
Chapter 2
Weyl Quantization and Coherent States

Abstract It is well known from the work of Berezin (Commun. Math. Phys.
40:153–174, 1975) in 1975 that the quantization problem of a classical mechani-
cal system is closely related with coherent states. In particular coherent states help
to understand the limiting behavior of a quantum system when the Planck constant �
becomes negligible in macroscopic units. This problem is called the semi-classical
limit problem.

In this chapter we discuss properties of quantum systems when the configuration
space is the Euclidean space R

n, so that in the Hamiltonian formalism, the phase
space is Rn × R

n with its canonical symplectic form σ . The quantization problem
has many solutions, so we choose a convenient one, introduced by Weyl (The Clas-
sical Groups, 1997) and Wigner (Group Theory and Its Applications to Quantum
Mechanics of Atomic Spectra, 1959).

We study the symmetries of Weyl quantization, the operational calculus and ap-
plications to propagation of observables.

We show that Wick quantization is a natural bridge between Weyl quantization
and coherent states. Applications are given of the semi-classical limit after introduc-
ing an efficient modern tool: semi-classical measures.

We illustrate the general results proved in this chapter by explicit computations
for the harmonic oscillator. More applications will be given in the following chap-
ters, in particular concerning propagators and trace formulas for a large class of
quantum systems.

2.1 Classical and Quantum Observables

The quantization problem comes from quantum mechanics and is a mathematical
setting for the Bohr correspondence principle between the classical world and the
quantum world.

Let us consider a system with n degrees of freedom. According the Bohr corre-
spondence principle, it is natural to check a way to associate to every real function
A on the phase space R

2n (classical observable) a self-adjoint operator Â in the
Hilbert space L2(Rn) (quantum observable). According the quantum mechanical
principles, the map A → Â has to satisfy some properties.
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(1) A → Â is linear, Â is self-adjoint if A is real and 1̂ = 1L2(Rn).

(2) position observables: xj → x̂j := Q̂j where Q̂j is the multiplication operator
by xj .

(3) momentum observables : ξj → ξ̂j := P̂j where P̂j is the differential operator
�

i
∂

∂xj
.

(4) commutation rule and classical limit: for every classical observables A,B we
have

lim
�→0

(
i

�

[
Â, B̂

] − {̂A,B}
)

= 0.

Let us recall that [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂ , {A,B} is the
Poisson bracket defined as follows:

{A,B}(x, ξ) = (∂xA · ∂ξB − ∂xB · ∂ξA)(x, ξ), x, ξ ∈ R
n.

Let us remark that if we introduce ∇A = (∂xA, ∂ξA) then we have {A,B}(x, ξ) =
σ(∇A(x, ξ),∇B(x, ξ)) (σ is the symplectic bilinear form).

If the observables A,B depend only on the position variable (or on the momen-
tum variables) then Â · B̂ = Â.B but, this is no longer true for a mixed observable.
This is related to the non-commutativity for product of quantum observables and
the identity: [x̂j , ξ̂j ] = i� so, the quantum observable corresponding to x1ξ1 is not
determined by the rules (1) to (4).

We do not want to discuss here the quantization problem in its full generality
(see for example [77]). One way to choose a reasonable and convenient quantization
procedure is the following, which is called Weyl quantization (see [117] for more
details). Let Lz be a real linear form on the phase space R

2n, where z = (p, q),
Lz(x, ξ) = σ(z, (x, ξ)) (every linear form on R

2n is like this). It is not difficult to
see that L̂z is a well defined quantum Hamiltonian (i.e. an essentially self-adjoint

operator in L2(Rn)). Its propagator e
−it
�

L̂z has been studied in Chap. 1.
Remark that we have L̂z = −L̂(z), with the notation of Chap. 1.
For ψ ∈ S(Rn), we have explicitly

e
−it
�

L̂zψ(x) = e− i
2� t2q·pe

it
�

x·pψ(x − tq). (2.1)

So, the Weyl prescription is defined by the conditions (1) to (4) and the following:

(5)

e−iLz(x,ξ) → ê−iLz = T̂ (z)

We shall use freely the Schwartz space S(Rn)1 and its dual S ′(Rn) (temperate dis-
tributions space).

1Recall that f ∈ S(Rn) means that f is a smooth function in R
n and for every multiindices α, β ,

xα∂
β
x u is bounded in R

n. It has a natural topology. S ′(Rn) is the linear space of continuous linear
form on S(Rn).
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Proposition 11 There exists a unique continuous map A → Â from S ′(R2n) into
L(S(Rn),S ′(Rn)) satisfying conditions (1) to (5).

Moreover if A ∈ S(R2n) and ψ ∈ S(Rn) we have the familiar formula

Âψ(x) = (2π�)−n

∫∫
R2n

A

(
x + y

2
, ξ

)
ei�−1(x−y)·ξψ(y)dy dξ, (2.2)

and Â is a continuous map from S(Rn) to S(Rn).
The hermitian conjugate of Â is the quantization of the complex conjugate of A

i.e. (Â)∗ = ˆ̄A. In particular Â is Hermitian if and only if A is real.

Proof Here it is enough to assume that �= 1.
Let us consider the symplectic Fourier transform in S ′(R2n). Assume first that

A ∈ S(R2n).

Ã(z) =
∫
R2n

A(ζ )e−iσ (z,ζ ) dζ. (2.3)

We have the inverse formula

A(X) = (2π)−n

∫
R2n

Ã(z)eiσ (z,X) dz. (2.4)

For ψ,η ∈ S(Rn) we have

〈ψ, Âη〉 = (2π)−n

∫
R2n

Ã(z)
〈
eiL̂zψ,η

〉
dz. (2.5)

In other words we get

Âψ = (2π)−n

∫
R2n

Ã(z)T̂ (z)ψ dz. (2.6)

�

Definition 2 For a given operator Â, the function A is called the contravariant sym-
bol of Â and the function Ã is the covariant symbol of Â.

Let us remark that we have the inverse formula

Proposition 12 If Â is a continuous map from S ′(Rn) to S(Rn) then we have for
every X ∈R

2n,

Ã(X) = Tr
(
ÂT̂ (−X)

)
. (2.7)

Proof For X = 0 the formula is a consequence of the Fourier inversion formula.
For any X we use that the Weyl symbol of T̂ (−X) is z 	→ e−iσ (z,X). �
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As a consequence we have a first norm operator estimate. If Ã ∈ L1(R2n) we
have

∥∥Â
∥∥ ≤ (2π)−n

∫
R2n

∣∣Ã(z)
∣∣dz. (2.8)

The r.h.s. in formula (2.2) can be extended by continuity in A to the distribution
space S ′(R2n).

Let us compute now the Schwartz kernel KA of the operator Â defined in formula
(2.6). We have

KA(x, y) =
∫
Rn

Ã(x − y,p)eip·(x+y)/2 dp. (2.9)

Using inverse Fourier transform in p variables, we get

KA(x, y) = (2π)−n

∫
Rn

A

(
x + y

2
, ξ

)
ei(x−y)·ξ dξ (2.10)

this gives (2.2). The other properties are easy to prove and left to the reader.
Let us first remark that from (2.10) we get a formula to compute the �-Weyl

symbol of Â if we know its Schwartz kernel K

A(x, ξ) =
∫
Rn

e− i
�
u·ξK

(
x + u

2
, x − u

2

)
du. (2.11)

Sometimes, we shall use also the notation Â = Opw
�
A (�-Weyl quantization of A).

Hence we shall say that Â is an �-pseudodifferential operators and that A is its Weyl
symbol. For applications it is useful to be able to read properties of the operator Â

on its Weyl symbol A. A first example is the Hilbert–Schmidt property.

Proposition 13 Let Â ∈ L(S(Rn),S ′(Rn)). Then Â is Hilbert–Schmidt in L2(Rn)

if and only if A ∈ L2(R2n) and we have

∥∥Â
∥∥2

HS
= (2π�)−n

∫∫
R2n

∣∣A(x, ξ)
∣∣2

dx dξ. (2.12)

In particular if Â and B̂ are two Hilbert–Schmidt operators then Â.B̂ is a trace
operator and we have

Tr
(
Â.B̂

) = (2π�)−n

∫∫
R2n

A(x, ξ)B(x, ξ) dx dξ. (2.13)

Proof We know that

∥∥Â
∥∥2

HS
=

∫∫
R2n

∣∣KA(x, y)
∣∣2

dx dy.

Then we get the proposition using formula (2.10) and Plancherel theorem. �
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We shall see later many other properties concerning Weyl quantization but most
of time we only have sufficient conditions on A to have some property of Â, like for
example L2 continuity or trace-class property.

Let us give a first example of computation of a Weyl symbol starting from an

integral kernel. We consider the heat semi-group e−tĤos , of the harmonic oscillator

Ĥos . Let us denote Kw(t;x, ξ) the Weyl symbol of e−tĤos and K(t;x, y) its integral
kernel. From formula (2.11) we get

Kw(t;x, ξ) =
∫
Rn

e− i
�
u·ξK

(
t;x + u

2
, x − u

2

)
du. (2.14)

Using Mehler formula (1.72) we have to compute the Fourier transform of a gen-
eralized Gaussian function, so after some computations, we get the following nice
formula:

Kw(t;x, ξ) = (
cos(t/2)

)−n/2e− tanh(t/2)(x2+ξ2). (2.15)

Recall that x2 = x · x = |x|2.

2.1.1 Group Invariance of Weyl Quantization

Let us first remark that an easy consequence of the definition of Weyl quantization
is the invariance by translations in the phase space. More precisely, we have, for any
classical observable A and any z ∈R

2n,

T̂ (z)−1ÂT̂ (z) = Â · T (z), where A · T (z)(z′) = A(z′ − z). (2.16)

Hamiltonian classical mechanics is invariant by the action of the group Sp(n) of
symplectic transformations of the phase space R

2n. A natural question to ask is to
quantize linear symplectic transformations. We shall see later how it is possible. In
this section we state the main results.

Recall that the symplectic group Sp(n) is the group of linear transforma-
tions of R

2n which preserves the symplectic form σ . So F ∈ Sp(n) means that
σ(FX,FY) = σ(X,Y ) for all X,Y ∈R

2n. If we introduce the matrix

J =
(

0 1
−1 0

)

then

F ∈ Sp(n) ⇐⇒ F tJF = J, (2.17)

where F t is the transposed matrix of F .
If n = 1 then F is symplectic if and only if det(F ) = 1.
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Linear symplectic transformations can be quantized as unitary operators in
L2(Rn)

Theorem 2 For every linear symplectic transformation F ∈ Sp(n) and every sym-
bol A ∈ Σ(1) we have

R̂(F )−1ÂR̂(F ) = Â · F . (2.18)

Moreover R̂(F ) is unique up to multiplication by a complex number of modulus 1

Definition 3 The metaplectic group is the group Met(n) generated by R̂(F ) and
λ1, λ ∈C, |λ| = 1.

Remark 4 A consequence of Theorem 2 is that R̂ is a projective representation of
the symplectic group Sp(n) in the Hilbert space L2(Rn). It is a particular case of a
more general setting [193].

More properties of the metaplectic group will be studied in the next chapter. Let
us give here some examples of the metaplectic transform.

• The Fourier transform F is associated with the symplectic transformation
(x, ξ) 	→ (ξ,−x).

• The partial Fourier transform Fj , in variable xj , is associated with the symplectic
transform:

(xj , ξj ) 	→ (ξj ,−xj ), (xk, ξk) 	→ (xk, ξk), if k 
= j.

• Let A be a linear transformation on R
n, the transformation ψ 	→ |det(A)|1/2 ×

ψ(Ax) is associated with the symplectic transform

FA

(
x

ξ

)
=

(
Ax

(At )−1ξ

)
.

• Let A be a real symmetric matrix, the transformation ψ 	→ eiAx·x/2ψ is associated
with the symplectic transform

F =
(

1 0
A 1

)
.

2.2 Wigner Functions

Let ϕ,ψ ∈ L2(Rn). They define a rank one operator Πψ,ϕη = 〈ψ,η〉ϕ. Its Weyl
symbol can be computed using (2.11).
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Definition 4 The Wigner function of the pair (ψ,ϕ) is the Weyl symbol of the rank
one operator Πψ,ϕ . It will be denoted Wϕ,ψ . More explicitly we have

Wϕ,ψ(x, ξ) =
∫
Rn

e− i
�
u·ξϕ

(
x + u

2

)
ψ

(
x − u

2

)
du. (2.19)

An equivalent definition of the Wigner function is the following:

Wϕ,ψ(z) = (2π�)−n

∫
R2n

〈
ϕ, T̂ (z′)ψ

〉
e−iσ (z,z′)/� dz′, (2.20)

where T̂ (z) = e−iL̂z .

We can easily see that (2.19) and (2.20) are equivalent using formula (2.6) and
Plancherel formula for symplectic Fourier transform.

The Wigner functions are very convenient to use. In particular we have the fol-
lowing nice property:

Proposition 14 Let us assume that Â is Hilbert–Schmidt and ψ,ϕ ∈ L2(Rn). Then
we have

〈
ψ, Âϕ

〉 = (2π�)−n

∫
R2n

A(X)Wψ,ϕ(X)dX. (2.21)

If A ∈ S ′(R2n) and if ψ,ϕ ∈ S(Rn), the formula (2.21) is still true in the weak sense
of temperate distributions.

Proof Let us first remark that 〈ψ, Âϕ〉 = Tr(ÂΠψ,ϕ). Hence the first part of the
proposition comes from (2.13).

Now if ψ,ϕ ∈ S(Rn) then we easily get Wψ,ϕ ∈ S(R2n). On the other side there
exists Aj ∈ S(R2n) such that Aj → A in S ′(R2n). So we apply (2.21) to Aj and we
go to the limit in j . �

What Wigner was looking for was an equivalent of the classical probability dis-
tribution in the phase space R

2n. That is, associated to any quantum state a distri-
bution function in phase space that imitates a classical distribution probability in
phase space. Recall that a classical probability distribution is a non-negative Borel
function ρ;Z → R

+, Z := R
2n, normalized to unity:

∫
Z

ρ(z) dz = 1,

and such that the average of any observable A ∈ C∞ is simply given by

ρ(A) =
∫

Z

A(z)ρ(z) dz.
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From Proposition 14 we see that a possible candidate is

ρ(z) = (2π�)−nWϕ,ϕ.

Actually in the physical literature the expression above (with the factor (2π�)−n) is
taken as the definition of the Wigner function but we do not take this convention.

In the following we denote by Wϕ the Wigner transform for ϕ,ϕ.
What about the expected properties of (2π�)−nWϕ as a possible probability dis-

tribution in phase space? Namely:

• positivity
• normalization to 1
• correct marginal distributions

Proposition 15 Let z = (x, ξ) ∈R
2n and ϕ ∈ L2(Rn) with ‖ϕ‖ = 1. We have

(i)

(2π�)−n

∫
Rn

Wϕ(x, ξ) dξ = ∣∣ϕ(x)
∣∣2

,

which is the probability amplitude to find the quantum particle at position x.
(ii)

(2π�)−n

∫
Rn

Wϕ(x, ξ) dx = ∣∣ϕ̃(ξ)
∣∣2

,

which is the probability amplitude to find the quantum particle at momentum ξ .
(iii)

(2π�)−n

∫
R2n

Wϕ(x, ξ) dx dξ = 1.

(iv) Wϕ(x, ξ) ∈R.

Proof

(i) Let f ∈ S be an arbitrary test function. We have

∫
Rn

Wϕ(x, ξ)f (ξ) dξ

=
∫

dy ϕ̄

(
x + y

2

)
ϕ

(
x − y

2

)∫
dξ e−iξ ·y/�f (ξ)

= (2π�)n
∫
Rn

dy ϕ̄

(
x + y

2

)
ϕ

(
x − y

2

)
(Ff )(y). (2.22)

By taking for the usual Fourier transform Ff an approximation of the Dirac
distribution at y = 0 we get the result.
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(ii) Is proven similarly.
(iii) Follows from the normalization to unity of the state ϕ.
(iv) We have

Wϕ(z)∗ = (2π�)−n

∫
dz′ 〈ϕ, T̂ (−z′)ϕ

〉
eiσ (z,z′)/�

and the result follows by change of the integration variable z′ → −z′ and by
noting that σ(z,−z′) = −σ(z, z′). �

Let us now compute the Wigner function Wz,z′ for a pair (ϕz,ϕz′) of coherent
states.

Proposition 16 For every X,z, z′ ∈R
2n we have

Wz,z′(X) = 2n exp

(
−1

�

∣∣∣∣X − z + z′

2

∣∣∣∣
2

− i

�
σ

(
X − 1

2
z′, z − z′

))
. (2.23)

Proof It is enough to consider the case �= 1. Let us apply formula (2.20):

Wz,z′(X) = (2π)−n

∫
R2n

〈
ϕz, T̂

(
z′′)ϕz′

〉
e−iσ (X,z′′) dz′′. (2.24)

Using formula (1.7) from Chap. 1, we have

〈
ϕz, T̂

(
z′′)ϕz′

〉 = 〈ϕz,ϕz′+z′′ 〉e i
2 σ(z′,z′′)

= e− 1
4 |z−z′−z′′|2 e

i
2 σ(z,z′+z′′)+σ(z′,z′′). (2.25)

Using the change of variables z′′ = z − z′ + u, we have to compute the Fourier
transform of the standard Gaussian e−|u|2/4 and (2.23) follows. �

We have the following properties of the Wigner transform:

Proposition 17 Let ϕ,ψ ∈ L2(Rn) be two quantum states. Then Wϕ,ψ ∈ L2(R2n)∩
L∞(R2n) and we have

(i)

‖Wϕ,ψ‖L∞ ≤ 2n‖ϕ‖2‖ψ‖2.

(ii)

‖Wϕ,ψ‖L2 ≤ (2π�)n/2‖ϕ‖2‖ψ‖2.

(iii) Let ϕ,ψ ∈ L2(Rn). Then we have

∣∣〈ϕ,ψ〉∣∣2 = (2π�)−n〈Wϕ,Wψ 〉L2(R2n).
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Proof (i) is a simple consequence of the definition of the Wigner transform and of
the Cauchy–Schwartz inequality. For the proof of (ii) we note that

∫
dz

∣∣Wϕ,ψ(z)
∣∣2 =

∫
dx dξ

∣∣∣∣
∫

dy eiξ ·y/�ϕ̄

(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

.

Using an approximation argument, we can assume that ϕ,ψ ∈ L1(Rn) ∩ L∞(Rn).
So we have ϕ̄(x + y

2 )ψ(x − y
2 ) ∈ L2(Rn, dy). According to the Plancherel theorem

we have

(2π�)−n

∫
dξ

∣∣∣∣
∫

dy eiξ ·y/�ϕ̄

(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

=
∫

dy

∣∣∣∣ϕ̄
(

x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

so that
∫

dz
∣∣Wϕ,ψ(z)

∣∣2 = (2π�)n
∫

dx

∫
dy

∣∣∣∣ϕ̄
(

x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

= (2π�)n‖ϕ‖2‖ψ‖2. (2.26)

�

The Wigner transform operate “as one wishes” in phase space, namely according
to the scheme of classical mechanics:

Proposition 18 Let ϕ,ψ ∈ L2(Rn) and T̂ (z), R̂(F ) be, respectively, operators of
the Weyl–Heisenberg and metaplectic groups, corresponding, respectively, to

– a phase-space translation by vector z ∈ R
2n

– a symplectic transformation in phase space

We have

W
T̂ (z′)ϕ,T̂ (z′)ψ (z) = Wϕ,ψ(z − z′), (2.27)

W
R̂(F )ϕ,R̂(F )ψ

(z) = Wϕ,ψ

(
F−1z

)
. (2.28)

Proof We have the nice group property of the Weyl–Heisenberg translation opera-
tor:

T̂ (−z′)T̂ (X)T̂ (z′) = exp

(
− i

�
σ(X, z′)

)
T̂ (X)

so that

W
T̂ (z′)ϕ,T̂ (z′)ψ(z) = (2π�)−n

∫
dX exp

(
− i

�
σ(z − z′,X)

)〈
ϕ, T̂ (X)ψ

〉
= Wϕ,ψ(z − z′).
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As a result of the property of the metaplectic transformation we have

R̂(F )−1T̂ (z′)R̂(F ) = T̂
(
F−1z′).

Therefore

W
R̂(F )ϕ,R̂(F )ψ

(z) = (2π�)−n

∫
dz′ 〈ϕ, T̂ (Fz′)ψ

〉
e−iσ (z,z′)/�

= (2π�)−n

∫
dz′′ 〈ϕ, T̂ (z′′)ψ

〉
e−iσ (z,Fz′′)/�

= (2π�)−n

∫
dz′ 〈ϕ, T̂ (z′)ψ

〉
e−iσ (F−1z,z′)/�,

where we have used the change of variable Fz′ = z′′ and the fact that a symplectic
matrix has determinant one. �

Now we get a formula to recover the Weyl symbol of any operator Â ∈
L(S(Rn),S ′(Rn)).

Proposition 19 Every operator Â ∈ L(S(Rn),S ′(Rn)) has a contravariant Weyl
symbol A and a covariant Weyl symbol Ã in S ′(R2n).

We have, in the distribution sense in general, in the usual sense if Â is bounded
in L2(Rn),

A(X) = (2π�)−2n

∫∫
R4n

〈
ϕz′ , Âϕz

〉
Wz′,z(X)dz dz′, (2.29)

Ã(X) = (2π�)−n

∫
R2n

〈
ϕz+X, Âϕz

〉
e− i

�
σ(X,z) dz. (2.30)

Proof We compute formally. It is not very difficult to give all the details for a rigor-
ous proof.

We apply inverse formula for the Fourier–Bargmann transform (see Chap. 1). So
for any ψ ∈ S(Rn), we have

Âψ(x) = (2π�)−2n

∫∫
R4n

〈
ϕz′ , Âϕz

〉〈ϕz,ψ〉ϕz′(x) dz dz′. (2.31)

So we get a formula for the Schwartz kernel KA for Â,

KA(x, x′) = (2π�)−2n

∫∫
R4n

〈
ϕz′ , Âϕz

〉
ϕz(x′)ϕz′(x) dz dz′. (2.32)

Then we apply formula (2.11) to get the contravariant symbol A.
The formula for the covariant symbol follows from (2.7) and trace computation

with coherent states. �
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The only but important missing property to have a nice probabilistic setting with
the Wigner functions is positivity which is unfortunately not satisfied because we
have the following result, proved by Hudson [120] for n = 1, then extended to n ≥ 2
by Soto–Claverie [181].

Theorem 3 Wψ(X) ≥ 0 on R
2n if and only if ψ = Cϕ

(Γ )
z where C is a complex

number, Γ a complex, symmetric n×n matrix with a positive non degenerate imag-
inary part �Γ , z ∈ R

2n, where we define the Gaussian

ϕ(Γ )(x) = (π�)−n/4 det1/4 �Γ exp

(
i

2�
Γ x · x

)
. (2.33)

Proof We more or less follow the paper of Soto–Claverie [181].
We can check by direct computation that the Wigner density of ϕz

(Γ ) is positive
(according the definition we have to compute the Fourier transform of the expo-
nent of a quadratic form). We can also give the following more elegant proof. First,
it is enough to consider the case z = (0,0). Second, it is possible to find a meta-
plectic transformation F such that ϕz

(Γ ) = R̂(F )ϕ0 (see the section on symplectic
invariance and Chap. 3 for more properties on the metaplectic group). Hence we
get W

R̂(F )ϕ0
(X) = Wϕ0(F

−1(X)). But we have computed above Wϕ0 , which is a
standard Gaussian, so it is positive.

Conversely, assume now that Wψ(X) ≥ 0 on R
2n. We shall prove that the

Fourier–Bargmann transform ψ#(z) is a Gaussian function on the phase space.
Hence using the inverse Bargmann transform formula, we shall see that ψ is a Gaus-
sian.

Let us first prove the two following properties:

ψ#(z) 
= 0, ∀z ∈R
2n, (2.34)∣∣ψ#(z)

∣∣ ≤ Ceδ|z|2 , ∀z ∈R
2n, for some C,δ > 0. (2.35)

We have seen that

∣∣〈ψ,ϕz〉
∣∣2 = (2π�)−n

∫
R2n

Wψ(X)Wϕz(X)dX

= 2n

∫
R2n

Wψ(X)e− 1
�
|X−z|2 dX. (2.36)

The last integral is positive because by assumption Wψ(X) ≥ 0 and∫
Wψ(X)dX = 1.
Using again (2.36) we easily get (2.34). The second step is to use a property of

entire functions in C
n. Let us recall that in Chap. 1, we have seen that the function

ψ#
a (ζ ) := exp

(
p2 + ip · q

2�

)
ψ#(q,p) (2.37)
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is an entire function in the variable ζ = q − ip ∈ C
n. Moreover we get easily that

ψ#
a (ζ ) satisfies properties (2.34). To achieve the proof of Theorem 3 we apply the

following lemma, which is a particular case of Hadamard factorization theorem for
n = 1, extended for n ≥ 2 in [181]. �

Lemma 11 Let f be an entire function in C
n such that f (ζ ) 
= 0 for all ζ ∈C

n and
for some C > 0, δ > 0,

∣∣f (ζ )
∣∣ ≤ Ceδ|ζ |m, ∀ζ ∈C

n. (2.38)

Then f (ζ ) = eP(ζ ), where P is a polynomial of degree ≤ m.

2.3 Coherent States and Operator Norms Estimates

Let us give now a first application of coherent states to Weyl quantization. We as-
sume first that � = 1.

Theorem 4 (Calderon–Vaillancourt) There exists a universal constant Cn such that
for every symbol A ∈ C∞(R2n) we have

∥∥Â
∥∥
L(L2,L2)

≤ Cn sup
|γ |≤2n+1,X∈R2n

∣∣∂γ

XA(X)
∣∣. (2.39)

Beginning of the Proof From (2.32) we get the formula

〈
ψ, Âη

〉 = (2π)−n

∫∫
R4n

〈
ϕz′ , Âϕz

〉
ψ#(z′)η#(z) dz dz′. (2.40)

We shall get (2.39) by proving that the Bargmann kernel KB
A (z, z′) := 〈ϕz′ , Âϕz〉 is

the kernel of a bounded operator in L2(R2n). Let us first recall a classical lemma

Lemma 12 Let (Ω,μ) be a measured (σ -finite) space, K a measurable function
on Ω × Ω such that

mK := max

{
sup
z∈Ω

∫
Ω

∣∣K(z, z′)
∣∣dz′, sup

z′∈Ω

∫
Ω

∣∣K(z, z′)
∣∣dz

}
.

Then K is the integral kernel of a bounded operator TK on L2(Ω) and we have

‖TK‖ ≤ mK.

So the Calderon–Vaillancourt theorem will be a consequence of the following.
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Lemma 13 There exists a universal constant Cn such that for every symbol A ∈
C∞(R2n) we have

∣∣KB
A (z, z′)

∣∣ ≤ Cn

(
1 + |z − z′|)−2n−1 sup

|γ |≤2n+1,X∈R2n

∣∣∂γ

XA(X)
∣∣. (2.41)

Proof We have already seen that

KB
A (z, z′) =

∫
Rn

A(X)Wz′,z(X)dX

= 2n

∫
Rn

A(X) exp

(
−

∣∣∣∣X − z + z′

2

∣∣∣∣
2

− iσ

(
X − 1

2
z′, z − z′

))
dX.

(2.42)

First remark that we have

∣∣〈ϕz′ , Âϕz

〉∣∣ ≤ sup
X∈R2n

∣∣A(X)
∣∣. (2.43)

So we only have to consider the case |z′ − z| ≥ 1. The estimate is proved by inte-
gration by parts (as is usual for an oscillating integral).

Let us introduce the phase function

Φ = −
∣∣∣∣X − z + z′

2

∣∣∣∣
2

− iσ

(
X − 1

2
z′, z − z′

)
. (2.44)

We have |∂XΦ| ≥ |z − z′| hence

∂XΦ · ∂X

|∂XΦ|2 eΦ = eΦ. (2.45)

So we get the wanted estimates performing 2n + 1 integrations by parts in the inte-
gral (2.42) using formula (2.45).

This achieves the proof of the Calderon–Vaillancourt theorem. �

Corollary 4 Â is a compact operator in L2(Rn) if A is C∞ on R
2n and satisfies

the following condition:

lim|z|→+∞
∣∣∂γ

z A(z)
∣∣ = 0, ∀γ ∈ N

2d, |γ | ≤ 2n + 1. (2.46)

Proof Let us introduce χ ∈ C∞(R2n) such that χ(X) = 1 if |X| ≤ 1
2 and χ(X) = 0

if |X| ≥ 1. Let us define AR(X) = χ(X/R)A(X). For every R > 0, ÂR is Hilbert–



2.3 Coherent States and Operator Norms Estimates 37

Schmidt hence compact. Using the Calderon–Vaillancourt estimate, we get

lim|R|→+∞
∥∥Â − ÂR

∥∥ = 0.

So Â is compact. �

Using the same idea as for proving Calderon–Vaillancourt theorem, we get now
a sufficient trace-class condition.

Theorem 5 There exists a universal constant τn such that for every A ∈ C∞(R2n)

we have
∥∥Â

∥∥
T r

≤ τn

∑
|γ |≤2n+1

∫
R2n

∣∣∂γ

XA(X)
∣∣dX. (2.47)

In particular if the r.h.s. is finite then Â is in the trace class and we have

Tr Â = (2π)−n

∫
R2n

A(X)dX. (2.48)

Proof Recall that � = 1. From (2.29) we know that Â has the following decompo-
sition into rank one operators:

Â = (2π)−n

∫∫
R4n

〈
ϕz′ , Âϕz

〉
Πz,z′ dzdz′. (2.49)

But we know that ‖Πz,z′ ‖T R = 1. So we have

∥∥Â
∥∥

T R
≤ (2π)−n

∫∫
R4n

∣∣〈ϕz′ , Âϕz

〉∣∣dzdz′. (2.50)

Using integration by parts as in the proof of Calderon–Vaillancourt, we have

∣∣〈ϕz′ , Âϕz

〉∣∣ ≤ CN

(
1 + |z − z′|)−N

∑
|γ |≤N

∫
R2n

e−|X−(z+z′)/2|2 ∣∣∂γ

XA(X)
∣∣dX (2.51)

with N = 2n + 1. Now perform the change of variables u = (z + z′)/2, v = z − z′
and using Young inequality we get

∫∫
R4n

∣∣〈ϕz′ , Âϕz

〉∣∣dzdz′ ≤ τn

∑
|γ |≤N

∫
R2n

∣∣∂γ

XA(X)
∣∣dX (2.52)

hence (2.47) follows.
We can get (2.48) by using approximations with compact support AR like in the

proof of Corollary 4. �
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Remark 5 Using interpolation results it is possible to get similar estimates for the
Schatten norm ‖Â‖p for 1 < p < +∞.

Let us now compute the action of Weyl quantization on Gaussian coherent states.

Lemma 14 Assume that A ∈ Σ(m) (m is temperate weight). Then for every N ≥ 1,
we have

Âϕz =
∑

|γ |≤N

�
|γ |
2

∂γ A(z)

γ ! Ψγ,z +O
(
�

(N+1)/2), (2.53)

the estimate of the remainder is uniform in L2(Rn) for z in every bounded set of the
phase space and

Ψγ,z = T̂ (z)Λ�Opw
1

(
zγ

)
g, (2.54)

where g(x) = π−n/4e−|x|2/2, Opw
1 (zγ ) is the 1-Weyl quantization of the monomial:

(x, ξ)γ = xγ ′
ξγ ′′

, γ = (γ ′, γ ′′) ∈ N
2d . In particular Opw

1 (zγ )g = Pγ g where Pγ is
a polynomial of the same parity as |γ |.

Proof Let us write

Âϕz = ÂΛ�T̂1(z)g = Λ�T̂1(z)
(
Λ�T̂1(z)

)−1
ÂΛ�T̂1(z)g,

where Λ� is the dilation: Λ�ψ = �
−n/4ψ(�−1/2x) and T̂1 is T̂ for �= 1.

Let us remark that (Λ�T̂ (z))−1ÂΛ�T̂ (z) = Opw
1 [A�,z] where A�,z(X) =

A(
√
�X + z). So we prove the lemma by expanding A�,z in X, around z, with

the Taylor formula with integral remainder term to estimate the error term. �

The following Lemma allows to localized observables acting on coherent states.

Lemma 15 Let A be a smooth observable with compact support in the ball
B(X0, r0) of the phase space. Then there exists R > 0 and for all N ≥ 1 there exists
CN such that for |z − X0| ≥ 2r0 we have

∥∥Âϕz

∥∥ ≤ CN�
N 〈z〉−N, for |z| ≥ R. (2.55)

Proof It is convenient here to work on Fourier–Bargmannn side. So we estimate

〈
ϕz, Âϕz′

〉 = (2π�)−n

∫
R2n

A(Y )Wz,z′(Y ) dY. (2.56)

As we have already seen, we have
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∫
R2n

A(Y )Wz,z′(Y ) dY

= 2n

∫
R2n

exp

(
−1

�

∣∣∣∣Y − z + z′

2

∣∣∣∣
2

− i

�
σ

(
Y − 1

2
z′, z − z′

))
A(Y)dY. (2.57)

Using integrations by parts as above, considering the phase function Ψ (Y ) = −|Y −
z+X

2 |2 − iσ (Y − 1
2X,z−X) and the differential operator ∂Y Ψ

|∂Y Ψ |2 ∂Y , we get for every

M,M ′ large enough,

∣∣〈Âϕz,ϕz′
〉∣∣ ≤ CM,M ′

∫
[|Y |≤r0]

(
1 + |Y − z|√

�

)−M(
1 + |z − z′|√

�

)M−M ′

dY. (2.58)

Therefore we easily get the estimate choosing M,M ′ conveniently and using that
the Fourier–Bargmannn transform is an isometry. �

We need to introduce some properties for the Weyl symbols A.

Definition 5 A positive function m on R
d is a temperate weight if it satisfies the

following property. There exist N,C such that

m(X + Y) ≤ m(X)
(
1 + |X − Y |)N

, ∀X,Y ∈R
d . (2.59)

A symbol A is a classical observable of weight m if for every multiindex α there
exists Cα such that

∣∣∂α
XA(X)

∣∣ ≤ Cαm(X), ∀X ∈ R
2n.

The space of symbols of weight m is denoted Σ(m).

A basic example of temperate weight is mμ(X) = (1 + |X|)μ, μ ∈ R. We shall
denote Σμ = Σ(mμ). For example Σ0 = Σ(1).

Remark 6 The product of two temperate weights is a temperate weight and if m is
a temperate weight then m−1 is also a temperate weight.

As proved by Unterberger [186] and rediscovered by Tataru [183], it is possible
to characterize the operator class Σ̂(1) on the matrix element 〈ϕz′ , Âϕz〉. We state
now a semi-classical version of Unterberger result.

Theorem 6 Let Â� be a �-dependent family of operators from S(Rn) to S ′(Rn).
Then Â = Opw

�
(A�) with A� ∈ Σ(1) with uniform estimate2 if and only if for every

2This means that for every γ , sup�∈]0,1] ‖∂γ A‖∞ < +∞.
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N there exists CN such that we have

∣∣〈ϕz′ , Âϕz

〉∣∣ ≤ CN

(
1 + |z − z′|√

�

)−N

, ∀� ∈ ]0,1), z, z′ ∈R
2n. (2.60)

Proof Suppose that Â = Opw
�
(A�), with A� ∈ Σ(1) is a bounded family. We get

estimate (2.60) by integrations by parts as above.
Conversely if we have estimates (2.60), using (2.23) and (2.29) we have

A�(X) = (π�)−n

∫∫
R4n

〈
ϕz′ , Â�ϕz

〉
exp

(
−1

�

(∣∣∣∣X − z + z′

2

∣∣∣∣
2

+ iJ

(
X − z′

2

)
· (z − z′)

))
dzdz′. (2.61)

Using the change of variables z+z′
2 = u and z − z′ = √

�v we get easily that there
exists C > 0 such that

∣∣A�(X)
∣∣ ≤ C, ∀X ∈R

2n, � ∈ ]0,1]. (2.62)

In the same way we can estimate every derivatives of A�, after derivation in X in
the integral (2.61). �

The other main fact in Weyl quantization is existence of an operational calculus.
We shall recall its properties in the next section.

2.4 Product Rule and Applications

2.4.1 The Moyal Product

One of the most useful properties of Weyl quantization is that we have an operational
calculus defined by:

The Product Rule for Quantum Observables Let us start with A,B ∈ S(R2n).
We look for a classical observable C such that Â · B̂ = Ĉ. Let us first remark that
the integral kernel of Ĉ is

KC(x, y) =
∫
Rn

KA(x, s)KB(s, y) ds. (2.63)

Using relationship between integral kernels and Weyl symbols, we get

C(X) = (π�)−2n

∫∫
R4n

e2i�σ(Y,Z)A(X + Z)B(X + Y)dY dZ, (2.64)
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where σ is the symplectic bilinear form introduced above.
Now let us apply Plancherel formula in R

4n and the following Fourier transform
formula:

Lemma 16 Let f (T ) = e
i
2 〈B.T ,T 〉, for T ∈ R

m where B is a non degenerate sym-
metric m × m matrix. Then the Fourier transform f̃ is

f̃ (ζ ) = (2π)m/2|detB|−1/2eiπ sgnBe− i
2 〈B−1ζ,ζ 〉, (2.65)

where sgnB is the signature of the matrix B .

Proof See [117, 163]. �

Hence we get

C(x, ξ) = exp

(
i�

2
σ(Dx,Dξ ;Dy,Dη)

)
A(x, ξ)B(y, η)

∣∣∣∣
(x,ξ)=(y,η)

. (2.66)

We can see easily on formula (2.66) that C ∈ S(R2n). So that (2.64) defines a non-
commutative product on classical observables. We shall denote this product C =
A � B (Moyal product).

In semi-classical analysis, it is useful to expand the exponent in (2.66), so we get
the formal series in �:

C(x, ξ) =
∑
j≥0

Cj (x, ξ)�j , where

Cj (x, ξ) = 1

j !
(

i

2
σ(Dx,Dξ ;Dy,Dη)

)j

A(x, ξ)B(y, η)

∣∣∣∣
(x,ξ)=(y,η)

. (2.67)

We can easily see that in general C is not a classical observable because of the �

dependence. It can be proved that it is a semi-classical observable in the following
sense.

Definition 6 We say that A is a semi-classical observable of weight m, where m is
temperate weight on R

2n, if there exist �0 > 0 and a sequence Aj ∈ Σ(m), j ∈N,
so that A is a map from ]0,�0] into Σ(m) satisfying the following asymptotic con-
dition: for every N ∈ N and every γ ∈ N

2n there exists CN > 0 such that for all
� ∈ ]0,1[ we have

sup
R2n

m−1(z)

∣∣∣∣ ∂γ

∂zγ

(
A(�, z) −

∑
0≤j≤N

�
jAj (z)

)∣∣∣∣ ≤ CN�
N+1, (2.68)

A0 is called the principal symbol, A1 the sub-principal symbol of Â.
The set of semi-classical observables of weight m is denoted by Σsc(m). Its range

in L(S(Rn),S ′(Rn)) is denoted Σ̂sc(m).
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We may use the notation Σ
μ
sc = Σsc(mμ).

Now we state the product rule for Weyl quantization.

Theorem 7 Let m, m′ be two temperate weights in R
2n. For every A ∈ Σ(m) and

B ∈ Σ(m′), there exists a unique C ∈ Σsc(mp) such that Â · B̂ = Ĉ with C �∑
j≥0 �

jCj . The Cj are given by

Cj(x, ξ) = 1

2j

∑
|α+β|=j

(−1)|β|

α!β!
(
Dβ

x ∂α
ξ A

) · (Dα
x ∂

β
ξ B

)
(x, ξ).

Proof The main technical point is to control the remainder terms uniformly in the
semi-classical parameter �. This is detailed in the appendix of the paper [31]. �

Corollary 5 Under the assumption of the theorem, we have the well known cor-
respondence between the commutator for quantum observables and the Poisson
bracket for classical observables, i

�
[Â, B̂] ∈ ̂Σsc(mm′) and its principal symbol

is the Poisson bracket {A,B}.

A very useful application of the Moyal product is the possibility to get semi-
classical approximations for inverse of elliptic symbol.

Definition 7 Let A(�) be a semi-classical observable in Σsc(m) and X0 ∈R
2n. We

shall say that A is elliptic at X0 if A0(X0) 
= 0.
We shall say that A is uniformly elliptic if there exists c > 0 such that

∣∣A(X)
∣∣ ≥ cm(X), ∀X ∈R

2n. (2.69)

Theorem 8 Let A ∈ Σsc(m) be an uniformly elliptic semi-classical symbol. Then
there exists B ∈ Σsc(m

−1) such that B �A = 1 (in the sense of asymptotic expansion
in Σsc(1)). Moreover, we have

B̂ · Â = 1 +O
(
�

∞)
, (2.70)

where the remainder is estimated in the L2norm of operators.
Moreover the semi-classical symbol B of B̂ is B = ∑

j≥0 �
jBj with

B0 = A−1
0 , B1 = −A1A

−2
0 . (2.71)

Proof Let us denote by Cj(E,F ) the j th term in the Moyal product E � F . The
method consists to compute by induction B0, . . . ,BN such that

( ∑
0≤j≤N

�
jBj

)
� A(h) =O

(
�

N+1). (2.72)
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We start with B0 = 1
A0

. The next step is to compute B1 such that B1A0 +A1B0 = 0.
Then to compute B2 such that

C2(A0,B0) + C1(A1,B1) + B2A0 = 0.

So we get all the Bj by induction using the asymptotic expansion for the Moyal
product.

The remainder term in (2.70) is estimated using the Calderon–Vaillancourt theo-
rem. �

We give now a local version of the above theorem, which can be proved by the
same method.

Theorem 9 Let A ∈ Σsc(m) be an elliptic symbol in an open bounded set Ω of R2n.
Then for every χ ∈ C∞

0 (Ω) there exists Bχ ∈ Σ−∞
sc such that

B̂χ Â = χ̂ +O
(
�

∞)
. (2.73)

Remark 7 For application it is useful to note that if A depends in a uniform way of
some parameter ε ∈ [0,1] then B also depends uniformly in ε. In particular ε may
depend on �.

2.4.2 Functional Calculus

An useful consequence of the algebraic properties of symbolic quantization is a
functional calculus: under suitable assumptions if Ĥ is an Hermitian semi-classical
observable then for every smooth function f , f (Ĥ ) is also a semi-classical observ-
able. The technical statement is

Theorem 10 Let Ĥ be a uniformly elliptic semi-classical Hamiltonian. Let f be a
smooth real valued function such that, for some r ∈R, we have

∀k ∈N, ∃Ck,
∣∣f (k)(s)

∣∣ ≤ Ck〈s〉r−k, ∀s ∈R.

Then f (Ĥ ) is a semi-classical observable with a semi-classical symbol Hf (�, z)

given by

Hf (�, z) �
∑
j≥0

�
jHf,j (z). (2.74)

In particular we have

Hf,0(z) = f
(
H0(z)

)
, (2.75)

Hf,1(z) = H1(z)f
′(H0(z)

)
, (2.76)
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and for, j ≥ 2, Hf,j =
∑

1≤1≤2j−1

dj,k(H)f (k)(H0), (2.77)

where dj,k(H) are universal polynomials in ∂
γ
z H�(z) with |γ | + � ≤ j .

A proof of this theorem can be found in [68, Chap. 8], [107]. In particular we
can take f (s) = (λ + s)−1 for �λ 
= 0 (the proof begins with this case) or f with a
compact support.

From this theorem we can get the following consequences on the spectrum of Ĥ

(see [107]).

Theorem 11 Let Ĥ be like in Theorem 10. Assume that H−1
0 [E−,E+] is a com-

pact set in R
n × R

n. Consider a closed interval I ⊂ [E−,E+]. Then we have the
following properties.

(i) ∀� ∈ ]0,�0], �0 > 0, the spectrum of Ĥ is discrete and is a finite sequence of
eigenvalues E1(�) ≤ E2(�) ≤ · · · ≤ ENI

(�) where each eigenvalue is repeated
according its multiplicity.

Moreover NI = O(�−n) as �↘ 0.
(ii) For all f ∈ C∞

0 (I ), f (Ĥ ) is a trace-class operator and we have

Tr
[
f

(
Ĥ

)] �
∑
j≥0

�
j−dτj (f ), (2.78)

where τj are distributions supported in H−1
0 (I ). In particular, we have

τ0(f ) = (2π)−d

∫
R2n

f
(
H0(z)

)
dz, (2.79)

τ1(f ) = (2π)−d

∫
R2n

f ′(H0(z)
)
H1(z) dz. (2.80)

An easy consequence of this is the following Weyl asymptotic formula:

Corollary 6 If I = [λ−, λ+] such that λ± are non critical values for H0
3 then we

have

lim
�→0

(2π�)nNI =
∫

[H0(q,p)∈I ]
dq dp. (2.81)

Remark 8 Formula (2.81) is very well known and can be proved in many ways,
under much weaker assumptions.

For a proof using the functional calculus see [163, pp. 283–287].

3That λ is a non-critical value for H means that ∇H(z) 
= 0 if H(z) = λ.
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Under our assumptions we shall see in Chap. 4 that we have a Weyl asymptotic
with an accurate remainder estimate:

NI = (2π�)−n

∫
[H(q,p)∈I ]

dq dp + O
(
�

1−n
)
,

using a time dependent method due to Hörmander and Levitan ([116] and its biblio-
graphy). For more accurate results about spectral asymptotics see [122].

2.4.3 Propagation of Observables

Now we come to the main application of the results of this section. We shall give a
proof of the correspondence (in the sense of Bohr) between quantum and classical
dynamics. As we shall see this theorem is a useful tool for semi-classical analysis
although its proof is an easy application of Weyl calculus rules stated above. The
microlocal version of the following result is originally due to Egorov [73]. R. Beals
[18] found a nice simple proof.

Theorem 12 (The Semi-classical Propagation Theorem) Let us consider a time de-
pendent Hamiltonian H(t) ∈ Σ2

sc satisfying:∣∣∂γ
z Hj (t, z)

∣∣ ≤ Cγ , for |γ | + j ≥ 2; (2.82)

�
−2(H(t) − H0(t) − �H1(t)

) ∈ Σ0
sc. (2.83)

We assume that H(t, z) is continuous for t ∈ R and that all the estimates are uniform
in t for t ∈ [−T ,T ].

Let us introduce an observable A ∈ Σ1, such that ∂
γ

XA ∈ Σ0 if |γ | ≥ 1. Then we
have the following.

(a) For � small enough and for every ψ ∈ S(Rn), the Schrödinger equation

i�∂tψt = Ĥ (t)ψt , ψt=s = ψ (2.84)

has a unique solution which we denote ψt = Û (t, s)ψ . Moreover Û (t, s) can
be extended as a unitary operator in L2(Rn).

(b) The time evolution Â(t, s) of Â, from the initial time s is Â(t, s) = Û (s, t)Â ×
Û (t, s) and has a semi-classical Weyl symbol A�(t, s) such that A�(t, s) ∈ Σ1

sc.
More precisely we have A(t, s) � ∑

j≥0 �
jAj (t, s), in Σ0

sc, which is uniform in
t, s, for t, s ∈ [−T ,T ]. Moreover Aj(t, s) can be computed by the following
formulas:

A0(t, s; z) = A
(
Φt,s(z)

)
, (2.85)

A1(t, s; , z) =
∫ t

s

{
A

(
Φτ,t

)
,H1(τ )

}(
Φt,τ (z)

)
dτ (2.86)

and for j ≥ 2, Aj(t, s; z) can be computed by induction on j .
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Proof Property (a) will be proved later. It is easier to prove it if H is time indepen-
dent because we can prove in this case that Ĥ is essentially self-adjoint (for a proof
see [163]). Then we have

Û (t) := Û (t,0) = exp

(
− it

�
Ĥ

)
.

Let us remark that, under the assumption of the theorem, the classical flow for H0

exists globally. Indeed, the Hamiltonian vector field (∂ξH0,−∂xH0) has a sublinear
growing at infinity so, no classical trajectory can blow up in a finite time. Moreover,
using usual methods in non linear O.D.E. (variation equation) we can prove that
A(Φt,s) ∈ Σ(1) with semi-norm uniformly bounded for t, s bounded.

Now, from the Heisenberg equation and the classical equations of motion we get

∂

∂τ
Û(s, τ )Â0(t, τ )Û (τ, s)

= Û (s; τ)

{
i

�

[
Ĥ (τ ), Â0(t, τ )

] − ̂
{
H(τ),A0

}(
Φt,τ

)}
Û (τ, s), (2.87)

where A0(t, s) = A(Φt,s). But, from the corollary of the product rule, the principal
symbol of

i

�

([
Ĥ (τ ), Â0(t, τ )

] − ̂
{
H(τ),A0

})(
Φt,τ

)

vanishes. So, in the first step, using the product rule formula, we get the approxima-
tion

Û (s, t)ÂÛ (t, s) − Â0(t, s)

=
∫ t

s

Û (s, τ )

(
i

�

[
Ĥ (τ ), Â0(t, τ )

] − ̂{
Ĥ (τ ),A0

}
Φt,τ

)
Û (τ, s) dτ. (2.88)

Now, it is not difficult to obtain, by induction, the full asymptotics in �. For j ≥ 2,

Aj(t, s; z) =
∑

|(α,β)|+k=j+1
0≤�≤j−1

Γ (α,β)

∫
s

t[(
∂α
ξ ∂β

x Hk(τ )
) · (∂ξ

α∂x
βA�

)](
Φt,τ (z)

)
dτ,

(2.89)
with

Γ (α,β) = (−1)|β| − (−1)|α|

α!β!2|α|+|β| i−1−|(α,β)|.

The main technical point is to estimate the remainder terms. For a proof with more
details see [31] where the authors get a uniform estimate up to Ehrenfest time (of
order log�−1). We give in Appendix B the necessary details for uniform estimates
on finite times intervals. �
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Remark 9 If H(t) = H0(t) is a polynomial function of degree ≤ 2 in z on the phase
space R2n then the propagation theorem assumes a simpler form: A(t, s) = A(Φt,s)

and the remainder term is null. This is a consequence of the following exact formula:

i

�

[
Ĥ , B̂

] = {̂H,B}, (2.90)

where B ∈ Σ+∞.

Now we give an application of the propagation theorem and coherent states in
semi-classical analysis: we recover the classical evolution from the quantum evolu-
tion, in the classical limit �↘ 0.

Corollary 7 For every observable A ∈ Σ0 and every z ∈ R
2n, we have

lim
�↘0

〈
Û(t, s)ϕz, ÂÛ (t, s)ϕz

〉 = A
(
Φt,s(z)

)
(2.91)

and the limit is uniform in (t, s; z) on every bounded set of Rt ×Rs ×R
2n
z .

Proof

〈
Û (t, s)ϕz, ÂÛ (t, s)ϕz

〉 = 〈
ϕz, Û(s, t)ÂÛ (t, s)ϕz

〉

=
∫
R2n

A(t, s;X)Wz,z(X)dX

= (π�)−n

∫
R2n

A(t, s;X)e− |X−z|2
� dX. (2.92)

So by the propagation theorem we know that A(t, s;X) = A(Φt,s(X)) + O(�).
Hence the corollary follows. �

Remark 10 The last result has a long history beginning with Ehrenfest [74] and con-
tinuing with Hepp [113], Bouzouina–Robert [31]. In this last paper it is proved that
the corollary is still valid for times smaller than the Ehrenfest time TE := γE | log�|,
for some constant γE > 0.

2.4.4 Return to Symplectic Invariance of Weyl Quantization

Let us give now a first construction of metaplectic transformations. Other equivalent
constructions and more properties will be given later (chapter on quadratic hamilto-
nians).

Lemma 17 For every F ∈ Sp(n) we can find a C1-smooth curve Ft , t ∈ [0,1], in
Sp(n), such that F0 = 1 and F1 = F .
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Proof An explicit way to do that is to use the polar decomposition of F , F = V |F |
where V is a symplectic orthogonal matrix and |F | = √

F tF is positive symplectic
matrix. Each of these matrices have a logarithm, so F = eKeL with K,L Hamilto-
nian matrices, and we can choose Ft = etKetL. Ft is clearly the linear flow defined
by the quadratic Hamiltonian Ht(z) = 1

2Stz · z where St = −J ḞtF
−1
t . �

Now we use the (exact) propagation theorem. Û(t, s) denotes the propagator
defined by the quadratic Hamiltonian built in the proof of Lemma 17 and Theo-
rem 12. Then we define R̂(F ) = Û (1,0). Recall that Û(t,0) is the solution of the
Schrödinger equation

i�
d

dt
Û(t,0) = Ĥ (t)Û (t,0), Û (0,0) = 1. (2.93)

The following theorem translates the symplectic invariance of the Weyl quantiza-
tion.

Theorem 13 For every linear symplectic transformation F ∈ Sp(n) and every sym-
bol A ∈ Σ(1) we have

R̂(F )−1ÂR̂(F ) = Â · F . (2.94)

Proof This is a direct consequence of the exact propagation formula for quadratic
Hamiltonians

Û (0, t)ÂÛ (t,0) = ÂΦt,0. (2.95)

�

We can get another proof of the following result (see formulas (2.27)).

Corollary 8 Let ψ,η ∈ L2(Rn). For every linear symplectic transformation F ∈
Sp(n), we have the following transformation formula for the Wigner function:

W
R̂(F )ψ,R̂(F )η

(z) = Wψ,η

(
F−1(z)

)
, ∀z ∈R

2n. (2.96)

Proof For every A ∈ S(R2n), we have

〈
R̂(F )η, ÂR̂(F )ψ

〉 =
∫
R2n

A(z)W
(
R̂(F )ψ, R̂(F )η

)
(z) dz

= 〈
η, R̂(F )−1ÂR̂(F )ψ

〉

=
∫
R2n

A(F · z)Wψ,η(z) dz. (2.97)

The corollary follows. �

We have the following uniqueness result.
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Proposition 20 Given the linear symplectic transformation F ∈ Sp(n), there ex-
ists a unique transformation R̂(F ), up to a complex number of modulus 1, satisfy-
ing (2.18).

Proof If V̂ satisfies V̂ −1ÂV̂ = Â · F then if B̂ = V̂ −1 · R̂(F ), we see that B̂ com-
mutes with every Â, A ∈ Σ(1). In particular B̂ commutes with the Heisenberg–Weyl
translations T̂ (z), hence T̂ (z)−1B̂T̂ (z) = B̂ . But we knows that T̂ (z)−1B̂T̂ (z) =
B̂(· + z). So the Weyl symbol of B̂ (it is a temperate distribution) is a constant com-
plex number λ. But here B̂ is unitary, so |λ| = 1. �

2.5 Husimi Functions, Frequency Sets and Propagation

2.5.1 Frequency Sets

The Husimi transform of some temperate distributions u ∈ S ′(Rn) is defined as
follows:

Definition 8 The Husimi transform of u ∈ S ′(Rn) is the function Hu(z) defined on
the phase space R

2n by

Hu(z) = (2π�)−n
∣∣〈u,ϕz〉

∣∣2
, z ∈R

2n. (2.98)

The Husimi transform in contrast with the Wigner transform is always non-
negative. We shall see below that the Husimi distribution is a “regularization” of
the Wigner distribution.

Proposition 21 For every ϕ ∈ L2(Rn) we have

Hϕ = Wϕ ∗ G0,

where G0 is a gaussian function in phase space namely

G0(z) = (π�)−ne−|z|2/�.

One has
∫
R2n G0(z) dz = 1. This means that the Husimi distribution is a “regular-

ization” of the Wigner distribution.

Proof According to the Proposition 17(iii) we have

Hϕ(z) = (2π�)−n〈Wϕz ,Wϕ〉L2(R2n).

But we know that

Wϕz(X) = Wϕ0(X − z).
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We use Proposition 16:

〈Wϕz ,Wϕ〉 = 2n

∫
R2n

exp

(
−|X − z|2

�

)
Wϕ(X)dX.

This yields the result. �

In semi-classical analysis (or in high frequency analysis) it is important to un-
derstand what is the region of the phase space R

2n where some states ψ ∈ L2(Rn)

depending on �, essentially lives when � is small. For that purpose let us introduce
the frequency set of ψ .

Definition 9 Let ψ� ∈ L2(Rn), depending on �, such that ‖ψ�‖ ≤ 1. We say that
ψ� is negligible near a point X0 ∈ R

2n, if there exists a neighborhood VX0 such that

Hψ�
(z) = O

(
�

∞)
, ∀z ∈ VX0 . (2.99)

Let us denote N [ψ�] the set {X ∈ R
2n, ψ� is negligible near X}. The frequency set

FS[ψ�] is defined as the complement of N [ψ�] in R
2n.

Example 1

• If ψ� = ϕz then FS[ϕz] = {z}.
• Let ψ = a(x)e

i
�
S(x) where a and S are smooth functions, a ∈ S(Rn), S real. Then

we have the inclusion

FS[ψ] ⊆ {
(x, ξ)|ξ = ∇S(x)

}
. (2.100)

There are several equivalent definitions of the frequency set that we now give.

Proposition 22 Let ψ� be such that ‖ψ�‖ ≤ 1 and X0 = (x0, ξ0) ∈ R
2n. The fol-

lowing properties are equivalent:

(i)

Hψ�
(X) = O

(
�

+∞)
, ∀X ∈ VX0 .

(ii) There exists A ∈ S(R2n), such that A(X0) = 1 and∥∥Âψ�

∥∥ = O
(
�

+∞)
. (2.101)

(iii) There exists a neighborhood VX0 of X0 such that for all A ∈ C∞
0 (VX0),∥∥Âψ�

∥∥ = O
(
�

+∞)
. (2.102)

(iv) There exist χ ∈ C∞
0 (Rn) such that χ(x0) = 1 and a neighborhood Vξ0 of ξ0

such that 〈
χ(x)e

i
�
x·ξ ,ψ�

〉 = O
(
�

+∞)
(2.103)

for all ξ ∈ Vξ0 .
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Proof Let us assume (i). Then we have

Hψ�
(z) = O

(
�

∞)
, |z − X0| < r0. (2.104)

Using Lemma 15 we have
∥∥Âϕz

∥∥ ≤ CN�
N/2〈z〉−N, if |z − X0| > r0/2. (2.105)

We have, using linearity of integration,

Âψ� = (2π�)−n

∫
dz〈ϕz,ψ�〉Âϕz.

From the triangle inequality, we have

∥∥Âψ�

∥∥ ≤ (2π�)−n

∫
dz

∣∣〈ψ�, ϕz〉
∣∣∥∥Âϕz

∥∥

≤ (2π�)−n

(∫
[|z−X0|<r0]

dz +
∫

[|z−X0|≥r0]
dz

)
. (2.106)

Then we get (iii): ∥∥Âψ�

∥∥2 = O
(
�

+∞)
.

Let us now assume (iii); we want to prove (i).
Let us introduce χ ∈ C∞

0 (B(X0, r0)), χ(X) = 1 if |X − X0| ≤ r0/2. Using The-

orem 9 we have B̂Â = χ̂ +O(�+∞). Hence χ̂ψ� = O(�+∞). But using Lemma 15
we have 〈(1 − χ̂ )ψ,ϕz〉 = O(�+∞) for |z − X0| ≤ r0/4. So we have proved
〈ψ�, ϕz〉 = O(�+∞) for |z − X0| ≤ r0/4. �

A consequence of this proposition is that Weyl quantization does not increase the
frequency set.

Corollary 9 Let ψ� be such that ‖ψ�‖ ≤ 1, A ∈ Σ(1), then we have

FS
[
Â(ψ�)

] ⊆ FS[ψ�]. (2.107)

Moreover if A is elliptic at X0 then we have

X0 ∈ FS
[
Â(ψ�)

] ⇐⇒ X0 ∈ FS[ψ�]. (2.108)

Proof Let us assume that X0 /∈ FS[ψ�]. If χ is like in the proof of the proposition,
we have χ̂Aψ� = O(�∞). Applying Lemma 15 we have, for z near X0,

〈
ϕz, ̂(1 − χ)Aψ�

〉 = O
(
�

∞)
so we get, z near X0, 〈

ϕz, χ̂Aψ�

〉 = O
(
�

∞)
. �



52 2 Weyl Quantization and Coherent States

2.5.2 About Frequency Set of Eigenstates

Let us consider a quantum Hamiltonian Ĥ . Assume that H ∈ Σ(m). Let us consider
the stationary Schrödinger equation

Ĥψ� = E�ψ�, (2.109)

where ‖Ψ�‖ = 1, lim�→0 E� = E.

Proposition 23 The frequency set of ψ� is in the energy level set SE = {X ∈
R

2n, H(X) = E}.

Proof Let X0 ∈ R
2n such that H(X0) 
= E. There exist δ > 0, r0 > 0 such that

|H(X)−E| ≥ δ, for every X ∈ B(X0, r0). Let us choose some χ ∈ C∞
0 (B(X0, r0)),

χ(X0) = 1. Using theorem 9 and the remark following this theorem (here at the end
ε = �), we can find B such that

B̂
(
Ĥ − E�

) = χ̂ +O
(
�

+∞)
, (2.110)

so we get χ̂ψ� =O(�+∞) hence X0 /∈ FS[ψ�]. �

Assume now that Ĥ satisfies the assumptions of the Propagation theorem and ψ�

satisfies the Schrödinger equation (2.109).

Proposition 24 The frequency set FS[ψ�] is invariant under the classical flow Φt ,
for every t ∈R.

Proof Let X0 /∈ FS[ψ�]. There exists a compact support symbol A elliptic at X0
such that Âψ� =O(�+∞).

For every t we have

Û (−t)Âψ� =O
(
�

+∞) = e
itE�

� Â(t)ψ�.

Recall that the principal symbol of Â(t) is A · Φt . So we find that if z is near
Φ−t (X0), then Â(t)ψ� =O(�+∞), hence Φ−tX0 /∈ FS[ψ�]. So we see that FS[ψ�]
is invariant. �

2.6 Wick Quantization

2.6.1 General Properties

Following Berezin–Shubin [23] we start with the following general setting.
Let M be a locally compact metric space, with a positive Radon measure μ and

H an Hilbert space. For each m ∈ M we associate a unit vector em ∈ H such that
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the map m 	→ em is strongly continuous from M into H. Moreover we assume that
the following Plancherel formula is satisfied, for all ψ ∈ H,

‖ψ‖2 =
∫

M

∣∣〈em,ψ〉∣∣2
dμ(m). (2.111)

Let us denote ψ#(m) = 〈em,ψ〉. The map ψ 	→ ψ#(m) := Iψ(m) is an isometry
from H into L2(M). The canonical coherent states introduced in Chap. 1 are ex-
amples of this setting where M = R

2n, H = L2(Rn), z 	→ ϕz, with the measure
dμ(z) = (2π�)−n dq dp, z = (q,p) ∈R

2n.

Definition 10 Let Â ∈ L(H).

(i) The covariant symbol of Â is the function on M defined by Ac(m) = 〈em, Âem〉.
(ii) The contravariant symbol of Â is the function on M , if it exists, such that

Âψ =
∫

M

Ac(m)Πmψ dm, ψ ∈H. (2.112)

For the standard coherent states example, the covariant symbol is called Wick
symbol and the contravariant symbol the anti-Wick symbol.

The covariant symbol satisfies the equality Ac(m) = Tr(ÂΠm).
Let us compute the anti-Wick symbol of some operator Â with Weyl symbol A.
We know that the �-Weyl symbol of the projector Πz is the Gaussian

(π�)−ne− |X−z|2
� . So we find that the Weyl symbol of Â is the convolution of its

anti-Wick symbol and a standard Gaussian function:

A(X) = (π�)−n

∫
R2n

Ac(X)e− |X−z|2
� dz. (2.113)

This formula shows that if Â has a bounded anti-Wick symbol (Ac ∈ L∞(R2n))
then its Weyl symbol is an entire function in C

2n, which is a restriction for a given
operator to have an anti-Wick symbol.

Let us remark that the Wick symbol is an inverse formula associated with (2.113):

Ac(z) = 2n

∫
R2n

A(X)e− |X−z|2
� dX. (2.114)

Now we give another interpretation of the contravariant symbol. Let us first remark
that we have

I∗ · I = 1H, (2.115)

I · I∗ = ΠH, (2.116)

where ΠH is the orthogonal projector in L2(M) on H identified with I(H).
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Proposition 25 Let us assume that Â has a contravariant symbol Ac such that
Ac ∈ L∞(M). Then we have

Â = I∗ · Ac · I, (2.117)

where Ac is here the multiplication operator in L2(M).

Proof For every ψ,η ∈H we have

〈
η, Âψ

〉 =
∫

M

〈η, em〉〈em, Âψ
〉
dμ(m) (2.118)

and

〈
em, Âψ

〉 =
∫

M

Ac(m′)〈em,Πm′ψ〉dμ(m′)

=
∫

M

Ac(m′)〈Πm′em,Πm′ψ〉dμ(m′). (2.119)

So we get

〈
η, Âψ

〉 =
∫∫

M×M

Ac(m′)〈Πm′em,Πm′ψ〉〈η, em〉dμ(m′) dμ(m). (2.120)

We get the conclusion using the equality

〈η, em′ 〉 =
∫

M

〈em′, em〉〈η, em〉dμ(m). (2.121)

�

Estimates on operators with covariant and contravariant symbols are easier to
prove than for Weyl symbols. Moreover they can be used as a first step to get esti-
mates in the setting of Weyl quantization as we shall see for positivity. The following
proposition is easy to prove.

Proposition 26 Let Â be an operator in H with a contravariant symbol Ac. Suppose
that Ac ∈ L∞(M). Then Â is bounded in H and we have

‖Ac‖∞ ≤ ∥∥Â
∥∥ ≤ ∥∥Ac

∥∥∞. (2.122)

Moreover Â is self-adjoint if and only if Ac is real and Â is non-negative if Ac is
μ-almost everywhere non-negative on M .

For our basic example H = L2(Rn), it is convenient to use the following notation.
If A is a classical observable, A ∈ Σ(1), Opw

�
(A) denotes the Weyl quantization of

A and Opaw
�

(A) denotes the anti-Wick quantization of A. In other words Opaw
�

(A)

admits A as an anti-Wick symbol. The following proposition is an easy consequence
of the above results.
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Proposition 27 Let A ∈ Σ(1) (more general symbols could be considered). Then
we have

Opaw
�

(A) = Opw
�
(A ∗ G), where G(X) = (π�)−ne− |X|2

� , (2.123)

〈
ψ,Opaw

�
(A)ψ

〉 = (2π�)−n

∫
R2n

A(z)Hψ(z) dz, (2.124)

where Hψ(z) is the Husimi function of ψ .

We get now the following useful consequence for Weyl quantization.

Proposition 28 (Semi-classical Garding inequality) Let A ∈ Σ(1), A ≥ 0 on R
2n.

Then there exists C ∈ R such that for every � ∈ ]0,1] we have

〈
ψ, Âψ

〉 ≥ C�, ∀ψ ∈ L2(
R

n
)
. (2.125)

Proof We know that Opw
�
(A∗G) is a non-negative bounded operator. So the propo-

sition will be proved if

∥∥Opw
�
(A ∗ G − A)

∥∥ =O(�). (2.126)

Using a standard argument for smoothing with convolution, we get �−1(A ∗ G −
A) ∈ Σ(1), with uniform estimates in � ∈ ]0,1]. Hence we get (2.126) as a conse-
quence of the Calderon–Vaillancourt theorem. �

These results are useful to study the matrix elements 〈ψ�, Âψ�〉, for a family
{ψ�}� in the semi-classical regime [106]. This subject is related with an efficient
tool introduced by Lions–Paul [137] and P. Gérard [82] (see also [35]): the semi-
classical measures. This is an application of anti-Wick quantization as we shall see
now.

2.6.2 Application to Semi-classical Measures

Semi-classical measures were introduced to describe localization and oscillations of
families of states {ψ�}�, ‖ψ�‖ = 1 (or at least bounded in L2(Rn)).

Let us first remark that

A 	→ 〈
ψ,Opaw

�
Aψ

〉
is a probability measure μ� in R

2n. Moreover this probability measure has a density
given by the Husimi function of ψ�,

dμ� = (2π�)−nHψ�
(z) dz.
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In particular we have ∣∣〈ψ,Opaw
�

Aψ
〉∣∣ ≤ ‖A‖∞

for every A ∈ Cb(R
2n) (space of continuous, bounded functions on R

2n).

Definition 11 A semi-classical measure for the family of normalized states {ψ�}�
is a probability measure μ on the phase space R2n for which there exists at least one
sequence {�k}, lim

k→+∞�k = 0 such that for every A ∈ Σ(1), we have

lim
k→+∞

〈
ψ�k

Op�k

awAψ�k

〉 =
∫
R2n

Adμ. (2.127)

In other words, the measure sequence μ�k weakly converges toward the measure μ.

Remark 11 Semi-classical measures can also be defined for states ψ� ∈ L2(Rn,K)

where K is an Hilbert space. By the way in this setting Weyl symbols and anti-Wick
symbols are operators in K.

We can also define semi-classical measures for statistical mixed states ρ̂, where
ρ̂ is a non-negative operator such that Tr ρ̂ = 1.

For more applications and properties of these extensions see the huge literature
on this subject; for example see [135].

The following proposition is a straightforward application of the properties of
the Husimi function.

Proposition 29 Let μ be a semi-classical measure for {ψ�}�. Then the support
supp(μ) of the measure μ is included in the frequency set FS[ψ�], supp(μ) ⊆
FS[ψ�].

Example 2

(i) Let ψ� = ϕz, a standard coherent state. Then this family has one semi-classical
measure, μ = δz (Dirac probability).

(ii) Let us assume that the states family {ψ�}� is tight in the following sense. There
exists a smooth symbol χ , with compact support, such that χ̂ψ� = ψ� +O(�).
Then using Lemma 15, we can see that the family of probabilities {μ�} is tight,
so applying the Prokhorov compacity theorem, there exists at least one semi-
classical measure. One of a challenging problem in quantum mechanics is to
compute these semi-classical measures for family of bound states satisfying
(2.109). If for some ε > 0, H−1[E − ε,E + ε] is a bounded set, this family is
tight. For classically ergodic systems it is conjectured that there exists only one
semi-classical measure, which is the Liouville measure [106].

One important property of semi-classical measures is the following propagation
result.
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Let us consider the time dependent Schrödinger equation

i�∂tψ�(t) = Ĥψ�(t), ψ�(0) = ψ�, (2.128)

where H is a time independent Hamiltonian. We assume that H is real, subquadratic
and � independent (for simplicity).

∂
γ

XH ∈ L∞(
R

2n
)
, for all γ such that |γ | ≥ 2. (2.129)

Let μ be a semi-classical measure for {ψ�}.

Theorem 14 For every t ∈ R, {ψ�(t)} has a semi-classical measure dμt for the
same subsequence �k given by the transport of dμ by the classical flow: Φt , μ(t) =
(Φt )∗μ.

Proof For every A ∈ C0
∞(R2n), the semi-classical Egorov theorem and comparison

between anti-Wick and Weyl quantization give

〈
ψ�(t),Opaw

�
(A)ψ�(t)

〉 =
∫
R2n

A · Φt dμψ�
+O(�). (2.130)

Hence we get the result going to the limit for the sequence �k . �

We have the following consequence for the stationary Schrödinger equation.

Corollary 10 Let μ be semi-classical measure for a family of bound states {ψ�},
satisfying Ĥψ� = E�ψ�. Then μ is invariant by the classical flow Φt for every
t ∈R.

Proof ψ�(t) = e− it
�

E�ψ� satisfies the time dependent Schrödinger equation so us-
ing the Theorem we get (Φt )∗μ = μ. �

Now we illustrate Corollary 10 on Hermite bound states of the harmonic oscilla-
tor.

We assume n = 1. We can easily compute Husimi function Hj of the Hermite
function φj .

Hj (q,p) = ∣∣〈ϕX,φj 〉
∣∣2 = (q2 + p2)j

2j j ! e− 1
2� (q2+p2). (2.131)

We want to study the quantum measures dμj = (2π�)−1Hj (q,p)dq dp when the
energies Ej = (j + 1

2 )� have a limit E > 0. So we have � → 0 and j → +∞. For
simplicity we fix E > 0 and choose � = �j = E

j
.

Let f be in the Schwartz class S(R2). We have to compute the limit of∫
f (X)dμj (X) for j → +∞. Using polar coordinates and a change of variables
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we have to study the large k limit for the Laplace integral

I (j) := 1

(j + 1)!
∫ ∞

0
uj e− j

E
uf

(√
2u cos θ,

√
2u sin θ

)
du, θ ∈ [0,2π[.

We can assume that f has a bounded support and (0,0) is not in the support of f .
Using the Laplace method we get

lim
j→+∞ I (j) = f

(√
2E(cos θ, sin θ)

)
. (2.132)

So, we have

lim
j→+∞

∫
f (X)dμj (X) = 1

2π
√

2E

∫ 2π

0
f

(√
2E(cos θ, sin θ)

)
dθ. (2.133)

On the r.h.s. of (2.133) we recognize the uniform probability measure on the circle
of radius

√
2E. This measure is a semi-classical measure for the quantum harmonic

oscillator. Let us remark that the classical oscillator of energy
√

2E moves on the
circle of radius

√
2E in the phase space.
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