Chapter 2
Concepts in Mechanism Based Modeling

Ole Lund, Jakob L. Laugesen, and Erik Mosekilde

We assume that biological phenomena in principle can be
explained in terms of physical and chemical processes. The
challenge is ’just’ to understand how this can be done.

2.1 Problem Definition

When we talk about biological organisms as systems we refer to the enormous num-
ber of mutually reinforcing, competing and counter acting feedback mechanisms
that regulate the biological processes in space and time. We cannot hope to capture
all aspects of such a highly integrated system in any model. The first and most
important step in the biological modeling process must, therefore, be to establish a
clear picture of the purpose of the project.

In general terms, the purpose of a modeling effort could be to examine the mech-
anisms underlying a specific phenomenon and to suggest new critical experiments
that could provide insights into these mechanisms. In the health care sector, the
purpose could be to design an individualized treatment of a particular disease,
and in the pharmaceutical industry the purpose could be to predict parameters
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characterizing the pharmacokinetics of a new drug or to foresee situations where
the drug would give rise to adverse side effects. The parameters characterizing the
subcutaneous absorption of insulin represent, together with parameters related to
the distribution and metabolism of insulin, typical pharmacokinetic parameters.

A clear picture of the purpose of the modeling effort or, in other words, a
clear problem definition is required to sort out those processes and interactions
we need to take into account from all of those that can be neglected. In most
cases this delineation cannot be performed by means of spatial boundaries alone.
The kidneys and the liver, for instance, are by themselves complicated systems
that support many different processes and when we talk about a heart model, we
implicitly refer to particular functions that this organ performs. Other processes that
take place in response, for instance, to changes in physical activity, to interactions
with the lungs or the nervous system, or to drug administration may or may not be
accounted for.

The causal aspects of the problem definition are closely linked to the establish-
ment of a dynamic hypothesis, i.e. a description of how the considered phenomenon
can be explained in terms of the proposed mechanisms. This explanation may
include a so-called reference mode, i.e. a graph that specifies how the main variables
of the system are expected to vary in time, and how this variation is associated
with the assumed mechanisms. Specification of the time horizon for the considered
phenomena helps us identify processes on one side that develop so fast that they
can be considered as displaying a form of quasi-equilibrium and processes, on the
other side, that change slowly enough to remain practically constant. Between these
limits we find the processes that are essential to the observed behavior.

Most often, an a priori delineation of the problem does not exist. On the
basis of the phenomena we want to describe, the use intended for the model, the
available information, and the time allotted to the project we need to establish a
boundary between ’the relevant’ and ’the non-relevant’. It may sound, perhaps,
as if we suggest solving the problem before we can start to formulate the model.
This is, clearly, not the case. However, in view of the enormous complexity we
face and the fact that ’everything depends on everything’ we have to clarify the
problem as well as possible before we are caught up in computer programming
and parameter adjustments. In practice, computer simulation, problem definition
and model formulation typically develop hand in hand with new aspects and further
details being taken into account as the model grows and gains credibility, and as
new experiments are performed.

2.2 The Role of Feedback Regulation

Broadly speaking, the feedback structure of a system controls the character of
the dynamics it can display and, as mentioned above, one can hardly think of a
biological process that does not involve feedback regulation of one kind or another.
This underlines the importance of understanding some of the most important aspects
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of control theory as developed and used in many areas of engineering. By identifying
the main feedback loops of a system, one can often predict the stability of its
equilibrium point, the character of its transient response to an external perturbation,
and the form of the instabilities it may display.

By far the most common feedback regulation in living systems is negative. This
implies that if the value of some variable is changed and we follow the consequences
of this change all the way around the causal loop, then the final effect will be a
correction that to some extent compensates for the original change.

As demonstrated in many books on Classical Control Theory [13,20] and more
recently in books on Systems Biology [17, 28], negative feedback regulation in
general ensures stability of the equilibrium point and a reduced sensitivity to
parameter variation. This result is particularly important because it allows individual
organisms of the same species to exist and function in more or less the same manner
while having considerable differences in their parameters. Unless our models
reproduce the same feedback structure, the models will clearly fail to represent some
of the most essential aspects of the considered systems. In particular, they will fail to
display a proper sensitivity to parameter variations. On the other hand, if the model
captures the essential feedback structure, the parameters in most cases do not need
to be known with very high precision.

Positive feedback regulation also plays a role in the functioning of living systems
and may, for instance, be called upon to strengthen or speed-up a particular process.
One example is the response of the immune system to an external infection. This
response may be seen as a critical race between the infectious agent and the
components of the immune system with respect to their ability to proliferate and,
for the immune system, to establish an effective defense. Another example is the
so-called “calcium-induced calcium release” (CICR) [11,32]. This is a mechanism
that, in response to a small increase in the local cytoplasmic calcium concentration,
allows for a rapid growth of this concentration through the release of calcium from
intra-cellular stores. A mechanism of this type, involved in the formation of Ca?"
microdomains, will be discussed in detail in Chap.9. Calcium-induced calcium
release will also be discussed in connection with the modeling of both smooth
muscle cells in the arterial walls (Chap. 10) and heart muscle cells (Chap. 12).

The interaction between glucose and insulin is a classic example of a negative
feedback regulation. It is well-known that muscle and adipose tissue cells require
insulin to activate receptor molecules in the cell membrane and initiate the processes
that will allow glucose to pass into the cells. The higher the insulin concentration
in the blood is, the faster glucose will enter the cells, and the more effective
the glucose concentration in the blood will be reduced. On the other hand, the
blood glucose concentration controls the rate of insulin secretion from the pancreas
and, when the glucose concentration decreases, the secretion of insulin also goes
down.

Core elements of this feedback are represented in the so-called causal loop
diagram of Fig.2.1. Here, the arrows represent (presumed) causal relations. The
signs near the heads of these arrows indicate the direction of change for the effect
relative to that of the cause, i.e. plus means that increasing the cause will also
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increase the effect, and vice versa. The minus sign in parentheses in the middle
of the diagram identifies the feedback as being negative. Diagrams of this type are
meant to help identifying the basic feedback structure of the system.

In the form depicted in Fig. 2.1, the causal loop diagram only provides a very
superficial picture of the insulin-glucose regulation. The diagram neglects, for
instance, that brain and nerve cells can consume glucose without insulin, that insulin
is degraded both in the liver and in muscle and adipose tissue, and that glucose may
be released from the liver. The observant reader will also note that the glucose
concentration in the blood does not control the insulin concentration. Glucose
concentration determines insulin secretion rate, and this is, clearly, not the same
as insulin concentration. It is obvious that we need to develop a clearer picture of
“what can be cause” and “what can be effect”.

Nonetheless, a strong negative feedback regulation between insulin and glucose
does exist and, in connection with the fast elimination of surplus insulin by the liver,
the presence of this feedback leads to the characteristic dynamics of the system, e.g.,
the characteristic, response to a glucose test with an initial rise in blood glucose
concentration followed by a nearly monotonous decay. The life time for insulin in
the blood is only 5-8 min, and the fast removal of surplus insulin from the system
represents an effective damping mechanism that lends stability to the regulation.

2.3 Flow and Stock Variables

From the point of view of physics, the systems we have described as “cancer cell
migration”, “subcutaneous insulin absorption”, and “insulin-glucose regulation” are
all thermodynamic systems in the sense that they deal with concentrations and flows.
In biology and medicine systems this type are often described as compartmental
systems. Conceptually, they represent one of the simplest types of system one can
think of.

The description in terms of compartments (or spaces) implies that we can dis-
tinguish between two different types of variables: extensive variables and intensive
variables. Extensive variables, such as the insulin secretion rate and the amount of
glucose in the blood, are characterized by the fact that they scale with the size of
the system and can be added for subsystems. Intensive variables are variables such
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as the concentration of insulin or the partial pressure of oxygen in the blood. Such
variables are independent of the size of the system and do not add for subsystems.
The total amount of insulin in the body, for instance, may be obtained by adding
the amounts of insulin in the blood and interstitial spaces. By contrast, the insulin
concentration in the body cannot be calculated as the sum of the concentrations in
the two compartments. We conclude that the mathematical operations allowed for
the two types of variables are different.

The extensive variables again divide into stock and flow variables. Stock
variables may also be denoted as level (or state) variables, and flow variables as rate
variables [12]. All three types of variable are important in our models, and a clear
distinction among them helps us understand “what is cause” and “what is effect”:
Experimentally one typically measures intensive variables and flow variables, and
these two types of variables are often considered as directly responsible for the
causal relations of the system. The blood glucose concentration, for instance,
determines the rate of insulin secretion, and the insulin concentration controls the
rate of cellular glucose utilization. On the other hand, the stock and flow variables
together express the material conservation equations that form the most obvious
skeleton of the mechanism-based models.

By contrast to the stock variables, concentration variables do not qualify as
components of a conservation equation for lumped (i.e., compartmental) systems
because they are not related directly to the flows. If, for instance, the amount of
insulin in the blood changes we can explain this change in terms of the rate of insulin
production in the pancreas, the rate of insulin degradation in the liver and tissue,
and the rate of insulin diffusion into the interstitial space. Moreover, the amount of
insulin that leaves the plasma compartment and diffuses into the interstitial space
equals the amount that appears in that space. By virtue of their different volumes,
however, the changes in insulin concentrations resulting from this transfer are not
the same.

Admittedly, there are a simple ways to account for this problem, but the
situation becomes more complex, if the distribution volumes vary with time. If,
for instance, the volume of a particular compartment increases, the concentration
in that compartment will decrease, even though there are no out-flow to account for
this change. Biological tissue is elastic and yields to pressure changes. This provides
many simple examples of time-varying volumes such as the airspaces of the lungs,
the ventricles of the heart, the arteriolar and venal volumes, etc.

In accordance with the symbols applied in the field of Systems Dynamics [12] we
shall use boxes to denote stock variables, valves to denote rate variables, and circles
to denote so-called auxiliary variable. The symbols used for these three types of
variables are illustrated in Fig.2.2. Besides intensive variables as discussed above,
auxiliary variables also include stock variables that change fast enough to follow
other variables in the system immediately and, hence, can be described in terms of
algebraic equations.
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Fig. 2.2 System Dynamics symbols for level (or stock), rate (or flow) and auxiliary variables to
be used in the flow diagrams below. The flow diagrams are meant as means to sketch, develop and
communicate the main structure of the system. Note that one usually writes the variable names in
the respective boxes, valves or circles

2.4 Equations of Motion and the Direction of Causation

Let us assume that we have now chosen the state variables X,Y, Z,... of our
model. The state variables represent material accumulations that change fast enough
for considerable excursions to occur during the time horizon of interest, yet slow
enough to display significant phase shifts (or delays) relative to one another.
The concept of a compartment is not restricted to be a physical volume. In
electrophysiological models of spiking and bursting cells, for instance, a main state
variable is the electric charge accumulated on the membrane capacitance. If this
capacitance is assumed to remain constant one can, as it is mostly done, use the
voltage across the cellular membrane as the state variable.

The stock variables represent the state of the system at any given moment. This
state is, so to speak, defined through the amounts of all relevant substances in all
specified compartments. The extent to which we want to disaggregate the model,
i.e., to divide the different compartments into sub-compartments, depends on the
problem and on the purpose of the model. Note, however, that while it may be easy
to formally increase the number of stock variables, it is often difficult to obtain the
information required to specify how the corresponding flow variables are controlled.

The concept of a deterministic system implies that specification of the state
variables X, Y, Z, ... at a given moment of time makes it possible to calculate the
values of all other variables in the system at that moment. In particular, one can
calculate the values of the flow variables. Hence, one can determine the change
in the state of the system during the next small time interval, and our computer
simulations may be viewed as the continued application of this process. All other
variables (auxiliaries) of the system are also determined by the state variables, and
to start a simulation we only have to provide initial values to the state variables.

For a deterministic (or, more generally, a state determined) system, the equations
of motion thus take the form:

X =f(X.Y.Z,....1) (2.1a)

Y =g(X.Y.Z,....1) (2.1b)
Z=hX.Y.Z,...,1), (2.1¢)
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where ¢ denotes time. The explicit time dependence of the equations of motion
allows for possible external influences in the form, for instance, of a sequence of
meals or the time profile of some treatment. We generally prefer to minimize the
number of external influences in order to explain as much as possible of the observed
dynamics by mechanisms that are actually present within the model.

As the above Eqgs. (2.1) clearly state, the rate variables are determined by the state
variables. We interpret this to mean that the biological cause—effect relationships
must be formulated in such a way that changes in the stock variables cause changes
in the rate variables. There cannot be cause—effect relationships directly between
two stock variables, because a stock variable can only change via in- and out-flows
through the associated rate variables. And, there cannot be a direct cause—effect
relationship between two rate variables, because the rate variables are determined by
the state variables. This again leads us to conclude that every feedback mechanism
must involve at least one state variable.

We realize that noise and other forms of randomness are present in most biomed-
ical systems. The model of brain cell synchronization discussed in the section on
Parkinson’s disease in Chap.1 represents a simple example of the significance
of such fluctuations. Here, the noise term was used to counteract the drive for
synchronization caused by the intercellular interaction. In spite of this ubiquitous
presence of noise, however, the present book focuses mostly on the coherent aspects
of the observed phenomena.

In this connection it is worthwhile to stress that “noise” has its own generative
mechanisms. These mechanisms include thermal excitation of molecular dynamics,
random effects associated with a small number of molecules in a given process or
space, mutations, biological variation from person to person, etc. Other important
contributions arise, of course, from poor control of the experimental conditions, lack
of resolution, insufficient sampling rates, etc. Each such source of uncertainty will
display its own characteristic properties.

2.5 A Simple Example of a Flow Diagram

In order to illustrate some of the above concepts let us start by discussing a strongly
simplified model of the immune response to a virus infection. Let us first make
it clear, however, that modeling the immune system and its interaction with foreign
agents is an extremely complicated problem that continues to engage a large number
of scientists throughout the World [1, 10, 18].

Infection by microorganisms (bacteria, viruses, fungi, etc.) presents a major
challenge to all living organisms and, from ants to trees the different species have
developed a variety of mechanisms that can help the individual organism overcome
the threat of such infections.

Bacterial cells, for instance may be partly protected from viral infections, either
because they lack receptors for the specific virus or because they secrete a protective
layer that prevents the virus from adsorbing to the cellular surface. Many bacteria
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also dispose of a two-component “immune system” consisting of modification
enzymes that tag “self” onto proteins produced by the cell itself, together with
restriction enzymes that destroy foreign molecules by cutting them into pieces [7].
The viruses on their part can adapt to such resistant cells through so-called host-
range mutations that improve their ability to enter the cells or to exploit the cellular
functions [4].

Occasionally, a viral DNA may pass unnoticed by the bacterial restriction
enzymes and, as the virus starts to reproduce by means of the cellular machinery,
the new viruses will be modified by the cellular enzymes so that they can attack
other cells with the same restriction-modification system. The viral attack may also
take form of a so-called lysogenic response in which the viral DNA is inserted into
the bacterial DNA with the result that the cell becomes partially resistant to new
attacks. Under stress a lysogenic bacterium may again release its viral DNA, thereby
initiating a new round of infection [24].

For vertebrates, the immune system consists of a so-called unspecific (innate)
component and a specific (acquired) component [19, 29]. The two components
supplement one another such that the unspecific response establishes an immediate
defense until the specific and much more effective response can be mounted. The
immune system also has a component that remembers past infections and thereby
allows the specific response to be established faster and act more effectively in case
of a subsequent infection by the same type of virus. As we know from the recurrent
flu infections, the virus on its part can mutate such that it will not be recognized so
easily by the immune system when it returns in the following season.

The cellular component of the immune response includes primarily the macro-
phages, the cytotoxic T-cells (CTLs or CD8+ cells), the helper T-cells (HTLs or
CD4+ cells), the B-cells and the so-called dendritic cells. These cells all originate
from stem cells in the bone marrow. The T-cells derive their name from the Thymus
where they are “trained” to distinguish between “self” and “non-self”. In each
person, the T-cells are produced in something like 10°-10'" different variants
(clones), each responding to only a few antigens, but together allowing the body
to establish an effective response to a broad range of foreign invaders. During
“training” in the thymus, the T-cells are exposed to the normal proteins that circulate
in the blood. If a cell reacts to one of these proteins, it is destroyed. Cells that do not
react to the body’s own proteins are released to the blood as “mature T-cells”. In the
specific response to an infection, lines of T-cells that react strongly to the proteins
produced by the infectious agent will multiply particularly fast and thus establish a
population of immune cells that effectively can recognize and destroy the pathogen.

Dendritic cells represent the first line of defense. They are found near the external
and internal surfaces of the body where an infectious agent will first appear. When
a dendritic cell detects the antigens (proteins) of a foreign virus or cell it will travel
to a lymph node to activate the T-cells and direct them towards the inflammation
site. The macrophages engulf and digest infected cells to present their antigens
on the surface. This activates the helper T-cells to proliferate and to stimulate the
release of antibodies from the B-cells. Once the infection is over, some of the B-
and T-cells will be converted into memory cells. If the same infection later occurs,
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Fig. 2.3 Flow diagram for a strongly simplified model of a virus infection of the immune system.
The immune response is described in terms of the activation of T-cells, neglecting all other
components of this response

the memory cells are turned back into B-cells that immediately start to produce
antibodies against the pathogen. Through the release of compounds known as
cytokines, lymphokines, etc., the helper T-cells also stimulate the cytotoxic T-cells
to proliferate and to attack the pathogens.

Antibodies, cytokines and lymphokines are elements of the so-called humoral
(fluid, i.e., not cellular) component of the immune response. Antibodies bind to
the antigens and serve to neutralize the pathogens. Antibodies also bind to the Fc
receptor on the T-cells and help these cells locate and destroy the pathogens. Finally,
“complement” is the common term for a group of about 20 proteins that normally
circulate in the blood in an inactive form. When activated by an infection they
stimulate phagocytose (destruction) of foreign cells, and they may also be directly
involved in the destruction of pathogens by making holes in their cellular membrane.

Let us now consider the simplified model of a virus infection shown in Fig. 2.3.
This model operates with one state variable V' for the virus population and two
state variables M and A for the immune system, representing, respectively, the
populations of mature and activated T-cells. Neglecting migration of T-cells to other
spaces, we may think of these state variables as concentrations of viruses and of
mature, respectively activated T-cells in the blood. The fully drawn straight lines that
connect the rate and state variables represent the material conservation conditions.
The arrows drawn as dotted curves represent the proposed causal mechanisms
through which the flows are controlled by the stocks. The parameters (constants)
of these causal relations are also indicated.
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In accordance with the above discussion, the state variables are determined
directly by their initial conditions and the changes they undergo via in- and out-
flows through the associated rate variables:

e The number of infectious agents increase through proliferation and decrease
through natural death as well as through destruction by the T-cells:

d
d—I; =aV — bV —cAV 2.2)

The parameters « and b are the rate constants for virus reproduction and virus
natural death, respectively. By analogy with the (chemical) law of mass action,
we have used a simple bilinear term to describe the frequency of cell-virus
encounters. o is the efficiency of virus destruction by activated T-cells. (In the
absence of an immune response other mechanisms must be assumed to control
the virus population).

e Mature T-cells are released from the thymus at the constant rate A. The number
of mature T-cells hereafter decreases through natural death with a rate constant
(reciprocal lifetime) 1 and by activation through encounters with viruses with an
efficiency y. This development is described through the equation:

dm
— = A—uM — yAV (2.3)

dt
e Activated T-cells are produced from mature T-cells at the rate yAV and they
proliferate at the rate rA. Finally, the activated T-cells are assumed to disappear
by natural causes through a combination of linear and nonlinear processes such

that in total: A
i YAV + 1A —cA—dA? (2.4)

Note the clear one-to-one relation between the flow diagram and the equations of
motion. There is one differential equation for each state variable and it is expressed
directly in terms of the flow variables.

The insert in Fig. 2.3 shows a characteristic simulation result with the initial surge
of the viral population followed by a rapid decline as the number of T-cells grows
large enough. Questions that one could address with this simple model are: (a) With
given proliferation and death rates for the virus population what is the minimum
reproduction rate and virus destruction efficiency the T-cell population must achieve
to cope with the infection? (b) What happens if the nonlinear term in the T-cell
death rate is neglected? (c) How can one introduce a form of delay in the T-cell
proliferation rate to account for the time it takes for the immune system to develop
its specific response? And, considering all other parameters to be known, (d) what
is the relation between the T-cell proliferation rate and the duration of the infection?
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2.6 HIV Infection of the Immune System

The above infection model can obviously be extended in many different directions.
We could try to include some of the most pertinent aspects of the interactions
among the infectious agent, the helper T-cells, and some of the other components of
the immune system (cytotoxic T-cells, macrophages, antibodies, etc.), or we could
try to describe the development of the specific response by allowing for a broad
spectrum of different T-cells. Instead, however, we shall try to illustrate how the
model, while maintaining its simple structure, can be modified to account for some
of the characteristics of an HIV infection.

The human immunodeficiency virus (HIV) is a retrovirus that primarily infects
the CD4+ T-cells [2,6,30]. The infection is initiated with the adsorption of the virus
particle to the cell surface and the binding of the viral gp120 glycoprotein to the
CD4 receptor in the cell membrane. This binding causes the viral envelope to fuse
with the cell membrane and allows the virus proteins and genetic material to be
released into the cell.

The characterization as a retrovirus implies that the genetic material is RNA
(rather than DNA). In the cell the viral RNA undergoes a reverse transcription into
DNA. This DNA is thereafter inserted into the human chromosome, and new copies
of the viral RNA and proteins are produced until the cell finally lyses (bursts), and
a large number of new viruses are released. The lifetime of a virus outside the cells
is of the order of 68 h [27]. The viral DNA may also remain inactive in the T-cell
until the cell is activated (e.g. by another infection) and new copies of viral RNA
are produced.

The success of the virus in this way hinges on its ability to attack precisely
those cells that are meant to orchestrate its destruction. The viral infection even
contributes to the proliferation of the CD4+ T-cells, thus increasing the target
population. In addition, HIV disposes of a number of mechanisms that allow the
virus to evade attacks from the immune system. The inverse transcription from
RNA to DNA, for instance, is not controlled as effectively as genetic transcription
processes usually are. The result is that the virus mutates relatively often and, if one
follows an HIV infected person over a couple of years, one can observe how new
and increasingly violent forms of the virus appear from time to time. The fact that
the immune system over and over again has to establish a new specific defense may
be an important factor in its gradual collapse and the development of AIDS [26].

Another problem is that the gp120 glycoprotein that protrudes from the viral
surface is covered by glucose over most of its surface and therefore hard for the
immune system to identify as a foreign protein [14]. Only in connection with the
binding to the CD4 receptor does the gp120 protein need to open up and reveal its
core structure [15].

Figure 2.4 shows a version of our simple infection model, revised to account
for some of the most characteristic aspects of an HIV infection. We now have
four state variables namely, besides the viral population and the populations of
mature and activated T-cells, also a population of infected T-cells. Infection of
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Fig. 2.4 Simplified model describing an HIV attack on the immune system. Note how the virus
particles both activate the mature cells to proliferate and infect the activated cells to destroy them.
New viruses are released from the lysing cells

the activated T-cells is described by a bilinear term involving the virus population
and the population of activated T-cells. The efficiency of the infection process
is characterized by the parameter 8. Once the infecting virus has reproduced in
sufficiently large numbers, new viruses are released through lysing of the cell. The
parameter « is now the rate constant for the lysing process, and A is the burst size, i.e.
the number of viruses released in average from a lysing cell. The HIV population is
here also assumed to decrease at a rate §(A + I )V which represent the rate at which
HIV are captured at the surface of activated and infected T helper cells without
causing a new infection. With these comments, the following equations of motion
can be established directly from the flow diagram [3]:

dm
?:A—MM—)/MV (2.5a)
dA )
Tl yMV +rA— BAV —dA (2.5b)
d/
T BAV —al (2.5¢)
dv

= Aal —bV —3(A+ 1)V —cAV. (2.5d)

dr
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Fig. 2.5 Simulation of the effect of a HIV infection of the immune system. Note the initial upsurge
in the viral population, before an effective immune response can be established. Note also the self-
sustained oscillations with a period of approximately 10 weeks

Figure 2.5 shows an example of a simulation with the model. Here we have used
the parameter values [2]:

A=10, pu=01 y=001, r=10 B=0.1,

d =0.001, «a=20, A=50, b=10, o=0.1.

All concentrations are normalized (and dimensionless). This implies, of course,
that no absolute information about concentrations etc. can be drawn from the
simulations, and only the produced dynamics can be examined. The time scale is
in weeks. As before, the parameter o measures the efficiency at which the activated
T-cells destroy the virus.

When inspecting the simulation we first observe the initial upswing in the virus
population until the specific immune response is established. However the virus
population is never fully wiped out and the system continuous to display periodic
surges in the viral population accompanied by oscillations in the T-cell count as
new viruses are released from the infected cells. Sustained oscillations of this type
arise through instability in the feedback system. This instability is related to the
time delay and the significant gain factor associated with the virus reproduction
process. However, it is a system’s property and its occurrence depends on several
other factors as well. We shall provide a more detailed discussion of the mechanisms
involved in this type of instability in Chap. 4.
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2.7 HIV Vaccination and Anti-Retrovirus Therapy

The purpose of a vaccination is to stimulate the immune system in such a way that
it exhibits a fast and specific response to a given pathogen. Once the immediate
stimulatory effect of the vaccination has died out, some of the B- and T-cells
are converted into memory cells and, if a real infection later occurs, the memory
cells will be turned back into B-cells and start to produce anti-bodies to neutralize
the pathogen and assist the immune cells destroy it. Unfortunately, despite very
significant efforts over the past 30 years, the interaction between HI'V and the human
immune system has proved to be too intricate for a successful HIV vaccine to be
developed and, today it is probably correct to say that the pharmaceutical industry
is reluctant to undertake the risks and enormous costs associated with new attempts
at developing an HIV vaccine.

The fact that the virus enters and hides in the human cells makes the development
of an anti-virus vaccine very difficult, and only relatively few such vaccines exist.
It is well-known, however, that it has been possible to develop an anti-HIV therapy
that is capable of effectively suppressing the infection and maintaining it at a very
low level for many years. In this way one can stop the weakening of the immune
system and it is even possible for the immune defense to recover from damage it has
already suffered.

To avoid that the virus develops resistance against the treatment, the anti-
retrovirus therapy is usually based on a combination of three or more drugs. The
idea is to choose a cocktail of drugs that together inhibits several of the processes
that are essential to virus infection and reproduction. To the extent possible, this
cocktail should be designed in such a manner that a virus that escapes the inhibitory
mechanisms of one drug will have a reduced chance of also becoming resistant
towards one of the other drugs.

The individual drugs in the combination therapy may interfere with the functions
of the HIV protein (reverse transcriptase) that direct the reverse transcription from
RNA to DNA or they may inhibit enzymes (protease) that the virus needs for its
reproduction. Other classes of drugs work by reducing the ability of the virus to
enter the immune cells or to insert its genetic material into the cellular genes. Nearly
25 such anti-HIV drugs have been approved by the regulatory authorities (The US
Food and Drug Administration, FDA), but availability of these drugs is not the same
in all countries. The relatively large number of different drugs makes it possible in
general both to avoid severe side effects and to establish a second line of defence if
the virus becomes resistant to the first drug combination.

One of the sources of complexity that the development of a useful HIV-vaccine
must overcome is associated with the ambiguous relation between HIV, antibodies
and the CD4+ T-cells [8]. As mentioned above, the gp120 protein on the virus
surface binds to the CD4 receptor in the cell membrane, and this contact allows
the virus to unload its genetic material and a few essential proteins into the cell
and take control of its reproductive machinery. Antibodies against HIV bind to the
gp120 antigen and thereby reduce the number of active sites. Each HIV particle
carries of the order of 90 gp120 molecules. One can therefore conclude that the
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antibody concentration required to completely neutralize the viruses must be at least
a hundred times larger than the virus concentration, and presumably significantly
higher to account for a majority of antibodies that do not bind to the virus protein.
A more precise estimate depends on both the binding affinity and the absolute
concentrations.

Antibodies against HIV also bind to the Fc receptor in the cellular membrane,
and this allows the T-cell to hold and destroy the virus. However, this type of
binding may promote contact between the gpl120 protein and the CD4 receptor
and in this way enhance the probability of a virus infection. The net effect of
these two competing processes will depend on the binding affinities, but also on
the relative concentrations of antibodies, gp120 proteins, and T-cell receptors. One
would expect, however, that an antibody-dependent enhancement of the infection
rate could occur at intermediate concentrations where the number of antibodies
is insufficient to effectively neutralize the gp120 proteins and yet high enough to
promote contact between the virus and the CD4 receptor. The actual situation is
further complicated by the fact that complement may increase the adhesion of the
virus to the target cell by binding to both the virus and the CD2 and CD3 receptors
in the membrane.

The immediate questions to present themselves are: (a) how significant can such
an enhancement be and (b) how large an antibody concentration is required to
effectively neutralize the gp120 proteins and avoid the enhancement. The answers
to these questions depend on the values of different rate constants and binding
probabilities including the rate at which virus particles collide with the surface of an
immune cell and the probability that a virus particle binds to either an Fc receptor or
a CD4 receptor. Estimates of this type of parameters may often pass as substitutes
for real data until experiments can be performed. Let us therefore try to illustrate
how such estimates can be performed.

The maximum rate k, of diffusion limited aggregation may be obtained from the
so-called Smoluchowski equation [9]

kd = 477(Dc - Dv)(rc - rv)s (26)

where D and r are the diffusion constant and the radius for the cells (index ¢) and
the viruses (index v), respectively. This equation gives us the factor that, multiplied
by the two concentrations, determines the number of virus-cell collisions per unit
time and unit volume in the random diffusion of the two types of particles. The
diffusion constant for a particle of radius r is given by
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where kp is Boltzmann’s constant, 7" the absolute temperature and 7 the viscosity
of blood (or of the suspension in which the experiment is performed). In view of the
fact that the cellular radius is about 70 times the viral radius, the expression for k,
reduces to only depend on this ratio and a few more general parameters.
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The parameter k; relates to a diffusion process that takes place in three-
dimensional space. Once the virus has arrived at the surface of the cell, the motion
is reduced to something like a two-dimensional diffusion, and the probability that
the virus will find a receptor to bind to may be estimated from [5]

Nry

= — 2.8
Nrg+ nr, (2.8)

Pa

Here, N denotes the number of receptors on the surface of the cell, and ry is the
functional radius of the receptor, i.e., the distance within which the virus has to pass
to actually bind to the receptor. This distance is considered to be of the order of 1
nm. As before, 7. is the radius of the cell.

In the present case we have two different receptors on the cell surface (CD4 and
Fc), and different parts of the virus surface are covered with different ligands: either
gp120 that will bind to the CD4 receptor or antibody-complexed gp120 that will
bind to the Fc receptor. In this case, the expression for the binding probability may
be generalized to read [21,22]

_ _ (= fa)Nepars + faNFcry
(1= fo)Ncpars + faNpcrs + mre’

2.9)

a

where f, is the neutralization factor, i.e., the antibody-complexed fraction of gp120
molecules on the virus surface. N¢cps and Np. denote the numbers of CD4,
respectively Fc receptors on the cell surface. If binding of antibodies to gp120
does not block the binding of gp120 to CD4 (i.e., in the case of negligible antibody
neutralization), the factor (1 — f;) in front of N¢p4 should just be 1. For simplicity,
the expression for p, assumes that the two receptors have the same functional
radius, and that the virus surface in practice is completely covered by gp120. (If
these assumptions are not correct, one can easily amend the expression for p, by
introducing factors that account for the “active” fraction of the virus surface and for
the ratio of the two functional radii). The remaining problem is now to estimate
the antibody-complexed fraction of gp120 molecules. Here we have to consider
the chemical balance between binding and dissociation of antibodies and gp120
molecules. Considering the reaction to take place between gp120 and antibodies in
a suspension, rather than on the virus surface, we may write

K [Ab]

fo= T3 K [Ab]’

(2.10)

where [Ab] is the free antibody concentration and K,, the equilibrium constant
for the binding-dissociation reaction (i.e., the ratio of the forward to the backward
reaction constants). Unfortunately, K, is not known with any significant accuracy.
We have therefore decided to make use of the functional form of (2.9), but to fit the
calculated enhancement curve to the experimental results obtained by Takeda et al.
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Fig. 2.6 Antibody enhancement of HIV infection: Number of infected T-cells relative to the
cells infected in the absence of antibodies as a function of the antibody concentration. Full and
dotted curves are simulation results for intact antibodies and for antibody fragments, respectively.
Diamonds and crosses are experimental results obtained by Takeda et al. [31]

[31]. This gives a value for K,, of 10° M™!, or a factor of two above the highest
value given in the literature.

Figure 2.6 shows how the above model can reproduce the results of the
experimental study of antibody enhanced HIV infection performed by Takeda et al.
[31]. In this fit it was assumed that antibody-complexed gp120 can bind to CD4
receptors, but that the complex is unable to infect the cell. The simulation model
used to reproduce the experimental procedure was initiated with 5 - 10° uninfected
monocytes and 10* viruses per ml suspension. After 2 h, the number of free virus
was set to zero to mimic the washing out of virus particles often performed in HIV
infectivity studies and the simulation was continued until time 48 h.

The purpose of the above discussion has not been to carry the analysis through
in all detail, but to illustrate how parameter estimation can contribute to the
clarification of a problem and, perhaps, reshape the requirement for experimental
data.

2.8 Gene Therapy of AIDS

In the absence of a useful vaccine, gene therapy of HIV is often considered a
possible alternative. The idea of this approach is to insert anti-viral genes into the
patients CD4+ T-cells in order to make them more resistant to the virus attacks.
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This resistance may be achieved in different ways such as, for instance, protection
of the cells against virus penetration through the cellular membrane, suppression
of virus proliferation through genes that inhibit the insertion of viral DNA into
the cellular genes or interfere with the production of essential viral proteins. Most
of the possible points of attack are, clearly, identical to those of the combination
treatment. The difference between the two approaches is that where gene therapy
intends to remove the causes of the disease, the combination treatment only relieves
the symptoms. In practice this means that whereas gene therapy can be performed
once and for ever, the combination treatment requires that the patient day after day
adheres strictly to a number of restrictions.

The technical difficulties associated with the development of a gene therapy are,
obviously, quite challenging [25]. In any specific attempt, the target process has to
be selected (i.e. which part of the HIV infection-reproduction cycle should one try
to inhibit), and a vector has to be chosen (i.e. what means should be used to insert
of the new genes into the cells). The most common choice of a vector is a virus that
is known to attack human cells and exploit their genetic machinery. However there
are many different types of virus and one has to consider (a) if the virus attacks the
targeted cells, (b) if it inserts the resistant gene in a stable and consistent manner,
(c)if it is easy to manipulate in the laboratory, (d) if it causes any disease or produces
a response from the immune system, (e) if it presents a threat to the descendants of
the patient or to the population in general, etc.

Next the virus has to be manipulated so that much of its own genetic material
(particularly those parts that may cause disease or immune response) is removed and
replaced by the genetic material to be transduced to the human cells, and a compre-
hensive series of laboratory experiments have to be performed to demonstrate the
possibility of the suggested process and its adherence to all safety requirements.

At the present very few clinical experiments have been performed (presumably
less than 1,000 for AIDS patients). A few successful experiments have been reported
where stem cells from an HIV resistant donor have been transplanted into the bone
marrow of HIV-patients with a life-threatening condition such as leukemia [16].
In the cited case the donor cells have displayed a genetic mutation that inhibits
expression of the co-receptor CCRS, a protein that, together with the CD4 receptor,
is required for HIV to penetrate into the CD4+ T-cell. Fifteen to twenty percent of
the North-European population is thought to carry this mutation on one allele while
2%—4% has inherited the mutation from both parents and, therefore, is resistant to
HIV. Although stem cell transplantation differs from gene therapy, the positive result
of the above treatment supports the notion that the CCRS5 co-receptor plays a critical
role in HIV infection, and that this receptor could be the target for gene therapy.

Another set of questions relate to how effective the protection of the transduced
cells has to be for the gene therapy to be effective and how this is related to the
aggressiveness of the virus. One may also ask if it is necessary to treat the T-cell
progenitor cells in the bone marrow or if treatment of the mature T-cells in the blood
suffices. In the latter case, the treatment may perhaps be performed simply by taking
a blood sample, inserting the protecting gene into the chromosome of the CD4+ T-
cells, and re-infusing the blood into the patient. After a while, the population of



2 Concepts in Mechanism Based Modeling 37

non-protected CD4+ T-cells will be significantly reduced due to virus attacks, and
the resistant CD4+ T-cells will have spread throughout the blood and into others
compartment of the body (e.g., the lymph nodes). A problem is that matured T-cells
will continue to be supplied from the thymus, and it is unlikely that these cells will
be protected, unless the stem cells are also transfected.

To examine these questions we may use the following simple model [23]. We
consider the dynamics of two different populations of CD4+ T-cells, a population T
of normal (i.e., non-transduced) CD4+ T-cells described by the equation:

O (1= /1A + TAT) = Gr = )T @.11)

and a population 7" of transduced CD4+ T-cells described by:

dr’
dt

= fAc+ T'A(T) = (67 — (1 — ST’ (2.12)

Here, T; = T + T’ is the total T-cell population. A, is the rate of supply of mature
CD4+ T-cells from the thymus, and f is the fraction of the hematopoietic progenitor
cells that is transfected. f = 0 means that only cells in the blood are transfected
whereas f = 1 means that all T-cells including those released from the thymus
are transfected. §7 is the normal death rate constant for T-cells in the absence of
HIV and §p is the additional death rate constant caused by the HIV infection. 7 is
the degree of protection against HIV-promoted deaths that the transfected T-cells
have acquired. This formulation implies that we do not necessarily assume that
transfected cells are completely protected. Finally, A.(7T;) is the growth rate function
for which we shall assume the Monod-like form

a
b+T,

Ae(Th) = (2.13)

As we use it here, this form implies that the saturation features of the cell
proliferation are shared between the two cell populations. The normal death rate
constant is assumed to be §7 = 0.01 day, corresponding to a natural life time for the
T-cells of 100 days. In a state of equilibrium, the death of T-cells by natural causes is
compensated by a supply of new mature T-cells from the thymus and by a relatively
weak proliferation of the T-cells. Let us assume that the equilibrium T-cell count
is 1,000 cells/mm?, that 20% of the T-cells originate directly from the thymus, i.e.
A = 2 cells/mm?/day and that the remaining cells originate from cell proliferation,
ie. A.(T;) = 8 cells/mm?/day. These numbers correspond approximately with
experimental conditions where one finds normal T-cell counts in the interval 500—
1,200 cells/mm?. For a half-saturation value in the Monod equation of »=1,000
cells/mm?, this finally gives us a value for the maximal rate of T-cell proliferation
of A.(1) = 16 cells/mm?/day.

With these parameters we can now draw the curve sets shown in Fig.2.7a, b
for f =1 and f = 0 respectively. We recall that f measures the fraction of
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Fig. 2.7 Normalized concentrations of T-helper cells at steady state after gene therapy as functions
of the normalized concentration before therapy. The parameter represents the degree of protection
that the gene manipulated T-cells have acquired. (a) Gene therapy affects the stem cells in the bone
marrow (f = 1). (b) Gene therapy affects the mature T-cells only (f = 0)

transduced stem cells. In both figures, the horizontal axis shows the CD4+ T-cell
concentration before the gene therapy, and the vertical axis shows the CD4+ T-cell
concentration after the treatment. Both concentrations are normalized by division
with the assumed equilibrium concentration in the non-infected person (1,000
cells/mm?). The parameter that determines the position of the system along the
horizontal axis is the HIV inflicted death rate 3, and the parameter that separates
the individual curves in the two plots is the degree of protection 7 for transduced
cells.

For f =1, 100% protection (of all the cells) obviously means that the T-cell
population after the gene therapy reestablishes the normal value for an uninfected
person irrespectively of the aggressiveness of the virus. As the degree of protection
is reduced, so is the T-cell population, and this reduction is particularly strong to
the left in the figure where the viruses are very aggressive. For 90% protection, the
T-cell population remains above 600 cells/mm?, even under conditions where the
untreated person would have cell counts as low as 50 cells/mm?. Without protection
of the stem cells, the attained cell count is typically 20% lower. In particular, the
cell count for 100% protection of the mature T-cells never exceeds 800 cells/mm? if
the untreated person has a lower cell count.

As mentioned above, the normal T-cell count for a non-infected person is of
the order of 1,000 cells/mm?>. Over the years, the T-cell count for an HIV-infected
patient gradually declines as the immune system weakens and the viruses tend to
become increasingly virulent. Initiation of a combination treatment as described
in Sect.2.7 is usually decided when the T-cell count falls below 350 cells/mm?.
The viral load, i.e. the number of virus copies in the blood is another important



2 Concepts in Mechanism Based Modeling 39

parameter. If the combination treatment works as intended, the viral load should be
below 50 virus/ml.

2.9 Conclusion: Model Formulation

The interconnectedness and unusual degree of integration of biological processes
poses a specific challenge to the modeling of biomedical systems. Today’s engineer-
ing systems may also be complex, but we have designed them ourselves, we know
how they work, unnecessary coupling between processes that take place at different
time scales has been avoided, and the spatial structure is in most cases reasonably
logic. The same conditions are not satisfied in the living world. This requires that we
are very conscious about the processes of problem definition and system delineation.
The boundaries of the system in space and time are not self-evident, but have to be
decided in relation to the defined problem. This again depends on the purpose of the
modeling effort and the degree of detail to be achieved.

The use of flow diagrams to represent the structure of a biological system may be
seen as a typical engineering approach. It derives from the need to easily overlook
the interplay between different components and interactions and represents the
conception that “structure generates behavior” [12]. The use of such diagrams in
Systems Biology may also be viewed as a way to generate a common ground
between an often empirically oriented MD or biologist and a modeler with a focus
on mathematical equations and simulation methods. As the model grows in size,
the flow diagrams tend to become too complicated to serve their purpose as means
of communication. They may still be very useful, however, in the structuring of
separate parts of a large model.

Besides the detailed structural representation provided by the flow diagrams with
their material conservation conditions and explicit distinction between different
variable types, we have also illustrated the use of the somewhat simpler causal
loop diagrams. These diagrams may be applied in the first attempt to structure the
cause—effect relationships of a new problem or they may be used to clarify the main
feedback interactions in a fully developed model. A main weakness of the causal
loop diagrams is that they do not provide a guide as to the direction of the cause—
effect relations. This is precisely the guidance that the flow diagrams provide by
maintaining that changes in the value of a state variable cause changes in the flow
variables.

A model that doesn’t include feedback loops is unlikely to capture essential
aspects of a living system. If the dominant feedback is negative (correcting
feedback), the system may display a monotonous approach to the equilibrium point
in response to external perturbations or, if the equilibrium point display complex
conjugated eigenvalues, a damped oscillatory response. If the feedback gain is high
enough, or the delay in the feedback long enough, the equilibrium point may become
unstable. The system may then display growing oscillations or, in the presence of
nonlinear restrictions, a self-sustained oscillatory behavior may occur.
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If the main feedback loop is positive (reinforcing feedback), the model tends to
produce exponential growth, extinction of parts of the system or, in the presence of
nonlinear constraints, coexisting equilibrium states, hysteresis, boom-bust dynam-
ics, bobbles, etc.

References

1. Althaus CL, De Boer RJ (2008) Dynamics of immune escape during hiv/siv infection. PLoS
Comput Biol 4:e1000103
2. Anderson RM, May RM (1988) Epidemiological parameters of HIV transmission. Nature
333:514-519
3. Anderson RM, May RM (1989) Complex dynamical behaviour in the interaction between HIV
and the immune system. In: Goldbeter A (ed) Cell to Cell Signalling, From Experiements to
Theoretical Models. Academic Press, New York
4. Arber W (1965) Host-controlled modification of bacteriophage. Annual Review of Microbiol-
ogy 19:365-377
5. Berg HC, Purcell EM (1977) Physics of chemoreception, Biophysics Journal 20:193-219
6. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV, coreceptors: roles in
viral entry, tropism, and disease. Annual Review of Immunology 17:657-700
7. Bull AT, Slater JH (1982) Microbial Interactions and Communities. Academic Press, New York
8. Burke DS (1992) Human HIV vaccine trials: Does antibody dependent enhancement pose a
genuine risk? Perspectives of Biological Medicine 35:511-530
9. Chrandrasekhar S (1943) Stochastic problems in physics and astronomy, Review of Modern
Physics 15:1-89
10. De Boer RJ (2007) Understanding the failure of cd8+ t-cell vaccination against simian/human
immunodeficiency virus. J Virol 8§1:2838-2848
11. Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circulation
Research 40:119-129
12. Forrester JW (1961) Industrial Dynamics. MIT Press, Massachusetts Institute of Technology
13. Franklin G, Powell JD, Emami-Naeini A (1996) Feedback Control of Dynamic Systems (4th
edition). Prentice Hall, New Jersey
14. Hansen JE (1992) Carbohydrates of human immunodeficiency virus. APMIS (suppl. 27)
100:96-109
15. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S (1998) NetOglyc:
Prediction of mucin type O-glycosylation sites based on sequence context and surface
accessibility. Glycoconj J 15:115-130
16. Huetter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J,
Kuecherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV
by CCRS5 Delta32/Delta32 stem-cell transplantation, New England Journal of Medicine 360:
692-698
17. Iglesias PA, Ingalls BP (1996) Control Theory and Systems Biology. CRC Press, New York
18. Iwami S, Nakaoka S, Takeuchi Y (2008) Viral diversity limits immune diversity in asymp-
tomatic phase of hiv infection. Theor Popul Biol 73:332-341
19. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology - The Immune
System in Health and Disease. Garland Science, New York
20. Levine WS (1996) The Control Handbook. CRC Press, New York
21. Lund O, Hansen J, Mosekilde E, Nielsen JO, Hansen J-E S (1993) A model of enhancement
and inhibition of HIV infection of monocytes by antibodies against HIV, Journal of Biological
Physics 19:133-145



22.

23.

24.

25.

26.

217.

28.

29.
30.

31.

32.

Concepts in Mechanism Based Modeling 41

Lund O, Hansen J, Sgrensen AM, Mosekilde E, Nielsen JO, Hansen J-E S (1995) Increased
adhesion as a mechanism of antibody-dependent and anti-body independent complement
mediated enhancement of human immunodeficiency virus infection, Journal of Virology
69:2393-2400

Lund O, Lund OS, Gram G, Nielsen SD, Schgnning K, Nielsen JO, Hansen J-E S, Mosekilde
E (1997) Gene therapy of T-helper cells in HIV infection: Mathematical model of the criteria
for clinical effect, Bulletin of Mathematical Biology 59:725-745

Mayer G (2010) Microbiology and Immunology Online. School of Medicine, University of
SouthCarolina, http://pathmicro.med.sc.edu/mayer/phage.htm

Nielsen MH, Pedersen FS, Kjems J (2005) Molecular Strategies to inhibit HIV-1 replication,
Retrovirus 2:10

Nowak MA, Anderson RM, McLean AR, Wolfs TFW, Goudsmit J, May RM (1991) Antigenic
diversity threshold and the development of AIDS. Science 254:963-969

Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD
(1997) Decay characteristics of HIV-1-infected compartments during combination therapy.
Nature 6629:188-191

Queinnec I, Tarbouriech S, Garcia G, Niculescu S-1 (2007) Biology and Control Theory:
Current Challenges. Lecture Notes in Control and Information Sciences 357

Sompayrac LM (2003) How the Immune System Works. Blackwell Publishers, Massachusetts
Storad CJ (1998) Inside AIDS: HIV Attacks the Immune System. Lerner Publications Co.
Minneapolis

Takeda A, Robinson JE, Ho DD, Debouck C, Haighwood NL, Ennis FA (1992) Distinction
of human immunodefieiency virus type 1 neutralization and infection enhancement by human
monoclonal antibodies to glycoprotein 120, J Clin Invest 89:1952-1957

Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca?>* channel/ryanodine recep-
tor: Modulation by endogenous effects, drugs and disease states, Pharmacological Reviews
49:1-51



2 Springer
http://www.springer.com/978-3-7091-0417-0

Biosimulation in Biomedical Research, Health Care and
Drug Development

Mosekilde, E.; Sosnoviseva, 0.; Rostami-Hodjegan, A
(Eds.)

2012, X\, 396 p., Hardcover

ISBEN: 278-3-7091-0417-0



