
Preface

The main goal of this book is to give a presentation of various types of coherent
states introduced and studied in the physics and mathematics literature during al-
most a century. We describe their mathematical properties together with application
to quantum physics problems. It is intended to serve as a compendium on coherent
states and their applications for physicists and mathematicians, stretching from the
basic mathematical structures of generalized coherent states in the sense of Gilmore
and Perelomov1 via the semiclassical evolution of coherent states to various specific
examples of coherent states (hydrogen atom, torus quantization, quantum oscilla-
tor).

We have tried to show that the field of applications of coherent states is wide,
diversified and still alive. Because of our own ability limitations we have not covered
the whole field. Besides this would be impossible in one book. We have chosen some
parts of the subject which are significant for us. Other colleagues may have different
opinions.

There exist several definitions of coherent states which are not equivalent. Nowa-
days the most well known is the Gilmore–Perelomov [84, 85, 155] definition: a co-
herent state system is an orbit for an irreducible group action in an Hilbert space.
From a mathematical point of view coherent states appear like a part of group rep-
resentation theory.

In particular canonical coherent states are obtained with the Weyl–Heisenberg
group action in L2(R) and the standard Gaussian ϕ0(x) = π1/4e−x2/2. Modulo mul-
tiplication by a complex number, the orbit of ϕ0 is described by two parameters
(q,p) ∈ R

2 and the L2-normalized canonical coherent states are

ϕq,p(x) = π−1/4e−(x−q)2/2ei((x−q)p+qp/2).

Wavelets are included in the group definition of coherent states: they are obtained
from the action of the affine group of R (x �→ ax + b) on a “mother function”
ψ ∈ L2(R). The wavelet system has two parameters: ψa,b(x) = 1√

a
ψ(x−b

a
).

1They have discovered independently the relationship with group theory in 1972.
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One of the most useful property of coherent system ψz is that they are an “over-
complete” system in the Hilbert space in the sense that we can analyze any η ∈ H
with its coefficient 〈ψz,η〉 and we have a reconstruction formula of η like

η =
∫

dz η̃(z)ψz,

where η̃ is a complex valued function depending on 〈ψz,η〉.
Coherent states (being given no name) were discovered by Schrödinger (1926)

when he searched solutions of the quantum harmonic oscillator being the closest
possible to the classical state or minimizing the uncertainty principle. He found that
the solutions are exactly the canonical coherent states ϕz.

Glauber (1963) has extended the Schrödinger approach to quantum electro-
dynamic and he called these states coherent states because he succeeded to explain
coherence phenomena in light propagation using them. After the works of Glauber,
coherent states became a very popular subject of research in physics and in mathe-
matics.

There exist several books discussing coherent states. Perelomov’s book [156]
played an important role in the development of the group aspect of the subject and in
its applications in mathematical physics. Several other books brought contributions
to the theory of coherent states and worked out their applications in several fields
of physics; among them we have [3, 80, 126] but many others could be quoted as
well. There is a huge number of original papers and review papers on the subject;
we have quoted some of them in the bibliography. We apologize the authors for
forgotten references.

In this book we put emphasis on applications of coherent states to semi-classical
analysis of Schrödinger type equation (time dependent or time independent). Semi-
classical analysis means that we try to understand how solutions of the Schrödinger
equation behave as the Planck constant � is negligible and how classical mechanics
is a limit of quantum mechanics. It is not surprising that semi-classical analysis
and coherent states are closely related because coherent states (which are particular
quantum states) will be chosen localized close to classical states. Nevertheless we
think that in this book we have given more mathematical details concerning these
connections than in the other monographs on that subjects.

Let us give now a quick overview of the content of the book.
The first half of the book (Chap. 1 to Chap. 5) is concerned with the canonical

(standard) Gaussian Coherent States and their applications in semi-classical analysis
of the time dependent and the time independent Schrödinger equation.

The basic ingredient here is the Weyl–Heisenberg algebra and its irreducible rep-
resentations. The relationship between coherent states and Weyl quantization is ex-
plained in Chaps. 2 and 3. In Chap. 4 we compute the quantum time evolution of
coherent states in the semi-classical régime: the result is a squeezed coherent states
whose shape is deformed, depending on the classical evolution of the system. The
main outcome is a proof of the Gutzwiller trace formula given in Chap. 5.

The second half of the book (Chap. 6 to Chap. 12) is concerned with extensions
of coherent states systems to other geometry settings. In Chap. 6 we consider quan-
tization of the 2-torus with application to the cat map and an example of “quantum
chaos”.
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Chapters 7 and 8 explain the first examples of non canonical coherent states
where the Weyl–Heisenberg group is replaced successively by the compact group
SU(2) and the non-compact group SU(1,1). We shall see that some representations
of SU(1,1) are related with squeezed canonical coherent states, with quantum dy-
namics for singular potentials and with wavelets.

We show in Chap. 9 how it is possible to study the hydrogen atom with coherent
states related with the group SO(4).

In Chap. 10 we consider infinite systems of bosons for which it is possible to
extend the definition of canonical coherent states. This is used to prove mean-field
limit result for two-body interactions: the linear field equation can be approximated
by a non linear Schrödinger equation in R

3 in the semi-classical limit (large number
of particles or small Planck constant are mathematically equivalent problems).

Chapters 11 and 12 are concerned with extension of coherent states for fermions
with applications to supersymmetric systems.

Finally in the appendices we have a technical section A around the stationary
phase theorem, and in section B we recall some basic facts concerning Lie algebras,
Lie groups and their representations. We explain how this is used to build general-
ized coherent systems in the sense of Gilmore–Perelomov.

The material covered in these book is designed for an advanced graduate student,
or researcher, who wishes to acquaint himself with applications of coherent states
in mathematics or in theoretical physics. We have assumed that the reader has a
good founding in linear algebra and classical analysis and some familiarity with
functional analysis, group theory, linear partial differential equations and quantum
mechanics.
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