 chlorine
atoms of nakiterpiosin might be introduced by radical chlorination, and the C-6
bromine atom by bromoetherification (as shown in 50) to result in retention of the
C-20 configuration and the anti C-5,6 bromohydrin stereochemistry. Taken together,
these considerations led us to propose 1 as the correct structure of nakiterpiosin,
which was later confirmed via the total synthesis of 49 and 1.
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The synthesis of the electrophilic coupling component 51 commenced with a
Friedel—Craft acylation of furan with succinic anhydride (Scheme 2.4) [37]. The
resulting acid was converted to a Weinreb amide (53). The Noyori reduction [38]
with the Xiao modification [39] was then used to set the C-6 stereochemistry,
affording 54. A Grignard reaction then gave the enone (55). The subsequent intra-
molecular Diels—Alder reaction proceeded with good stereochemical control [40] to
give the exo product exclusively. The sterically congested C-6 hydroxyl group was
then activated with an unusual, electron-deficient aryl sulfonate group to afford 56.

To avoid the retro-Diels—Alder reaction, 56 was dihydroxylated prior to the
introduction of the bromine atom (57). Removal of the acetonide group followed by
cleavage of the diol afforded a bis-hemiacetal. Selective reduction of the less-
hindered hemiacetal group gave 58. The remaining hemiacetal was protected, and
the ketone was converted to an enol triflate, thus concluding the synthesis of the
electrophilic coupling component S1.

The synthesis of the nucleophilic coupling component 52 started with the
reduction of 3-bromo-2-methylbenzenecarboxylic acid, and followed with a Horner—
Wadsworth—Emmons reaction of the corresponding aldehyde, and a 1,2-reduction of
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the resulting enoate to afford 59 (Scheme 2.5). A Sharpless epoxidation [41] was then
used to set the C-20 stereochemistry, giving epoxide 60 with 92 % ee. After the
protection of the hydroxyl group, a pinacol-type rearrangement using Yamamoto’s
catalyst [42] followed by a vinylogous Mukaiyama aldol reaction afforded 61 without
significant erosion of the enantiomeric purity.

With the complete carbon framework of the side chain in place, we next sought
to set its anti—anti—trans configuration. The C-25 stereochemistry could be established
by either a directed hydrogenation [43] or a conjugate reduction. The C-22 stereo-
chemistry was inverted by reduction of the C-22 ketone to afford the requisite
anti—anti—trans configuration. Subsequent protection of the hydroxyl group gave 62.
To introduce the gem-dichloromethyl group, we selectively deprotected the primary
alcohol, oxidized it to an aldehyde, and chlorinated it with Cl,/P(OPh); [44]. Bromide
63 was then stannylated to provide the nucleophilic coupling component 52.

To complete the synthesis of nakiterpiosin (1), we first deprotected 52 and then
coupled it to 51 under the previously described carbonylative conditions
(Scheme 2.6). Photolysis of 64 readily provided the desired annulation product.
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The subsequent deprotection of the hemiacetal concluded the synthesis of 1. We
also successfully used this convergent approach to synthesize nakiterpiosinone (2)
and 6,20,25-epi-nakiterpiosin (49).

2.4 Biology of Nakiterpiosin

The strong growth inhibitory activity of 1 toward P388 cells prompted us to further
investigate its biological functions. Our preliminary studies showed that 1
suppressed Hh signaling in NIH3T3 mouse fibroblasts with an ICs5y of 0.6 pM,
presumably by inducing the loss of primary cilium [45]. While the detailed mecha-
nism is not clear, 1 is likely to influence the microtubule dynamics through a
different mode of action from common antimitotic agents such as taxol and
nocodazole. Further work is needed to elucidate its molecular target.
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