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Abstract This chapter presents a comprehensive set of spectrum occupancy
models specifically envisaged for the analysis, design and simulation of cognitive
radio systems. The presented models have been proven to accurately capture and
reproduce the statistical properties of spectrum occupancy patterns in real systems.
The chapter begins with the description of various time-dimension modeling
approaches (in discrete and continuous time) along with models for time-correlation
properties. Subsequently, joint time-frequency models as well as space-dimension
models are explained in detail. Finally, the chapter concludes with a discussion on
the combination and integration of the presented models into a unified modeling
approach where the time, frequency and space dimensions of spectrum usage can be
modeled simultaneously.

2.1 Introduction

The dynamic spectrum access (DSA) principle based on the cognitive radio (CR)
paradigm has been identified as a promising solution to conciliate the conflicts
between the ever-increasing spectrum demand growth and the demonstrated
spectrum underutilisation in legacy wireless communication systems. The basic
underlying idea of DSA/CR is to allow unlicensed (secondary) users to access in
an opportunistic and non-interfering manner some licensed bands temporarily
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unoccupied by the licensed (primary) users. Unlicensed secondary terminals sense
the spectrum to detect spectrum gaps in the spectral activity patterns of the primary
users, opportunistically transmit on them and vacate the channel as soon as a
primary user reappears in the channel. Secondary unlicensed transmissions
following this operating principle are allowed provided that no harmful interfer-
ence is caused to the licensed primary system.

The existing DSA/CR techniques have commonly been envisaged, designed,
developed and evaluated by means of analytical studies and computer simulations,
which unavoidably rely on assumptions and models required to describe and
characterise certain aspects of the system and scenario under study. The purpose of
such models is to simplify some parts of the real environment in order to provide a
tractable, yet realistic representation thereof that can adequately be employed in
analytical studies or implemented in simulation tools for the performance evalu-
ation of DSA/CR techniques. Due to the opportunistic nature of the DSA/CR
principle, the behaviour and performance of a secondary network depends on the
spectrum occupancy patterns of the primary system. A realistic and accurate
modelling of such patterns becomes therefore essential and extremely useful in the
domain of the DSA/CR technology. The potential applicability of spectrum usage
models ranges from analytical studies to the design and dimensioning of DSA/CR
networks as well as the development of innovative simulation tools and more
efficient DSA/CR techniques.

The modelling of spectrum usage for the study of radio communication systems
has been an important concern for several decades. Early models and studies on
spectrum usage date from the late 1970s, when the usage patterns in the high
frequency (HF) band were analysed and characterised [1, 2]. However, the unique
features of DSA/CR systems, bands of operation and modern primary radio
communication systems lead to a particularly complex scenario that requires
tailored modelling approaches [3]. This chapter presents a comprehensive set of
spectrum occupancy models specifically envisaged for the analysis, design and
simulation of DSA/CR systems. The models described in this chapter have been
proven to accurately capture and reproduce the relevant statistical properties of
spectrum usage in real wireless communication systems. Based on the particular
set of statistical properties and features taken into account, spectrum models can
be categorised into time-, frequency- and space-dimension models, which are
discussed in Sects. 2.2–2.4, respectively. The combination and joint integration of
the existing models into a unified modelling approach is discussed in Sect. 2.5.
Finally, Sect. 2.6 provides some concluding remarks.

2.2 Time-Dimension Models

At a given time instant, a primary radio channel may be either busy or idle. Hence,
from the point of view of a DSA/CR system, the time occupancy pattern of a
primary radio channel can adequately be modelled by means of a two-state
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Markov chain. The state space for a primary radio channel can be denoted by
S ¼ fs0; s1g, where the s0 state indicates that the channel is idle (i.e., available for
secondary use) and the s1 state indicates that the channel is busy (i.e., used by a
primary user and therefore not available for opportunistic access). The channel
state SðtÞ at time t can be either SðtÞ ¼ s0 or SðtÞ ¼ s1. The Markov chain model
may be discrete or continuous depending on the time index set t. The particular
characteristics of each case are discussed in the following subsections.

2.2.1 Discrete-Time Models

2.2.1.1 Stationary DTMC Model

In the Discrete-Time Markov Chain (DTMC) model, the time index set is discrete
(i.e., t ¼ tk ¼ kTs, where k is a non-negative integer representing the step number
and Ts is the time period between consecutive transitions or state changes).
According to this model, the channel remains in a certain state at each step, with
the state changing randomly between steps. The behaviour of the channel is
described by means of a set of transition probabilities between states as depicted in
Fig. 2.1. The transition probabilities can be expressed in matrix form as:

P ¼ p00 p01

p10 p11

� �
ð2:1Þ

where pij represents the probability that the system transitions from state si to state sj.
In its simplest form, the transition matrix P may be assumed to be constant and
independent of the time instant t, in which case the DTMC is said to be stationary or
time-homogeneous.

The duty cycle (DC) of a channel, henceforth denoted by W, is a very
straightforward metric and an accurate reproduction is a minimum requirement for
any time-dimension model of spectrum usage. The DC can be defined as the
probability that the channel is busy. The probabilities that the model of Fig. 2.1 is
in each of its states in the long term are given by [4]:

PðS ¼ s0Þ ¼
p10

p01 þ p10
¼ 1�W

PðS ¼ s1Þ ¼
p01

p01 þ p10
¼ W

ð2:2Þ

Fig. 2.1 Discrete-Time
Markov Chain (DTMC)
model
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Thus, the DTMC model can be configured to reproduce any arbitrary DC, W, by
selecting the transition probabilities as p01 ¼ p11 ¼ W and p10 ¼ p00 ¼ 1�W,
which yields:

P ¼
1�W W

1�W W

2
4

3
5 ð2:3Þ

Nevertheless, reproducing not only the DC of a channel but also the lengths of
the busy and idle periods is an important characteristic of a realistic time-
dimension model of spectrum usage. In the case of the DTMC model, however,
there is no means to account for this feature and, as such, the model is not able to
reproduce, in general, this property of spectrum usage. This is illustrated in
Figs. 2.2, 2.3, 2.4 and 2.5, which show the empirical distributions, in terms of the
complementary cumulative distribution function (CCDF), for the lengths of busy
and idle periods of some selected real channels along with the corresponding
distributions obtained by means of simulation with the stationary DTMC channel
model of Fig. 2.1 (the transition probabilities are extracted from the channel
occupancy patterns). The capability of the DTMC model to reproduce the statis-
tical distributions of busy and idle periods in real channels can be explained based
on the load variation pattern of the channel, which is also shown in Figs. 2.2, 2.3,
2.4 and 2.5 in terms of the DC. When the channel is sparsely used (i.e., the load/
DC is low), the length of idle periods is significantly higher than that of busy
periods. On the other hand, when the channel is subject to an intensive usage (i.e.,
the load/DC is high), the length of busy periods increases while idle periods
become notably shorter. Since the stationary DTMC model is parameterised (i.e.,
the transition probabilities are configured) based on the long-term average load of
the channel (i.e., the average DC), it is not able to capture the channel load
variations. As a result, the stationary DTMC model cannot reproduce the resulting
lengths of busy and idle periods as appreciated in Figs. 2.2, 2.3 and 2.4, where the
channel load varies over time and the distributions obtained by simulation diverge
from the real ones. The exception corresponds to the case of channels with con-
stant load patterns, where the average channel load matches the instantaneous load
at all times, and the empirical and simulation results agree as observed in Fig. 2.5.
Therefore, the stationary DTMC model can be an appropriate modelling approach
for channels with a constant load level that does not change significantly over time,
as it is the case of the example shown in Fig. 2.5. If the channel load shows some
variation pattern as in Figs. 2.2, 2.3 and 2.4, other modelling approaches, as dis-
cussed in Sect. 2.2.1.2, are more convenient.

2.2.1.2 Non-Stationary DTMC Model

For channels with varying load patterns the DC changes over time, meaning that
the probabilities of the transition matrix P are also time-variant. In such a case, a
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non-stationary or time-inhomogeneous DTMC needs to be considered, with a
time-dependent transition matrix:

PðtÞ ¼
1�WðtÞ WðtÞ

1�WðtÞ WðtÞ

2
4

3
5 ð2:4Þ

where t ¼ tk ¼ kTs. In the stationary case of Eq. (2.3), W represents a constant
parameter. However, in the non-stationary case of Eq. (2.4), WðtÞ represents a
time-dependent function that needs to be characterised in order to characterise the
complete DTMC channel model in the time domain [5]. Figures 2.2, 2.3 and 2.4
indicate the existence of two well-defined types of channel load variation patterns,
namely patterns with an important and remarkably predominant deterministic

Fig. 2.2 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for a DCS 1800
downlink channel

Fig. 2.3 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for an E-GSM 900
downlink channel
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component (i.e., Figs. 2.2, 2.3) and patterns where the carried load appears to vary
following a random behaviour (i.e., Fig. 2.4). Adequate DC models of WðtÞ for
both cases are presented in ‘‘Deterministic Duty Cycle Models’’ and ‘‘Stochastic
Duty Cycle Models’’ following deterministic and stochastic modelling approaches,
respectively.

Deterministic Duty Cycle Models

In certain cases, the load variation patterns of primary radio channels are char-
acterised by a predominant deterministic component arising from social behaviour
and common habits, as in Figs. 2.2 and 2.3. These examples correspond to cellular
mobile communication systems, namely the Global System for Mobile

Fig. 2.4 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for a TETRA
downlink channel

Fig. 2.5 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for a TETRA
uplink channel
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communications (GSM) operating in the 900-MHz band and its counterpart in the
1.8-GHz band, the Digital Cellular System (DCS). Similar patterns can also be
present in other cellular technologies such as the Terrestrial Trunked Radio
(TETRA) system.

The load variation pattern of a cellular mobile communication system can be
described by means of Auto-Regressive Integrated Moving Average (ARIMA)
time series models [6]. This section presents an alternative modelling approach
based on the observation that the time evolution of WðtÞ over time periods of
certain length exhibits a clear and predominant deterministic component. In par-
ticular, Figs. 2.2 and 2.3 indicate that the variation pattern of WðtÞ is periodic with
a period of one day (24 h) and a slightly different shape between weekdays and
weekends due to the lower traffic load normally associated with weekends. Two
different shapes for WðtÞ can be identified. The first shape type is normally present
in channels with low/medium loads (average DCs) as in the example of Fig. 2.2,
while the second shape type is more commonly observed in channels with med-
ium/high loads as in the example of Fig. 2.3 [7].

For channels with low/medium load (see Fig. 2.2), the shape of WðtÞ can be
approximated by the summation of M bell-shaped exponential terms centred at
time instants sm, with amplitudes Am and widths rm:

WðtÞ � Wmin þ
XM�1

m¼0

Ame�
t�sm
rmð Þ2 ; 0� t� T ð2:5Þ

where Wmin ¼ min WðtÞf g and T is the time interval over which WðtÞ is periodic
(i.e., one day).

The analysis of empirical data indicates that WðtÞ can accurately be described
by means of M ¼ 3 terms with s1 and s2 corresponding to busy hours and s0 ¼
s2 � T as illustrated in Fig. 2.6. Moreover, the approximations A0 ¼ A1 ¼ A2 ¼ A
and r0 ¼ r1 ¼ r2 ¼ r are acceptable without incurring in excessive errors, which
simplifies the model:

WðtÞ � Wmin þ A
XM�1

m¼0

e�
t�sm

rð Þ2 ; 0� t� T ð2:6Þ

Notice that A determines the average value of WðtÞ in the time interval [0, T],
denoted by �W, and it can therefore be expressed as a function of �W taking into
account that:

�W ¼ 1
T

Z T

0
WðtÞdt � Wmin þ

A

T

XM�1

m¼0

Z T

0
e�

t�sm
rð Þ2 dt ð2:7Þ

Solving Eq. (2.7) for A yields:

A ¼ �W�Wmin

� �
T
XM�1

m¼0

Z T

0
e�

t�sm
rð Þ2 dt

" #�1

ð2:8Þ
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Substituting Eq. (2.8) in Eq. (2.6) and solving the integral yields the DC model:

WðtÞ � Wmin þ
2T �W�Wmin

� �
r
ffiffiffi
p
p � f l=m

exp ðt; sm; rÞ
f l=m
erf ðT; sm; rÞ

ð2:9Þ

where �W�Wmin and:

f l=m
exp ðt; sm; rÞ ¼

XM�1

m¼0

e�
t�sm

rð Þ2

f l=m
erf ðT ; sm; rÞ ¼

PM�1

m¼0
erf sm

r

� �
þ erf T�sm

r

� �� �
ð2:10Þ

For channels with medium/high load (see Fig. 2.3), the shape of WðtÞ can be
approximated by an expression based on a single bell-shaped exponential term
centred at time instant s, with amplitude A and width r:

WðtÞ � 1� Ae�
t�s
rð Þ

2

; 0� t� T ð2:11Þ

where T is the time interval over which WðtÞ is periodic (i.e., one day). The model
is illustrated in Fig. 2.7, with s corresponding to the time with the lowest activity
levels.

As in the previous case, A determines the average value of WðtÞ in the time
interval [0, T] and it can therefore be expressed as a function of �W taking into
account that:

�W ¼ 1
T

Z T

0
WðtÞdt � 1� A

T

Z T

0
e�

t�s
rð Þ

2

dt ð2:12Þ

Fig. 2.6 Parameters of the
deterministic duty cycle
model for low/medium loads
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Solving Eq. (2.12) for A yields:

A ¼ 1� �W
� �

T

Z T

0
e�

t�s
rð Þ

2

dt

� ��1

ð2:13Þ

Substituting Eq. (2.13) in Eq. (2.11) and solving the integral yields the DC
model:

WðtÞ � 1�
2T 1� �W
� �
r
ffiffiffi
p
p � f m=h

exp ðt; s; rÞ
f m=h
erf ðT ; s; rÞ

ð2:14Þ

where:

f m=h
exp ðt; s; rÞ ¼ e�

t�s
rð Þ

2

f m=h
erf ðT ; s; rÞ ¼ erf s

r

� �
þ erf T�s

r

� �
The DC ranges within which each model is valid depends on the particular set

of values selected for the configuration parameters. As a rough approximation, the
DC model for low/medium loads can be valid for average DC values up to
�W � 0:70, while the DC model for medium/high loads can be valid down to
�W � 0:45. Any set of values for the model parameters can be valid as long as WðtÞ
is confined within the interval [0, 1].

The capability of the non-stationary DTMC model along with the deterministic
DC models to reproduce the statistical distributions of busy and idle periods in real
channels is illustrated in Figs. 2.8 and 2.9, which are a reproduction of Figs. 2.2
and 2.3, respectively, including the distributions of busy and idle periods obtained
by means of simulation with the non-stationary DTMC channel model. As it can
be appreciated, the deterministic DC models are able to closely follow and
reproduce the deterministic component of WðtÞ in the time domain and, as a result,
the overall model is able to reproduce not only the mean DC of the channel, �W, but

Fig. 2.7 Parameters of the
deterministic duty cycle
model for medium/high loads
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also the statistical properties of busy and idle periods, which is not the case of the
stationary DTMC model.

The presented DC models are envisaged to reproduce the deterministic pattern
normally observed in cellular mobile communication systems such as E-GSM 900
and DCS 1800, which may also be present in other systems. Nevertheless, this
does not imply that the model is always applicable to such type of systems. If the
system is studied over relatively short time periods (e.g., a few hours), social
behaviour and external events, which may not be easily predicted, may have a
significant short-term impact on the channel usage. This may cause the deter-
ministic component of WðtÞ to loss importance with respect to the random com-
ponent and, as a result, the occupancy of a channel may experience high and
unpredictable variations (e.g., see [8]). In such a case, deterministic DC models
may be no longer valid and stochastic modelling approaches may constitute a more
appropriate alternative.

Fig. 2.8 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for a DCS 1800
downlink channel

Fig. 2.9 Empirical and
DTMC-simulated
distributions of busy and idle
periods along with DC time
evolution for a E-GSM 900
downlink channel
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Stochastic Duty Cycle Models

The traffic load experienced in a radio channel is the consequence of a significant
number of random factors such as the number of incoming and outgoing users, the
resource management policies employed in the system, and so forth. Therefore, the
channel usage level, represented by means of WðtÞ, is itself a random variable (see
Fig. 2.4). As such, WðtÞ can be described and characterised by its probability
density function (PDF). The empirical PDFs of WðtÞin real systems can accurately
be fitted with the beta distribution [9] and the Kumaraswamy distribution [10]. The
PDF for the former is given by:

f B
x ðx; a; bÞ ¼ 1

Bða; bÞ x
a�1ð1� xÞb�1; x 2 ð0; 1Þ ð2:15Þ

where a[ 0 and b [ 0 are shape parameters and Bða; bÞ is the beta function:

Bða; bÞ ¼
Z 1

0
za�1ð1� zÞb�1dz ð2:16Þ

while the PDF for the latter is given by:

f K
x ðx; a; bÞ ¼ abxa�1ð1� xaÞb�1; x 2 ð0; 1Þ ð2:17Þ

where a [ 0 and b [ 0 are shape parameters.
The beta distribution is a well-known and widely used distribution that can be

found in many popular software simulation packages, thus facilitating the
implementation of the stochastic DC model in simulation tools. However, it might
present some difficulties in analytical studies due to the complex expression of its
PDF. The Kumaraswamy distribution is similar to the beta distribution, but much
simpler to use in analytical studies due to the simpler closed form of its PDF [11].
Therefore, while the former may be more appropriate for simulations, the latter
may be more convenient for analytical studies.

Both distributions can be configured to reproduce any arbitrary mean DC, �W, by
properly selecting the distribution’s parameters. In particular, the mean values of
the beta and Kumaraswamy distributions are related with their shape parameters as
[9, 11]:

�W ¼
a

aþ b
for beta distribution

bB 1þ 1
a ; b

� �
for Kumaraswamy distribution

8><
>: ð2:18Þ

with Bða; bÞ given by Eq. (2.16). Notice that Eq. (2.18) can be satisfied for a given
�W with different combinations of shape parameters a;b and a; b. The particular
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selection of the shape parameters determines the shape of the distributions as well
as the resulting channel occupancy pattern in the time domain. The possible PDF
shapes can be classified into six elemental archetypes, each with a characteristic
time-domain pattern. Each archetype is defined by its load level (L: low,
M: medium, and H: high) as well as its load pattern (type I: very bursty, and type
II: moderately bursty, but not constant). The ranges of shape parameters for each
archetype are related to the corresponding time-domain patterns as follows:

• Case L.I (a\1, b� 1): The channel is used (WðtÞ[ 0) sporadically and remains
unused (WðtÞ � 0) most of the time.

• Case L.II (1\a\b): The channel is used (WðtÞ[ 0) regularly by traffic with
low activity factors.

• Case M.I (a\1, b\1): The channel is subject to an intermittent use, where
high-load periods are followed by low-load periods in a similar proportion.

• Case M.II (a[ 1, b [ 1, a� b): The channel usage level oscillates weakly
around the average level.

• Case H.I (a� 1, b\1): The channel is used (WðtÞ � 1) most of the time, with
some periods of lower occupancy levels (WðtÞ\1).

• Case H.II (a [ b [ 1): The channel is not fully used (WðtÞ\1) but subject to a
constant, intensive usage.

The range of values indicated for the parameters of the beta distribution is also
valid for the Kumaraswamy distribution by replacing a with a and b with b in
type-I cases. In type-II cases, the resulting Kumaraswamy distribution is more
difficult to control since the same constraints on a and b may hold for various load
levels. Figures 2.10 and 2.11 show some examples of the shape of the distributions

Fig. 2.10 Stochastic DC models: case M.I
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and the resulting channel occupancy patterns in the time domain for channels with
medium loads. Based on the above archetypes and the corresponding range of
shape parameters, along with Eq. (2.18), the parameters of the models can be
configured in order to reproduce not only arbitrary mean load levels but also a
wide range of occupancy patterns.

The capability of the non-stationary DTMC model along with the stochastic DC
models to reproduce the statistical distributions of busy and idle periods in real
channels is illustrated in Fig. 2.12, which is a reproduction of Fig. 2.4 including
the distributions of busy and idle periods obtained by means of simulation with the
non-stationary DTMC channel model. As it can be appreciated, the sequence of
WðtÞ values generated with the stochastic DC model does not follow the empirical
WðtÞ values of the channel in the time domain. However, it is important to note
that the stochastic approach is not aimed at reproducing the time evolution of a
particular realisation of the stochastic process WðtÞ, but the statistical properties
thereof. The results shown in Fig. 2.12 indicate that this is a valid and accurate
modelling approach for channels with random load variation patterns.

When implemented in simulation tools, the non-stationary DTMC with sto-
chastic DC models may not lead to accurate results if some observations are not
carefully taken into account. In particular, the DTMC has to be iterated for a
sufficient number of times, N, before updating the transition matrix PðtÞ according
to the stochastic DC model. During such amount of iterations, the transition
probabilities of the DTMC must remain unaltered. After N iterations, a new value
of WðtÞ can be generated from a beta or Kumaraswamy distribution, and used to
update the transition matrix PðtÞ for the next N iterations. If the transition matrix is

Fig. 2.11 Stochastic DC models: case M.II
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updated excessively fast (e.g., every iteration) the overall model may not be able to
accurately reproduce the lengths of busy and idle periods.

In summary, the non-stationary DTMC model along with the presented deter-
ministic and stochastic DC models is able to accurately reproduce not only the
mean occupancy level but also the statistical properties of busy and idle periods
observed in real channels with varying load patterns.

2.2.2 Continuous-Time Models

In the Continuous-Time Markov Chain (CTMC) model, the time index set is
continuous. According to this model, the channel remains in one state for a random
time period before switching to the other state. The state holding time or sojourn
time is modelled in the CTMC as an exponentially distributed random variable.
Although the CTMC model has been widely employed in the domain of DSA/CR,
some works based on field measurements have demonstrated that the state holding
times are not exponentially distributed in real wireless communication systems. In
particular, it has been found that state holding times are more adequately described
by means of generalised Pareto [12], a mixture of uniform and generalised Pareto
[13, 14], hyper-Erlang [13, 14], generalised Pareto and hyper-exponential [15] as
well as geometric and log-normal [16] distributions. Based on these results,
a more appropriate model is therefore the Continuous-Time Semi-Markov
Chain (CTSMC) model, where the state holding times can follow any arbitrary
distribution.

Fig. 2.12 Empirical and DTMC-simulated distributions of busy and idle periods along with DC
time evolution for a TETRA downlink channel
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The probability distribution that better describes the length of busy and idle
periods for a primary radio channel depends not only on the particular primary
radio technology but also on the periodicity (time-resolution) at which the channel
state is observed. On the one hand, observing the channel state at high sampling
rates enables the true channel occupancy patterns to be extracted with high time
accuracies. On the other hand, observing the channel state at low effective sam-
pling rates with respect to the channel variation dynamics may result in a sig-
nificant under-sampling, meaning that the true channel state may change between
two consecutive channel observations. The occupancy pattern observed in such a
case, although inaccurate, is interesting since it can be thought of as the perception
of a DSA/CR user that periodically senses the channel and observes its state at
discrete time instants. High time-resolution models are useful to accurately
describe the true channel occupancy pattern at short time scales. Low time-
resolution models are useful as well to characterise the spectrum occupancy from
the point of view of the DSA/CR user perception (i.e., the spectrum occupancy
pattern that would be perceived by a DSA/CR node) at longer time scales.
Spectrum models for both cases are discussed in the following subsections.

2.2.2.1 Low Time-Resolution Models

When the state of a primary radio channel is observed at low time-resolutions
(i.e., the time period between consecutive channel observations is longer than the
time period between consecutive changes in the channel state), the generalised
Pareto distribution [17] constitutes an appropriate model for the perceived lengths
of busy and idle periods, which is true in general regardless of the considered
primary radio technology. Although other alternative distribution models may be
able to provide comparable goodness-of-fits to empirical spectrum data in some
particular cases, the generalised Pareto distribution provides, in average, the best
overall fit over a wide range of spectrum bands and radio channels, for both busy
and idle periods. The possibility to employ a single distribution model to char-
acterise the lengths of busy and idle periods irrespective of the considered band
and radio technology makes the generalised Pareto distribution an attractive
alternative.

The cumulative distribution function (CDF) for the generalised Pareto distri-
bution is given by:

FGPðT ; l; k; aÞ ¼ 1� 1þ aðT � lÞ
k

� ��1=a

ð2:19Þ

where T represents the period length and l; k; a are the location, scale and shape
parameters, respectively. The distribution parameters satisfy the following
conditions:

T � l; for a� 0 ð2:20Þ
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T 2 l; l� k
a

� �
for a\0 ð2:21Þ

l [ 0; k[ 0; a\1=2 ð2:22Þ

An arbitrary mean DC value can be obtained by selecting the parameters of the
distribution in such a way that the following equality holds [4]:

�W ¼ EfT1g
EfT0g þ EfT1g

ð2:23Þ

where EfT0g and EfT1g represent the mean duration of idle and busy periods,
respectively, which for the generalised Pareto distribution are given by:

EfTig ¼ li þ
ki

1� ai
; i 2 f0; 1g ð2:24Þ

The location parameter li represents the minimum value of the observed period
lengths Ti. Thus, in a DSA/CR system design, theoretical analysis or simulation
tool, this parameter should be tailored to the particular scenario in accordance with
the considered spectrum sensing for both T0 and T1.

2.2.2.2 High Time-Resolution Models

When the state of a primary radio channel is observed at high time-resolutions
(i.e., the time period between consecutive channel observations is notably shorter
than the time period between consecutive changes in the channel state), the
probability distribution that better fits the perceived lengths of busy and idle
periods is highly dependent not only on the considered radio technology but also
on the period type (idle or busy) as well. As an example, Table 2.1 shows some
distributions that can be used to characterise the length of idle and busy periods in
some wireless communication systems. Table 2.2 shows the corresponding
mathematical expressions and distribution parameters.

For any distribution, an arbitrary mean DC value can be obtained by selecting
the parameters of the distributions in such a way that Eq. (2.23) is met, taking into
account the expressions provided in Table 2.2 for EfTig. The minimum value of
the observed period lengths Ti (k for the Pareto distribution and l for the rest of

Table 2.1 Probability distributions for high time-resolution models: Pareto (P), generalised
Pareto (GP), generalised exponential (GE), gamma (G) and Weibull (W)

Primary radio technology/band Idle periods Busy periods

Amateur GP, W, GE, G GP
Paging P W, GE, G
TETRA W or GP, P GP, P or W
GSM/DCS GE, G GP
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distributions in Table 2.2) should be tailored to the particular scenario according
to the minimum channel occupancy period, which in the particular case of
time-slotted systems corresponds to the time-slot duration. For time-slotted sys-
tems, the lengths of busy and idle periods can alternatively be modelled from a
discrete-time perspective, where the period lengths are described in terms of the
number of time-slots. For example, for GSM/DCS systems, empirical data indicate
that the number of 577-ls time-slots within a busy or idle period can be modelled
as random variable with a negative binomial distribution. However, the continu-
ous-time distributions provided in Tables 2.1 and 2.2 constitute adequate model-
ling alternatives for time-slotted systems as well.

2.2.2.3 Combined Low/High Time-Resolution Models

The probability distribution models discussed in Sects. 2.2.2.1 and 2.2.2.2 can be
employed to characterise the spectrum occupancy pattern perceived by a DSA/CR
user at long and short time scales, respectively. In both cases, the sequence of
channel states can be described by a two-state CTSMC model where the idle and
busy state holding times are described by two distribution functions FðT0Þ and
FðT1Þ respectively. This section explores two different extensions to this simple
modelling approach to simultaneously reproduce the statistical properties of
spectrum usage at long and short time scales.

The first approach comprises four distribution functions, two of them are used
to describe the channel usage pattern in terms of the lengths of inactivity and
activity periods at long time scales (e.g., seconds or minutes), FLðT0Þ and FLðT1Þ
respectively, while the other two distributions describe the lengths of idle and busy
periods at short time scales (e.g., microseconds or milliseconds), FSðT0Þ and

Table 2.2 Mathematical expressions and parameters of the probability distributions for high
time-resolution models: Pareto (P), generalised exponential (GE), gamma (G) and Weibull (W)

Distribution function Parameters EfTig
FPðT ; k; aÞ ¼ 1� k

T

� �a T � k
k [ 0
a [ 2

aiki

ai � 1

FGEðT ; l; k; aÞ ¼ 1� e�k T�lð Þ� �a T � l [ 0
k [ 0
a [ 0

li þ
wðai þ 1Þ � wð1Þ

ki

FGðT ; l; k; aÞ ¼ c a;T�l
kð Þ

CðaÞ
T � l [ 0

k [ 0
a [ 0

li þ kiai

FWðT ; l; k; aÞ ¼ 1� exp � T�l
k

� �ah i
T � l [ 0

k [ 0
a [ 0

li þ kiC 1þ 1
ai

	 


wð�Þ is the digamma function, c �; �ð Þ is the lower incomplete gamma function and Cð�Þ is the
(complete) gamma function
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FSðT1Þ respectively. According to this modelling approach, and as illustrated in
Fig. 2.13a, the distribution function FLðT0Þ is used to model long inactivity
periods, while the distribution function FLðT1Þ is used to characterise the length of
the periods over which some primary activity exists. During such activity periods,
a sequence of idle and busy periods is present at a shorter time scale as described
by the distribution functions FSðT0Þ and FSðT1Þ. The functions FLðT0Þ and FLðT1Þ
can be generalised Pareto distributions as discussed in Sect. 2.2.2.1, while FSðT0Þ
and FSðT1Þ depend on the particular radio technology under study as discussed in
Sect. 2.2.2.2 (the distributions provided in Tables 2.1 and 2.2 can be used as a
reference). This modelling approach is suitable for channels that remain inactive
for relatively long periods of time until a primary transmitter becomes active, in
which case a sequence of shorter busy/idle periods follows. Based on empirical
observations for various radio technologies, this modelling approach is appropriate
for channels of amateur bands, paging bands, private/public-access mobile radio
(PMR/PAMR) bands and cordless telephone bands.

For channels of cellular mobile communication systems such as GSM 900 and
DCS 1800, the existence of idle periods lasting for several seconds is rather
unlikely. For this particular case, the modelling approach illustrated in Fig. 2.13b
is more convenient. This alternative considers two distribution functions to
describe the length of idle and busy periods at short time scales, FSðT0Þ and FSðT1Þ
respectively. The behaviour at long time scales is included by means of a DC
model that characterises the channel load variation over time. The DC models
described in ‘‘Deterministic Duty Cycle Models’’ and ‘‘Stochastic Duty Cycle

Fig. 2.13 Combined low/high time-resolution models: a general modelling approach, b modelling
approach for cellular mobile communication systems such as GSM/DCS
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Models’’ for cellular mobile communication systems can be employed to this end.
Based on this approach, the parameters of the distribution functions FSðT0Þ and
FSðT1Þ are regularly adjusted based on Eq. (2.23) so as to meet the corresponding
DC, WðtÞ, at any time. This alternative modelling approach is more appropriate in
the case of GSM/DCS systems, where at least a few slots are frequently busy with
a periodicity that depends on the load supported by the channel (i.e., the higher the
load, the shorter the idle periods and the longer the busy periods and vice versa).

2.2.3 Time-Correlation Models

The DTMC and CTSMC modelling approaches described in Sects. 2.2.1 and 2.2.2
are able to explicitly capture and reproduce the statistical distributions of busy and
idle periods as well as the mean channel occupancy level, which is also implicitly
included since it depends on the mean value of the distributions as indicated by
Eq. (2.23). In some cases, however, the lengths of busy and idle periods can be
correlated [16], a feature that the described modelling approaches cannot repro-
duce. This section explores the time-correlation properties of spectrum usage in
real systems and presents adequate correlation models as well as a simulation
method featuring correlated busy/idle periods [18].

2.2.3.1 Correlation Metrics

The correlation properties of busy/idle periods can be quantified by means of the
Pearson’s product-moment correlation coefficient q, the Kendall’s rank correlation
coefficient s, and the Spearman’s rank correlation coefficient qs [19]. All of them
take values within the interval �1; þ1½ �. When the two considered random vari-
ables increase or decrease together, the correlation coefficients are positive.
However, if one variable increases as the other decreases, then the correlation
coefficients are negative. If the variables are independent, the correlation coeffi-
cients are zero (or approximately zero), but the converse is not true in general.
There are, however, some important differences. First, q is only sensitive to linear
dependence relations between random variables. Thus, if the association between
two random variables is purely non-linear, then q ¼ 0 even though they are not
independent. On the other hand, s and qs can detect some non-linear associations
between variables. Moreover, q has the unfortunate property of being sensitive
(i.e., variant) under non-linear transformations of the random variables. However,
s and qs are invariant under monotone transformations. Thus, given two random
variables with correlation coefficients q, s and qs, a transformation of the variables
could (and usually does) change the value of q, but it will not affect the values of
s and qs under strictly monotone transformations.
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2.2.3.2 Correlation Properties of Spectrum Usage and Models

The durations of consecutive busy-idle periods frequently show non-zero corre-
lations in real systems, meaning that they are not independent in practice and, as
such, need to be modelled as correlated random variables. The correlation between
a busy period and the following idle period normally takes negative values, which
can be explained by the fact that when the channel load increases the length of a
busy period increases and the length of the next idle period tends to decrease and
vice versa. Typical empirical values are comprised within the interval ½�0:6; 0Þ for
the three correlation metrics discussed in Sect. 2.2.3.1, without important differ-
ences among them.

An additional correlation parameter is the correlation between the sequence of
periods of the same type (either busy or idle) of a channel and a shifted version of
itself, as a function of the shifting distance or lag number (i.e., the autocorrelation
function of busy or idle periods). Two different autocorrelation patterns can be
identified, namely a periodic pattern and a non-periodic pattern. As an example,
Fig. 2.14 shows the autocorrelation function of idle periods as a function of the lag
number, m, based on the Spearman’s correlation coefficient, i.e., qsðT0; T0; mÞ.
Similar trends are observed for busy periods and the rest of correlation metrics.

For channels with periodic autocorrelation functions (Fig. 2.14a) with period
M, the correlation coefficient can be expressed as the summation of two bell-
shaped exponential terms centred at lags m ¼ 1 and m ¼ M þ 1, with amplitudes
A and widths r:

Fig. 2.14 Autocorrelation function of busy or idle periods: a periodic pattern, b non-periodic
pattern
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qsðTi; Ti; mÞ ¼
1; m ¼ 0

qmin
s þ Ae�

m�1
rð Þ

2

þ Ae�
m�M�1

rð Þ2 ; 1�m�M

(
ð2:25Þ

where qmin
s is the minimum correlation. This behaviour is commonly observed in

cellular mobile communication systems where the experienced loads, and thus the
busy/period lengths, show a relatively similar and periodic daily behaviour.
Typical values for the parameters are qmin

s � �0:1, A 2 ½0:2; 0:5�, Mis equal to the
average number of lags equivalent to 24 h, and r � M=4.

For channels with non-periodic autocorrelation functions (Fig. 2.14b), the
correlation coefficient takes its maximum value qmax

s at m ¼ 1 and decreases
linearly with m until m ¼ M, beyond which the correlation is approximately zero.
This behaviour can adequately be modelled by:

qsðTi; Ti; mÞ ¼
1; m ¼ 0
qmax

s
M�m
M�1

� �
; 1�m�M

0; m [ M

8<
:

Typical values for the parameters are qmax
s 2 ½0:1; 0:8� and M 2 ½200; 10000�.

2.2.3.3 Simulation of Correlation Properties

This section presents a simulation method to reproduce the time-correlation
properties of spectrum usage observed in real systems. The method is based
in some fundamental results and principles from the theory of random variate
generation [19], which are reviewed in the following subsection.

Random Variate Generation Principles

The Inversion Method

The inversion method [19] can be used to generate random variates with any
arbitrary distribution. This method is based on the following property. Let Fð�Þ be
a continuous CDF on R with inverse CDF given by F�1ð�Þ. If U is a uniform
random variable within the interval [0, 1], then the CDF of F�1ðUÞ is Fð�Þ.
Moreover, if X is a random variable with CDF Fð�Þ, then FðXÞ is uniformly
distributed on [0, 1]. Based on this property, any distribution Fð�Þ can be generated
based on random variates with uniform or any other distributions.

Generation of Correlated Random Variates

If Y and Z are independent and identically distributed (iid) random variables and a
new random variable X is defined as:

X ¼ q0 Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
Z ð2:26Þ
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with q0 2 ½�1;þ1�, then X and Y have a Pearson’s correlation coefficient
qðX; YÞ ¼ q0 [19]. This property can be used to generate random variates with a
specified Pearson’s correlation coefficient.

It is worth noting that the normal distribution is one of the few distributions that
is stable, meaning that a linear combination of two independent variables of such
distribution also has the same distribution, up to the location and scale parameters.
Therefore, if Y and Z are normally distributed, then X is also normally distributed.
Moreover, if Y and Z are standard (zero-mean, unit-variance) normal random
variables, then X is also a standard normal random variable.

A sequence X ¼ x1; x2; . . .; xM of M standard normal random values with
specified Pearson’s autocorrelation function qðX;X; mÞ can be generated based on
the property:

F qðX;X; mÞf g ¼ F Xf gj j2 ð2:27Þ

derived from the Wiener–Khinchin theorem, where F �f g denotes the Fourier
transform. Subjecting a standard Gaussian process to a linear operation (including
filtering) yields another standard Gaussian process with a different autocorrelation
function. Thus, an appropriate filter, derived from Eq. (2.27), can be used to
induce correlation on an uncorrelated Gaussian process. Concretely, if Y ¼
y1; y2; . . .; yM is a sequence of iid complex standard normal random values, then
[20]:

X ¼ Re F�1 Y 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF qðX;X; mÞf gj

pn on o
ð2:28Þ

is a sequence X ¼ x1; x2; . . .; xM of standard normal random values with Pearson’s
autocorrelation function qðX;X; mÞ, where 	 stands for Hadamard’s element-wise
multiplication.

Relation Among Correlation Metrics

For normally distributed random variables X and Y , the correlation metrics con-
sidered in Sect. 2.2.3.1 are related as [21]:

qðX; YÞ ¼ sin
p
2

sðX;YÞ
	 


¼ 2 sin
p
6

qsðX; YÞ
	 


ð2:29Þ

Eq. (2.29) holds if X and Y are normally distributed. If a monotone transfor-
mation is applied to X and/or Y , sðX; YÞ and qsðX; YÞ will remain unchanged but
qðX; YÞ might not.

Simulation Method

Algorithm 1 shows a simulation method, based on the principles reviewed in
‘‘Random Variate Generation Principles’’, that reproduces any arbitrary distribu-
tion of busy/idle period lengths along with the correlation properties of spectrum
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usage discussed in Sect. 2.2.3.2. The algorithm requires as input information the
CDF of idle and busy periods, denoted as F0ð�Þ and F1ð�Þ respectively, the Kendall
or Spearman correlation coefficient between busy/idle periods, denoted as
sðT0;T1Þ and qsðT0; T1Þ respectively, as well as the autocorrelation function
(periodic or non-periodic) of idle periods in terms of the Kendall or Spearman
correlation coefficients as a function of the lag number m, i.e., sðT0; T0; mÞ or
qsðT0; T0; mÞ respectively. Notice that the desired correlations to be reproduced
need to be specified in terms of the Kendall or Spearman metrics since the
algorithm involves some transformations of random variables that would change
any specified Pearson’s correlation value. The same algorithm can be used to
reproduce the autocorrelation properties of busy periods, i.e., sðT1; T1; mÞ or
qsðT1; T1; mÞ, instead of idle periods, if desired. However, idle periods represent
the real spectrum opportunities for secondary users and modelling their autocor-
relation properties results therefore more convenient. The proposed algorithm
outputs sequences of period durations for idle periods (T0) and busy periods (T1) in
blocks of M values.

For periodic idle autocorrelation functions, M corresponds to the function’s
period and determines the periodicity with which the process is repeated. For non-
periodic idle autocorrelation functions, M represents the lag number beyond which
autocorrelation is negligible. In such a case, after generating a sequence of M
period lengths, a new one is generated based on different (independent) random
variates.

First of all, the correlation properties specified in terms of the Kendall or
Spearman metrics are converted to their Pearson counterpart based on Eq. (2.29)
(lines 1 and 2). Afterwards, and for every block of M values, a sequence # of M iid
complex standard normal variates is generated (line 4) and converted, based on
Eq. (2.28), into a sequence n0 (line 5) of standard normal variates with autocor-
relation function qðT0; T0; mÞ. A sequence v of M iid standard normal variates is
generated (line 6) in order to produce, based on Eq. (2.26), a sequence n1 (line 7)
that has a correlation qðT0; T1Þ with n0. Since n0 and n1 are standard normal
variates, the new random variables Uðn0Þ and Uðn1Þ, where:

UðxÞ ¼ 1
2

1þ erf
xffiffiffi
2
p
� �� �

ð2:30Þ

is the standard normal CDF, are uniformly distributed. Thus, by the inversion
principle, the transformations of lines 8 and 9 produce sequences T0 and T1 of M
period lengths with the desired CDFs. Moreover, since n0 and n1 are normally
distributed, the desired Kendall and Spearman correlations hold between them as
inferred from Eq. (2.29). Therefore, the monotone transformations of lines 8 and 9
preserve such correlations on T0 and T1. As a result, this procedure yields a
sequence of idle and busy periods, T0 and T1 respectively, that follow the specified
distributions F0ð�Þ and F1ð�Þ, where idle periods are characterised by an autocor-
relation function sðT0; T0; mÞ or qsðT0; T0; mÞ and the correlation between busy-
idle periods is given by sðT0; T1Þ or qsðT0; T1Þ.
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Algorithm 1 Simulation of time correlation properties
Input: F0ð�Þ, F1ð�Þ, sðT0; T1Þ or qsðT0; T1Þ, sðT0; T0; mÞ or qsðT0; T0; mÞ
Output: T0, T1

1: qðT0; T1Þ  f sðT0; T1ÞjqsðT0; T1Þf gð Þ
2: qðT0; T0; mÞ  f sðT0; T0; mÞjqsðT0; T0; mÞf gð Þ
3: for every block of M values do
4: Generate # ¼ #1; #2; . . .; #M �CNð0; 1Þ
5: n0  RefF�1f#	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFfqðT0; T0; mÞgj

p
gg

6: Generate v ¼ v1; v2; . . .; vM �Nð0; 1Þ
7: n1  qðT0; T1Þ � n0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½qðT0; T1Þ�2

q
� v

8: T0  F�1
0 U n0ð Þð Þ

9: T1  F�1
1 U n1ð Þð Þ

10: end for

2.3 Time–Frequency Models

This section extends the models presented in Sect. 2.2 by introducing the fre-
quency dimension of spectrum usage. The models discussed in this section can be
employed to capture and reproduce the time evolution of the occupancy patterns
observed in a group of channels belonging to the same allocated spectrum band.
The joint behaviour of the set of channels within the same spectrum band is a
statistical characteristic that needs to be accurately modelled since it has a direct
impact on the amount of consecutive vacant spectrum that a DSA/CR user may
find as well as the time period for which spectrum holes can be exploited for
opportunistic use. Furthermore, a sophisticated procedure to generate artificial
spectrum occupancy data for simulation or other purposes is described as well. The
presented method is capable to accurately capture and reproduce the statistical
time–frequency characteristics of spectrum usage in real systems.

2.3.1 Joint Time–Frequency Properties of Spectrum Usage

An important aspect of joint spectrum occupancy modelling in the time and fre-
quency dimensions is the potential existence of dependence relations between the
occupancy patterns observed in both dimensions. In other words, it is important to
determine whether the binary time-occupancy pattern of a radio channel depends
on other channels within the same band or, on the contrary, the individual channel
occupancy patterns are mutually independent. The analysis of empirical data [22]
indicates that the occupancy patterns for channels within a spectrum band can be
considered to be mutually independent. This is a result with important implications
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for joint time–frequency modelling, since it implies that the instantaneous occu-
pancy state of a channel is unrelated to the instantaneous state of the rest of
channels within the considered band and, consequently, the occupancy patterns of
a group of channels can be modelled independently of each other. On the one
hand, this enables the direct application of the time-domain models developed in
Sect. 2.2 without any modifications or additional considerations. On the other
hand, this enables the statistical properties of spectrum usage over frequency to be
analysed and modelled independently of the time-dimension statistics, which is
performed in Sect. 2.3.2.

2.3.2 Frequency-Dimension Models

Two relevant properties of spectrum usage in the frequency dimension deserve
explicit consideration in frequency-domain models. The first property is the
probability distribution of the DC values for channels within the same band.
The second property is the DC clustering over frequency, i.e., the existence of
groups of contiguous channels with similar DC values. Both aspects are discussed
in detail in the following subsections.

2.3.2.1 Duty Cycle Distribution Models

Assuming that the DSA/CR system operates over a set of C primary radio chan-
nels, denoted by ! ¼ ft1; t2; . . .; tc; . . .; tCg, and given the set W ¼ fW1;
W2; . . .;Wc; . . .;WCg, where Wc is the DC of channel tc, the probability distribu-
tion of the elements of W can accurately be fitted with the beta [9] and
Kumaraswamy [10] distributions. The CDF for the former is given by:

FBðx; a; bÞ ¼ Ixða; bÞ ¼
Bxða; bÞ
Bða; bÞ ; x 2 ð0; 1Þ ð2:31Þ

where a[ 0 and b[ 0 are shape parameters, Ixða; bÞ is the regularised incomplete
beta function, Bxða; bÞ is the incomplete beta function given by:

Bxða; bÞ ¼
Z x

0
za�1ð1� zÞb�1dz ð2:32Þ

and Bða;bÞ is the beta function given by Eq. (2.16). The CDF for the latter is given
by:

FKðx; a; bÞ ¼ 1� 1� xað Þb; x 2 ð0; 1Þ ð2:33Þ

where a [ 0 and b [ 0 are shape parameters.
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Figure 2.15 shows some examples of empirical DC distributions and their
corresponding beta and Kumaraswamy fits. The selected bands represent examples
for a wide variety of load levels, including very low (E-GSM 900 UL), low
(DECT), medium (ISM) and very high (E-GSM 900 DL) average band DCs. The
models can be configured in order to reproduce any arbitrary average DC over the
whole band by selecting the shape parameters according to Eq. (2.18).

2.3.2.2 Duty Cycle Clustering Models

Channels with similar load/DC levels rarely occur alone, but in groups of a certain
size. The existence of groups of contiguous channels with similar DC values can
be analysed and modelled by defining a set of DC archetypes. As a reference, the
following DC archetypes can be considered: very low W 2 ½0; 0:05�, low
W 2 ½0:05; 0:40�, medium W 2 ½0:40; 0:60�, high W 2 ½0:60; 0:95� and very high
W 2 ½0:95; 1� levels. Based on these archetypes, Fig. 2.16 shows an example of DC
clustering in the TETRA downlink band (the upper graph shows the instantaneous
spectrum occupancy for each channel for a time period of 60 min, where white/
black points indicate idle/busy observations respectively, while the lower graph
shows the channel DCs and their corresponding classification into the considered
archetypes). As it can clearly be appreciated, channels with similar occupancy
levels appear together in blocks of a certain size, i.e. the DC is clustered in the
frequency domain. The number of contiguous channels per cluster (i.e., group of
channels belonging to the same DC archetype) can be modelled as a geometrically
distributed random variable, whose CDF is given by [9]:

FGeomðk; pÞ ¼ 1� 1� pð Þk; k 2 N
 ¼ f1; 2; 3; . . .g

Fig. 2.15 Empirical DC
distributions and their
corresponding beta and
Kumaraswamy fits
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where k represents the number of channels belonging to the same group (i.e., the
cluster size) and 1=p (0� p� 1) represents its expected (mean) value, i.e.
Efkg ¼ 1=p. The value of the parameter p can be set for a particular average
number M of channels per cluster as p ¼ 1=M. The relation p � C � 10�3, with C
being the number of channels in the whole band, can be used as an empirical
approximation as long as the resulting value satisfies p� 1. An alternative
empirical approximation is to draw the value of p from a uniform distribution
within the interval 0:1; 0:6½ �.

2.3.3 Simulation Method

This section presents a procedure that can be employed to generate artificial time–
frequency spectrum data in simulation tools or for other purposes. The method is
composed of three phases.
Phase 1: Generation of DC values.

Step 1.1: Specify the number C of channels within the considered spectrum band.
Step 1.2: Select a DC distribution function FðWÞ (beta or Kumaraswamy) and

appropriate values for the distribution parameters.
Step 1.3: Based on the probability distribution resulting from Step 1.2, generate a

set of C independent random numbers, which will constitute the setbW ¼ fŴ1; Ŵ2; . . .; Ŵc; . . .; ŴCg of DC values to be assigned to the C
channels of the considered spectrum band.

Fig. 2.16 Example of
empirical DC clustering
(TETRA downlink band)
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Phase 2: Assignment of DC values to channels.

Step 2.1: Define a set A ¼ fA1;A2; . . .;An; . . .;ANg of N DC archetypes along
with the corresponding set K ¼ fK0;K1; . . .;Kn; . . .;KNg of N þ 1 DC

thresholds, where K0 ¼ 0 and KN ¼ 1. A DC Ŵc belongs to archetype

An if Kn�1\Ŵc�Kn.
Step 2.2: Based on the probability distribution resulting from Step 1.2, compute

the elements of the set P ¼ fP1;P2; . . .;Pn; . . .;PNg, where Pn ¼
PðAnÞ ¼ PðKn�1\Ŵc�KnÞ ¼ FðKnÞ � FðKn�1Þ represents the proba-
bility that a channel belongs to archetype An.

Step 2.3: Classify the values of set bW into the archetypes of set A based on the

threshold set K. This produces N subsets f bWngn¼1;...;N (one per DC

archetype) with gn ¼ j bWnj elements each satisfying the conditions
SN

n¼1

bWn ¼ bW and
TN

n¼1

bWn ¼£.

Step 2.4: Select an appropriate value for the parameter p of the geometric dis-
tribution of the number of channels per cluster.

Step 2.5: Set to zero the elements of W ¼ fW1;W2; . . .;Wc; . . .;WCg, where Wc

represents the DC value finally assigned to channel tc. Set to zero the
elements of the set a ¼ fa1; a2; . . .; an; . . .; aNg, where an represents a
counter of the number of channels belonging to DC archetype An with
an assigned final DC value. Define the counter aC ¼

PN
n¼1 an for the

overall number of channels with an already assigned DC value. Repeat

the following points until an ¼ gn for all n (i.e., aC ¼
PN

n¼1 gn ¼ C):
1. Decide the DC archetype A0 ¼ An for the next cluster (i.e., the next group of

channels) by generating a uniformly distributed Uð0; 1Þ random variate and
comparing against the probabilities of the set P.

2. If this is not the first iteration of the process and the archetype A0 resulting from
point 1 is of the same type as the archetype A00 of the previously generated
cluster, or if the number of channels for archetype A0 ¼ An has already been
reached (an ¼ gn), go back to point 1 and recompute A0 until the conditions
A0 6¼ A00 and an\gn are met. The condition A0 6¼ A00 is not necessary when there
is a single DC archetype for which an\gn.

3. Decide the number v of channels that belong to the new cluster of type A0 ¼ An

as a random number drawn from the geometric distribution obtained in Step
2.4. If an þ v[ gn, then perform the correction v ¼ gn � an in order to meet
the total number of channels per archetype.
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4. Select randomly v DC values from subset bWn (archetype An) that have not been

assigned yet in order to form the subset Ŵ ¼ fŴ1; Ŵ2; . . .; Ŵvg � bWn. Append

subset Ŵ to the set of DC values already assigned, i.e., fWaCþ1;WaCþ2; . . .;

WaCþvg ¼ f Ŵ1; Ŵ2; . . .; Ŵvg ¼ Ŵ.
5. Update counters an ¼ an þ v and aC ¼ aC þ v. Go to point 1.

Phase 3: Generation of time-domain occupancy sequences.

Step 3.1: Select appropriate distributions F0ðT0Þ and F1ðT1Þ for the length T0 of
idle periods and the length T1 of busy periods, respectively.

Step 3.2: Configure the parameters of the distributions selected in Step 3.1 in such
a way that the channels’ average DCs meet the DC values obtained in
Step 2.5, i.e. EfTc

1g=ðEfTc
0g þ EfTc

1gÞ ¼ Wc, where EfTc
0g and EfTc

1g
are the mean length of idle and busy periods, respectively, for the cth
channel, tc.

Step 3.3: Generate for every channel a sequence of consecutive idle/busy periods
whose lengths are drawn from the properly configured distributions
F0ðT0Þ and F1ðT1Þ. The sequences generated for every channel must be
independent from each other. It is worth noting that the more sophisti-
cated simulation method proposed in ‘‘Simulation Method’’ can be used
here in order to reproduce not only the distributions F0ðT0Þ and F1ðT1Þ
but also correlation properties.

The steps conducted in the first phase guarantee that the DC values of the band
follow an appropriate beta or Kumaraswamy distribution and consequently
reproduce the corresponding average band DC. The second phase ensures that the
DCs of contiguous channels respect the corresponding properties of DC clustering.
Finally, the third phase provides the lengths of busy and idle periods for each
channel so that not only the desired period length distributions are reproduced but
also the appropriate DC distribution over frequency channels (and additionally the
time-correlation properties of spectrum usage if the method of ‘‘Simulation
Method’’ is employed).

2.4 Space Dimension Models

The spatial models presented in this section are envisaged to describe the average
level of occupancy (expressed in terms of the DC) that would be perceived by
DSA/CR users at various geographical locations based on the knowledge of some
simple primary signal parameters. Moreover, an extension is proposed in order to
characterise not only the average occupancy perception but also the simultaneous
observations of various DSA/CR users on the spectrum occupancy pattern of the
same transmitter.
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2.4.1 Models for Average Spectrum Occupancy Perception

The models presented in this section describe the spatial distribution of the
DC [23]. The interest of employing the DC lies in its ability to summarise the
overall spectrum occupancy within a certain time interval and frequency range in
a single numerical value. The spatial distribution of the DC is employed by the
models presented in this section as a means to describe the spectrum occupancy
that would be perceived by secondary DSA/CR terminals at different geographical
locations.

It is important to make a clear distinction between the Activity Factor (AF)
of a primary transmitter in a certain channel and the DC perceived by secondary
DSA/CR terminals in that channel. The AF of a primary transmitter represents the
fraction of time that the transmitter is active (i.e., transmitting in the channel).
A DSA/CR terminal in an arbitrary location with good radio propagation condi-
tions with respect to the primary transmitter would observe the channel as busy
whenever the primary transmitter is active. However, at other locations where the
propagation conditions are not so favourable, the primary signal might not be
detected. In such a case, the level of spectrum activity perceived by the DSA/CR
terminal in terms of the DC would be lower than the actual AF of the primary
transmitter. While the AF is unique for a given transmitter, the DC perceived at
different locations may be different. Since the propagation conditions strongly vary
with the geographical location, the perceived DC will vary over space accordingly.
The models discussed in this section describe the spatial distribution of the DC as a
function of the radio propagation conditions.

2.4.1.1 Received Average Power Distribution

The occupancy state of a channel as perceived by a DSA/CR terminal depends
on the employed spectrum sensing method [24]. Due to its simplicity, wide
range of application and relevance, energy detection (ED) has been a preferred
choice for DSA/CR. According to ED, a DSA/CR terminal measures the power
received in a certain frequency band over a predefined time period T , which can be
expressed as:

PR ¼
1
T

Z þT=2

�T=2
PRðtÞdt ð2:34Þ

where PRðtÞ is the instantaneous power received by the DSA/CR terminal
(including noise) and PR is the average power over the sensing period T . The
average power PR is compared with a predefined threshold in order to decide on
the primary channel state: if PR is above the threshold the channel is declared to be
busy; otherwise, it is assumed to be idle. The perceived spectrum occupancy at a
particular location therefore depends on the statistics of the received average
power, PR. Note that the instantaneous power PRðtÞ is a stochastic process that can
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be thought of as a non-countable infinity of iid random variables, one for each time
instant. Since PR is obtained as the average of an infinite number of random
variables, the central limit theorem can therefore be employed to approximate the
PDF of PR as a normal distribution, regardless of the real distribution of PRðtÞ [23].

2.4.1.2 Spatial Duty Cycle Models

This section presents a set of models to describe and predict the spectrum occu-
pancy perceived at various locations in terms of the DC. The DC can be defined as
the probability that the channel is observed as busy. Note that the ED method will
report the channel as busy whenever the average power PR is above a certain
decision threshold k. Since ED is not able to distinguish between intended signals
and undesired noise, the channel will be reported as busy not only if a primary
signal is received above the decision threshold but also if there is no signal (or it is
received below the threshold) and the noise power exceeds the threshold.

Let’s denote the distribution of the noise power as fNðPNÞ�NðlN ; r
2
NÞ and the

distribution of the signal power (received in the presence of noise) as
fSðPSÞ�NðlS; r

2
SÞ. According to this formulation, lN represents the noise floor of

the DSA/CR receiver and rN denotes the standard deviation of the noise powers
PN experienced at various sensing events (the effective noise power may be dif-
ferent between sensing events due to the finite averaging period T or other reasons
such as temperature variations). The primary power PS received in the presence of
noise is characterised by an average value lS that depends on the transmission
power and radio propagation conditions and a standard deviation rS that is addi-
tionally affected by the noise of the DSA/CR receiver.

If the sensed channel is idle, the PDF of the observed average power, fRðPRÞ,
will be that of the noise, fNðPNÞ. In such a case, the probability that the observed
power is above the threshold (i.e., the perceived DC) is given by (see Fig. 2.17):

Widle ¼
Z 1

k
fRðPRÞdPR ¼

Z 1
k

fNðPNÞdPN ¼ Pfa ð2:35Þ

where it has been assumed that the decision threshold k is set so as to meet a
specified target probability of false alarm Pfa.

On the other hand, if the channel is busy when it is sensed, the PDF of the
observed average power, fRðPRÞ, will be that of the received signal, fSðPSÞ.

Fig. 2.17 Model considered to compute the DC (shaded area)
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Assuming an ideal situation where there is no noise, the DC perceived by the DSA/
CR user would be given by:

Wideal
busy ¼

R1
k fRðPRÞdPR ¼

R1
k fSðPSÞdPS

¼ 1ffiffiffiffi
2p
p

rS

R1
k e

�1
2

PS�lS
rS

	 
2

dPS ¼ Q k�lS
rS

	 
 ð2:36Þ

where Qð�Þ represents the Gaussian Q-function. Notice that Eq. (2.36) indicates
that the perceived occupancy in terms of the DC would tend to zero as the received
power decreases (i.e., lS ! �1). However, if the received signal power is below
the receiver’s noise, this situation would be equivalent to an idle channel where the
receiver observes only noise. In such a case, the perceived DC should be Pfa as
indicated by Eq. (2.35). A more realistic model for fRðPRÞ when the channel is
busy, taking into account the presence of noise, would be fRðPRÞ ¼
M fNðPNÞ; fSðPSÞf g, where M �f g denotes a realisation-wise maximum operator
defined as follows. If A ¼ fxa1 ; xa2 ; . . .; xan ; . . .; xaNg and B ¼ fxb1 ; xb2 ; . . .;
xbn ; . . .; xbNg represent two sets of N random numbers (realisations) drawn from
distributions faðxaÞ and fbðxbÞ, respectively, then fcðxcÞ ¼ MffaðxaÞ; fbðxbÞg rep-
resents the distribution of the elements of the set C ¼ fxc1 ; xc2 ; . . .; xcn ; . . .; xcNg,
where xcn ¼ maxfxan ; xbng for n ¼ 1; 2; . . .;N, when N tends towards infinity.
Notice that this operator reproduces the effect of the noise floor on the observed
power (i.e., the DSA/CR user observes the received signal power when it is above
the noise floor or the noise power otherwise). Therefore, this definition of fRðPRÞ
provides a more realistic model for the average power PR actually observed by the
DSA/CR receiver. Based on this model, the DC perceived by the DSA/CR user
when the channel is busy will then be given by:

Wreal
busy ¼

R1
k fRðPRÞdPR ¼

R1
k M fNðPNÞ; fSðPSÞf gdPR

¼ max
R1

k fNðPNÞdPN ;
R1

k fSðPSÞdPS


 �
¼ max Pfa;Q

k�lS
rS

	 
n o ð2:37Þ

As it can be appreciated, this model rightly predicts that the perceived activity
level is never lower than the target Pfa. The average DC perceived by the DSA/CR
user will depend on the transmission power of the primary transmitter and its
particular activity pattern. The next sections provide closed-form expressions for
various general cases.

Constant-Power Continuous Transmitters

This section considers the particular case of constant-power primary transmitters
with an AF of 100% (e.g., TV and audio broadcasting services). This case provides
the basis for a simple occupancy model that will be extended in the next sections
for variable-power transmitters and/or discontinuous transmission patterns.

If the primary transmitter is always active, the PDF of the received average
power fRðPRÞ will be that of the primary signal (with noise) at the location of
the DSA/CR terminal, i.e., fRðPRÞ ¼ M fNðPNÞ; fSðPSÞf g. The probability that the
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received average power PR is above the decision threshold k and the DSA/CR user
observes the channel as busy is given by Eq. (2.37). Assuming that the decision
threshold is set to meet a certain Pfa:

Pfa ¼
Z 1

k
fNðPNÞdPN ¼

1ffiffiffiffiffiffi
2p
p

rN

Z 1
k

e
�1

2
PN�lN

rN

	 
2

dPN ¼ Q
k� lN

rN

� �
ð2:38Þ

Solving in Eq. (2.38) for k yields the decision threshold:

k ¼ Q�1ðPfaÞrN þ lN ð2:39Þ

where Q�1ð�Þ denotes the inverse of Qð�Þ. Substituting Eq. (2.39) into Eq. (2.37)
finally yields the DC model:

W ¼ max Pfa;Q
Q�1ðPfaÞrN � C

rS

� �� �
ð2:40Þ

where C ¼ lS � lN represents the average SNR expressed in decibels, while rS

and rN are the standard deviation of the signal and noise average powers also in
decibels.

Constant-Power Discontinuous Transmitters

This section extends the model of Eq. (2.40) by including the case of constant-
power but non-continuous transmitters. If the primary transmitter is characterised
by a certain AF, denoted as 0\a\1, the PDF of the received average power
fRðPRÞ will be that of the primary signal (with noise) M fNðPNÞ; fSðPSÞf g whenever
the transmitter is active (which will occur with probability a) or noise fNðPNÞ
otherwise. Hence:

fRðPRÞ ¼ ð1� aÞfNðPNÞ þ aM fNðPNÞ; fSðPSÞf g ð2:41Þ

and the resulting expression for the DC becomes:

W ¼
Z 1

k
fRðPRÞdPR

¼ ð1� aÞ
Z 1

k
fNðPNÞdPN þ a

Z 1
k

M fNðPNÞ; fSðPSÞf gdPR

¼ ð1� aÞ
Z 1

k
fNðPNÞdPN þ a max

Z 1
k

fNðPNÞdPN ;

Z 1
k

fSðPSÞdPS

� �

¼ ð1� aÞPfa þ a max Pfa;Q
Q�1ðPfaÞrN�C

rS

	 
n o
ð2:42Þ

Notice that Eq. (2.40) is a particular case of Eq. (2.42) with a ¼ 1.
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Variable-Power Discontinuous Transmitters

This section extends the model to account for variable-power transmitters. In this
case, the average transmission power is not constant but characterised by a
certain PDF. To simplify the model, let’s assume that the variability of the
transmission power can adequately be described by a discrete set of K average
transmission power levels, instead of a continuous PDF. This assumption not
only simplifies the analytical expressions of the model, but also enables the
application of the model to the case in which a channel is time-shared by K
transmitters with different power levels as it may be the case of various TDMA-
based systems such as GSM/DCS, TETRA, etc. The model can embrace the cases
of a single variable-power transmitter with K transmission power levels and K
constant-power transmitters time-sharing the channel. In both cases, the problem
reduces to the possibility of observing K different average transmission powers in
the channel.

Let’s denote as fSkðPSkÞ, with mean lSk
and standard deviation rSk , the PDF of

the received average power at certain location when the k-th transmission power
level is present in the channel (k ¼ 1; 2; . . .;K). In general it can be assumed that
lSp
6¼ lSq

and rSp 6¼ rSq for p 6¼ q. Let’s define an AF ak for each transmission

power representing the probability that the k-th transmission power level is present
in the channel. In the case of a single-transmitter with K transmission power
levels, only one out of the K power levels can be selected at a time. Moreover, in
the case of K transmitters time-sharing the channel it is reasonable to assume that
there exists some MAC mechanism so that when one primary transmitter accesses
the channel the rest of potential primary transmitters remain inactive. In both
cases, the K average power levels are mutually exclusive events. Hence:

XK

k¼1

ak� 1 ð2:43Þ

where the equality holds when the channel is always busy.
The left-hand side of Eq. (2.43) represents the probability that any of the K

transmitters is active, i.e. the probability that the channel is busy, and its com-

plementary probability 1�
PK

k¼1 ak is the probability that the channel is idle. The
PDF of the received average power fRðPRÞ will be that of the k-th primary sig-
nal (with noise) M fNðPNÞ; fSkðPSkÞf g whenever the k-th transmission power is
active (which will occur with probability ak) or it will be noise fNðPNÞ otherwise.
Hence:

fRðPRÞ ¼ 1�
XK

k¼1

ak

 !
fNðPNÞ þ

XK

k¼1

ak M fNðPNÞ; fSkðPSkÞf g ð2:44Þ
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and the resulting expression for the DC becomes:

W ¼
Z 1

k
fRðPRÞdPR

¼ 1�
XK

k¼1

ak

 !Z 1
k

fNðPNÞdPN þ
XK

k¼1

ak

Z 1
k

M fNðPNÞ; fSkðPSkÞf gdPR

¼ 1�
XK

k¼1

ak

 !Z 1
k

fNðPNÞdPN þ
XK

k¼1

ak max

Z 1
k

fNðPNÞdPN ;

Z 1
k

fSkðPSkÞdPSk

� �

¼ 1�
PK
k¼1

ak

� �
Pfa þ

PK
k¼1

ak max Pfa;Q
Q�1ðPfaÞrN�Ck

rSk

	 
n o

where Ck ¼ lSk
� lN is the SNR resulting from the kth average transmission

power level expressed in decibels.

2.4.2 Models for Concurrent Snapshots Observations

The models described in Sect. 2.4.1 can be employed to describe the average level
of occupancy (expressed in terms of the DC) that would perceived by DSA/CR
users at various geographical locations based on the knowledge of some simple
primary signal parameters. In some cases it can be useful to characterise not only
the average level of perceived spectrum occupancy but also the simultaneous
observations of several DSA/CR users at various locations. This is the case, for
instance, of cooperative techniques such as cooperative spectrum sensing where
the nodes of a DSA/CR network exchange sensing information (e.g., the channel
state observed by each DSA/CR terminal) in order to provide, based on an
appropriate processing of the gathered information, a more reliable estimation on
the actual busy/idle channel state. The gain of cooperative spectrum sensing and
other cooperative techniques can be characterised and analysed in terms of
simultaneous observations. For example, a group of DSA/CR nodes behind the
same building would be affected by the same level of shadowing. In such a case,
they would probably experience a similar average SNR and all of them might not
detect the presence of a primary transmission. However, other DSA/CR nodes not
affected by the same building and experiencing higher SNRs might be able to
detect the presence of the licensed transmission and avoid situations of harmful
interference. The characterisation of the simultaneous observations of various
DSA/CR users as a function of their geographical locations or experienced SNRs
is of great utility in this type of studies. The model developed in Sect. 2.4.1 is
extended with some additional considerations to characterise the concurrent
observations of various DSA/CR users at different locations.

The simultaneous observations at two different locations can be characterised in
terms of the joint probability that the channel is observed at both locations
in certain states or the conditional probability that it is observed in a certain state in
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one location given that it has been observed in a specified state at the other
location. This probabilistic characterisation can be extended to any arbitrary
number of locations by taking one location as a reference point and comparing to
the rest of considered locations in pairs. This section analyses the joint and con-
ditional probabilities between any two locations where one of them, the reference
location, corresponds to the location where the primary signal is received at a SNR
higher than that of any other location inside the geographical area under study (i.e.,
at the maximum experienced SNR).

The state space for a primary radio channel can be denoted as S ¼ fs0; s1g,
where the s0 state indicates that the channel is idle and the s1 state indicates that
the channel is busy. Let’s denote as Pðsi; s
j Þ, with i; j 2 f0; 1g, the joint probability
that the channel is simultaneously observed in state si at an arbitrary location and
in state sj at the reference location. Let’s denote as Pðsi js
j Þ the conditional
probability that the channel is observed in state si at an arbitrary location given that
it has been observed in state sj at the reference location. As previously mentioned,
the SNR C
 at the reference location is greater than the SNR C at any other
location (C
 �C), which implies that the DC W
 perceived at that location satisfies
the condition W
 �W for all the W values observed at all the other locations over
the geographical area under study. This section derives the expressions of Pðsi; s
j Þ
and Pðsi js
j Þ for any arbitrary location as a function of the average DCs perceived
at that location (W) and the reference location (W
).

The set of conditional probabilities Pðsi js
j Þ can be derived as follows. When
the channel is observed as idle at the reference location, this means that the
channel is actually idle or the power received at the reference location is below the
decision threshold. In the latter case, the power received at any location whose
receiving SNR is lower will also be below the decision threshold and the channel
will also be observed as idle. However, there exists a probability Pfa that the
channel is observed as busy because of noise samples above the threshold. Thus,
Pðs1 js
0Þ ¼ Pfa and its complementary probability is Pðs0 js
0Þ ¼ 1� Pfa. On the
other hand, when the channel is observed as busy at the reference location, this
means that there has been a false alarm at the reference receiver or the channel is
actually busy and it has been received at the reference location with a power level
above the decision threshold. In this case, the probability that the channel is
observed as busy/idle at an arbitrary location depends not only on the probability
of false alarm but also the experienced SNR C and its relation to the reference
SNR C
. The conditional probability Pðs0 js
1Þ can be derived by writing the
probability Pðs0Þ that the channel is observed as idle at the arbitrary location as:

Pðs0Þ ¼ Pðs0 js
0ÞPðs
0Þ þ Pðs0 js
1ÞPðs
1Þ

¼ ð1� PfaÞð1�W
Þ þ Pðs0 js
1ÞW
 ¼ 1�W
ð2:45Þ
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where Pðs
j Þ represents the probability that the channel is observed in state sj at the
reference location and it has been made use of the equivalence Pðs0Þ ¼ 1�W.
Solving Eq. (2.45) for the desired term yields:

Pðs0 js
1Þ ¼
1�W� ð1� PfaÞð1�W
Þ

W

ð2:46Þ

Following a similar procedure:

Pðs1Þ ¼ Pðs1 js
0ÞPðs
0Þ þ Pðs1 js
1ÞPðs
1Þ

¼ Pfað1�W
Þ þ Pðs1 js
1ÞW
 ¼ W

ð2:47Þ

which yields:

Pðs1 js
1Þ ¼
W� Pfað1�W
Þ

W

ð2:48Þ

The set of joint probabilities can readily be obtained based on their conditional
counterparts as Pðsi; s
j Þ ¼ Pðsi js
j ÞPðs
j Þ, where Pðs
0Þ ¼ 1�W
 and Pðs
1Þ ¼ W
.
Table 2.3 shows the whole set of joint and conditional probabilities. These
expressions combined with the analytical models developed in Sect. 2.4.1 can be
employed to characterise not only the average probability that a channel is
observed as busy as a function of the DSA/CR user location and some basic
primary signal parameters but also the joint and conditional probabilities that the
channel is observed in any of its states with respect to the simultaneous obser-
vation of another node at a reference location.

2.5 Unified Modelling Approach

Spectrum usage models for the time (from both discrete- and continuous-time
perspectives), frequency and space dimensions of spectrum usage have been
reviewed in previous sections. In such models, each dimension of spectrum usage
is characterised and modelled separately. This section discusses how the presented
models could be combined and integrated into a unified modelling approach where
the time, frequency and space dimensions of spectrum usage can simultaneously
be taken into account and reproduced. The integration of the presented models is
discussed in the context of analytical studies and simulation tools.

Table 2.3 Joint and conditional probabilities of simultaneous observations

si s
j Pðsi; s
j Þ Pðsi js
j Þ
s0 s
0 ð1� PfaÞð1�W
Þ 1� Pfa

s1 s
0 Pfað1�W
Þ Pfa

s0 s
1 1�W� ð1� PfaÞð1�W
Þ 1�W�ð1�PfaÞð1�W
Þ
W


s1 s
1 W� Pfað1�W
Þ W�Pfað1�W
Þ
W
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2.5.1 Integration of Spectrum Models in Analytical Studies

The models presented in this chapter are characterised by closed-form expressions
describing relevant aspects and properties of spectrum usage, which can be
employed in analytical studies of DSA/CR systems. Section 2.2.1 has presented
deterministic and stochastic DC models to be combined with DTMCs. While the
deterministic models are characterised by their particular mathematical expres-
sions, the considered stochastic models (i.e., beta and Kumaraswamy distributions)
are characterised by the corresponding PDFs/CDFs, which can be expressed in
closed-form. Similarly, in Sect. 2.2.2 the suitability of various probability distri-
butions to describe the statistical properties of busy and idle periods in real systems
has been discussed. The mathematical expressions for the associated distributions
can be employed in analytical studies as well. The time-correlation properties of
spectrum usage have also been analysed in Sect. 2.2.3 and adequate mathematical
expressions for the observed correlation patterns have been presented. In Sect. 2.3
it has been highlighted the existence of two important aspects to be accounted for
in the frequency dimension of spectrum usage, namely the DC distribution over
frequency, which can be characterised by means of beta and Kumaraswamy dis-
tributions, and the DC clustering over frequency, which can be described by means
of a geometric distribution. The mathematical expressions for the associated dis-
tributions can be employed in analytical studies related to the frequency dimension
of spectrum. Finally, the set of mathematical expressions provided in Sect. 2.4 can
be used to characterise and predict not only the average level of spectrum occu-
pancy (expressed in terms of the DC) but also the simultaneous observations that
would be perceived by DSA/CR users at various geographical locations. An
analytical study taking together into account aspects of various dimensions should
rely on an adequate use and combination of the mathematical expressions asso-
ciated to each dimension of spectrum usage (i.e., time, frequency and space).
However, the concrete way in which such expressions should be combined and
employed in an analytical study is a problem-specific aspect that depends on the
particular scenario under consideration. It is worth noting that the availability of
models capable to describe separately the relevant statistical properties of spec-
trum usage in its various dimensions is something that can facilitate and simplify
their combination and joint use. If the relevant statistical properties of spectrum
usage and their corresponding mathematical models are taken into account and
adequately combined in the context of an analytical study, this would lead to more
realistic and reliable results and conclusions.

2.5.2 Integration of Spectrum Models in Simulation Tools

Another important field of application of spectrum usage models is the develop-
ment of simulation tools for the performance evaluation of DSA/CR networks and
their associated techniques. Some simulation methods have already been provided
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in this chapter to illustrate the implementation of the presented models in simu-
lation tools. This section provides a more detailed description of how the devel-
oped models can be combined and used together in order to generate artificial
spectrum data capable to reproduce the statistical properties of spectrum usage in
the time, frequency and space dimensions. It is worth noting that the procedure
described in this section should not be interpreted as a dogmatic method but rather
as an illustrative example. The spectrum usage models presented in this chapter
could be combined and used together following other approaches. Moreover, some
aspects of the simulation methodology proposed in this section are based on
arbitrary decisions and might need some modifications in order to meet particular
simulation needs. The main objective of this section is to highlight the possibility
to combine independent spectrum usage models into a unified simulation proce-
dure that simultaneously takes into account all the considered aspects.

A generic simulation scenario is shown in Fig. 2.18. The considered simulation
scenario assumes the presence of a number of primary transmitters over a certain
geographical region. There exists a set of primary transmitters whose intended
coverage areas overlap, totally or partially, with the considered geographical
region. The activity of these primary transmitters needs therefore to be taken into
account. Each primary transmitter is characterised by a certain location within the
simulation scenario and a particular time–frequency transmission pattern as
illustrated in Fig. 2.18. The time–frequency pattern of each primary transmitter is
defined by the set of radio channels over which the transmitter operates (note that a
single primary transmitter may operate over several radio channels), the binary
busy/idle occupancy sequence of each radio channel as well as the employed
transmission powers. Notice that the transmission power may not be unique, for

Fig. 2.18 Generic simulation scenario
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example, in the case of a time-slotted downlink channel where various slots are
allocated to various receivers at different locations requiring different transmission
powers. The objective is to determine the time–frequency pattern that would be
perceived by a DSA/CR user over the whole spectrum band, at any arbitrary
location within the simulated scenario, based on the time–frequency patterns of all
primary transmitters.

A possible simulation method to generate artificial spectrum data based on the
presented models is illustrated in Fig. 2.19. The first step is to generate a time–
frequency map of spectrum usage based on the simulation method described in
Sect. 2.3.3. Such method is divided in three phases. The first two phases ensure
that the generated spectrum data reproduce two relevant properties of spectrum
usage in the frequency domain, namely the DC distribution (first phase of the
algorithm) and the DC clustering (second phase of the algorithm). The third phase
deals with the generation of individual busy/idle occupancy sequences for each of
the radio channels within the considered spectrum band according to the average
DC assigned to each channel as a result of the two previous phases. In this third
phase, the simulation method described in ‘‘Simulation Method’’ can be employed
in order to reproduce not only certain specified statistical distributions for the
lengths of busy and idle periods but also the desired time-correlation properties.
The two-level modelling approaches presented in Sect. 2.2.2.3 can also be
employed in conjunction with the simulation method of ‘‘Simulation Method’’ in
order to generate time-occupancy sequences with specific characteristics in the
short- and long-terms, including the desired statistical distributions and time-
correlation properties for busy and idle periods. The final result of the afore-
mentioned simulation methods is a single time–frequency map consisting of a
time-domain binary occupancy sequence for each of the radio channels within the
considered primary spectrum band. As an illustrative example, Fig. 2.20 shows a
time–frequency map of spectrum usage generated for the TETRA DL band along
with the corresponding DC distribution over frequency. Figure 2.20 has been
generated based on the simulation method of Sect. 2.3.3 (including the algorithm
presented in Sect. 2.2.3.3.) and making use of the same configuration parameters
employed to generate Fig. 2.16.

The occupancy sequence observed in each radio channel of the obtained time–
frequency map is the result of the activity pattern of at least one primary trans-
mitter. The next step is to decide the primary transmitter(s) associated to each
radio channel along with the corresponding location(s) and transmission power(s).
These parameters can be selected so as to reproduce specific network deployments
or in order to meet particular configurations or simulation needs. Another option is
to select them randomly based on statistical spatial models. In the illustrative
example of this section it is assumed that all radio channels belong to a single
primary transmitter. Therefore, the location and transmission power associated to
each channel is the same for all of them. The consequence of this simplistic
assumption is that a change in the considered DSA/CR user location will result in
the same SNR increase/reduction for all radio channels. In a more realistic con-
figuration where different radio channels belong to various primary transmitters at
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different locations, a displacement of the DSA/CR user would result in
approaching or moving away from various transmitters and hence different SNR
increases/reductions for each radio channel. Although more realistic configurations

Fig. 2.19 Unified simulation approach
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are possible, this simple approach will suffice to illustrate the considered model-
ling approach.

The generated time–frequency map can be thought of as the superposition of
the spectrum occupancy patterns of all the primary transmitters, where the indi-
vidual occupancy sequence at each radio channel is indeed the transmission
sequence of at least one primary transmitter. The next step is to decide the primary
transmitter(s) associated to each radio channel along with the corresponding
location(s) and transmission power(s). These parameters can be selected so as to
reproduce specific network deployments or in order to meet particular configu-
rations or simulation needs.

After generating the time–frequency map and selecting the primary transmit-
ters, locations and transmission powers, the next step is to determine how the
time–frequency map (i.e., the set of primary transmissions) is perceived by DSA/
CR users at arbitrary locations within the area under study. This can be accom-
plished by means of the probabilities computed in Sect. 2.4.2, where the percep-
tions at arbitrary locations are determined based on the observations at one
reference location where the receiving SNR is maximum. If the locations of the
primary transmitters can be assumed to be known, then the simulation method is
greatly simplified since (for each radio channel) the reference location is indeed
the location of the primary transmitter (i.e., where the SNR is maximum) and the
AF and reference DC values are identical (i.e., a ¼ W
) and equal to the average
DC observed in the time–frequency map. The only unknown parameter is the
average DC perceived at each location of interest, which can be computed based
on the locations and transmission powers of the primary transmitters by making

Fig. 2.20 Time-frequency map of spectrum occupancy
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use of the expressions presented in Sect. 2.4.1.2. The time–frequency map per-
ceived at every location can then be determined as follows: whenever the time–
frequency map indicates a busy state, the channel may be observed as busy at an
arbitrary location with probability Pðs1 js
1Þ and whenever the map indicates an idle
state, the channel may be observed as busy with probability Pðs1 js
0Þ. Following
this procedure, the time–frequency map can be extrapolated to any arbitrary
location within the area of study based on the corresponding conditional proba-
bilities Pðsi js
j Þ provided in Table 2.3.

As an example, Figs. 2.21, 2.22 and 2.23 show the time–frequency map of
Fig. 2.20 as perceived at arbitrary locations where the receiving SNR is 10, 3 and
0 dB, respectively. These results have been obtained assuming Pfa = 10% (the
target Pfa has intentionally be set to this high value to clearly show its impact). As
it can be appreciated in Fig. 2.21, under high SNR conditions the channels are
observed as busy whenever they are actually busy. However, there is an appre-
ciable number of points indicating that, in some cases, the channel is detected as
busy when it is actually idle. These points correspond to false alarms where the
noise power of the receiver surpasses the decision threshold. In fact, while the DC
shown in Fig. 2.20 takes values within the interval [0, 1], in Fig. 2.21 it is above
10% (i.e., the Pfa). For locations where the experienced SNR is low, the primary
signal may be received below the decision threshold, in which case it is misde-
tected. This is clearly shown in Fig. 2.22 where the perceived DC is notably lower
than in Fig. 2.21. Finally, at locations with very low SNRs as in the example of
Fig. 2.23 the primary signals can hardly be detected and only false alarms are
observed (i.e., W & Pfa). It is worth noting in the examples of Figs. 2.21, 2.22 and
2.23 that all channels experience a similar reduction of the DC as the SNR

Fig. 2.21 Time-frequency map of spectrum occupancy as perceived at 10-dB SNR
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decreases because them all have been assumed to belong to the same primary
transmitter. As mentioned above, in a more realistic scenario the DC may increase
for some channels and decrease for some others at the same time as the DSA/CR
user moves along the area under study.

Fig. 2.22 Time-frequency map of spectrum occupancy as perceived at 3-dB SNR

Fig. 2.23 Time-frequency map of spectrum occupancy as perceived at 0-dB SNR
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The time–frequency maps observed at each location could be pre-computed off-
line for a set of predefined locations within the simulated scenario (for example
according to a regular grid) and loaded into the simulator during its initialisation.
During the execution of the simulator, the location of each DSA/CR user can be
approximated to the nearest location for which a time–frequency map has been
pre-computed and, based on the associated map, the spectrum occupancy that
would be perceived by each DSA/CR user can be determined. Another option is to
implement the whole map generation method in the simulation tool and compute
on-demand time–frequency maps during the execution as required. While the
former approach may result in more efficient simulations and hence shorter exe-
cution times, the latter may provide more accurate results since the exact location
of the DSA/CR user is employed instead of the closest point of a grid. However,
both approaches would be valid in order to include in the simulations the statistical
properties of spectrum usage observed for real radio communication systems in the
time, frequency and space domains.

2.6 Conclusions

Spectrum models capable to capture and reproduce the relevant statistical prop-
erties of spectrum usage in real wireless communication systems play a key role in
the practical development of the dynamic spectrum access/cognitive radio (DSA/
CR) technology. The potential applicability of spectrum usage models ranges from
analytical studies to the design and dimensioning of DSA/CR networks as well as
the development of innovative simulation tools and more efficient DSA/CR
techniques. Based on the particular set of statistical properties and features taken
into account, spectrum models can be categorised into time-, frequency- and
space-dimension models.

In the time domain, three important parameters need to be taken into account,
namely the average channel occupancy level, which can be expressed in terms of
the duty cycle (DC), the statistical distributions of the lengths of busy and idle
periods, and the existing time-correlation structures. Spectrum usage can be
modelled from discrete- and continuous-time perspectives. The stationary discrete-
time Markov chain (DTMC) model widely used in the DSA/CR literature can
reproduce the average occupancy level of a channel but it is not capable to
reproduce more advanced features such as the distributions of busy and idle
periods. However, a non-stationary DTMC modelling approach with appropriate
deterministic and stochastic DC models can be employed to characterise not only
the mean occupancy level but also the statistical properties of busy and idle
periods observed in real-world channels. The continuous-time Markov chain
(CTMC) model, another widely employed model, explicitly accounts for the
lengths of busy and idle periods by assuming exponentially distributed state
holding times. In general, however, the assumption of exponentially distributed
busy and idle periods is invalid, meaning that the CTMC model is unrealistic.
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In real systems, other distributions result more adequate. At long time scales, the
generalised Pareto distribution function can be appropriate for various radio
technologies, while at short time scales the most appropriate distribution is tech-
nology-dependent. A two-layer modelling approach combining the use of different
models at long and short time scales has been presented as well as an adequate
means to describe the spectrum occupancy patterns observed in real radio com-
munication systems. The third relevant property (i.e., the time correlation struc-
tures) needs specific modelling and simulation approaches since the presented
Markov chain models cannot capture and reproduce time-correlation properties.

The study of the joint time–frequency properties reveals three important aspects
to be taken into account in spectrum usage modelling. First, the binary time-
occupancy patterns of the channels belonging to the same spectrum band are
mutually independent. Second, the DCs of the channels within the same spectrum
band follow a beta/Kumaraswamy distribution. Third, the DC is clustered over
frequency and the number of channels per cluster follows a geometric distribution.
Based on these findings, a sophisticated procedure has been presented to generate
artificial spectrum occupancy data for simulation and other purposes.

In the spatial dimension, spectrum usage can be characterised by means of a set
models that describe the average spectrum occupancy level (expressed in terms of
the DC) perceived by DSA/CR users at any geographical location based on the
knowledge of the radio propagation environment and some simple primary signal
parameters. An extension has also been presented that can be employed to char-
acterise not only the average occupancy perception but also the simultaneous
observations of various DSA/CR users on the spectrum occupancy pattern of the
same transmitter.

Finally, the chapter has discussed how the proposed models can been combined
and integrated into unified modelling approaches where the time, frequency and
space dimensions of spectrum usage can simultaneously be taken into account and
accurately reproduced. The presented models can be combined into a unified
modelling approach to provide a complete and holistic characterisation of spec-
trum usage in real systems for the analysis, design and simulation of DSA/CR
networks.
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