Chapter 2
Convex Functions

In this chapter, the basic concepts and the properties of extended real-valued convex
functions defined on a real Banach space are described. The main topic, however, is
the concept of subdifferential and its relationship to maximal monotone operators.
In addition, concave—convex functions are examined because of their importance in
the duality theory of minimization problems as well as in min-max problems.

2.1 General Properties of Convex Functions

We develop here the basic concepts and results on convex functions which were
briefly presented in Chap. 1.

2.1.1 Definitions and Basic Properties

In Chap. 1, we have already become familiar with convex functions (see Defini-
tion 1.32) and their relationship to convex sets. In this section, the concept of convex
function on a real linear space X will be extended to include functions with values
in R = [—00, +00] (extended real-valued functions).

Definition 2.1 The function f : X — R is called convex if the inequality

fOx+ 1 =0y) <af()+ 0 =1 fK) 2.1)

holds for every A € [0, 1] and all x, y € X such that the right-hand side is well
defined. The function f is called strictly convex if an inequality strictly holds in
inequality (2.1) for every A € ]0, 1[ and for all pairs of distinct points x, y in X with
f(x) <ooand f(y) < oo.
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68 2 Convex Functions

The function g : X — R is said to be (strictly) concave if the function —g is
(strictly) convex. It should be observed that if f is convex, then the inequality

n n n
f(z)»ixz) SZ)\if(xi)» A >0, Z)»i=1
i=1 i=1 i=1

holds for all x1, ..., x, in X, for which the right-hanil side makes sense.
Another consequence of convexity of f : X — R is the convexity of the level
sets,

{reX: f(o) =},

where A € R. However, as is readily seen, the functions endowed with this property
are not necessarily convex. Such functions are called quasi-convex.

The function f is called proper convex if f(x) > —oo for every x € X, and if
f is not the constant function +oo (that is, f % +00). Given any convex function
f: X — R, we denote by Dom( f) (sometimes dom f) the convex set

Dom(f)={x € X; f(x) <+oo}. 2.2)

Such a set Dom( f) is called the effective domain of f.If f is proper, then Dom( f)
is the finiteness domain of f. Conversely, if A is a nonempty convex subset of X
and if f is a finite and convex function on A, then one can obtain a proper convex
function on X by setting f(x) = +oo if x € X \ A. Using all this, we are able to
introduce an important example of convex function. Given any nonempty subset A
of X, the function /4 on X, defined by

0. ifxcA
=1 ’ 23
e Y 2.3)

is called the indicator function of A.
The characterization of convexity follows.

Proposition 2.2 The subset A of X is convex if and only if its indicator function 14
is convex.

Let f : X — R be any extended real-valued function on X. The set
epif={(x,a); xeX, ¢ eR, f(x)<a] 2.4)
is called the epigraph of f. The set
hypo f ={(x,@); x€ X, a €R, f(x)>a} (2.5)

is called the hypograph of f.
Proposition 2.3, which follows, demonstrates that the above-mentioned theory of
convex functions and that of convex sets overlap considerably.
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Proposition 2.3 A function f : X — R is convex if and only if its epigraph is a
convex subset of X x R.

Proof Sufficiency. Suppose that f is convex and (x,«), (y,B) €epif and A €
[0,1]. We set w = (1 — A)x + Ay and r = (1 — A)« + AB. From the inequality

f) <A -V fx)+Arf(y) <t

it follows that (w, t) € epi f. This proves that epi f is a convex set of X x R.
Necessity. Suppose that epi f is convex, but for some x,y € X and some A €
[0, 1] the inequality

fw)=f(A=x+1y) > 1 =2 f)+rf ()

holds. In particular, the latter shows that 0 < A < 1 and that neither f(x) nor f(y)
can be +o0o. Thus, there exist real numbers «, B such that (x, «) and (y, 8) belong
to epi f. Thus, for each x, y and A, one has

inf{ (1 =M+ 485 (x,), (v, B) €epi f} = (1 =) f(x) +4f ().
Since the epigraph of f is convex, we have
fw)=inf{r; (w, 1) €epi f} <(1—1)f(x)+Arf(y) < f(w).

The contradiction we arrived at concludes the proof. g

A similar characterization of concave function can be given in terms of its hypo-
graph.

2.1.2 Lower-Semicontinuous Functions

Let X be a topological space.

Definition 2.4 The function f : X — R is called lower-semicontinuous (upper-
semicontinuous) at xq if

f(xp) =liminf f(x) (f(xo) = limsup f(x)). (2.6)
X— X0 X—>X0
‘We recall that
liminf f(x) = sup inf f(s) 2.7)
X—>X( Ve (xg) seV
and
limsup f(x) = inf sup f(s), (2.8)
X—>X( ve¥(xg) sV

where ¥ (xp) is a base of neighborhoods of xq in X.
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A function which is lower-semicontinuous at each point of X is called lower-
semicontinuous on X. B

Let us denote by 7, the topology on R defined by the following basis of open
sets:

7 = {la, +-00l; a € [~o0, +ool} U {#, R}.

It is readily seen that the function f : X — R is lower-semicontinuous (1.s.c.) at xo
if and only if f : X — (R, 7¢) is continuous at xo. The topology 7, is called the
lower-topology of R. The upper-semicontinuity is similarly defined.

Since a function f is upper-semicontinuous if and only if —f is lower-
semicontinuous, the following considerations will be restricted to the basic pro-
peries of lower-semicontinuous functions as required for the purpose of the next
section.

Proposition 2.5 Let X be a topological space and let f : X — R be any extended
real-valued function on X. Then, the following conditions are equivalent:

(1) f is lower-semicontinuous on X.
(ii) The level sets {x € X; f(x) <A}, A €R, are closed.
(iii) The epigraph of the function f is closed in X x R.

Proof 1t is well known that a function is continuous if and only if the inverse image
of every closed subset is closed. Since {x € X; f(x) <A} = f~!([—o0, A]) and (i) is
equivalent to the continuity of f : X — (R, 7,), we may conclude that conditions (i)
and (ii) are equivalent.

We define

ox,t)=f(x)—t forxeXandteR

and observe that f is lower-semicontinuous on X if and only if ¢ : X x R — R is
lower-semicontinuous on the product space X x R. Furthermore, the equivalence of
conditions (i) and (ii) for ¢ implies that (ii) and (iii) are also equivalent, since

epif —(0,A) = {(x,t) e X xR; <p(x,t)§k},

that is, the level sets of the function ¢ are translates of epi f. Proposition 2.5 has
now been proved. 0

Corollary 2.6 The upper-envelope of a family of lower-semicontinuous functions is
also a lower-semicontinuous function.

Proof 1t suffices to apply Proposition 2.5, condition (ii), and to observe that

{x € X; sup fi(x) SA} =ﬂ{xeX; fi(x) S)»}~

iel iel
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Corollary 2.7 A subset A of X is closed if and only if its indicator function 14 is
lower-semicontinuous.

An important property of lower-semicontinuous functions is given by the follow-
ing well-known Weierstrass theorem.

Theorem 2.8 (Weierstrass) A lower-semicontinuous function f on a compact topo-
logical space X takes a minimum value on X. Moreover, if it takes only finite values,
it is bounded from below.

Proof Since, by Proposition 2.5, every level subset of f is closed, using the
nonempty ones among them we form a filter base on the compact space X. This
filter base has at least one adherent point xo which clearly lies in all the nonempty
level subsets. Thus, f(xg) < f(x) for all x in X, thereby proving Theorem 2.8. [

2.1.3 Lower-Semicontinuous Convex Functions

Throughout this section, X is a topological linear space over a real field. It may be
seen that, if a convex function f takes the value —oo, then the set of all points where
f is finite is quite “rare”. If f is actually convex and lower-semicontinuous on X,
then f is nowhere finite on X. Namely, one has the following proposition.

Proposition 2.9 Let f : X — R be a convex and lower-semicontinuous function.
Assume that there exists xo € X such that f(xo) = —oo. Then f is nowhere finite
on X.

Proof If there was a yg € X such that —oco < f(yg) < +00, then the convexity of f
would imply that f(Axg + (1 — X)yg) = —o0, for each 1 € ]0, 1].

Inasmuch as f is lower-semicontinuous, letting A approach to zero, f (yy) = —oo
would hold, which contradicts the assumption. The proof is now complete.

Let f: X — R be any convex function on X. The closure of the function f,
denoted by cl f, is by definition the lower-semicontinuous hull of f, that is,
cl f =liminfy_,; f(y) for all x € X if liminf,_, v f(y) > —oo for every x" € X
orcl f() = —oo for all x € X if liminf,_,  f(y) = —oo for some x" € X. The con-
vex function f is said to be closed if cl f = f. Particularly, a proper convex function
is closed if and only if it is lower-semicontinuous.

For every proper closed convex function one has

(el @) =liminf f(y).  VxeX. (2.9)

As a consequence of equality (2.9), one obtains

epi(cl f) =epi f, (2.10)
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or, more specifically,

{rex; @H <a}=[{xeX: f(x) <A}

A>a

for every @ € R. In particular, it follows from (2.7) that
inf{ f(x); x € X} =inf{(cl f)(x); x € X}. 2.11)

Likewise, it should be observed that in general the closure of the convex function
f is the greatest closed convex function majorized by f (namely, the pointwise
supremum of the collection of all closed convex functions g, such that g(x) < f(x),
for every x € X). O

Furthermore, we give some simple results pertaining to lower-semicontinuous
convex functions.

Proposition 2.10 Let X be a locally convex space. A proper convex function
f X — ]—o00,400] is lower-semicontinuous on X if and only if it is lower-
semicontinuous with respect to the weak topology on X.

Proof We have already seen in Chap. 1 (Proposition 1.73 and Remark 1.78) that
a convex subset is (strongly) closed if and only if it is closed in the corresponding
weak topology on X. In particular, we may infer that epi f is (strongly) closed if it
is weakly closed. This establishes Proposition 2.10. (]

Theorem 2.11 Let f be a lower-semicontinuous, proper and convex function on a
reflexive Banach space X . Then f takes a minimum value on every bounded, convex
and closed subset M of X. In other words, xo € M exists such that

f(xo) =inf{ f(x); x € M}.

Proof We apply Theorem 2.8 to the space X endowed with weak topology. (Accor-
ding to Corollary 1.95, every closed and bounded subset of a reflexive Banach space
is weakly compact.) g

Remark 2.12 1f in Theorem 2.11 we further suppose that f is strictly convex, then
the minimum point x¢ is unique.

Remark 2.13 In Theorem 2.11, the condition that M is bounded may be replaced
by the coercivity condition

im £ () = oo, 2.12)
vem

In fact, let x; € Dom(f) and k > 0 be such that

f(x)> f(x1) for x| >k, x M.
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Obviously,
inf{ f(x); x € M} =inf{ f(x); x e M N S(0,k)},

where S(0,k) = {x € X; ||x|| < k}. Thus, we may apply the preceding theorem
where M is replaced by M N S(0, k).

Now, we divert our attention to the continuity properties of the convex functions.
The main result is contained in the following theorem.

Theorem 2.14 Let X be a topological linear space and let f : X — 1—00, +00] be
a proper convex function on X. Then, the function f is continuous on intDom( f’)
if and only if f is bounded from above on a neighborhood of an interior point of
Dom( f).

Proof Since the necessity is obvious, we restrict ourselves to proving the sufficiency.
To this end, consider any point xo which is interior to the effective domain Dom( f).
Let V € ¥ (xo) be a circled neighborhood of x such that f(x) <k forall x € V.
Since X is a linear topological space, the function f is continuous at x = x if and
only if the function x — f(x + x9) — f(xp) is continuous at x = 0. Thus, without
any loss of generality, we may assume that xo = 0 and f(x¢) = 0. Furthermore, we
may assume that V is a circled neighborhood of 0. Since f is convex, we have

fx) =f<8 4 —8)0) sef(f) < ek,
£ £
for all x € ¢V, where ¢ € ]0, 1[. On the other hand,

1
0=7(0) = E(f(x) + f(=x))
and therefore
—f(x) < f(—x)<ek foreveryx e —eV =e¢V.

Thus, we have shown that | f (x)| < ek for each x € ¢ V. In other words, the function
f 1is continuous at the origin. Now, we prove that f is continuous on intDom(f).
Let z be any point in intDom( f) and let p > 1 be such that zo = pz € Dom(f).
According to the first part of the proof, it suffices to show that f is bounded from
above on a neighborhood of z. Let V be the neighborhood of the origin given above,
and let V (z) be a neighborhood of z defined by

V(z)=z+<1—l>V.
0
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Once again, making use of the convexity of f, we obtain

1 1 1 1
) = f(— 0+ (1 - —)x) <L+ (1 _ —)f(x)
o o o o
1 1
<— f(z0) + (1 - —)k forall u € V(z).
o o
Hence, f is bounded above on V (z), as claimed. This completes the proof. O

As a consequence, we obtain the next corollary.

Corollary 2.15 If a proper convex function f : X — ]—o00,400] is upper-
semicontinuous at a point which is interior to its effective domain Dom( f), then
f is continuous on int Dom( f).

For a lower-semicontinuous convex function, this result may be clarified as fol-
lows.

Proposition 2.16 Let X be a real Banach space and let f : X — ]1—00, +00] be a
lower-semicontinuous proper convex function. Then f is continuous at every alge-
braic interior point of its effective domain Dom( f').

Proof Without any loss of generality, we may restrict ourselves again to the case
in which the origin in an algebraic interior to the effective domain Dom( f). We
choose any real number « such that @ > f(0) and set A = {x € X; f(x) <a}. The
level set A is convex, closed and contained in the effective domain of f. Let us
observe that the origin is an algebraic interior point of A. Indeed, for every x € X,
there corresponds p > 0 such that xo = px € Dom(f). Here, we have used the fact
that the origin is an algebraic interior point of Dom( f). Since f is convex, we have

Fpx) = f(Axo + (1 = 2)0) < A(f (x0) — £(0)) + £(0),

for every X € [0, 1]. Therefore, there exists § > 0 such that f(lpx) < « for every
A € [0, 8]. This shows that the origin is an algebraic interior point of A. According
to Remark 1.24, this fact implies that the origin is an interior point of the closed
convex set A. In other words, we have shown that f is bounded from above by o on
the neighborhood A of the origin. Applying Theorem 2.14, we may infer that f is
continuous on this neighborhood, thereby proving Proposition 2.16. g

If X is a finite-dimensional space, Proposition 2.16 can be considerably
strengthened. More precisely, we have the next proposition.

Proposition 2.17 Every proper convex function f on a finite-dimensional separated
topological liner space X is continuous on the interior of its effective domain.
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Proof We suppose again that the origin belongs to the interior of the effective
domain Dom( f) of the function f. Let {¢;;i = 1,2,...,n} be a basis of the n-
dimensional space X, and let a be a sufficiently small positive number such that

n
Uz{xeX; x=Zx,'e,-, 0 < x; <g, i=1,2,...,n} C Dom( f).

n
i=1
Using the convexity of f, since

n
Xi
x—g x,e,—g —ae, -

i=1 i=1

we obtain the inequality

FE =32 flae) + <1 -

i=1

n ; l n
%)f(O) ==Y | f@en| +|£ )
i=1 i=1

for every x e U.

Thus, the function f is bounded from above on U C Dom( f). But it is obvious
that U is open. This implies, according to Theorem 2.14, that f is continuous on
intDom( f), which completes the proof. O

Concerning the continuity of proper convex functions, the results are similar to
those obtained for linear functionals: the continuity at a point implies the continuity
everywhere and this is equivalent to the boundedness on a certain neighborhood.
However, for convex functions these facts are restricted to the interior of effective
domain. In this context, our attention has to be restricted to those points of Dom( f')
which do not belong to intDom( f). In addition to the continuity of f on X, we
introduce the concept of continuity on Dom( f). These two concepts are clearly
equivalent on int Dom( f), but not necessarily on Dom( f). Also, we notice for later
use that

int(epi f) = {(x, @) € X x R; x €intDom(f), f(x) <a}. (2.13)

2.1.4 Conjugate Functions

Let X be a real linear locally convex space and let X™ be its conjugate space. Con-
sider any function f : X — R. The function f*: X* — R defined by

e =sup{(x,x*) — f(x); x€ X}, x*eX* (2.14)

is called the conjugate function of f. The conjugate of f*, that is, the function f**
on X defined by

) =sup{(x,x*) — fF(x*); x* e X}, xeX, (2.15)
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is called the biconjugate of f (with respect to the natural dual system given by X
and X*). The conjugate of order n, denoted by f*, of the function f is similarly
defined.

We pause briefly to observe that relations (2.14) and (2.15) yield

f)+ fF(x") = (x,x") (2.16)
and
P+ 7 (x0) = (x,x7), (2.17)

for all x € X and x* € X*. Inequality (2.16) is known as the Young inequality.
Observe also that if f is proper, then “sup” in relation (2.14) may be restricted to
the points x which belong to Dom(f).

Example 2.18 The conjugate of the indicator function /4 of a subset A of X is
given by
I3 (x*) =sup{(x, x*); x € A}. (2.18)

The function I, usually denoted by s4, is called the support functional of A. It
should be observed that A is contained in a closed half-space, {x € X; (x, x*) <
a} if and only if a > Iy (x*). Thus, I} (x*) may be determined by the minimal
half-space containing A. In other words, if the linear function x — (x, x*) reaches
its maximum on A, then (x, x*) = I’} (x*) represents the equation of a supporting
hyperplane of A.

Let A° be the polar of A, that is,
A°={x*e X*; (x,x") <1, Vx € A}. (2.19)
In terms of I’y defined above, the polar of A may be expressed as
A°={x*eX* I;(x*) <1} (2.20)

We observe that, if A= C is a cone with vertex in 0, then the polar set C° is again
a cone with vertex in 0, which is given by

C°={x*eX*; (x,x*) <0, VxeC} 2.21)

and is called the dual cone of C.
If A=Y is alinear subspace of X, then

Yo ={x*eX* (x,x*)=0, Vx Y} (2.22)

is also a linear subspace, called the orthogonal of the space Y, sometimes denoted
by YL,

As is readily seen, the polar A° of a subset A is a closed convex subset which
contains the origin. If we take into account (2.20) and Corollary 1.23, the question
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arises whether I’} is a Minkowski functional associated with the subset A°. In gen-
eral, the answer is negative. However, we have

pac(x*) =max{I;(x*),0}, Vx*eX* (2.23)
Therefore, if 0 € A, then Iy (x*) > 0 and
pac =15, (2.24)

Furthermore,
py =140 forevery AC X with0 € A. (2.25)

Indeed, if x* € A°, then there exists X € A such that (x*, x) > 1. This implies that

patx®) = sug{(x, x*) = pa(x)} = AEx, x*) — pa(AX)
xXe

=A@ x") — pa@®] = A[E, x) = 1], Vi>0.

Hence, pJ (x*) = 400 for every x* € A°. Now, if x* € A°, since for every x €
Dom(pa), x € (pa(x) +¢)A, for all € > 0, we have

PaA(™) = sup{(x,x*) — pa(x); x € Dom(pa)}
<sup  sup  {(pa(¥) +&)@,x*) —pax)}<e,  Ve>0.

acA xeDom(py)

Hence, p’ (x*) < 0. Because 0 € Dom(p,4), we may infer that p% (x*) > 0, which
completely proves relation (2.25).
Proposition 2.19 contains some elementary facts concerning conjugacy relations.

Proposition 2.19 Let f : X — R be any function on X. Then

(1) The functions f* and f** are always convex and lower-semicontinuous in the
weak-star topology of X* and in the weak topology of X, respectively.
(i) f*<f.
(ii) f®* = f* or f = £** depending on whether n is odd or even.
(iv) f1 < f2 implies that f{" > f}.

Proof We observe that f* is the supremum of a family of convex and weak-star
continuous functions on X*. Similarly, relation (2.15) shows that f** is the supre-
mum of a family of convex and weakly continuous functions on X. Thus, we obtain
part (i) as an immediate consequence of Corollary 2.6.

As already mentioned, it follows from relation (2.14) that

x,x™) — ff(x*) < f(x) forallx € X, x* € X*,

which clearly implies that f** < f, as claimed. Part (iv) is immediate, and therefore
its proof is omitted. To prove part (iii), it suffices to show that f*** = f*, In fact,
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it follows from part (ii) that f*** < f*, while part (iv) implies that f* < f***, as
claimed.

We observe from the definition of f* that, if the function f is not proper, that is,
if f takes on —oo or it is identically 400, then its conjugate is also not proper. Fur-
thermore, the conjugate f* may not be proper on X* though f is proper on X. This
is the reason for saying that a function admits conjugate if its conjugate is proper.
In particular, it follows from Proposition 2.19 that, if f admits a conjugate, then it
admits conjugate of every order. We shall see later that a lower-semicontinuous con-
vex function is proper if and only if it admits conjugate. This assertion will follow
from the Proposition 2.20 below. U

Proposition 2.20 Any convex, proper and lower-semicontinuous function is
bounded from below by an affine function.

Proof Let f: X — ]—00, +00] be any convex and lower-semicontinuous function
on X, f # 4o00. As already seen, the epigraph epi f of f is a proper convex and
closed subset of product space X x R. If xg € Dom(f), then (xq, f(x0) —¢&) € epi f
for every ¢ > 0. Thus, using the Hahn—Banach theorem (see Corollary 1.45), there
exists u € (X x R)* such that

sup  u(x,t) < u(xo, f(x0) — 8).
(x,t)eepi [

Identifying the dual space (X x R)* with X* x R, we may infer that there exist
x5 € X* and a € R, not both zero, such that

sup  {x5(x) + rar} < x5(x0) +a(f (x0) —¢).
(x,t)eepi f

We observe that o # 0 and must be negative, since (xp, f (xo) +n) € epi f for every
n € N. On the other hand, (x, f(x)) € epi f for every x € Dom(f). Thus,

x5 (x) +af (x) < x5(x0) +af (xo), Vx € Dom(f),
or
1 1
fx) = —;x{)k(X) + Exé(xo) + f(x0), ¥xeDom(f),

but the function in the right-hand side is affine, as claimed. O

Corollary 2.21 A lower-semicontinuous convex function is proper if and only if its
conjugate is proper.

Proof If the function f : X — ]—o0,400] is convex lower-semicontinuous and
nonidentically 400, then relation (2.14) and Proposition 2.20 show that f* % 400
and f*(x*) > —oo for every x* € X*. Next, we assume that f* is proper on X*.
Then, inequality (2.16) implies that f is nowhere —oo on X while relation (2.14)
shows that f must be nonidentically +oo. O
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Now, we establish a central result of Convex Analysis which is known in the
literature as the biconjugate theorem.

Theorem 2.22 Let f : X — ]—o00, +00] be any function nonidentically +00. Then
f* = fifand only if f is convex and lower-semicontinuous on X.

Proof If f = f**, then Proposition 2.19 implies that f is convex and lower-
semicontinuous. Now, we assume that f is proper, convex and lower-semicontinuous
on X. Since the conjugate f* of f is proper, using Corollary 2.21, we may
infer that f** > —oo everywhere on X. Moreover, Proposition 2.19(ii) implies
that f**(x) < f(x), for every x € X. Suppose that there exists xo € X such that
™ (x0) < f(xo) and we argue from this to a contradiction. Thus, (xg, f**(xg)) €
epi f, so that, using the same reasoning as in the proof of Proposition 2.20, we may
conclude that there exist x5 € X* and a € R such that

x5 (x0) + o f " (x0) > sup{x(’)"(x) +at; (x,1) € epif}. (2.26)

Since (x,t +n) € epi f for every n € N and (x, t) € epi f, relation (2.26) implies
that « < 0. Furthermore, o must be negative. Indeed, otherwise (that is, o = 0),
inequality (2.26) implies that

x§(x0) > sup{x;(x); x € Dom(f)}. (2.27)

Let & > 0 and y; € Dom(f*) be arbitrarily chosen. (We recall that Dom(f*) # ¢
because f* is proper.) One obtains

RO+ hxg) = sup{(x, y3) + h(x, x5) — f(x); x € Dom(f)}
< sup{(x, y3) — f(x); x € Dom(f)}
+ hsup{(xj,x); x € Dom(f)}
= f*(3$) + hsup{(x§, x); x € Dom(f)}.

On the other hand, a simple calculation involving the latter expression and inequa-
lity (2.17) yields

F*(x0) = (g + hxg, x0) — f*(v§ + hxg)
> (5, %0) — £* () + k[ (x5 x0) — sup{(x§, x): x € Dom(/)}].

Comparing this inequality with (2.27) and letting 4 — +00, we obtain f**(xo) =
+o0, which is absurd. Therefore, « is necessarily negative. Thus, we may divide
inequality (2.26) by —« to obtain

xg(_3;_0> — [ (x0) > sup{xé‘(—%) —1; (x,1) € ePif}

1 1
:sup{(—&xa‘,x) — f(x); xeDom(f)} =f*(—;x6‘>.
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But this inequality obviously contradicts inequality (2.17). Hence, f**(xo) = f(x0)
for every xg € Dom(f**). Since f**(x) = f(x), for all x € Dom( f**), it results
that f**(x) = f(x) for all x € X. Thus, the proof is complete. O

More generally, if f is not lower-semicontinuous, then f** =cl f. Thus, we
obtain the following corollary.

Corollary 2.23 The biconjugate of a convex function f coincides with its closure,
that is, f** =cl f.

Proof 1t is clear that cl f is lower-semicontinuous if it is proper and, therefore,
(cl f)** =cl f as a consequence of Theorem 2.22. But as has already been men-
tioned, f* = (cl f)*, which shows that f** =cl f, as claimed. If cl f is not proper,
the result is immediately clear, since f** = (cl f)** =cl f = —oc0. O

Corollary 2.24 A proper function f is convex and lower-semicontinuous on X if
and only if it is the supremum of a family of affine continuous functions.

Proof 1If f is a proper convex and lower-semicontinuous, then f(x) = f**(x) =
sup{(x, x*) — f*(x*); x* € D(f*)} for every x € X, and x — (x,x™) — f*(x*) is
an affine continuous function for each x* € Dom( f*), as claimed. The converse is
obvious (see Corollary 2.6). O

There is a close connection between the effective domain Dom( f) of a lower-
semicontinuous convex function f : X — R and the growth properties of its con-
. —k
jugate f*: X* >R .

Proposition 2.25 Assume that X is a reflexive Banach space. Then the following
two conditions are equivalent:

(1) intDom(f) # @.
(i) There are p > 0 and C > 0 such that

fA(p) = plplx-—C, VpeX. (2.28)
Moreover, Dom( f) = X if and only if
*
) _ (2.29)
Ipli—oco I pll

Proof 1f intDom( f) # @, then there is a ball B(xg, p) C intDom(f) and by Theo-
rem 2.14, f is bounded on B(xg, p). Then, by the duality formula (2.14), we have
(for simplicity, assume xo = 0)

f*(p)zpllpllx*—f< >2pllpllx*—C, Vp e X",

x
p —_—
llxllx

as claimed.
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If (ii) holds, then by (2.15) we see that
f) = f**(x) < sup{(x,x*) — pllx*||x« — C} <00 for|x|x <p
X

and therefore B(0, p) C Dom( f), as claimed.
Now, if Dom(f) = X, then by the above argument it follows that (2.28) holds
for all p > 0, that is, for all p > 0,

ff(p)=plplx-—C,, VpeX*,

which implies that (2.29) holds. Conversely, if (2.29) holds, then, by (2.15), we see
that Dom( f) = X, as claimed. Il

Theorem 2.22 and Corollary 2.23, in particular, yield a simple proof for the well-
known bipolar theorem (Theorem 2.26 below), which plays an important role in the
duality theory.

Theorem 2.26 The bipolar A°° of a subset A of X is the closed convex hull of the
origin and of A, that is,

A°° = conv(A U{0}). (2.30)

Proof Inasmuch as the polar is convex, weakly closed and contains the origin, it
suffices to show that A°° = A for every convex, closed subset of X, which contains
the origin. In this case, relations (2.24) and (2.25) imply that

* kk
IAooszo:A =IA’
because 4 is convex and lower-semicontinuous. Hence, A = A®°, as claimed. O

Remark 2.27 We notice that the conjugate correspondence f — f* is one-to-one
between convex and lower-semicontinuous convex functions on X and weak-star
lower-semicontinuous convex functions on X*. In this context, the concept of con-
jugate defined above seems to be more suitable for convex functions.

For concave functions, it is more natural to introduce a concept of conju-
gate which preserves the concavity and upper-semicontinuity. Given any function
g:x — R, the function g* : X* — R defined by

g*(x) =inf{(x, x*) — g(x); x € X}, (2.31)

is called the concave conjugate function of g. We observe that the concave conjugate
g™ of a function g can be equivalently expressed with the aid of convex conjugate
defined by relation (2.14) as it follows that

gF(x") = —(—g)*(—x¥) forevery x* € X*,

where the conjugate in the right-hand side is in the convex sense.
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In general, facts and definitions for concave conjugate functions are obtained
from those above by interchanging < with >, +o00 with —oo and infimum with
supremum wherever these occur. Typically, we consider the concave conjugate for
concave functions and the conjugate for convex functions.

Remark 2.28 Let f be a convex function on a linear normed space X and let
f*: X* — R be the conjugate function of f. Let (f*)*; X** — R be the conjugate
of f* defined on the bidual X** of X. It is natural also to call (f*)* the biconju-
gate of f and, if X is reflexive, obviously (f*)* coincides with f**. In general, the
restriction of (f*)* to X (when X is regarded in the canonical way as the linear
subspace of X**) coincides with f**.

Remark 2.29 The theory of conjugate functions can be developed in a context more
general than that of the linear locally convex space. Specifically, let X and Y be
arbitrary real linear spaces paired by a bilinear functional (-, -) and let X and Y be
endowed with compatible topologies with respect to this pairing. Let f : X — R be
any extended real-valued function on X. Then the function f* on Y defined by

[ =sup{(x,y) — f(x); xe X}, yev, (2.32)

is called the conjugate of f (with respect to the given pairing). A closer examination
of the proofs shows that the above results on conjugate functions are still valid in
this general framework.

2.2 The Subdifferential of a Convex Function

The subdifferential of a convex is a basic concept for convex analysis and it will be
developed in detail in this section.

2.2.1 Definition and Fundamental Results

Throughout this section, X denote a real Banach space with dual X* and norm || - ||.
As usually, (-, -) denote the canonical pairing between X and X*.

Definition 2.30 Given the proper convex function f : X — ]—o0, +0o0], the subd-
ifferential of such a function is the (generally multivalued) mapping df : X — X*
defined by

f x)={x* e X* fx)— f(u) <(x —u,x*), YueX}. (2.33)

The elements x* € df (x) are called subgradients of f at x.
It is clear from relation (2.33) that df (x) is always a closed convex subset of X*.
The set df (x) may well be empty as happens, e.g., if f(x) =400 and f % +o0.
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The set of those x for which df (x) # @ is called the domain of df and is denoted
by D(9f). Clearly, if f is not the constant 400, D(df) is a subset of Dom( f). The
function f is said to be subdifferentiable at x, if x € D(9f).

Example 2.31 Let K be a closed convex subset of X. The normal cone Nk (x) to K
at a point x € K consists, by definition, of all the normal vectors to half-spaces that
support K at x, that is,

Ng(x)={x*eX*; (x*,x —u)>0forallu e K}.

This is a closed convex cone containing the origin and, in terms of the indicator
function /g of K, we can write it as

Ng(x)=0Ig(x), xeKk.

Clearly, D(01g) = K and dlkx(x) = {0} when x € intK. In particular, if K is a
linear subspace of X, then /g (x) = K L forall x € K (K= is the subspace of X*
orthogonal to K).

Example 2.32 Let f(x) = % |lx||2. Then, f is a convex continuous function on X.
Furthermore, f is everywhere subdifferentiable on X and the subdifferential df
coincides with the duality mapping F : X — X* (see Definition 1.99). Indeed, if
x* € F(x), then, by the definition of F, one has

(=, x) = [lx]® = @, x*) =[x = flull x|
> %(||x||2 — |lull?), forevery u € X.
In other words, x* € df (x). Conversely, suppose that x* € 3f (x). Hence,
(= 2 2 (P~ ul?), Vue X,
Taking in the latter inequality u = x + Av, where . € R* and v € X, we see that
—A(v, x*) > —%(mnxn loll + A2 [v]1?).

Therefore
|, x| < vllllx]l, YveX.
Furthermore, we take u = (1 — A)x, divide by A and let 1 \ 0; we get
(x, x*) = x|,
Combining these inequalities, we obtain
(v, %) = 1x 1% = 1112,

Thus, we have shown that x* € F(x), as claimed.
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In the general theory of convex optimization, the following trivial consequence
of Definition 2.30 plays an important role.

If f is a proper convex function on X, then the minimum (global) of f over X
is attained at the point x € X if and only if 0 € 9f (x).

It must be observed that, if f is strictly convex, then for every x* € X* the func-
tion f(x)— (x, x™) attains its minimum in at most one point x = (af)_1 (x*). Hence,
in this case, the map (3f) ! is single valued.

To make use of this minimum (necessary and sufficient condition), it is necessary
to calculate the subdifferentials of certain convex functions; this can be easy or
difficult, depending on the nature and the complexity of the given function. It is
found as a result that, if f is lower-semicontinuous, the subdifferential df™* of the
conjugate function f* coincides with (3f)~!. More precisely, one has the following
proposition.

Proposition 2.33 Ler f: X — ]—o00, +00] be a proper convex function. Then, the
following three properties are equivalent:

1) x*eaf(x).
() f0)+ fH5") < (x, x7).
(i) f(x) + fF(xF) = (x, x).

If, in addition, f is lower-semicontinuous, then all of these properties are equivalent
to the following one.

@iv) x € af *(x™).

Proof The Young inequality (relation (2.16)) shows that (i) and (iii) are equivalent.
If statement (iii) holds, then, using again the Young inequality, we find that

F@) = f&x) > @—x,x%), YuelX,

that is, x* € df (x). Using a similar argument, it follows that (i) implies (iii). Thus,
we have shown that (i), (ii) and (iii) are equivalent. Now, we assume that f is a
lower-semicontinuous, proper convex function on X. Since statements (i) and (iii)
are equivalent for f*, relation (iv) can be equivalently expressed as

O+ (%) = (x, x™), (2.34)

where (f*)* : X** — ]—00, +00] is the conjugate function of f*. As mentioned in
Sect. 2.1.4, the restriction of (f*)* to X (which, from the canonical viewpoint, is
regarded as a subspace of X**) is f** and the latter coincides with f (see Theo-
rem 2.22). Thus, (iii) and (iv) are equivalent. This completes the proof of Proposi-
tion 2.33. g

Remark 2.34 Since the set of all minimum points of the function f coincides with
the set of solutions x of the equation 0 € df (x), Proposition 2.33 implies that in the
lower-semicontinuous case, a function f attains its infimum on X if and only if its
conjugate function f* is subdifferentiable at the origin, that is, 3 *(0) N X™* £ (.
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Remark 2.35 1f the space X is reflexive, then it follows from Proposition 2.33 that
af*: X* — X*™ = X is just the inverse of df, in other words,

X e (x*) = x*edf(x). (2.35)

If X is not reflexive, 9f™ is a (multivalued) mapping from X* to the bidual X**,
which strictly contains X, and the relation between df and df™ is more complicated
(see, for example, Rockafellar [59]).

Proposition 2.36 [f the convex function f : X — ]—00, 400] is (finite and) contin-
uous at xo, then f is subdifferentiable at this point, that is, xo € D(3f).

Proof Let us denote by H the epigraph of the function f, that is,
H={(x,)eXxR; f(x)<Ar}.

H is a convex subset of X x R and (x¢, f(xg) + €) € int H for every ¢ > 0, because
f is continuous at xo. We denote by H the closure of H and observe that (xg, f(x0))
is a boundary point of H. Thus, there exists a closed supporting hyperplane of H
which passes through (xo, f(xp)) (see Theorem 1.38). In other words, there exist
xj € X* and ap € R™, such that

ao(f(x0) — f(x)) < (x0 —x,x5) forevery x € Dom(f). (2.36)

It should be observed that a9 7% 0 (that is, the hyperplane is not vertical) because,
otherwise, (xo — x, x;) = 0 for all x in Dom(f), which is a neighborhood of xo.
But this would imply that x;j = 0, which is not possible. However, inequality (2.36)

shows that % is a subgradient of f at xq, thereby proving Proposition 2.36. g

Remark 2.37 From the above proof, it follows that a proper convex function f is
subdifferentiable in an element xo € Dom( f) if and only if there exists a nonvertical
closed support hyperplane of the epigraph passing through (xo, f(x0)).

Corollary 2.38 Let f be a lower-semicontinuous proper convex function on a Ba-
nach space X. Then

intDom(f) C D(3f). (2.37)

Proof We have seen in Sect. 2.1.3 (Proposition 2.16) that f is continuous at every
interior point of its effective domain Dom( f). Thus, relation (2.37) is an immediate
consequence of Proposition 2.36.

The question of when a convex function is subdifferentiable at a given point is
connected with the properties of the directional derivative at this point. Also, we
shall see later that the subdifferential of a convex function is closely related to other
classical concepts, such as the Gdteaux (or Fréchet) derivative.

First, we review the definition and some basic facts about directional and weak
derivatives.
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Let f be an proper convex function on X. If f is finite at the point x, then, for
every h € X, the difference quotient A — 271 f(x 4+ Ah) — f(x)) is monotonically
increasing on ]0, oo[. Thus, the directional derivative at x in the direction h

£ my =lma! (Foc+am) = f@) = nf A7 (Fr 4 40 = f) - 2.38)

exists for every 1 € X. The function & — f'(x, h) is called the directional differen-
tial of f at x.Itis immediate from the definition that for fixed x € Dom(f), f'(x, 1)
is a positively homogeneous subadditive function on X. The function f is said to be
weakly or Gateaux differentiable at x if h — f’(x, h) is a linear continuous function
on X. In particular, this implies that

= =h) = [y = Jim 27 (f (e 2h) = £()

for every h € X. If f is weakly differentiable at x, then we denote by V f(x) or
grad f(x) (the gradient of f at x) the element of X* defined by

f'(x,h) = (h, grad f(x)) foreveryh € X.

The function f is said to be Fréchet differentiable at x if the difference quotients
in (2.38) as a function of & converges uniformly on every bounded set. g

Proposition 2.39 Let f : X — ]—00,+00] be a proper convex function. If f is
finite and continuous at x, then

£/ (o ) = sup{(h, x*): x* € Bf (x0)]} (2.39)
and, in general, one has
af (xo) = {x* € X; (h,x*) < f'(x0,h), Yh € X}. (2.40)

Proof Since (2.40) is immediate from the definition of df and (2.38), we confine
ourselves to prove (2.39). For the sake of simplicity, we denote by fj the function
Jfo(h) = f'(x0, h), Yh € X. Inasmuch as f is continuous at xo, the inequality

(h, w) < fo(h) < f(xo+h) = f(x0), Yw €df(xo)

implies that fy is everywhere finite and continuous on X. Furthermore, a simple
calculation involving the definition of conjugate (see relation (2.14)) shows that
the conjugate of the function x — A~1(f(xg 4+ Ax) — f(x0)) is just the function
x* = A7 () + f(xo) — (x0, x¥)). Therefore,

fEa = iu%rl (f(xo) + f*(x*) = (x0,x¥)),

because

fothy = inf 271 (f (xo + ) = f (x0)-
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According to Proposition 2.33, one has
9f (xo) = {x* € X*5 f(x0) + f*(x™) — (x0,x™) = 0}
and, therefore,

0, if x* € af (xop),
+o00, otherwise.

=]

Thus, f;* = fo is the support functional of the closed convex set df (xo) C X*.
This, clearly, implies relation (2.39), thereby proving Proposition 2.39.

If 9f(xp) happens to consist of a single element, Proposition 2.39 says that
f'(x0, h) can be written as

f'(xo,h) = (h,df (xo)) forevery h € X.

In particular, this implies that f is Gateaux differentiable at xoy and grad f(xp) =
af (x0). It follows that the converse result is also true. O

Namely,

Proposition 2.40 If the convex function f is Gdteaux differentiable at xg, then
df (xo) consists of a single element x; = grad f(xo). Conversely, if f is continu-
ous at xo and if 0f (xo) contains a single element, then f is Gdteaux differentiable

at xg and grad f (xg) = df (xo).
Proof Suppose that f is Giteaux differentiable at x, that is,
(h, grad f (xo)) = Ali_I)r}))L_l(f(xo + Ah) — f(xo)), Vh e X.
However,
AN (f o+ Ah) = f(x0) < fxo +h) — fxo) for & €0, 1]

because f is convex. This implies that

f(x0) — f(xo+h) < —(h,grad f(xo)) forallhe X,
that is, grad f (xg) € df (x0). Now, let x(’)‘ be any element of df (xg). We have

fxo) = f(u) < (xo —u,x5), VueX,

and, therefore,

AT (f (o + Ah) — f(x0)) = (h,x§) forevery A > 0.

This show that (grad f(xo) — x5, /) > 0 for all & € X, that is, x5 = grad f (xo). We
conclude the proof by noting that the second part of Proposition 2.40 has already
been proven by the above remarks. U
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Remark 2.41 Let f be a continuous convex function on X. If f* is strictly convex,
then, as noticed earlier, (3f *)_l = df is single valued. Then, by Proposition 2.40,
f is Gateaux differentiable. In particular, if f(x) = % llx |2, this fact leads to a well-
known result in the metric theory of normed spaces. (See Theorem 1.101.) Namely,
if the dual X* of X is strictly convex, then X is itself smooth.

Remark 2.42 1f g is a concave function on X, then, by definition its subdifferential
is g = —3(—g). In other words, x* € dg(x) if and only if

g(x) —gu) > (x —u,x*) foreveryu e X.

2.2.2 Further Properties of Subdifferential Mappings

It is apparent from Definition 2.30 that every subdifferential mapping 9f : X — X*
is monotone in X x X*. In other words,

(x1 —x2,x{ —x3)>0 forx/ €df(x;), i=1,2. (2.41)

The theorem below ensures us that any subdifferential mapping is maximal mono-
tone.

Theorem 2.43 (Rockafellar) Let X be a real Banach space and let f be a lower-
semicontinuous proper convex function on X. Then, df is a maximal monotone op-
erator from X to X*.

Proof In order to avoid making the treatment too ponderous, we confine ourselves
to proving the theorem in the case in which X is reflexive. We refer the reader to
Rockafellar’s work [59] for the proof in a general context. Then, using the renorming
theorem, we may assume without any loss of generality that X and X* are strictly
convex Banach spaces. Using Theorem 1.141, the maximal monotonicity of df is
equivalent to R(F + df) = X*, where, as usual, F : X — X™* stands for the duality
mapping of X. Let x; be any fixed element of X*. We must show that the equation

F(x)+af (x) 3 x,
has at least one solution xg € D(df). To this end, we define

2
X
filx) = % + f(x) — (x,x5) forevery x € X.
Clearly, f] : X — ]—o00, +00] is convex and lower-semicontinuous on X. More-
over, since f is bounded from below by an affine function, we may infer that

lim fj(x) =+o0.

||x || =400
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Thus, using Theorem 2.11 (see Remark 2.13), the infimum of f; on X is attained.
In other words, there is xg € Dom( f) such that

f1(x0) < fi(x) forevery x € X.
We write this inequality in the form
f(x0) = f(x) < (x0 — x,x5) + (x —x0, F(x)) forevery x € X

and set x = txo + (1 — ¢)u, where ¢ € [0, 1], and u is any element of X. Since the
function f is convex, one obtains

f(xo) = fu) < (xo—u, x3) + (u — x0, F(tx0 + (1 — 1)u)).

Passing to limit # — 1, we obtain

f(x0) = f ) < (xo — u, x5) + (u — xo, F(x0))

because F is demicontinuous from X to X* (see Theorem 1.106). Since u was
arbitrary, we may conclude that

xg — F(x0) € 3f (xo),
as we wanted to prove. O

Corollary 2.44 Let f : X — ]—o00,+00] be a lower-semicontinuous proper and
convex function on X. Then D(df) is a dense subset of Dom( f).

Proof For simplicity, we assume that X is reflexive. Let x be any element of
Dom( f). Then, Theorem 1.141 and Corollary 1.140 imply that, for every A > 0,
the equation

F(x,—x) +Af (x1) 20 (2.42)

has a unique solution x; € D(df). By the definition of df, we see that, multiplying
equation (2.42) by x; — x, we obtain

2 = xII* + Af (x2) < Af (x)
and therefore
lim [|x) — x|l =0,
A—0

because f is bounded from below by an affine function. Therefore, x € D(df) and
the corollary has been proved. U

It is well known that not every monotone operator arises from a convex function.
For instance (see Proposition 2.51 below), a positive linear operator acting in a real
Hilbert space is the subdifferential of a proper convex function on H if and only if
it is self-adjoint. Thus, we should look for properties which should characterize the
maximal monotone operators which are subdifferentials.
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Definition 2.45 The operator (multivalued) A : X — X™* is said to be cyclically
monotone if

(x0 —x1,x5) + -+ (Xn—1 — Xn, X _1) + (X, —x0, x;1) >0, (2.43)

for every finite set of points in the graph of A, that is, x;" € Ax; fori =0,1,...,n.
The operator A is said to be maximal cyclically monotone if it is cyclically monotone
and has no cyclically monotone extension in X x X*.

Obviously, every cyclically monotone operator is also monotone. If f is a proper
convex function on X, then a simple calculation involving the definition of 3 f shows
that the operator df is cyclically monotone. Moreover, it follows from Theorem 2.43
that, if f is in addition lower-semicontinuous on X, then its subdifferential df is
cyclically maximal monotone. Surprisingly, it turns out that condition (2.43) is both
necessary and sufficient for an operator A to be the subdifferential of some proper
convex function. The next theorem is more precise.

Theorem 2.46 Let X be a real Banach space and let A be an operator from X to
X*. In order that a lower-semicontinuous proper convex function f on X exists such
that A = 9f, it is necessary and sufficient that A be a maximal cyclically monotone
operator. Moreover, in this case, A determines f uniquely up to an additive constant.

Proof The necessity of the condition was proved in the above remarks. To prove the
sufficiency, we suppose therefore that A is maximal cyclically monotone in X x X*.
We fix [xg, x(’)k] in A. For every x € X, let

) =sup{(x —x,,x)) + -+ (x1 —x0, %))},

where xl.* € Ax; fori =1, ..., n and the supremum is taken over all possible finite
sets of pairs [x;, x]'] € A. We shall prove that A = 9f. Clearly, f(x) > —oo for all
x € X. Note also that f is convex and lower-semicontinuous on X. Furthermore,
f(x0) =0 because A is cyclically monotone. Hence, f % +o00. Now, choose any x
and x* with x* € Ax. To prove that [X, x*] € df, it suffices to show that, for every
A < f(x), we have

f)=A+(x—%, %) forallxeX. (2.44)

Let A < f(x). Then, by the definition of f there exist the pairs [x;, xlf" leA, i=
1,...,m, such that

A< (X —=xm,xp) + -+ (x1 — x0, X7)-
Let x;,41 =¥ and x| = x*. Then, again by the definition of f, one has
F) = (X = Xmr1, X ) + Gt — X, X)) + -+ 4 (X1 — X0, X7),

for all x € X, which implies inequality (2.44).



2.2 The Subdifferential of a Convex Function 91

By the arbitrariness of [x, x*] € A, we conclude that A C 9f. Since A is maximal
in the class of cyclical sets of X x X*, it follows that A = df, as claimed. It remains
to be shown that f is uniquely determined up to an additive constant. This fact will
be shown later (see Corollary 2.60 below). O

As mentioned earlier (see Theorem 1.143 and Corollary 1.140), if a maximal
monotone operator A : X — X* is coercive, then its range is all of X*. We would
like to know more about A~! in the case in which A is cyclically maximal mono-
tone. This information is contained in the following proposition.

Proposition 2.47 Let X be reflexive and A = df , where f : X — ]—00, 400] is
a lower-semicontinuous proper convex function. Then, the following conditions are
equivalent.

im @ =400, (2.45)
lx]|—+oo ||x||
R(A)=X* and A~V is bounded on bounded subsets. (2.46)

Proof 1°. (2.45)=(2.46). Let x( be arbitrary, but fixed in D(A). By the definition
of df, one has

(0f (x),x —x0) = f(x) — f(xo) foranyx e D(A)
and therefore
G

Thus, Corollary 1.140 quoted above implies that R(A) = X*. Moreover, it is readily
seen that the operator A~! is bounded on every bounded subset of X*.

2°.(2.46)=(2.45). Inasmuch as f is bounded from below by an affine function,
no loss of generality results in assuming that f > 0 on X. Let r > 0. Then, for every
ze€ X*, |zl <r,ve D(A) and C > 0 such that

z€ Av, |v|| =C.
Next, by
fw)— fw)>w—v,z) foralluinX,

it follows that (u, z) < f(u) + Cr for any u € Dom(f) and z in X with ||z|]| <r.
Hence,

f@)+Cr=rlul,

or

C
A >r — =r forall u € X.
flall fleell

This shows that condition (2.45) is satisfied, thereby completing the proof. O
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Remark 2.48 A convex function f satisfying condition (2.45) is called cofinite
on X. Recalling that (3f)~! is just the subdifferential 3f* of the conjugate func-
tion f* (see Proposition 2.33). Proposition 2.47 says that a lower-semicontinuous
proper convex function f is cofinite on X if and only if its conjugate f* is every-
where finite and df™ is bounded on every bounded subset of X*. In particular, if
X =R, then condition (2.46) and Dom( f*) = R are equivalent. Thus, in this case,
a lower-semicontinuous convex function f is cofinite if and only if f* # 400 ev-
erywhere on X*.

We conclude this section with some examples of cyclically monotone operators.

Example 2.49 (Maximal monotone graphs in R x R) Every maximal monotone
graph in R? is cyclically monotone. Indeed, let f be a maximal monotone graph
in R x R. We prove that there exists a lower-semicontinuous convex function
Jj : R — ]—00, 400] such that 9j = B. Indeed, there exist —oo <a < b < +o00
such that ]a, b[C Dom(B) C [a, b]. Let ° : Dom(8) — R be the minimal sec-
tion of B, that is, |8°(r)| = inf{lw|; w € B(r)} (see Sect. 1.4.1). Clearly, the
function B° is single valued, monotonically increasing and, for each r € ]a, bl,
B(r)=[B°( —0), B°(r +0)] while B(a) =]—o00, B°(a + 0)] if a € Dom(8) and
B) =[B°(b — 0), +oo[ if b € Dom(B) (this is an immediate consequence of the
maximality).
Now, let rg be fixed in Dom(8) and define the function j : R — ]—o0, +00]

j(r):{ffoﬁt’(s)d& ifr € la. b].
+00, if r €la, b].

Then, we have
RV CEY WO
t
for all r € Dom(B), t € R and & € B(r). Hence, B(r) € 0j (r) for all r € Dom(p).

We have therefore proved that 8 = 9.

By Corollary 2.60 below, the function j is uniquely defined up to an additive
constant.

Example 2.50 (Self-adjoint operators in Hilbert spaces) Let H be a real Hilbert
space whose norm and inner product are denoted | - | and (-, -), respectively. Let A
be a single-valued, linear and densely defined maximal monotone operator in H.

Proposition 2.51 A is cyclically maximal monotone if and only if it is self-adjoint.
Moreover, in this case, A = 0f , where

1 L 9 . L
UASxP, ifxeD(AY),

+00, otherwise.

feo)= (2.47)
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Proof First, suppose that A is self-adjoint. Then, f defined by (2.47) (A% denotes
the square-root of the operator A) is convex and lower-semicontinuous on H

(because A% is closed). Let x € D(A). We have
Lot o 1,1 0 1
§|A2x| —§|A2u| <(Ax,x—u), forallue D(A2),

because (Ax,u) = (A2x, A2u) for all x in D(A) and u € D(A%). Hence, A C .

On the other hand, it follows by a standard device that A is maximal, that is,
R(I + A) = H. (One proves that R(I + A) is simultaneously closed and dense
in H.) We may conclude, therefore, that A = 9f.

Suppose now that A is cyclically maximal monotone. According to Theo-
rem 2.46, there exists f : H — ]—o00, +00] convex and lower-semicontinuous,
such that A = df. Inasmuch as A0 = 0, we may choose the function f such that
f(0) =0. Let g(¢) be the real-valued function on [0, 1] defined by

g(1) — f(tu),
where u € D(A). By the definition of the subgradient, we have
gt)—g(s) <t —s)t(Au,u) fort,sel0,1].

The last inequality shows that g is absolutely continuous on [0, 1] and % g =
t(Au, u) almost everywhere on this interval. By integrating the above relation on
[0, 1], we obtain

fw)= % (Au,u) foreveryu € D(A)

and, therefore,
1
f (u) = E(Au + A*u) forevery u € D(A) N D(A™Y).
This, clearly, implies that A = A*, as claimed. O

Example 2.52 (Convex integrands and integral functionals) Let §2 be a Lebesgue
measurable subset of R" and let L (£2), 1 < p < 00, be the usual Banach space of
p-summable functions y : £2 — R™.

A function g : 2 x R" — R'= ]—00, +0o0] is said to be a normal convex inte-
grand on §2 x R™ if the following conditions are satisfied:

1 g, ):R" — R" is convex, lower-semicontinuous and # +00, a.e. x € §2.
(ii) g is measurable with respect to o-field of subsets of 2 x R™ generated by
products of Lebesgue sets in §2 and Borel sets in R™.

It is easy to see that, if g is a normal convex integrand on §2 x R™, then for
every measurable function y : £2 — R™ the function x — g(x, y(x)) is Lebesgue
measurable on £2.
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Condition (ii) extends the classical Carathéodory condition. In particular, it is
satisfied if g(x, y) is finite, measurable in x and continuous in y. If g satisfies con-
dition (i) and int D(g(x,-)) # @ a.e. x € £2, then condition (ii) is satisfied if and
only if g(x, y) is measurable with respect to x for each y € R™. The proof of this
assertion along with other sufficient conditions for normality of convex integrands
can be found in the papers [61, 63] of Rockafellar who introduced and developed
the theory of convex normal integrands (see also the survey of Ioffe and Levin [32]).

Besides (i), (ii), we assume that g satisfies the following two conditions:

(iii) g increases at least one function h on §2 x R™ of the form
h(x,y) = (y, a(x)) + B (x),

where o € Lf;,/(.Q), () '+ pt=1and peL) ().
(iv) There exists at least one function yy € LY (§2) such that g(x,y) € LY(2).

It must be observed that conditions (iii) and (iv) automatically hold if g is inde-
pendent of x.
For any y € L} (£2), define the integral

Ii(y) = /9 g(x, y(x)) dx. (2.48)

More precisely, the functional I, is defined on Lh(£2) by

| o g,y dx, if glx,y) € LL(82),
Ig()’) = .
+00, otherwise.

Proposition 2.53 Let conditions (i), (ii), (iii) and (iv) be satisfied. Then, the func-
. 7D =% . . .

tion Iy : L, (£2) — R, 1 < p < 400, is convex, lower-semicontinuous and # +00.

Moreover, for every y € Lb (2), the subdifferential 01, (y) is given by

A, (y)={we LY (2): w(x) € 3g(x, y(x)) a.e. x € 2}. (2.49)

Proof By conditions (ii) and (iv), it follows that the integral I, (y) is well defined
(either a real number or +o00) for every y € L (£2). The convexity of I is a di-
rect consequence of the convexity of g(x, -) for every x € £2. To prove the lower-
semicontinuity of /,, consider a sequence {y,} strongly convergent to y in Lh ().
On a subsequence, again denoted {y, }, we have

ya(x) = y(x) ae.xef

and, therefore,

g0, yn (@) = (), @(x) = Bx) = g(x, y(x)) = (y(x), 2(x)) — B(x)

ae. x €52.
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Then, by the Fatou Lemma
hminf]g ) = I, »
n—oo

because liminf,_, o g(x, ¥y, (x)) > g(x, y(x))(g(x, -)) is lower-semicontinuous.
Now, let w € 01, (y). By the definition of 9/, (y), we have

/(g(x,y(x))—g(x,u(x)))dxf/(w(x),y(x)—u(x))dx
2 2

forallu € LY (£2). Let E be any measurable subset of £2 and

- u, ifxekE,
u(x) = .
y(x), ifxef2\E,

where u is arbitrary in R”. We have

/ (g(x, y(x)) —g(x,u)— (w(x), y(x) — u))dx <0.
E
Since E is arbitrary, we may conclude that

g(x, y(x) < glr,u) + (wx), y(x) —u) ae. xes,
and therefore

w(x) € 8g(x, y(x)) ae. x €2,

as claimed. Conversely, it is easy to see that every w € Lf,’; (£2) satisfying the latter
belongs to 914 (y). 0

Remark 2.54 Under the assumptions of Proposition 2.53, the function I, is weakly
lower-semicontinuous on L% (£2) (because it is convex and lower-semicontinuous).
It turns out that the convexity of g(x,-) is also necessary for the weak lower-
semicontinuity of the function I, (see loffe [29, 30]). This fact has important impli-
cations in the existence of a minimum point for /.

We note also that in the case p = oo the structure of 3/,(y) € (L°°(£2))* is
more complicated and is described in Rockafellar’s work [61]. (See, also, [32].) In
a few words, any element w € 01, (y) is of the form w, + wy, where w, € L'(£2),
wq(x) € 9g(x, y(x)), a.e., x € 2, and w, € (L*>°(£2))* is a singular measure.

Now, we shall indicate an extension of Proposition 2.53 to a more general context
when R™ is replaced by an infinite-dimensional space.

Let H be areal separable Hilbert space and [0, T'] a finite interval of real axis. Let
¢:[0,T] > R be such that, for every t € [0, T], the function x — ¢(t, x) is convex,
lower-semicontinuous and % +oo. Further, we assume that ¢ is measurable with
respect to the o-field of subsets of [0, T] x H generated by the Lebesgue sets in
[0, T'] and the Borel sets in H.
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In accordance with the terminology used earlier, we call such a function ¢ a
convex normal integrand on [0, T'] x H.

Assume, further, that there exist functions o € LP 0,T;H), B e LY(0, T) and
xo € LP(0, T; H) such that ¢(¢, xo) € L'(0, T) and

o(t,x) > (ao(r), x) + B(1), (2.50)
forallx e Handt € [0, T]. .
Define the function I, : L?(0,T; H) — R*, 1<p<oo,

Jo @(t.x)dr, if p(t,x) € L'(0, T),

Iy(x) = .
¢ 00, otherwise.

2.51)

Proposition 2.55 The function I, is convex, lower-semicontinuous and # 400 on
LP(0,T; H). The subdifferential 31, is given by

M) ={we LY, T; H); w(t) e dp(t,x(1)) a.e. 1 €10, T[}, (2.52)

1 1 _
where - + Vi =1.

The proof closely parallels the proof of Proposition 2.53, and so, it is left to the
reader.

Example 2.56 Let §2 be a bounded and open domain of R" with a smooth bound-
ary I'. Letg: R — R" be a lower-semicontinuous convex function and let B =0g
be its subdifferential. Define the function ¢ : LZ(Q) - R =]-o00, +o0]

Lo leradyPdx + [, g(»)dx, ifye HJ($2)and g(y) € L' (£2),

o) = +00, otherwise.

Proposition 2.57 The function ¢ is convex, lower-semicontinuous and
dp(y)={we L*(2); w(x) € —Ay(x) + 3g(y(x)) a.e. x € 2},
D(d¢) = {y € Hy(2) N H*(2); 3w € L*(£2), b (x) € dg(y(x)) (2.53)
a.e. x € .Q}
Proof We have
0 =T, +1a(), Vye LX),

where I is defined by (2.48) and I, : L*(2) — R,

1 1
IA(y)=—§/QyAyd€=E/QIVyIZdE, Vy € Hy ().
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This implies that ¢ is convex and lower-semicontinuous. If we denote by F :
L?(£2) — L?*(£2) the map defined by the right-hand side of (2.53), we see that Fy €
dp(y),Vy € D(F) ={y € Hj (£2) N H*(2); 3 € L*(2), w(x) € Ig(y(x)) ae.
x € 2}.

To show that F = d¢, it suffices to check that F is maximal monotone, that is,
the range of I + F is all of L2(£2). In other words, for each fe L2(2), the elliptic
equation

y—Ay+dg(y)> f in; yeHN(2)NH*(2)

has solution.
One might apply for this the standard existence theory for nonlinear elliptic equa-
tions or Theorem 2.65, because, as easily seen, condition (2.89), that is,

/g((1+aA>—1y)dxsf gy dx, VyeL* (),
2 2

where A =—A, D(A) = H} (£2) N H*(£2), is satisfied. (We assume that g(0) =0.)
A similar result follows for the function @ : L?>(£2) — R, defined by

50y = | 2 JolEmdyPdx+ [re()dx, ify e HI(2). g e LI,
00, otherwise. 0

Arguing as in the preceding example, we see that ¢ is convex and lower-
semicontinuous. As regards its subdifferential d¢ : L2(2) — L3(£2), it is given
by (see Brezis [11, 12])

dp(y) =—Ay, VyeD(dg), (2.54)

where

dy

D(d¢) = {y € H*(2); — ™

€ B(y) a.e. on F}.

In particular, if g =0, the domain of d¢ consists of all y € H?(£2) with zero Neu-
mann boundary-value conditions, that is, % =0ae.on /.

2.2.3 Regularization of the Convex Functions

Let X and X™* be reflexive and strictly convex. Let f : X — R" be a lower-
semicontinuous convex function and let A = df. Since A : X — X* is maximal
monotone, for every A > 0 the equation

F(x) —x)+1Ax; 30, (2.55)
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where F : X — X* is the duality mapping of X, has at least one solution x; € D(A)
(see Theorem 1.141). The inequality

(Fx) = F(y),x —y) = (Ixll = lIyl)> forall x,yin X

and the strict convexity of X and X* then imply that the solution x; of (2.55) is
unique. We set

X)) = J;Lx, (2.56)
Asx = =2V F (o — x). (2.57)
(See Sect. 1.4.1.)
For every A > 0, we define
=P
f.(x) =inf 7 + f(y); yeX x e X. (2.58)

Since, for every x € X, the infimum defining f; (x) is attained, we may infer that f3
is convex, lower-semicontinuous and everywhere finite on X. One might reasonably
expect that the function f; “approximates” f for A — 0. Theorem 2.58 given below
says that this is indeed the case.

Theorem 2.58 Let f : X — ]—00, 400] be a lower-semicontinuous proper and
convex function on X. Let A = of . Then, the function f, is Gdteaux differentiable
on X and A, = df, for every A > 0. In addition,

fHlx) = <%> ||A;Lx||2 + f(Jrhx) foreveryx e X, (2.59)
}in}) LH.(x) = f(x) foreveryx e X, (2.60)
f(hx) < fri(x) < f(x) foreveryx e X and ) > 0. (2.61)

Proof It is readily seen that the subdifferential of the function y — % + £
is just the operator y — A~ F(y — x) + df(y). This fact shows that the infimum
defining fj (x) is attained in a point x;, which satisfies the equation

F(x) —x)+Adf(xy)20.

Thus, x; = Jyx and equality (2.59) is immediate. Since inequality (2.61) is ob-
vious, we restrict ourselves to verify relation (2.60). There are two cases to be
considered. If x € Dom( f), then lim;_, » Jyx = x, by using Corollary 1.70 and
Proposition 1.146. This fact, combined with the lower-semicontinuity of f and in-
equality (2.61), shows that limy_.¢ fi(x) = f(x). Now, assume that f(x) = 4o0.
We must show that fj (x) — +oo for A — 0. Suppose that this is not the case, and
that, for example,

fr,(x) <C where A, — 0.
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If equality (2.59) is used again, it would follow that, under the present circum-
stances, Jy,x — x and f(J,,x) < C. Then the lower-semicontinuity of f would
imply that f(x) < C, which is a contradiction. To conclude the proof, it must be
demonstrated that f is Gateaux differentiable at every point x € X and 9fy(x) =
A, x. A simple calculation involving relations (2.56), (2.57), and (2.59), and the
definition of df gives

H0) = @ = 5 (1A P = 143517) + (Axy, Sy = o),
that is,
)= fHx) = (Awy,y —x) + (Ary, Ly —y) + (Ary, x — Jrx)
£ 2 (1A + 1A ?).
Finally,

0= fi(y) = falx) = (Axx, y —x) < (Apy — Apx, y — x), (2.62)

forall A > 0and x, y in X.
In inequality (2.62), we set y = x + fu, where ¢ > 0 and divide by . We obtain

. Sl +tu) — fiu(x)
1m

= (A)x,u) foreveryx € X,
t—0 t

because A, is demicontinuous by Proposition 1.146. Therefore, f; is Gateaux diffe-
rentiable at any x € X and df, (x) = A, x. [l

Corollary 2.59 In Theorem 2.58, assume that X = H is a real Hilbert space. Then,
the function f is Fréchet differentiable of H and its Fréchet differential df, = Ay
is Lipschitzian on H.

Proof Denote by [ the identity operator in H. Then, F = I and J,, respectively,
A;, can be expressed as
J=U+21A)7!
and
Ay =2"1T = 1.

Then, A, is Lipschitzian on H with the Lipschitz constant 1 (see Proposi-

x
tion 1.146), so that inequality (2.62) yields

2
|fA()’)—fA(X)—(A,\x,y—x)|SM for all A > 0,

which, obviously, implies that f is Fréchet differentiable on H. O
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Corollary 2.60 Let X be a reflexive Banach space and let f and ¢ be lower-
semicontinuous, convex and proper functions on X. If dp(x) = df (x) for every
x € X, then the function x — ¢(x) — f(x) is constant on X.

Proof Let ¢, and f; be defined by formula (2.58). Then, using Theorem 2.58, we
may infer that d¢, = df; for every A > 0, so that

@r(x) — fo(x) =constant, forevery x € X and A > 0,
because ¢, and f; are Géteaux differentiable. But this clearly implies that

@1.(x) = fr(x) = @r(x0) — fa(xo) forevery x € X and 2 >0,

where xg is any element in X. Again, using Theorem 2.58, we may pass to the limit,
to obtain

@(x) — f(x) =p(x0) — f(xo) foreveryxeX,

as claimed. O

Remark 2.61 Let X = H be a Hilbert space and g(x) = % |x|%. Then the function
f>. can be equivalently written as

fi=("+2r9)"

2.2.4 Perturbation of Cyclically Monotone Operators
and Subdifferential Calculus

It is apparent that, given two lower-semicontinuous proper convex functions f and
¢ from X to ]—o0, +00], then

Af (x) + dp(x) C A(f + @)(x) forevery x € D(Af) N D(dp). (2.63)

Thus, it may be ascertained that df 4+ d¢ = 9(f + ¢) if and only if the monotone
operator df + d¢ is again maximal. More generally speaking, the following is an
interesting problem: if A and B are maximal monotone operators, is A + B again a
maximal monotone operator? In general, the answer has to be negative since A + B
can even be empty, as happens, for example, if D(A) does not meet D(B). The main
result for the problem in this line is due to Rockafellar [60] and it states that, if at
least one of the maximal monotone operators A or B has a domain with a nonempty
interior and (int D(A)) N D(B) # @ (or (D(A) Nint D(B) # @), then A + B is
maximal monotone. Instead of proving this theorem in full, we generally restrict
ourselves to the case when B = df.
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Theorem 2.62 Let X be a reflexive Banach space and let A be a maximal monotone
operator from X to X*. Let f : X — ]—00, +00] be a lower-semicontinuous proper
and convex function on X. Assume that at least one of the following conditions is
satisfied.

D(A) NintDom( f) # @, (2.64)

Dom(f) Nint D(A) # @. (2.65)

Then A + df is a maximal monotone operator.

Proof Using the renorming theorem, we can choose in X and X* any strictly convex
equivalent norms. Without loss of generality, we may assume that 0 € D(A), 0 € A0
and 0 € 9f(0). Moreover, according to relations (2.55) and (2.65), we may further
assume that

0 e D(A) NintDom( f), (2.66)
or
0 € Dom(f) Nint D(A). (2.67)

This can be achieved by shifting the domains and ranges of A and df. In view of
Theorem 1.141, A 4 9f is maximal monotone if and only if, for every y* € Y*,
there exists x € D(A) N D(df) such that

F(x)+ Ax +9f(x) > y*. (2.68)

To show that equation (2.68) has at least one solution, consider the approximate
equation

Fx) + Ax; +3f.(x) 2y", A>0, (2.69)

where f, is the convex function defined by (2.58). According to Theorem 2.58,
the operator 9f, = (df), is monotone and demicontinuous from X to X*. Corol-
lary 1.140 and Theorem 1.143 are therefore applicable. These ensure us that, for
every A > 0, equation (2.69) has a solution (clearly, unique) x, € D(A). Multiply-
ing equation (2.69) by x;, it yields

lxall < ly*|l  for every A > 0, (2.70)

because Ay, df) are monotone and 9f; (0) =0,0 € A).
First, we assume that condition (2.66) is satisfied. Since f is continuous on the
interior of its effective domain Dom( f'), there is p > 0 such that

Hilpw) < f(pw) <C foreveryw € X, |w| =1,

where C is a positive constant independent of A and w is in X. Then, multiplying
equation (2.69) by x; — pw, it yields

(Fxy, x5 — pw) + (Axy, x3 — pw) + fr(x3) < (", xu — pw) + C. (2.71)
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Let yj = y* — Fx; — dfi(x3) € Ax,. In relation (2.71), we choose
e ()
5]

plyill<C forall 2> 0. (2.72)

to obtain

(We shall denote by C several positive constants independent of X.) Thus, with the
aid of equations (2.69) and (2.70), this yields

[af.(xp)|| <€ forall x> 0. (2.73)

Next, we assume that condition (2.67) is satisfied. Then, according to Theo-
rem 1.144, the operator A is locally bounded at x = 0, so that there is p > 0, such
that

sup{llz*|l; z* € Ax; llx| < p} <C. (2.74)

Let w be any element in X such that ||w] = 1.
Again, multiplying equation (2.69) by x; — pw, we obtain

(Fx5., %0, — pw) + (3f5.(x2), X1 — pw) + (Axp, xp — pw) = (¥}, x5 — pw).

:-F—l( af5.(x3.) )
105 (el

and use the monotonicity of A and estimate (2.74) to get

Then, we put

|| afa(xy) || <C forevery A > 0.

So far, we have shown that y;‘, Fx; and 9f; (x;) remain in a bounded subset of X*.
Since the space X is reflexive, we may assume that

x; — x weaklyin X,
(2.75)
Fx; +y;— 7" weakly in X*.

To conclude the proof, it remains to be seen that [x,z*] € A + F and y* — z* €
af (x). Let A, u > 0. Subtracting the corresponding equations yields

(Fx + Fxu, 0. — x) + (F = ¥ 50— x,0) 4+ (03 (x2) — 0fu(x), x5 — x,) =0
and therefore

lim (Foxy + y} — Fxp — v, —x,) =0 (2.76)
A,u—0
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because
(82 (xn) = 01 (x) . X5 — x,0)
> (f3(x1) — 8fu (X0), X5 — Jaxh — X + JyXmit)
> (o + o ) (A afr @0 | + nfofu xw])-

Here, we have used relations (2.56), (2.57) and the monotonicity of df. Extracting
further subsequences, if necessary, we may assume that

Ali_r)r})(F(xA) + 5 x) =L

Then, relation (2.75) shows that (z*, x) = £. Now, let [u, v] be any element in the
graph of A + F. We have

(Fxp+yf —v,x0—u)>0, VYiA>0.

Hence,
(Z*—v,x —u)>0, Q.77

because (z*, x) = £. Since F is monotone and demicontinuous from X to X*, it
follows from Corollary 1.140 quoted above that A + F is maximal monotone in
X x X*. Inasmuch as [u, v] was arbitrary in A 4+ F, then inequality (2.77) implies
that [x, z*] € A + F. In other words, z* € Ax + Fx.

Now, we fix any « in X and multiply equation (2.69) by x; — u. It follows from
the definition of the subgradient that

fH.(0) < frw) + " x0 —u) — (x4 y5, x5 — u) (2.78)
and therefore
limsup fi (x3) < f@) + (", x —u) — (%, x —u). (2.79)
A—0

Here, we have used in particular Theorem 2.58 and relation (2.77).
Since {3f5(x)); A > 0} is bounded in X*, we have

)}i_r)r})(x)\ —Jy (xk)) =0 strongly in X.

Hence,
Jru(x3) > x  weaklyin X as A — 0.

We recall that a convex function f on a topological vector space X, which is
lower-semicontinuous with respect to the given topology on X, is necessarily lower-
semicontinuous also with respect to the corresponding weak topology on X. Thus,
the combination of relations (2.59) and (2.79) yields

O = f@+ 0" x—u) — (& x—u)
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and therefore
yr =zt edf(x),
because u was arbitrary in X. Hence, x satisfies equation (2.68). The proof of The-

orem 2.62 is complete. O

Corollary 2.63 Let f and ¢ be two lower-semicontinuous, proper and convex func-
tions defined on a reflexive Banach space X. Suppose that the following condition is
satisfied.

Dom( f) NintDom(g) # @. (2.80)
Then

o(f +¢)=03f + dop. (2.81)

Proof Since D(d¢) is a dense subset of Dom(¢) (see Corollary 2.44), condi-
tion (2.80) implies that Dom(f) N int D(d¢) # @. Theorem 2.62 can therefore be
applied to the present situation. Thus, the operator dp + df is maximal monotone
in X x X*. Since d¢ + 9f C (¢ + f), relation (2.81) follows. O

Remark 2.64 1t results that Corollary 2.63 remains valid if X is a general Banach
space. An alternative proof of Corollary 2.63 in this general setting will be given in
the next chapter.

We conclude this section with a maximality criterion for the case in which neither
D(A) nor Dom( f) has a nonvalid interior.

Theorem 2.65 Let f : H — ]—00, +00] be a lower-semicontinuous, proper convex
function on a real Hilbert space H. Let A be a maximal monotone operator from H
into itself. Suppose that, for some h € H and C € R,

F(U+2A)7 x+2h)) < f(x)+Cr forallx € H and & > 0. (2.82)

Then the operator A + 0f is maximal monotone and

D(A + 3f) = D(A) N D(3f) = D(A) N Dom(f). (2.83)

Proof To prove that A + df is maximal monotone, it suffices to show that for every
y € H there exists x € D(A) N D(3f) such that

x+Ax+0f(x)>y. (2.84)
To show that this is indeed the case, consider the equation

X+ Axxa +0f () 3y, (2.85)
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where A, =1~ — (I — AA)™!). Since A, is monotone and continuous on H,
equation (2.85) has, for every A > 0, a unique sol x; € D(3f). Let xo be any ele-
ment in D(A) N D(3f). Since ||A;xol < ||A%] and the operators A and df are
monotone, we see by multiplying equation (2.85) by x; — xg that {||x, ||} is bounded.
Next, we observe that condition (2.82) implies that

(3f (), Ax(x + k) =271 (8f (x), x + Ak — (I +1A) " (x + 1h))
> (3f (), h) + (f(x) = FUT +2A) " x +am))a™!
= —=C—|hllaf ). (2.82)
Now, we write equation (2.82') as
X+ As (v + AR+ 3F (x2) =y + As (s + Ah) — Apx;,

and multiply it (scalarly in H) by A, (x, + Ah). Recalling that A, is Lipschitzian
with Lipschitz constant A~!, it follows by (2.82) that {||A;x; ||} is bounded for
A — 0. We subtract the defining equations for x; and x, and then multiply by
X) — X;,; we obtain

2
llxn — xp 17+ (Anxa — Apxp, xa —xp,) <0.
Since A; x; € AJ,x; and A is monotone, we see that
[lx5. —)CMH2 —-0 asA,u—0.

Hence, lim;_, o x; = 0 exists in the strong topology of H. It remains to be shown
that x satisfies equation (2.84). The techniques is similar to the one previously used,
but with some simplifications. Indeed, we can extract from {x;} a subsequence {x;,}
such that

Ay, x5, — yo in the weak topology of H.

Since A is maximal monotone, it is also demiclosed (that is, its graph is strongly—
weakly closed in H x H) (see Proposition 1.146). Therefore, x € D(A) and yg €
Ax. The same argument applied to df shows that y — A, x; — x; converges weakly
to y; € df (x). Hence, x satisfies equation (2.84). To prove (2.83), we fix any x in
D(A) NDom( f). Then, there exist x, € Dom(f) such that x, — x strongly in H as
e — 0. We set uy = (I +£A) ™ (x, + eh) and observe that

lue — x|l < Jlue = (I +eA) " x| + [T +e4) " x — x|
<llxe—xl+ | +2A)"'x —x| + &l

Hence, u, — x as ¢ — 0. Moreover, by condition (2.82), u, € D(A) N Dom( f).
Briefly, we have shown that D(A) N Dom(f) C D(A) N Dom(f). Now, we prove
that D(A) NDom(f) C D(A) N D(df). Let u be any element in D(A) N Dom( f)
and let u, € D(A) N D(df) be the unique solution to the equation

Ue +cAug +€0f (ug) > u.
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We have

U—Ug

f(”s)_f(”)§<

1
— Aug,ug — u) < ——llue —ull* — (Au, u; — u),
£

which implies that lim,_,o #, = 0. Since u is arbitrary in D(A) N Dom( f), we may
infer that D(A) NDom( f) C D(A) N D(3f), as claimed. Since D(A) NDom( f) C
D(A) NDom( f), Relation (2.83) follows, and this completes the proof. U

We have shown, incidentally, in the proof of Theorems 2.62 and 2.65 that, under
appropriate assumptions on A and f, the solution x of the equation

Ax+3f(x)30

can be obtained as a limit, as A tends to O of the solutions x; to the approximating
equations

Ax; 4+ 3fn(3) 0.

This approach to construct the solution x closely resembles the penalty method in
constrained optimization. To be more specific, let us assume that f = Ix, where K
is a closed convex subset of a Hilbert space H and A = d¢.

Thus, equation Ax + df (x) > 0 assumes the form

min{go(x); X € K}
while the corresponding approximate equation can be equivalently expressed as the
following unconstrained optimization problem:

1
min{(p(x) + ﬁnx — Pgx|*; x e H},

because f3(x) = 5 10fa()I1% + £((I + 23f)"'x) and (I + 2dIx) " 'x = Pgx
(Pk x is the projection of x on K).

The family of continuous functions x — ﬁ”x — Pxx||?, x € H, for a fixed
A > 0, is a family of exterior penalty functions for the closed convex set K.

Now, we prove a mean property for convex functions.

Proposition 2.66 Let X be a real Banach space and f : X — R be a continuous
convex function. If x and y are distinct points of X, then there is a point 7 on the
open segment between x and y and w € 9f (z) such that

f) = f)=w,x—y). (2.86)

Proof Without loss of generality, we may assume that y = 0. Define the function
¢:R—>R

p(u) = f(px), pekR.
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Since dp(u) = (8f (ux),x) for all u € R, it suffices to show that there exist
0 €10, 1[ and ¢ € dp(0) such that ¢(1) — ¢(0) = ¢6. To this end, consider the regu-
larization ¢, of ¢ defined by formula (2.58). Since ¢;, is continuously differentiable,
for every A > 0, there exists 6, € ]0, 1], such that ¢, (1) — ¢1(0) = 3¢, (6,). On a
sequence A, — 0 we have 0,, — 0 and 9¢;,, (6,) — n € d¢(0). Since @) — ¢ for
A — 0, we infer that (1) — ¢ (0) = n € d¢(#), as claimed (obviously, 6 € ]0, 1[).

2.2.5 Variational Inequalities

Let X be a reflexive real Banach space and X™* its dual space. Let A be a linear or
nonlinear monotone operator form X to X* and let K be a closed convex set of X.
We say that x satisfies a variational inequality if

xekK, (Ax—fu—x)>0 forallueKk, (2.87)

where f is given in X*. In terms of subdifferentials, inequality (2.87) can be writ-
ten as

Ax + 03Ik (x) > f, (2.88)

where I : X — [0, +o0] is the indicator function of K (defined by relation (2.3)).
Note that, when K = X or x is an interior point of K, inequality (2.87) actually
reduces to the equality

(Ax — f,w)=0 forall win X,

thatis, Ax — f =0.

It should be said that many problems in the calculus of variations naturally arise
in the general form of a variational inequality such as (2.87). For instance, when A is
the subdifferential of a lower-semicontinuous convex function ¢ on X, then any so-
Iution x of the variational inequality (2.87) is actually a solution of the optimization
problem

Minimize ¢(x) — (f,x) overallx € K.

Theorem 2.67 Let A : X — X™* be a monotone, demicontinuous operator and let
K be a closed convex subset of X. In addition, assume that either K is bounded or
A is coercive on K, that is, for some xy € K,

(Ax.x - x) x|~ = Ho0. (2.89)

lim
{llx]|—> 400, xeK

Then, the variational inequality (2.87) has at least one solution. Moreover, the set
of solutions is bounded, closed and convex. If A is strictly monotone, the solution
to (2.87) is unique.
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Proof By Corollary 1.142, the operator A is maximal monotone and by Theo-
rem 2.62, A 4+ 91k is a maximal monotone subset of X x X*. Since, by assump-
tion, A 4+ 9l is coercive, it follows by Theorem 1.143 that the range R(A + d1k)
of A 4 dlk is all of X*. Hence, the set C of solutions to the variational inequal-
ity (2.87) is nonempty. Since C = (A + dIx)~'(0) and (A + 8Ix)~! is maximal
monotone (because so is A + d/x ), we may conclude that C is convex and closed.
Using the coercivity of A+ d Ik, we see that C is bounded. If A is strictly monotone,
that is,

(Ax — Ay, x —y)=0 ifandonlyif x =y,

then obviously C consists of a single point. Thus, the proof is complete. g

We pause, briefly, to point out an important generalization of Theorem 2.67
(see Brezis [10]).

The operator A : K — X* is said to be pseudo-monotone if the following condi-
tions are satisfied:

(1) If {un} C K is weakly convergent to u in X and limsup,,_, . (Au,, u, —u) <0,
then liminf,, oo (Auy, uy —v) > (Au,u —v) forallve K.

(ii) Foreveryv € K, the mapping u — (Au, u —v) is bounded from below on every
bounded subset of K.

It is easy to show that every monotone demicontinuous operator from K to X* is
pseudo-monotone.

The result is that Theorem 2.67 remains valid if one merely assumes that A is
pseudo-monotone and coercive from K to X*. Other existence results for the above
variational inequality could be obtained by applying the general perturbations the-
orems given in Sect. 2.2.4. We confine ourselves to mention the following simple
consequence of Theorem 2.65.

Corollary 2.68 Let X = H be a real Hilbert space and K be a closed convex subset
of H. Let A be a maximal monotone (possible) multivalued operator from H into
itself such that

(I +AA)_1(x +Ah) e K forallx € K and A > 0, (2.90)

where h is some fixed element of H .
If, in addition, either K is bounded, or A is coercive on K, then the variational
inequality (2.87) has at least one solution.

Proof Applying Theorem 2.65, where f = Ik, we infer that the operator A + 0/
is maximal monotone in H x H. Since A + dlk is coercive, this implies that its
range is all of H (see Corollary 1.140).

To be more specific, let us suppose in Theorem 2.67 that X = V and X* =V’
are Hilbert spaces which satisfy

VcHcCV
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where H is a real Hilbert space identified with its own dual and the inclusion map-
ping of V into H is continuous and densely defined. We further assume that the
operator A : V — V' is defined by

(Au,v) =a(u,v) forallu,vinV,

where a(u, v) is a bilinear continuous form on V x V, which satisfies the coercivity
condition

a(u,u) > ollu||> foralluinV, (2.91)

where @ > 0. (As usual, || - || denotes the norm in V, and (-, -) the pairing between
V and V'.) Clearly, A is linear, continuous and positive from V to V'. Let K be a
closed convex subset of V. Observe that in this case the variational inequality (2.87)
becomes

au,v—u)>(f,v—u) foralvek. (2.92)

In particular, if the bilinear form a is symmetric, problem (2.92) can be equivalently
expressed as

min{%a(v,v)—(f, v); veK}. (2.93)

O
We deduce from Theorem 2.67 the following corollary.

Corollary 2.69 For every f € V', the variational inequality (2.92) has a unique
solution u € K.

It should be observed that relation (2.92) implies that the mapping f — u is
Lipschitzian from V' into V with Lipschitz constant é

The variational inequality (2.92) includes several partial differential equations
with unilateral boundary conditions and free boundary-value problems of elliptic
type. In applications, usually A is an elliptic differential operator on a subset of R”,
and K incorporates various unilateral conditions on the boundary I" or on £2. We
illustrate this by a few typical examples.

Example 2.70 (The obstacle problem) Consider in a bounded open subset §2 of R”,
the second-order differential operator

Av = —(aij (x)vxi)xj, (2.94)
where the coefficients a;; are in L°°(£2) and satisfy the condition (w > 0)

aij(0)EE > wlE]?, VEER", £=(&,...,&).
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In equation (2.94), the derivatives are taken in the sense of distributions in £2. More
precisely, the operator A is defined from H 1 (£2) to (H 1 (£2)) by

(Au,v):a(u,v):/ aij(ux, vy, dx  forallu, v e H'(2). (2.94)
5 .

Let V be a linear space such that H} ($2) C V C H'(£2) and let f € (H'(£2))'. An
element u € V, which satisfies the equation

a(u,v)=(f,v) forallvinV,

is a solution to a certain boundary-value problem. For instance, the Dirichlet prob-
lem
_(aijux,-)xj:f inQ, u=0 inI

arises for V = H} (£2).
Let V=H}(2), feL'(22),and K ={v e V;v >y ae. in 22}, where { €

H 2(.Q) is a given function such that ¥ (x) <0 a.e. x € I'. Then, the variational
inequality (2.92) becomes

/ aij (), (v — )y, dx > / fw—wdx forallveKk. (2.95)
Q 2

According to Corollary 2.69, the latter has a unique solution u € K. We shall see
that # can be viewed as a solution to the following boundary-value problem (the
obstacle problem):

— (@) (x)uxl.)xj =f ImE={xe2; ux)>yx)]}, (2.96)
—(aij (X)ux,-)xf > f in$2, (2.97)
u>1y ons2, u=v% inf2\E, u=0 inT. (2.98)

To this end, we assume that E is an open subset. Let « € Cgo (E) and p > 0 be such
that u + pa > ¥ on £2. Then, in (2.95), we take v = u + po to get

Laijuxiax_/dxsz(xdx forall @ € C°(E).
E

The latter shows that u satisfies equation (2.96) (in the sense of distributions). Next,
we take in (2.95) v = a+ v, where a € C§°(£2) is such that o > 0 on 2, to conclude
that u satisfies inequality (2.97) (again in the sense of distributions). As regards
relations (2.98), they are simple consequences of the fact that u € K.

Problem (2.96)—(2.98) is an elliptic boundary-value problem with the free boun-
dary 01, where [ is the incidence set {x € £2; u(x) = ¥ (x)}. For a detailed study
of this problem, we refer the reader to the recent book [37] by Kinderlehrer and
Stampacchia.
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As seen earlier, in the special case a;; = aj;, the variational inequality (2.95)
reduces to the minimization problem

min{f aij(x)vxl.vxjdx—/ f dx; veK}.
2 2

The variational inequality (2.95) models the equilibrium configuration of an elas-
tic membrane §2 fixed at I", limited from below by a rigid obstacle ¥ and subject to
a vertical field of forces with density f (y is the deflection of the membrane). Simi-
lar free boundary-value problems occur in hydrodynamic and plasma physics. For
instance, such a free boundary problem models the water flow through an isotropic
homogeneous rectangular dam (see Baiocchi [3]).

Example 2.71 Suppose now that the energy integral

1
—/ |gradv|2dx—/ fudx
2Je 2

has to be minimized on K = {v € HO1 (£2); |gradv| <1, a.e. on £2}. As seen earlier,
this problem can be equivalently expressed as

/gradugrad(u—v)dxf/f(u—v)dx forallve K.
2 2

This is a variational inequality of the form (2.92) and it arises in the elasto-plastic
torsion of beams of section §2 under a torque field f (see Duvaut and Lions [19]).
Arguing as in Example 2.56, it follows that formally the solution u satisfies the free
boundary-value problem

—Au=f on$2, u=0 onl,
|gradu| =1 on §2;,

where 21 N2, =@ and 2, U 2, = £2.

Example 2.72 Leta: H'(2) x H'(£2) — R be the bilinear form

a(u,v):/ gradugradvdx—}—/ uvdx
2 2
and

K:{ueHl(.Q); u>0aconl}.

We recall that, by Theorem 1.133, the “trace” of u € H 1(£2) belongs to H 5 () c
L*(I'), so that K is well defined. Invoking once again Corollary 2.69, we deduce
that, for every f € L?(£2), the variational inequality

a(u,v—u)Z/f(v—u)dx, forallv e K, (2.99)
Q



112 2 Convex Functions

has a unique solution u € K. Let v =u & ¢, where ¢ € Cgo (£2). Then, inequal-
ity (2.99) yields

a(u,go)—/fgodx:O, for all p € C3°(£2).
2

Hence,
—Au+u=f on$2 (2.100)

in the sense of distributions. In particular, it follows from equation (2.100) that the

outward normal derivative g—"‘) belongs to H -3 (I") (see Lions and Magenes [42]).
We may apply Green’s formula

0
/(Au—u)vdx:/ v—uda—a(u,v) orallveHl(.Q). (2.101)
Q r v

In formula (2.101), we have denoted by fr vg—fj do the value of g—]’f € H? (I') at
v e H% (I'). Thus, comparing equation (2.101) with (2.99) and (2.100), it yields

9
/(v—u)—udozo forall v € K.
I av

To sum up, we have shown that the solution u of the variational problem (2.99)
satisfies (in the sense of distribution) the following unilateral problem:

—Au4+u=f onf2,

o ; (2.102)

u>0, — >0, ua—=0 onl.

av av

Remark 2.73 The unilateral problem (2.102) is the celebrated Signorini’s problem
from linear elasticity (see Duvaut and Lions [19]) and under our assumptions on
f it follows that u € H2(£2) (see Brezis [12]) and equations (2.102) hold a.e. on
£2 and I, respectively. As a matter of fact, the variational inequality (2.99) can be
equivalently written as d¢(u) 3 f, where ¢ : L?(£2) — ]—o00, +-0c] is given by (see
Example 2.56)

1
o) =3 f lgrad y 2 dx + / ¢ do
2 r

and g(r) =0 for r >0, g(r) =+o00 forr <O.

Similarly, if a;; € C 1(2) and fe L?(£2), then the solution u to the variational
inequality (2.95) belongs to HOl 2)NH 2(.Q) and satisfies the complementarity
system

_(aij(x)”xl-)xj — f@(u@x) —Y(x) =0 ae.xes,

(2.96")
u@) 2P @); —(a@uy (), = f(x) aexeg.
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Indeed, by Corollary 2.68, the equation
Agu+0Ig(u) > f, (2.103)

where

Agu=AunH forue D(Ay)=Hj(R2)NH*(2) and

(2.104)
K={ueL?(f2); ux)>yx)ae x €2}

has a unique solution u € K N D(Ag). (It must be noticed that condition (2.90)
holds for h(x) = (a;;j(x)¥x,)x; by the maximum principle for linear elliptic equa-
tions.) Since, by Proposition 2.53,

olg(u) = {w € LZ(Q); w(x)(u(x) — 1/f(x)) =0, wx)>0ae.x e .Q}, (2.105)
we see that u satisfies equation (2.96), as claimed.

Example 2.74 (Generalized complementarity problem) Several problems arising in
different fields such as mathematical programming, game theory, mechanics, theory
of economic equilibrium, have the same mathematical form, which may be stated
as follows:

For a given map A from the Banach space X into its dual space X*, find xo € X
satisfying

x0€C, —Axg e C°, (xg,Axp) =0, (2.106)

where C is a given closed, convex cone with the vertex at 0 in X and C° is its
polar, that is, C° = {x* € X*; (x,x*) <0 forall x € C}.

This problem is referred to as the generalized complementarity problem. In the spe-
cial case, when X = X* =R", C =R, (where R" is the n-dimensional Euclidean
space and R} the set of nonnegative n-vectors), the above problem takes the familiar
form

x0>0, Axg >0, (x9,Axp)=0. (2.107)

The following simple lemma indicates the equivalence between problem (2.106)
and a variational inequality.

Lemma 2.75 The element xo € C is a solution of problem (2.1006) if and only if

(Axg,x —x0) >0 forallx eC. (2.108)

Proof 1t is obvious that every solution x( of the complementarity problem (2.106)
satisfies the above variational inequality. Let xo € C be any solution of inequal-
ity (2.108). Taking x = xo + y in (2.108), where y € C, it follows that (Axop, y) > 0.
Hence, —Axp € C°. Also, taking x = 2x¢, we see that (xo, Axg) > 0, while, for
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x =0, (2.108) implies that (xg, Axg) < 0. Therefore (xg, Axg) = 0. This completes
the proof. 0

Now, we are ready to prove the main existence result for the complementarity
problem.

Theorem 2.76 Let X be a real reflexive Banach space, C a closed convex cone in
X, and let A be a monotone, demicontinuous operator from X to X*. If, in addition,
A is coercive on C, then the generalized complementarity problem (2.106) has at
least one solution. Moreover, the set of all solutions of this problem is bounded
closed convex subset of C, which consists of a single vector if A is strictly monotone.

Proof There is nothing left to do, except to combine Theorem 2.67 with Lem-
ma 2.75. O

As mentioned earlier, Theorem 2.67 remains valid if the operator A is pseudo-
monotone and coercive from K to X*. In particular, this happens when the space X
is finite-dimensional and A is continuous and coercive on K.

Corollary 2.77 Let X be finite-dimensional and let A be continuous on C. If, in
addition, there exists a vector xo € C such that

A _
@xx=-x) _ (2.109)

e x|
then the generalized complementarity problem (2.106) has at least one solution.

Before leaving the subject of complementarity problems, we should point out
another existence result which can be derived on the basis of Corollary 2.68.

Corollary 2.78 Let X = H be a real Hilbert space and let A be a maximal mono-
tone (possible) multivalued operator from H into itself, which is coercive on C.
Assume further that there is h € H such that

(I+AA)_1(x+Ah) CC forallx e Cand A > 0.

Then, problem (2.106) has at least one solution.

2.2.6 e-Subdifferentials of Convex Functions

In the following we present a generalization of subdifferential taking into ac-
count its characterization with the aid of support hyperplanes to the epigraph
(see Remark 2.37). It is clear that, if x € D(3f), then x € Dom(f) and f is
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lower-semicontinuous at x. Conversely, for a given proper convex lower-semi-
continuous function f, the existence of support nonvertical hyperplanes passing
through (x, f(x)) is not ensured for every x € Dom(f), that is, it is possible that
xX€D@f).

But for any x € Dom( f) there exists at least one closed hyperplane passing
through (x, f(x) — ¢), € > 0, such that epi f is contained in one of the two closed
half-spaces determined by that hyperplane. These hyperplanes can be considered as
the approximants of support hyperplanes passing through (x, f(x)). Consequently,
we get a notion of approximate subdifferential.

Definition 2.79 The mapping 9. f : X — X* defined by
0s f(x) = {x* eX® fFO))—fw)<(x—u,x*)+e Yue X*}, (2.110)

where f is an extended real-valued function on X, is called the e-subdifferential
of fatx.

It is clear that this mapping is generally multivalued and D (9, f) =@ if f is not
proper. If f is a proper function, then we must have ¢ > 0 and D (9, f) C Dom(f).
For ¢ = 0 we obtain the subdifferential defined by Definition 2.30. Also, we
have

of (x) = (") 9 f(x), x €Dom(f). (2.111)

>0

Some properties of e-subdifferential generalize properties of subdifferential but
most of their properties are different because df is a local notion while 9, f is a
global one.

Proposition 2.80 If f is a proper convex lower-semicontinuous function, then
0¢ f (x) is a nonvoid closed convex set for any ¢ > 0 and x € Dom(f).

Proof We have (x, f(x) — e)€epi f for any fixed ¢ > 0, x € Dom(f). By hypoth-
esis, epi f is a nonvoid closed convex set (see Propositions 2.36 and 2.39). Using
Corollary 1.45, we get a closed hyperplane passing through (x, f(x) — ¢) at epi f.
This hyperplane is necessarily nonvertical, that is, it can be considered of the form
(x*, 1). Thus, we obtain x* € 9 f (x). O

Corollary 2.81 For any proper convex lower-semicontinuous function f we have
D(0; f) =Dom(f), where & > 0.

It should be observed that the reverse of Proposition 2.80 is also true. Conse-
quently, it can be given a characterization of proper convex lower-semicontinuous
functions in terms of e-subdifferentials.
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Theorem 2.82 An extended valued function f on X is convex and lower-semi-
continuous if and only if 0, f (x) # ¥ for all x € Dom( f).

Proof According to Proposition 2.80, we must prove only the sufficiency part. First,
we remark that, if there exists & € X such that f(u) = —oo, then u € Dom(f),
while 9. f (i) = ). Hence, f must be a proper function. Now, if x € Dom( f) and
(x,x) € epi f, then there exists &€ > 0 such that (x, f(x) — &) € epi f. But since
9¢ f (x) # ¥, we have a closed nonvertical hyperplane passing through (x, f(x) —¢€)
such that epi f is contained in one of the two closed half-spaces determined by
that hyperplane. Consequently, epi f is an intersection of closed half-spaces. Hence,
epi f is a closed set. Therefore, f is convex and lower-semicontinuous (see Propo-
sitions 2.3, 2.5). O

Proposition 2.33, concerning the relationship between the subdifferential and the
conjugate, becomes the following proposition.

Proposition 2.83 Ler f : X —] — o0, +00] be a proper convex function. Then the
following three properties are equivalent:

(i) x* €. f(x).
() fx)+ fFx) <(x,x*)+e.

If, in addition, f is lower-semicontinuous, then all these properties are equivalent
to the following one.

(iii) x € 9, f*(x*).

Remark 2.84 1f X is reflexive, then 9, f* : X — X is just the inverse of 9, f, that is,
(1) and (iii) are equivalent for each proper convex function f.

Remark 2.85 As follows from Definition 2.79, if x € Dom(f), then f(u) >
f(x) — ¢ for all u € Dom(f) if and only if 0 € 9, f(x). Therefore, for a lower-
semicontinuous function f, 9. f*(0) is just the set of all e-minimum elements

of f.

Now, to describe some properties of monotonicity of ¢-subdifferential we give a
weaker type of monotonicity for a multivalued mapping.

Definition 2.86 A mapping A : X — X* is called g-monotone if
(x —y,x*—y")>-2¢, forallx*e Ax, y* € Ay. (2.112)
It is obvious that d, f is e-monotone for each ¢ > 0. But while df is a maximal

monotone operator, d, f may be not maximal e-monotone. In this line, we shall give
the following two examples.
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Example 2.87 Let f be the indicator function of the closed interval (—oo, 0]. By
an elementary computation for a given ¢ > 0, we find 9, f(0) = [0, co], 9, f(x) =
[0, —f] if x <0, and 9, f(x) =@ if x > 0. Thus, —2¢' €9, f (1), but for any x €
0 f(a), a <0, we obtain (x +2¢)(a — 1) = ax —x +2ea —2e > —2¢ forall x <0.
Hence, 9. f U {(—2¢, 1)}, ¢ > 0, is also the graph of an e-monotone operator, that
is, d¢ f is not maximal e-monotone.

Example 2.88 Let X be a real Hilbert space and f : X — R the quadratic form
defined by

1
fx)= E(Ax,x) + (b, x)+c¢, forallxeX,

where A is one-to-one linear continuous self-adjoint operator, b € X and ¢ € R. For
any ¢ > 0, we get

df)=Ax+b+{yeA; (Aly,y)<2e}, 20, xeX. (2.113)

Indeed, if z € 9, f (x), then we must have
1 1
§<Ax,X> + (b, x) — 3 (Au,u) — (b,u) < {x —u,z)+e,

for all u € X. But, for fixed x € X and z € 9, f (x), this quadratic form of u takes a
maximum value on X in an element uy where its derivative is null, that is, Aug +
b — 7z =0. Thus, we have

%(Ax,x} + (v, x) — %(Z b, AT Nz =b))+(z—b, ATz = b)) < (x,2) +e,
from which we obtain
(Ax,x) +2(x,b—2) + (A" (z = b), z — b) < 2e,
and so,
(x =AMz =b),b—2)+ (x,b—z+ Ax) <2e.
Therefore, if we denote y =z — Ax — b, then
(A7y.y) <28,

that is, equality (2.113) is completely proved.
Now, let us consider (u,v) € X x X such that (x — u,z — v) > —2¢, for all

Z € 0g f(x).
According to equality (2.113), it follows that

(x —u,Ax+b+y—v)>-2¢, forallxeX, (2.114)
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and every y € X fulfilling the inequality (A~'y, y) < 2&. But the quadratic form
from (2.114) has a minimal element xg € X where the derivative is null, that is,
2Axp+ b+ y — v — Au = 0. Consequently, we have

1
Z(A_l(v—y—v)—u,Au+y+b—v)z—2£,

whenever (A_ly, y) <2e.
Taking z =v — Au — b, we get

A"y —2),y—z) <8, if(A7y,y)<2e (2.115)

Therefore it is necessary that (A_lz, z) < 2¢. Indeed, if there exists zg € X such
that (A='z, zo) > 2e, it follows that [|A~2z||2 > 2¢. Hence, A~ 270 = (v/2¢ +
a)ug, where a > 0 and ||ug|| = 1. Taking yp = —@A%uo, we have (A~ !yg, yo) =
2. but (A~ (yo — 20). Yo — 20)* = | A7 (0 — 20)I| = 2/2¢ +a > 2/2¢, which
contradicts (2.115). Thus, we proved that v = Au + b + z, where (A_lz, z) <2,
that is, v € d; f (u). Hence, 9, f is a maximal e-monotone mapping.

Remark 2.89 Since A is a self-adjoint operator, we have

1

(A7 v )= (a2 am2) = a5’

)

and so, (A~ly,y) < 2¢ if and only if y = +/2¢ A%u, where |u|| < 1. Conse-
quently, (2.113) can be rewritten in the form

def(x)=Ax+ b+ 26 A2(3(0: 1)), £>0, xeX.

If A is the identity operator, we obtain
1 —
Be<§ ||'||2>(x)=x+\/285(0; 1), >0, xeX. (2.116)

It is obvious that the e-subdifferential can be considered as an enlargement of
subdifferential satisfying a weak property of monotonicity. In the sequel, we prove
that the e-subdifferential can be obtained by a special type of enlargement of subd-
ifferential. Firstly, we define the notion of e-enlargement which was considered by
Revalski and Théra [54] in the study of some important properties of monotonicity.

Definition 2.90 Given an operator A : X — X™* and & > 0, the g-enlargement of A,
denoted by A?, is defined by

Ax={x*eX*; (x —y,x" —y*) = —2¢, forall y* € Ay}, xeX. (2.117)

Proposition 2.91 Let A : X — X* be an arbitrary operator. Then, the following
properties are true:
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(1) A®x is convex and w* closed for any x € X.
(ii) A C A® ifand only if A is e-monotone.
(iii) If A is e-monotone, then A, conv A, convA and A~ are e-monotone.
(iv) AS1 C A2 if0<¢g| <e.
(v) If A is e-monotone and locally bounded, then A and convA are g-monotone,
where A : X — X* is defined as closure of Graph A in X x X™* with respect to
strong, weak-star topology on X and X*, respectively.

Proof Since properties (i)—(iv) are immediate from the definition of A%, we confine
ourselves to prove (v). Let us consider (x, x*), (y, y*) € A. Hence, there exist two
nets (xi,xl.*)iel C A such that x; — x, y; — y, strongly in X and xl.* — x¥, yl?“ —
y*, weak-star in X*. Since A is an e-monotone locally bounded operator, by passing
to the limit in the equality (x — y, x* — y*) = (x —xi, x/ =y )+ (yj —y. 5 —y)) +
(xi —yj,xf — y}‘-‘) + =y, xf —x])+ (x — y,y;‘ — y*), we obtain (x — y, x* —
y*) > —2¢, that is, A is e-monotone. According to property (iii), TonvA is also
£-monotone. O

Concerning the maximality of an e-monotone operator, we have the following
special case.

Proposition 2.92 If A is an e-monotone operator, then A® is e-monotone if and
only if there exists a unique maximal &-monotone operator which contains A.

Proof 1f B is an e-monotone operator which contains A, then B C A%, and so, if A®
is e-monotone, then A is the unique maximal e-monotone operator. O

Generally, A¢ is not an e-monotone operator even if A is monotone. In the special
case A = df, where f is a subdifferentiable function, the e-enlargement (3f)°¢ is
larger than the e-subdifferential of f, thatis, d; f C (9f)°. Generally, this inclusion
is strict. However, formula (2.111) remains true in the case of e-enlargement of df .
Firstly, it is obvious that x* € A®x for all ¢ > 0 if and only if (x* — y*,x — y) >0,
for every y* € Ay, and so, in the case of maximal monotone operator we have the
following result.

Proposition 2.93 If A is a maximal operator, then

Ax = m Afx, forallx € X.

e>0

Corollary 2.94 If f is a proper convex lower-semicontinuous function, then

Bf(x)zﬂ(af)g(x), forall x € X. (2.118)

>0

Now, we give a formula for ¢-differential established by Martinez-Legaz and
Théra [44]. This formula proves that the e-subdifferential can be considered as a
special type of enlargement of subdifferential.
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Theorem 2.95 Let X be a Banach space and f a lower-semicontinuous proper
convex function. Then

m—1
O f(x) = {x* € X*; (x*,x0—X)+ D (5, Xi1 — X))+ (x5: X —xp) <&
=0
Sorall xI € 3f (x;), i=0,1,...,m}, (2.119)

where x € Dom(f) and & > 0.

Proof According to the proof of Theorem 2.46, for a fixed element xg € D(df),
taking xg € df (xo), we have

f(x) = f(xo)

n—1
Hsupd Y G X —x) + (. x — X)X €0f(xi), i=Ln.ne N*},
i=0

for all x € Dom( f). Therefore, for any 7 > 0 there exist a finite set {x;; i = 1,n} C
D(9f) and x}* € 3f (x;), i = 1, n, such that

n—1

Z(xi*,xm +xi) + (X, X —xp) > f(x) — f(x0) — 1.

i=0

Thus, if x* is an element belonging to the right-hand side of formula (2.119),
we have

f&x)— flxo) —n < (x*,x —x9) +¢, foralln>0,
that is,
f(x)— f(x0) < (x*,x —xg) +¢, forevery xg € D(3f).

Now, since D(df) is a dense subset of Dom( f) (see Corollary 2.44), by lower-
semi-continuity this inequality holds for every xg € Dom( f), and so, x* € 9 f (x).
Conversely, if x* € 9, f(x), since df is cyclically monotone (see Defini-
tion 2.45), by Definition 2.104 of the e-subdifferential it is easy to see that x™*
satisfies the inequality of the right-hand side of formula (2.119), thereby proving
Theorem 2.95. d

Remark 2.96 The multivalued operator defined by the right-hand side of (2.119)
can be considered the e-enlargement cyclically monotone of of .
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2.2.7 Subdifferentiability in the Quasi-convex Case

Here, we consider the special case of quasi-convex functions. (See Sect. 2.1.1.) We
recall that a function is quasi-convex lower-semicontinuous if and only if its level
sets are closed convex sets. Thus, similarly to the convex case, if the role of epigraph
is replaced by level sets, the continuous linear functionals that describe the closed
semispaces whose intersection is a certain level set are candidates for the approx-
imative quasi-subdifferentials (see Theorem 1.48). Given a function f and A € R,
we denote by N*(f) the corresponding level set, that is,

N (f)={reX; f(x)<r}. (2.120)
Let us consider the following sets:

D; f(xg) = {(x*, 8) € X* x (0,00); x*(xp —x) > 8 whenever f(x) < A},
(2.121)
for every xo € X and A e R.
It is obvious that, if Dy f(xo) # @, then f(xo) > A. Indeed, if we suppose that
f(x0) < A, then, for an element (x*, 8) € D;, f(xo), we have 0 = x™(xg — x9) > 6,
which is a contradiction with the choice of §.

Definition 2.97 The projection of D, f(xg) on X* is called the A-quasi-
subdifferential of f at xg and is denoted by 82 f(x0).

Taking into account the correspondence between the convexity and quasi-
convexity, we see that this type of approximate subdifferential is proper to the quasi-
convex functions.

Indeed, it is well known that a function f is convex if and only if the associated
function Fr: X xR — R defined by

Frix,)=f(x)—t, (x,1)eX xR, (2.122)
is quasi-convex, since N)‘(Ff) = —(0, 1) +epi f, for all A € R. Thus, we have
Dy Fy(xo,10) = {(x*, @, 8) € X* x R x (0, 00); x*(xo —x) +altp—1) >3,
whenever f(x) —t < Ai}.

By a simple calculation, we find that (x*,c, 8) € D; Fr(xo,%) if « =0 and
sup{(x*, x); x € Dom(f)} < x*(x9) — 8 or @ < 0 and —fx—* € 0g, f(x0), where
go= f(xo) —to— A — g We recall that, necessarily, we must have f(xg) —fp =
Fr(xo,t0) > A, a <0, whenever Dy Fr(xo, to) # 0.

Therefore, the projection on X* contains elements of approximative subdifferen-
tial defined for convex functions. More precisely, (x*, —1, 8) € D; Fr(xo, 0) if and
only if x* € dg, f (x0), g0 = f(x0) — o — A > 0, xo € Dom(f).

Now, we can establish the following characterization of quasi-convex lower-
semicontinuous functions.
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Theorem 2.98 A function f : X — R is quasi-convex and lower-semicontinuous
if and only if, for all A € R and xo € X such that f(xo) > X, the set D) f(xp) is
nonempty.

Proof According to Theorem 1.48, the function f is quasi-convex and lower-
semicontinuous if and only if its level sets can be represented as an intersection
of closed half-spaces.

Equivalently, for every xo € N*(f) there exists a closed hyperplane strongly se-
parating N*( f) and x¢. Thus, if f(xo) > A, there exist x* € X*\ {0} and k € R such
that x*(xg) > k and x*(x) < k for all x € N*(f). Taking § = x*(x0) — k > 0, we
obtain x*(x — xg) < —8 for all x € N*(f), equivalently (x*,8) € D; f(xo). This
finishes the proof of Theorem 2.98. g

Corollary 2.99 A proper function f : X — R is quasi-convex and lower-semicon-
tinuous if and only ifaé‘f(xo) # @ forall xg € X, e R, with f(x0) > X.

Now, it is easy to see that the A-quasi-subdifferential of a function f can also be
defined by the formula

BQf(xo)zzlx*e<X*; sup x*(x — xo) <0} (2.123)
xeN*f

Proposition 2.100 Let us consider f: X — R, xo € X, f(x0) # —00, € > 0. Then
the following properties are equivalent:

(i) xo is an e-minimum element of f.
(ii) Bé‘f(xo) = X*, whenever A < f(xg) — &.
@iii) 0 e Bfl‘f(xo), whenever A < f(xg) —¢.

Proof 1If there exists x; € X such that f(x1) < f(xp) — ¢, then, taking A = f(x1),
we have N*(f) # @ and so, Ogaé‘f(xo). On the other hand, if 0 € ag‘f(xo), then,

for all A < f(xp) — &, we get Nk(f) =, thatis, f(x) > f(xo) — e forall x € X.
Also, (ii) and (iii) are obviously equivalent. O

In the following, we establish some relationships between the quasi-subdiffe-
rential defined by (2.123) and other two notions of quasi-subdifferentials introduced
as extensions to the case quasi-convex of the subdifferential of a convex function.
We denote

Bépf(xo)z{x*eX*; x*(x—x0)<0iff(x)<k}, x0€ X, (2.124)
oML f (x0) = {x* € X*; there exists k € K such thatkox™ < f
and k(x*(x0)) = f(x0)}, x0€X, (2.125)

where K is a given family of functionals k € R — R closed under pointwise supre-
mum.
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If » = f(x0) € R, the A-quasi-subdifferential (2.124) was introduced by Green-
berg and Pierskalla [23] for X = R”", while the quasi-subdifferential (2.125) was
introduced by Martinez-Legaz and Sach [43]. It is well known that dgp f (xp) =
ok f (xp) if K is the family of all nondecreasing functions.

The A-quasi-subdifferential associated to the quasi-subdifferential (2.125) is de-
fined as follows:

i f (xo) = {x* € X*; there exists k € K such thatk ox* < f

and k((x*)(x0)) = A} (2.126)

Proposition 2.101 Ler K be the family of all nondecreasing functions k : R — R.
If f:X—>R,xo€ X and A €R, then

aGp f (x0) = By f (x0).

Proof From the definition of 81{‘,[_L given by (2.126), we obtain the inclusion
dppp f(x0) C 8%p f(x0). Conversely, if x* € d8p f(x0), taking k : R — R defined
by

k(t) =infla; x*(x) > 1 if f(x) <a},
we have k(x*(x)) < a whenever f(x) < a. But k is obvious a nondecreasing func-

tion, and so k o x™ < f. Also, k(x*(xg)) > A. Hence, x* € BQ_Lf(xo) and the proof
is complete. g

Proposition 2.102 Let K be the family of all nondecreasing lower-semicontinuous
functions. If f: X — R, xo € X, A1, A2 € Rand Ay > Ay, then

(i) a5t 1 f(x0) C 972 f(x0) C 87 1 f (x0).
G (i< £ o) % L @0) =M< £ WS @0) = L f (x0), if f (x0) € R.

Proof Equality (ii) follows by using (i) and the equality

() 9/ @o) = dwLf (x).

A< f(xo)

Now, if x* € 8; f(xp), taking the function k defined in the proof of Proposi-
tion 2.101, we notice that k is also lower-semicontinuous. Hence, k(x*(x)) < a
if f(x) <a, and so, k o x* < f. Since supxeNx(f)x*(x — x0) < 0, it follows that
k(x*(x0)) > A. Hence, Béf(xo) C 81{‘,17Lf(x0). On the other hand, if Bﬁ/de(xo) =0
or N*( f) = @, then the inclusion of the left-hand side of (i) is obvious. Let us sup-
pose that N*(f) # @. Thus, if x* € Bﬁfo(xo), we have k(x*(x)) — k(x*(xg)) <
A — Aq, for all x, such that f(x) < A. Let us denote o = supxeNx(f)x*(x — X0)
and consider a net (x;) C N*(f) such that x*(x;) — supxeNx(f)x*(x). Since
k(x*(x;)) — k(x*(x9)) < A — A1, by passing to the limit we obtain

k(x*(xo) +Ol) - k(x*(xo)) <A—X; <O0.
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Hence, @ < 0 and so, x* € 8;‘ f(x0). Thus, Proposition 2.102 is completely
proved. g

2.2.8 Generalized Gradients

In this section, we briefly present a theory of generalized gradients for lower-
semicontinuous functions of R"” due to Clarke [17]. This theory is still under de-
velopment but some significant results have already become known.

Assume first that f : R” — R is a locally Lipschitz function. According to
Rademacher’s theorem, f is a.e. differentiable on R”. By definition, the general-
ized gradient of f at x, denoted by df (x), is the convex hull of the set of points of
the form {lim,— oo V f (x + x,,)}, where x, — 0 and V f(x + x,,) (the gradient of f
at x + x,,) exist.

In order to extend this definition to general lower-semicontinuous functions, we
consider a closed subset C of R” and denote by d¢(x) the distance from x to C,
that is,

de(x) = inf{|lx — yll; y € C}.

Since dc is locally Lipschitz, we may define dd¢c. By analogy with the case when
C is convex, we define the cone of normals to C at x, denoted N (x; C), the closure
of the set

{z €R"; Az € ddc (x) for some A > 0}. (2.127)

We observe that, if C is convex, then, by Theorem 2.58, where f = I, it follows
that dc is differentiable outside C and

Vde(x) = (x — Pe@)) |x = Pe)|| ", xec,

where Pc is the projection operator on C (we take the Euclidean norm on R").
Hence, for all x € R", we have

Vdc(x) € aIC(ch)

and, therefore, if C is convex, then N(x; C) is just the cone of normals to C at x
(see Example 2.31).

It is obvious that, if f is continuously differentiable on a neighborhood of x, then
af (x) =V f(x). If f is convex, then its epigraph E(f) is a convex closed subset
of R**! and, as observed earlier, N ((x, f(X): E(f)) =Ngp(x; f(x)). Hence, in
this case, df (x) is the set of all subgradients of f at x (here, E(f) =epi f).

Given the lower-semicontinuous function f : R" — R, we define the upper
derivative of f at x with respect to y, as

"1y — ’
Aayy= lim  inf LEFIZSE) (2.128)
Y —x =y A
FOD—f ()
240

It should be observed that, if f is convex, then f1 = f’.
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Now, let x be a point where f (x) is finite.
We define

fx)={zeR"; (z,—) e N((x, f(0)); E())}

and call df (x) the generalized gradient of f at x.
Proposition 2.103 The generalized gradient 3f (x) is also given by
Af () ={zeR" f1(x,y)=(,2), VyeR"}. (2.129)
IffT (x,0) = —o0, then of (x) is empty, but otherwise df (x) # @ and one has
1, y) =max{(y,2); z€df(x), Yy e R"}. (2.130)

The reader will be aware of the analogy between Propositions 2.39 and 2.103.
Formula (2.129) represents another way (due to Rockafellar) to define the gener-
alized gradient. The proof of Proposition 2.103, which is quite technical, can be
found in the work of Rockafellar [64] (see also [65, 66]). In this context, the works
of Hirriart-Urruty [25, 26] must be also cited. The above definition of generalized
gradient can be extended to infinite-dimensional Banach space. For instance, if X is
a Banach space and f : X — R a locally Lipschitz function, we define the general-
ized directional derivative of f at x in the direction z, denoted by f%(x, z) by

fo(x»Z) = limsup fO+A2) — f(Z).

X' —>x A
210

If X =R", then /0= f71.

It is easy to see that f is a positively homogeneous and subadditive function
of z. Thus, by the Hahn—Banach theorem, we may infer that there exists at least one
x* e X* satisfying

0%, 2) > (z,x*) forallz € X. (2.131)

By definition, the generalized gradient of f at x, denoted by df (x) is the set of all
x* e X* satisfying (2.131).

It is readily seen that, for every x € X, df(x) is a nonempty, closed, convex
and bounded subset of X*, thus 9f (x) is w*-compact. Moreover, df is w*-upper-
semicontinuous, that is, if n; € af (x), where n; — n weak-star in X* and x; — x
strongly in X, then € af (x) (see Clarke [18]). Note also that FO(x, -) is the support
functional of df (x), that is, for any z in X, we have (compare with (2.130))

fO(x, 2) = max{(z, x*); x* € 3f (1)}

For the definition and the properties of generalized gradient of vectorial functions
defined on Banach spaces, we refer the reader to the work of Thibault [73].
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2.3 Concave-Convex Functions

This section is concerned mainly with minimax problems for concave—convex func-
tions. This subject is discussed in some detail in Sect. 2.3.3. Relevant to it are the
closed saddle functions studied in Sect. 2.3.2.

2.3.1 Saddle Points and Mini-max Equality

Let X, Y be two nonempty sets and let F' be an extended real-valued function on the
product set X x Y.
It is easy to prove that we always have

sup inf F(x,y) < inf sup F(x,y). (2.132)
xeX yeY yeY xeX

If the equality holds, the common value is called the saddle value of F on X x Y.
Furthermore, we shall require that the supremum from the left side and the infimum
from the right side are actually achieved. In this case, we say that F' verifies the
mini-max equality on X x Y and we denote this by

max min F(x,y)=min max F(x,y).
xeX yeY yeY xeX

Of course, the mini-max equality holds if and only if the following three condi-
tions are satisfied:

(i) F has saddle value, that is, sup, .y infyey F(x,y) =infyecy sup, .y F(x,y).
(ii) Thereis X € X such that infyey F (X, y) = sup,cyinfycy F(x,y).
(iii) Thereis 'y € Y such that sup, .y F(x,y) =infycy sup,cy F(x,y).
Clearly, F(X,y) is the saddle value of F. Also, sup,.y F(x,y) and
infycy F (X, y) are attained, respectively, at X and y since, from conditions (ii) and
(iii), one easily obtains

sup inf F(x,y) = inf F(x,y) < F(x,y) <sup F(x,y) = inf sup F(x, y).
xeX yeY yeY xeX yeY xeX

According to condition (i), this inequality becomes an equality. Moreover, we
obtain

sup F(x,y) =F(x,y) = inf F(X,y)

xeX yeyY

from which we obtain
F(x,y) <FX,y) <F(X,y), VY(x,y)eXxY. (2.133)

Definition 2.104 The pair (X, ¥) € X x Y is said to be a saddle point for the function
F : X xY — Rifrelation (2.133) holds.
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Thus, the mini-max equality implies the existence of a saddle point.
It is easily proven that the converse of this statement is also true. Indeed,
from (2.133), we have

inf sup F(x,y) <sup F(x,y) < inf F(X,y) <sup inf F(x,y),
yeY xeX xeX yeyY xeX yeY

which, by (2.132), implies conditions (i), (ii) and (iii). Thus, the following funda-
mental result holds.

Proposition 2.105 A function satisfies the mini-max equality if and only if it has a
saddle point.

2.3.2 Saddle Functions

The purpose of this section is to present a new class of functions (that is, functions
which are partly convex and partly concave), which are closely related to extremum
problems.

We assume in everything that follows that X and Y are real Banach spaces with
duals X* and Y*. For the sake of simplicity, we use the same symbol || - || to denote
the norms || - ||x, || - lly, || - | x* and || - || y* in the respective spaces X, Y, X* and Y*.
As usual, we use the symbol (-, -) to denote the pairing between X, X* and Y, Y*,
respectively. If f is an arbitrary convex function on X, then we use the symbol cl f
to denote its closure (see Sect. 2.1.3). For a concave function g, the closure cl g is
defined by

clg =—cl(—g).

Definition 2.106 By a saddle function on X x Y, we mean an extended real-valued
function K defined everywhere, such that K (x, y) is a concave function of x € X
for each y € Y, and a convex function of y € Y for each x € X.

Given a saddle function K on X x Y, we denote by cl; K the function obtained by
closing K (x, y) as a concave function of x for each y. Similarly, cl, K is obtained
by closing K (x, y) as a convex function of y for each x.

Definition 2.107 A saddle function K is said to be closed if the following condi-
tions hold:

Ch ClzK =Cll K, 012C11 K =Clz K. (2.134)

It should be observed that conditions (2.134) automatically hold if K(x,y) is

upper-semicontinuous in x and lower-semicontinuous in y. Two saddle functions K
and K’ are said to be equivalent if

ci K=chi K’ and ch K=chK'
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In other words, the saddle function K is closed if cl; K and cl; K are equivalent
to K.

It is worth mentioning that equivalent saddle functions have the same saddle
value and saddle points (if any). In fact, let K be an arbitrary saddle function on
X x Y. Inasmuch as the infimum of a convex function is the same as the infimum of
its closure, one obtains

inf{K (x,y); yeY}=inf{ch K(x,y); yeY} foreveryxeX, (2.135)
and, similarly,
sup{K (x,y); x € X} =sup{cl; K(x,y); x€ X} foreveryyeY. (2.136)
Hence, if (xg, o) is a saddle point of K, that is,
K(x, y0) < K (x0,y0) < K (x0,y) forall (x,y) € X x Y,
we have
sup{cl K (x, y0); x € X} = K (xo, yo) = inf{cl> K (x0. y); y € Y}
and therefore for any saddle function K’ equivalent with K,
sup{K'(x, y0); x € X} = K (x0, yo) = inf{K'(x0, y); y € K},
which implies that K (xg, yo) = K’ (x0, yo), and therefore (xg, yo) is a saddle point
of K'.
Let K be a saddle function on X x Y and let
Dl(K)z{xeX; K(x,y) > —o0 foreveryer}, (2.137)
DZ(K)={y€Y; K(x,y) <+o0 foreveryxeX}. (2.138)
It is easy to see that D1(K) and D,(K) are convex sets. The set
dom K = Dj(K) x D2(K) (2.139)

is called the effective domain of K. Obviously, K is finite on dom K and, if K is
finite everywhere, one has domK =X x Y.
As an example, let A and B be nonempty convex sets in X and Y, respectively,
and let
Ko(x,y), ifxeAandye€ B,
K(x,y)=1+o0, if x € Aand y € B, (2.140)
—00, ifxeAandyeY,
where K is any finite saddle function on A x B. Then, K is a saddle function on
X x Y with

domK = A x B.
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A saddle function K : X x ¥ — R = [—00, 4+00] is called proper if dom K + .
Most of the results which are proved below closely resemble the corresponding
properties of lower-semicontinuous convex functions previously established.

Theorem 2.108 Let K be a closed proper saddle function on X x Y. Then

(i) Foreveryy €int Do(K), the function K (-, y) is concave, upper-semicontinuous
and proper on X. Furthermore, its effective domain coincides with D1(K).

(ii) For every y € int D1 (K), the function K (x, -) is convex, lower-semicontinuous
and proper on Y, and its effective domain is D>(K).

Proof (i) The closedness of K implies that clj cl; K =cl; K. Hence

chi K(x,y)=1lim sup clhK(u,y) foreveryye Dr(K).

e=0 Jx—ul<e
‘We set

@e(x,y) = sup chh K(u,y).
lx—ull<e
Since cl; K <cl; K and the function x — cl; K(x, y), x € X, is upper-semicontin-
uous and concave on X, we may infer that

@s(x,y) <400 foreveryx € X and y € Dy(K). (2.141)

Here, we have used in particular Corollary 2.6. On the other hand, ¢, (x, y) is lower-
semicontinuous and convex as a function of y, because this is true for each of the
functions cly K (u, -). Therefore, ¢ (x, y) is, for any ¢ > 0, a continuous function
of y € int D>(K) (see Proposition 2.16). But this function majorizes the convex
function clj K (x, -), and hence we may conclude that the latter is also continuous
onint Dy(K). Of course, cl; K > K > cl, K, while the closedness of K implies that
cl, K =clycly K. From the latter relation, we have

ci K(x,y)=cl K(x,y) foreveryx e X and y € int D>(K),

hence
K(x,y)=cli K(x,y) foreveryx e X and y €int D>(K).

Hence, K (-, y) is concave and upper-semicontinuous for every y € int D (K). Ob-
viously, the effective domain of this function includes D1 (K). We shall prove that
it is just D{(K). To this end, let xo € X be such that K (xq, yg) > —o0, where yy is
arbitrary but fixed in int D, (K).

Therefore, the convex function y — cly K (xg, y), y € Y, is not identically —oo
which shows that cly K (xg, ¥) is nowhere —oo. This implies that xg € D1(K), as
claimed. The proof of part (ii) is entirely similar to that of part (i), so that it is
omitted.
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Given a saddle function K : X x ¥ — R, we denote by 0y K (x,y) the set of
all subgradients of K (x,-) at y and by —9d, K (x, y) the set of all subgradients of
—K (-, y) at x. In other words,

WK, y)={y"eY"s K(x,y) <K&, y)+(—vy", YveY}, (2142
WK, y)={x"eX* Ku,y) <K, y)+@—x,x"), YueX}. (2.143)
The multivalued operator K : X x ¥ — X* x Y* defined by
K (x,y) ={-0:K(x,y),0yK(x,y)}, (x,y)eXxY, (2.144)
is called the subdifferential of the saddle function K.

It should be observed that the concave—convex function K has a saddle point
(x0, yo) if and only if

(0,0) € 0K (xo, yo)- (2.145)
0

Proposition 2.109 Let K be a proper saddle function on X x Y. The multivalued
mapping 0K : X x Y — X* x Y* is a monotone operator with

D(3K) C domK. (2.146)

Proof Let (x{, yi) € 9K (x1, y1) and (x5, y5) € 9K (x2, y2). By definition,

—K(x,y1) = —K(x1,y1) + (x —x1,x7), VxeX, (2.147)
K(x1,y) > K@, y) + (= y1.y7), Vyey, (2.148)
—K(x,y2) = —K(x2,y2) + (x —x2,x3), VxeX, (2.149)
K(x2,y) > K(x2,y2) + (y = y2.¥3), VyeY. (2.150)

Since (x,y) is arbitrary, we have —K (x1, y;) < +oo from relation (2.147) and
K (x1, y1) < +oo0 from relation (2.148). Hence, K (x1, y;) is finite, and from condi-
tions (2.147) and (2.148), we have (x, y;) € dom K, establishing relation (2.146).
Taking x = x in (2.147), y = y» in (2.148), x = x1 in (2.149), and y = y; in (2.150),
by adding the four inequalities we obtain

(x] = x5, x1 —x2) + OF — ¥, y1 —y2) >0,
which means that 9 K is a monotone operator (see Sect. 1.4.1). O
Corollary 2.110 Let K be a proper closed saddle function on X x Y. Then

intdom K C D(0K) C domK. (2.151)
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Proof Let (x,y) €intdom K. Thus, x € int D1(K) and y € int D>(K), so that The-
orem 2.108 together with Corollary 2.38 imply that K is subdifferentiable at (x, y),
establishing (2.151). O

Corollary 2.111 Let K be a proper and closed saddle function on X x Y. Then K
is continuous on intdom K .

Proof From Theorem 1.144, and Corollary 2.110, it follows that the monotone oper-
ator 0K is locally bounded on intdom K C int D(3K). Let (xg, yo) be any element
in intdom K. By definition, for all (x x Y, one has

K (x0,y0) — K(x,y) < (yo — ¥, ¥5) + (x —x0,x™) (2.152)
and

K(x,y) — K (x0,y0) < (y — y0, y) + (x0 — x, x3), (2.153)

where (xg, y5) € 9K (x0, yo) and (x*, y*) € 9K (x, y). Since 0K is locally bounded
at (xo, yo), there exist p > 0 and C > 0 such that

lx*| 4+ ly*[l < C  for [|x —xoll < p and ||y — yoll < p.
Inserting this in relations (2.152) and (2.153), it follows that

|K (x0, y0) — K (x, )| < C1(Ilx = xoll + lly = yoll),

for all (x, y) € X x Y such that ||x — xg|| < p and ||y — yo|| < p. Here, C is a pos-
itive constant independent of x and y. Thus, we have shown that K is Lipschitzian
in a neighborhood of (xg, yo). The proof of Corollary 2.111 is complete. 0

The results presented above bring out many connections between closed saddle
functions and lower-semicontinuous functions. The most important fact is stated in
Theorem 2.112 below.

Theorem 2.112 The formulas
L(x,y") =sup{(y,y") — K(x,y); yeY}, (2.154)
K(x,y) =sup{(y,y*) — L(x,y*; y* €Y} (2.155)

define a one-to-one correspondence between the lower-semicontinuous proper con-
vex functions L on the space X x Y* and the closed saddle functions K on X x Y

satisfying
chel K =K. (2.156)

Moreover, under this correspondence, one has

(", y) €K (x,y) <= (—x",y) €IL(x,y"). (2.157)
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Proof Let L : X x Y* — ]—00, +00] be convex, lower-semicontinuous and non-
identically 400 on X x Y*. Formula (2.155) says that K is he partial conjugate of
L and this implies that the function K (x, y) is convex and lower-semicontinuous
in y on Y. Furthermore, it follows that L(x, -) is in turn the conjugate of K (x, -),
establishing formula (2.154). Lastly, a simple calculation involving relation (2.155)
and the convexity of L on X x Y* implies that K (x, y) is concave as a function of
x on X. We leave the simple details to the reader. Now, we prove that K defined by
formula (2.155) satisfies condition (2.156). To this end, we consider the conjugate
L*: X*xY — ]—00, +o0] of L, that is,

L*(x*, y) =sup{(x,.x) + (y.y") = L(x,y"): x € X, y" €Y7},
According to relation (2.155), we get
L*(x*,y) =sup{(x, x*) + K(x,y); x € X}. (2.158)
Hence,
cli K (x,y) = —sup{(x, x*) — L*(x*, y); x* € X*}. (2.159)
But L = L**, because L is lower-semicontinuous. In other words,
L(x,y*) =sup{(x,x*) + (y, y*) = L*(x*, y); x* € X*, y e Y*}.
Hence, by equality (2.159), we must have
L(x,y*) =sup{(y,y*) —ch K (x,y); yeY},
and therefore
clacli K (x, y) =sup{(y, y*) — L(x,y"); y* € Y*}.
Combining this with relation (2.155), we obtain
chhel] K(x,y)=K(x,y) forevery (x,y)e X x7Y,

as claimed.

Next, we assume that K is any closed proper saddle function on X x Y which sat-
isfies condition (2.156). First, we note that the function L defined by formula (2.154)
is convex on the product space X x Y*. Furthermore, since dom K # {J, we must
have

L(x,y*) > —o0 forevery (x,y*) e X x Y*

and L # +oo. It remains to be proved that L is lower-semicontinuous on X x Y*.
Let L* be the conjugate of L. One has

clL(x,y") = sup{(x,x*) +(y,y") = L*(x*,y); x* e X", ye Y}.
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Combining this with equality (2.159), we obtain
clL(x,y*) =sup{(y,y*) —cli K(x,y); yeY}
= sup{(y,y*) —chcli K(x,y); yeY},
which is equivalent to
clL(x,y*) =sup{(y,y*) — K(x,y); yeY}=L(x,y%

in view of relations (2.156) and (2.154). Thus, L is lower-semicontinuous on X x Y *.
In order to verify relation (2.157), we fix any (x*, y*) in 0K (x, y) and use the
definition of d, K (x, y). Then

= x = x)+ O,y =) ==K, y) + K(xi, y) + (3, y* = y])
forall x; e X, yf e Y™. (2.160)

From relation (2.154), we have
K(x1,y) = (3, y7) = —L(x1,y7) (2.161)
while (2.142) implies that
K(x, )+ Lx,y") = (y, ") (2.162)

because y — K(x,y) is the conjugate of the proper convex function L(x, ) (see
Proposition 2.33). Adding relations (2.161) and (2.162) and substituting the result
in (2.160), one obtains

_(X*v-x _xl) + (ys y* - yik) > L(xs y*) - L(.XI, yik)a (2163)

for all x; € X and y{ € Y*. In other words, we have proved that (—x*,y) €
dL(x, y*). It remains to be proved that (—x*, y) € dL(x, y*) implies that (x*, y*) €
9K (x,y). This follows by using a similar argument, but the details are omitted. [J

Remark 2.113 The closed saddle function K associated with a convex and lower-
semicontinuous function L are referred to in the following as the Hamiltonian func-
tion corresponding to L.

Given any closed and proper saddle function K on X x Y, there always exists an
equivalent closed saddle function K’ which satisfies condition (2.156). An exam-
ple of such a function could be K’ = cl, K. This fact shows that formulas (2.154)
and (2.155) define a one-to-one correspondence between the equivalence classes
of closed proper saddle functions K on X x Y and lower-semicontinuous, proper
convex functions L on X x Y*.

Theorem 2.114 below may be compared most closely to Theorem 2.43.
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Theorem 2.114 Let Y be a reflexive Banach space and let K : X x Y — R be a
proper, closed saddle function on X X Y. Then the operator 0K : X xY — X* x Y*
is maximal monotone.

Proof Tt should be observed that, if K’ is a saddle function equivalent to K,
then 9K’ = 9K . Indeed, as observed earlier, (x;,y;) € 0K (xo, yo) if and only
if (x0, yo) is a saddle point of the function (x,y) — K(x,y) + (x,x5) — (. y)
which is in turn equivalent to (x,y) — K'(x,y) + (x,x) — (¥, y3). Since two
equivalent closed saddle functions have the same saddle points, we conclude that
(x(’)‘ , y(*)‘ ) € 8K’ (x0, ¥o), as claimed. Thus, replacing, if necessary, the function K by
clp K, we may assume that the concave—convex function satisfies condition (2.156)
in Theorem 2.112. If Y is reflexive, then X x Y* is a Banach space, whose dual may
be identified with X* x Y. Since the function L defined by formula (2.154) is convex
and lower-semicontinuous on X x Y*, its subdifferential d L is maximal monotone
(see Theorem 2.43) from X x Y* into X* x Y. Hence, using relation (2.157), 0K is
also maximal monotone. O

Remark 2.115 Theorem 2.114 follows also in the case when X rather than Y is
reflexive, by replacing K by —K .

Corollary 2.116 Let X and Y be two reflexive Banach spaces, and let K : X x Y —
R be a proper, closed saddle function on X x Y. Then, the domain D(0K) of the
operator 0K is a dense subset of dom K .

Proof Let (xg, yo) be any element of dom K, and let (x;, y;) € X x Y be such that

Fi(xy —x0) —A0xK(x3, ) >0, A>0, (2.164)
F(y5. —y0) =20, K (x5, y,) 30, A>0, (2.165)

where F; : X — X* and F> : Y — Y* are duality mappings of X and Y, re-
spectively. Since dK is maximal monotone and the operator (x,y) — (Fj(x —
x0), F>(y — yo)) is monotone, coercive and demicontinuous from X x Y to X* x Y*
(without any loss of generality, we may assume that X and Y as well as their duals
are strictly convex), the above equation has at least one solution (x;, y,) € D(K)
(see Corollary 1.140). We multiply the first equation by x; — xo, the second by
v, — yo and add the results; thus, we obtain

(F1(x5. — x0), X2 — x0) + (F2(yx — Y0)» Y1 — Y0)
< A(K (x2. y0) — K (x0, y2)), forall A > 0. (2.166)

Inasmuch as (xg, yp) € dom K, the functions x - —K (x, yp) and y — K (xg, y) are
convex and not identically +o00 on X and Y, respectively. Thus, these functions are
bounded from below by affine functions (see Proposition 2.20). This fact implies

2. = xolIZ + llys. = yoll* < CA(llxall + lyall + 1). (2.167)

Therefore x, — xo and y; — yg as A — 0, thereby proving Corollary 2.116. U
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Remark 2.117 1t turns out that Corollary 2.116 remains true if one merely assumes
that X or Y is reflexive (see Gossez [22]).

As a final (but, actually, immediate) application of Theorem 2.114, we cite a
minimax result which plays a fundamental role in game theory (see, for instance,
Aubin [1]).

Corollary 2.118 Let X and Y be reflexive Banach spaces, and let A and B be
two closed and convex subsets of X and Y, respectively. Let K¢ be a closed saddle
function on X x Y satisfying the following condition:

(a) There exists some (xg, yo) € A X B such that

Lim (Kot yo) = Ko(xo, ) = —oc. (2.168)
x€A, yeB

Then, the function Kq has at least one saddle point on A x B.

Proof Let K : X x Y — [—00,+400] be the closed saddle function defined
by (2.140). By Theorem 2.114, the operator 0K : X x ¥ — X* x Y* is maximal
monotone. Hence, for each A > 0 (x;, y») € D(0K) = A x B such that

AF1(x3) — 0x K (xa, 3) 30, (2.169)
AF2 () + 0y K (x5, y) 20, (2.170)

where F) : X — X* and F, : Y — Y* are dually mappings of X and Y, respectively.

Let (xg,y0) € A x B be fixed as in condition (2.168). We multiply equa-
tion (2.169) by x; — xo, equation (2.170) by y, — yo, and use the definition of 0 K
to obtain

A(F1(x2), x5 — x0) < K (x5, y2) — K (x0, y2).
AMF2(32), ya — y0) < K (xa, 1) + K (x5, yo).

Therefore,

(e + 12 01?) < (1l xoll  1yall yoll) + K G, yo) — K (xo, y2)-

According to condition (a), this inequality shows that (x;, y,) must be bounded in
X x Y as A tends to 0. Thus, without loss of generality, we may assume that

x) — X weakly in X,
~ (2.171)
v, =y weaklyinY,

as A — 0. If we let A — 0 in equations (2.169) and (2.170), we may infer that

Alin}) 9K (x;,y,) =(0,0) strongly in X* x Y*, (2.172)



136 2 Convex Functions

Since dK is maximal monotone, from assumptions (2.171) and (2.172) it is imme-
diately clear that (X, y) € D(dK) and

(0,0) € 0K (x, ). (2.173)

Thus, we have shown that K has a saddle point (x, y) on X x Y. But it is not difficult
to see that (x, y) is a saddle point of K if and only if (x, y) is a saddle point of K
with respect to A x B, that is,

Ko(x,y) < Ko(%,y) < Ko(x,y) forallx € Aandy € B,

and this establishes Corollary 2.118. g

Let K*: X* x Y* — R be the concave—convex conjugate of K. By analogy with
the terminology used in the study of convex functions, K* is called the conjugate
of K. If K is closed, so is K* and, according to Theorem 2.114, if X and Y are
reflexive, then the subdifferential d K* of K* is a maximal monotone operator from
X* x Y*into X x Y. It is not difficult to see that d K* is the inverse of d K, that is,

(x,y) €IK*(x*,y") <= (* y")€dK(x,y). (2.174)

In particular, this means that the saddle points of K are just the elements of
dK*(0,0). Thus, K has a saddle point, if and only if K* has a subgradient at (0, 0).
In particular, this implies that the set of all saddle points of the proper closed saddle
function K is a closed and convex subset of the product space X x Y. Furthermore,
if K* happens to be continuous at (0, 0), then this set is weakly compactin X x Y. It
follows that the conditions ensuring the subdifferentiability of K* may be regarded
as mini-max theorems. This subject is discussed in some detail in the sequel.

2.3.3 Mini-max Theorems

Let X, Y be two separated linear topological spaces and let F : X x ¥ — R. An
important problem is to establish certain conditions on F, X and Y under which the
mini-max equality

max min F(x, y) = min max F(x, 2.175
max min F(x. y) = min max Fx. y) (2.175)

is true or at least a saddle value exists, that is,

sup inf F(x,y) = inf sup F(x, ). (2.176)
xeX yeY yeY xeX

All the results of this type are termed mini-max theorems. In view of Proposi-
tion 2.105, the mini-max equality is equivalent to the existence of a saddle point
of Fon X x Y.
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This section is concerned with the main mini-max theorems and some general-
izations of the famous mini-max theorem of von Neumann [76].
First, we prove a general result established by Terkelsen [72].

Theorem 2.119 Let A b e a compact set in a topological space, let B be an arbi-
trary set, and let F be a real-valued function defined on A x B such that F(-,y) is
an upper-semicontinuous function on A for every y € B. Then, the following state-
ments are equivalent.

(a) ForeveryacRandyy,y, ..., yn € B suchthat @ > maxyca minj<;<, F(x, yi),
there is yo € B such that o > maxyc F(x, yp).
(b) F satisfies the equality

max inf F(x,y) = inf max F(x, y). 2.177)
x€A yeB yeB xeA

Proof First, we notice that because A is a compact set according to the Weierstrass
theorem for the upper-semicontinuous functions (see Theorem 2.8), we can take
“max” instead of “sup”.

We immediately obtain statement (a) from equality (2.177) by using the defini-
tion of a supremum. Let us prove that statement (a) implies (b). Let an arbitrary
o € R be such that

o > max inf F(x,y).

xeA yeB

We write Ay = {x € A; F(x,y) > a},forevery y € B, and hence ﬂyeB Ay =0.By
hypothesis, Ay is closed; therefore, A being a compact set, there are y1, ..., y, € B
with ﬂ;’zl Ay, =, which implies min|<;<, F(x, y;) < o, for each x € X. Thus,
maxye4 Minj<i<, F(x,y;) <o and then, from statement (a) we obtain yg € B such
that o > max,ca F(x, yo), from which it results that & > infycp maxyea F(x, y).
Now, if o tends to maxye4 infyep F(x, y), we have

max inf F(x,y)> inf max F(x, y).
xeA yeB yeB xeA

Moreover, it follows from (2.132) that equality (2.177) holds. O

Corollary 2.120 Under the same assumptions as in the theorem, if for every
Y1, Y2 € B there is y3 € B such that F(x, y3) < F(x, y1) and F(x,y3) < F(x, y2)
for every x € A, then F satisfies equality (2.177).

Corollary 2.121 If (f,,) is a decreasing sequence of real-valued upper-semicontin-
uous functions on a compact set A, then

lim max fn(x)_mazc hm Jn(x). (2.178)

n—>oo xe

Proof To prove this, take B = N and define F (x,n) = f,(x), x € A,n € N. We have
satisfied a directed condition which, obviously, implies statement (a), hence equal-
ity (2.178). O
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Remark 2.122 The previous theorem is not really a mini-max theorem. If, moreover,
B is a compact set and y — F(x,y) is a lower-semicontinuous function on B
for every x € A, then statement (a) is equivalent to the mini-max equality (2.175)
because the infimum is also attained.

Property (a) is a rather natural one because, from equality (2.175), inequal-
ity (2.178) is equivalent to the following assertion:

for every o € R such that o > maxyea infyep F(x, ), there is yo € B such that
o = maxyea F(x, yo).

Since the set A is compact and the function F (-, y) is upper-semicontinuous, it
is “possible” to consider the infimum only on the finite subsets of B.

The natural framework for presenting mini-max theorems is that of concave—
convex functions. Among the various methods used in the proof of mini-max theo-
rems, we notice the following: the first relies on separation properties of convex
sets and the second is based on the celebrated Knaster—Kuratowski—-Mazurkiewicz
Theorem [38] (Theorem 2.129 below). However, these methods can be extended to
functions more general than concave—convex functions.

Definition 2.123 A function F : X x ¥ — R is said to be concave—convex-like if
the following conditions hold:

(i) For every x1,x2 € X and ¢ € [0, 1] there is an x3 € X such that
tF(x1,y)+ (1 —=0)F(x2,y) < F(x3,y) forallyeY, (2.179)

whenever the left-hand side makes sense.
(ii) Forevery y1, y2 € Y and ¢ € [0, 1], there is a y3 € ¥ such that

F(x,y3) <tF(x,ypD)+{—-1t)F(x,y;) forallxelX, (2.180)

whenever the right-hand side is well defined.

Definition 2.124 A function F : X x ¥ — R is said to be quasi-concave—convex
if the level sets {x € X; F(x,y) > «a} and {y € Y; F(x,y) < a} are convex sets for
everyyeY,xe€ Xand e e R.

It is clear from condition (i) that the following property results.
(i) Forevery xi,x2 € X and t1,tp,...,1, > 0 with Y 7_, ; =1, there is an xg € X
such that
n
Y tiF(xi.y) < F(xo.y) forallye?, (2.181)
i=1
whenever the left-hand side is well defined.

A similar statement for condition (ii) holds.
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Remark 2.125 The concepts of concave—convex-like and quasi-concave—convex are
independent of each other. However, a concave—convex function is at the same time
concave—convex-like and quasi-concave—convex.

In the following, we assume that A C X, B C Y are two nonempty convex sets
and that F is real-valued on A x B. Hence, for extended real-valued functions, the
set A x B plays the role of effective domain.

Theorem 2.126 Let X, Y be separated topological linear spaces, AC X, BCY
compact convex sets and F a real-valued upper-semicontinuous concave—convex-
like function on A X B. Then F satisfies the mini-max equality on A x B.

Proof Let us prove that F has property (a) from Theorem 2.119.
Leta e Rand yy, y, ..., y» € B be such that

o >max min F(x,y). (2.182)

xeA 1<i<n
Now, we consider the following convex sets of R":

Cy = conv{(F(x, y1), F(x,y2),.... F(x,y)); x € A},

C2={(u1,u2,...,un); ui > o, i=1,2,...,n}.

Obviously, C; is a cone with vertex @ = (o, «, ...,a) € R” and C; N Cy = @. In-
deed, if u = (uy,uz,...,u,) € Cy, there are x; e Aand a; >0, j =1,2,...,m,
with Z;f;]aj =1, such that u; = Z’}Ll ajF(x;j,y;) foreveryi=1,2,...,n. Now,
from (i)', there exists a point xo € A such that

m

F(xo,y) > ZajF(xj,y). (2.183)
j=1

Using (2.182), we find iy for which o > F(xo, yi,). Therefore, it follows from
inequality (2.183) that o > u;,, that is, u = (uy,uz,...,u,) € Cy. According to
Corollary 1.41, for the disjoint convex subsets C1, Co we find a nonzero element
c=(c1,c2,...,c,) € R" such that

n n
sup Zciui < inf Zciui. (2.184)
ueC i=1 ueCy i=1
However, the cone C, contains all the points (¢, c,..., 0, + n,q,...,a),

n € N, and therefore ¢; > 0; hence, the infimum is attained at the vertex. Tak-
ing c; = ci(Z?zl cj)_1 and u; = F(x,y;), from inequality (2.184), we obtain
Y i1 CiF(x,y) <« for all x € A. Combining this with property (ii) from Defi-
nition 2.123, there is a point yg € B such that F(x, yo) < « for every x € A; hence,
a > maXxyeq F(x, yo) and thus assertion (a) from Theorem 2.119 is really satisfied.
Therefore relation (2.177) is true. Now, using (2.177) and the lower-semicontinuity



140 2 Convex Functions

of F(x,-) on the compact B for every x € A, we obtain the mini-max equal-
ity (2.175). 0

Corollary 2.127 If X, Y are reflexive Banach spaces, A C X, B C Y are bounded
closed and convex sets, F is an upper-lower-semicontinuous concave—convex func-
tion on A X B, then F has a saddle point on A X B.

Proof 1tis sufficient to recall that in a reflexive Banach space, every bounded closed
convex set in weakly compact (Theorem 1.94) and the lower-(upper-)semicontinuity
is equivalent to the weak lower-(upper-)semicontinuity for the class of convex (con-
cave) functions, by virtue of Proposition 2.10. We can, therefore, apply the theorem
where X, Y are endowed with their weak topologies. g

Remark 2.128 As is easily seen from the proof of Theorem 2.119, we omit the
compactness condition of the set B and the lower-semicontinuity condition of the
function F(x, -), we obtain equality (2.177).

Now, we prove similar results for quasi-concave—convex functions. As noted
above, we use the following statement due to Knaster, Kuratowski and Mazur-
kiewicz [38].

Theorem 2.129 (Knaster—Kuratowski—-Mazurkiewicz) Let U be an arbitrary set
in a finite-dimensional separated topological linear space E. To every u € U,
let #(u) C E be a compact set such that the convex hull of every finite subset
{ur,uz,...,u,} C U is contained in the corresponding union Ui:l F (u;). Then,

Nucv F W) # 0.
The first main result for the quasi-concave—convex functions is the following.

Theorem 2.130 Let F be a real-valued upper-lower-semicontinuous quasi-
concave—convex function on A x B. If there are yp € B and oy <
infyep sup,cq F(x,Y) such that the level set {x € A; F(x, yo) > ap} be compact,
then

sup inf F(x,y) = inf sup F(x,y). (2.185)
xeA yeB yeEB x€A

Proof Suppose by contradiction that equality (2.185) is not true. From inequal-
ity (2.132), there is @ > «, such that

sup inf F(x,y) <a < inf sup F(x,y). (2.186)
x€A yeB yeEB xe€A

Write Ay = {x € A; F(x,y) > a} and By = {y € B; F(x, y) < a}, which by hypo-
thesis are nonempty convex and closed sets. Using (2.186), it follows that

() Ay =4 ﬂBF@.

yeB xeA
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Since Ay, is compact, there are y1, ..., y, € B such that ﬂ?:l Ay, = (. On the other
hand, as the convex sets finitely generated are compact, there are x1,...,x,;, € A
such that

m
mej Nconv{y;; i=1,2,...,n}=0.
i=1

Let A’ = conv{xy, x2, ..., x} and B’ = conv{yi, y2, ..., yn}. Define the multi-
valued mapping .% on A’ x B’ by

F(u,v)={(w,s) € A" x B'; F(w,v) >aor F(u,s) <a}. (2.187)

One may easily show that all the conditions of Theorem 2.129 are fulfilled. Indeed,
Z (u, v) is a compact set since F is upper-semicontinuous and A’ x B’, A; > 0, with
> A =1 such that

14
D hiCui v)EF(uj,vj) forall j=1,2,...,p;

i=1
it follows that
p p
F(Zkiui,vj><a and F(uj,ZAivi)>a, j=12,...,p.
i=1 i=1

Since the sets

)4 P
{yeB’; F(Zkiui,y) <a} and {xeA’; F(x,ZXivl) >a}
i=1 i=1

are convex, at the same time we obtain

P P P P
F(Zkiui,ZAivi> <a and F(ZA,-M,-,ZMU,») > o,
i=1 i=1 i=1 i=1

which is a contradiction. Hence,

p
Y hilui,v) €
i=l i

Thus, according to Theorem 2.129, there is (xq, yo) € A’ x B’ such that (xq, yo) €
F(x,y) for all (x,y) € A’ x B/, that is, F(xg, yo) > a or F(xg, yo) < a for all
x € A’ and y € B’. On the other hand, it follows that there are iy and jy such that
X0 € Ayi0 and yp € ijo , which implies

-

F (Ui, vp).
1

a< F(xj,,y0) <a or o=F(xg,yi) <a.

This is a contradiction. Therefore, equality (2.185) holds. O
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Remark 2.131 1t is worth noting that it is sufficient to assume that F'(x, -) is lower-
semicontinuous only on the intersection of B with any finite-dimensional space.
It should be emphasized that in equality (2.185) “sup” may be replaced by “max”
because F'(-,y) is upper-semicontinuous and A may be replaced by the compact
set Ay,.

According to Theorem 2.130, we obtain a result similar to Theorem 2.126, for
the class of quasi-concave—convex functions.

Theorem 2.132 Let A, B be two compact convex sets and let F be a real-valued
upper-semicontinuous quasi-concave—convex function on A x B. Then F satisfies
the mini-max equality on A x B.

Remark 2.133 By Remark 2.125 and Theorem 2.126 or Theorem 2.132, we find the
classical mini-max theorem for concave—convex functions. Likewise, we find again
Corollary 2.118 for the semicontinuous saddle functions.

Corollary 2.134 Let X,Y be reflexive Banach spaces, and let A C X, B C X be
closed convex sets. If F is a semicontinuous saddle function on A x B satisfying the
conditions:

(a) A and B are bounded, or
(b) There is (x9, yo) € A X B such that

HXHHIVHﬁoo{F(xO’ y) - Fx, y0)} = 00, (2.188)
(x._v)e;le

then F verifies the mini-max equality on A X B.

Proof 1f F satisfies condition (a), Theorem 2.132 can be used for the work topolo-
gies on X and Y. Hence, it is sufficient to prove the corollary if F satisfies the
coercivity condition (b). It is clear, from condition (b), that there exists 2 > 0 such
that, for every (x,y) € A x B with ||x|| + ||y|| > k&, we have

F(x0,y) — F(x,y9) > 0. (2.189)

We can assume that & > max{||xgl|, ||[yoll}. From the first part of the corollary
applied to the function F with respect to nonempty bounded closed convex sets
A’ ={x € A;| x| <h}and B'={y € B; ||y|| < h}, it follows that there is a saddle
point (x’, y") € A’ x B’, that is,

F(x,y) < F(x',y) = F(x', y), (2.190)

for every (x,y) € A’ x B'.
Particularly, since (xq, yg) € A’ x B/, we obtain

F(xo,y) < F(x',y") < F(x', yo)
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from which we see that (x’, y") does not satisfy inequality (2.189); therefore, ||x'|| <
h and ||y’|| < h. Then, for every y € B, we can choose a suitable A € ]0, 1[ such that
Ay + (1 —A)y" € B’. From the right-hand side of inequality (2.190), by virtue of the
convexity of F(x’, -), we obtain

F(x'.y)<F(x', Ay + (1 =0)y) <AF ', y)+(1—=MDFK',y),
which leads to
F(x',y) < F(x',y),
for every y € B. Similarly, from the left side of inequality (2.190) and, by virtue of
the concavity of F (-, y"), we have

F(x,y) <F(x',y),

for every x € A. The last two inequalities imply that (x’, y’) is a saddle point of F
on A x B and the proof is complete (Proposition 2.105). O

Remark 2.135 Condition (a) or (b) in the previous corollary may be replaced by the
following conditions:

(a)’ B is bounded and there is yy € B such that

Jim F(x, yo) = —o0, (2.191)
xeA

or, by the symmetric condition

(b)’ A is bounded and there is xg € A such that

H lulm F(x0,y) =+00. (2.192)
yl[—oo
yeB

Also, relations (2.191) and (2.192) together are sufficient.

All the results in this section can be applied to functions with values in R, defined
on a product of two separated topological linear spaces. It is known that, if F is a
real-valued function on A x B, there is an extended real-valued function F defined
on all space X x Y such that F|gom r = Fo (see (2.140) from Sect. 2.3.2). Moreover,
we have

sup inf F(x,y)=sup inf Fy(x,y), (2.193)
xeX yeY x€A yeB
inf sup F(x,y) = inf sup Fo(x, y). (2.194)
yeY xeX yeB xeA

Hence, if Fy has a saddle value, then F has the same saddle value and reciprocally.
Also, (x, y) is a saddle point of F on X x Y if and only if (x, y) is a saddle point
of Fp on A x B (provided Fy is a proper function). On the other hand, giving an
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extended real-valued function F : X x ¥ — R, the role of A and B is played by
D1 (F) and D (F). In general, relations (2.193) and (2.194) are not true. However,
we can indicate a sufficiently large class of functions which satisfy these equalities.

Proposition 2.136 If F is a proper closed saddle function on X x Y, then rela-
tions (2.193) and (2.194) hold, where A x B =dom F'.

Proof By definition of A = D (F), we have

sup inf F(x,y)=sup inf cly F(x,y) =sup inf cly F(x,y).
xeX yeY xeX yeY xeA yeY

On the other hand, since F is closed, by definition of B = D;(F') we have

inf clp F(x,y) = inf clp cly F(x, y) = inf cl; F(x,y) = inf cl; F(x, y),
yeY yeY yeY yeB

hence

sup inf F(x,y)=sup infcl; F(x,y) > sup inf F(x,y).
xeX yeY x€A yeB x€A yeB

Also, the converse inequality holds

sup inf F(x,y) =sup inf cly F(x,y) =sup inf F(x,y) <sup inf F(x,y).
xeX yeY xeA yeY xeA yeY xeA yeB

Similarly an obtains (2.194). O

2.4 Problems

2.1 Let f: I — R be a function on the real interval I C R. Prove that f is quasi-
convex if and only if it is either monotone or there exists xp € I such that f is
decreasing on (—o0, xo] N I and increasing on [xg, c0) N I.

Hint. We denote o = inf{ f (x); x € I}. Let us consider a sequence (x,)en* C 1
such that f(x,) — a. Let X be a cluster element in R of the sequence (X,)nen+ and
denote by a,b € R the extremities of the interval I. The following three cases are
possible: (1) x =a; (2) x = b; (3) a < x < b. In the first case, the function f is
increasing on /. Indeed, if u,v € I, u <v and f(u) > f(v), taking f(v) < 8 <
f(u), we find xj such that f(x;) < B, where x;; < u, since & < . Therefore, the
interval {x € I; f(x) < B} (see Sect. 2.1.1) contains the points x; and v. Hence, it
also contains the element u, that is, f(u) < 8, which is a contradiction. Similarly,
we prove that f is decreasing if x = b. Now, if a < X < b, then f is decreasing on
[a,x] N I and increasing on [x,b] N 1.
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2.2 Let ¢ be a lower-semicontinuous convex function on the Hilbert space H and
let {x,} be defined by the following algorithm:

Xn41 + 09 (Xpy1) DX, neN

Prove that the sequence {x,} is weakly convergent to a minimum point x, €
(39)~1(0) of .

Hint. This is the descent step algorithm. If we set

K= {w— lim x,,k},

ni— 00

we show first that K C (8(,0)_1 (0) and then prove that the sequence {|x;, — y|2}n is
decreasing for each y € (3¢)~'(0). If

§l=w— lim x,, and & =w— lim x,,
ng— 00 nj—00 k

this implies that

: 2 : 2
/hm |xn;( —§1| = }1m |xn;(/ —5;'1| ,
ny—00 ny—>00

lim |x,y =& = lim |x, — &
nk—>oo l’lk—>00

and therefore & = &;, as claimed.
2.3 Let K be a closed convex subsets of R” and let
A ={ye(LP(2)"; y(x) €K, ae.x €2},

where 1 < p < oo and §2 is a measurable sub set of R". Find the normal cone
Ny (y) C (L1(£2))™ to X at y, % + é =1.

Hint. Apply Proposition 2.53, where g(x,y) =0 if y € K, g(x,y) = 400 if
yeEK.

2.4 Find the normal cone N - for

A ={yeLP(2); a<y(x)<b, ae.xe]},
A ={ye (L))"

|y, <p. ae xe},

where || - ||, is the Euclidean norm in R™.

2.5 Find the normal cone Ny to the set # = {y € Lz(.Q); a<yx)<b, ae.
X € 2, f_Q y(x)dx = £}, where am(£§2) < € < bm(£2) (m is the Lebesgue measure).
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Hint. We represent % = J¢1 N % where 7] = {y € L%(£2); a < y(x) <b, ae.
xeR}, Hh={ye L?(£2): f_Q y(x)dx = £} and show that

Ny () =Ny () + Ny (y), Vyed.

Since N_y; (¥) + Ny C Ny (), it suffices to show that, for every f € L%(£2), the
equation y + N (y) + N_ (y) > f has a solution y € 2. Since N y; (y) =R, the
above equation reduces to y = P (f — A), A € R, where P y; is projection on .%].

2.6 Let g : R — R be alower-continuous convex function such that lim | oo % =
+ooandletg: H-1(2) — R” be defined by

Jo g dx, ifg(y) e L(£2),

p(y) = :

+00, otherwise.

Show that ¢ is lower-semicontinuous and that
dp(y) ={—Aw; we Hj(2), ye H'(2)NL'(£2),
w(x) € Bg(y(x)) ae. x € .Q} (2.195)

Hint. Let F(y) ={w € HO1 (£2); w(x) € 3g(y(x)) a.e. x € £2}. Clearly, F(y) C
d¢(y) for each y € D(F). It suffices to show that F' is maximal monotone from
(H& (2)) = H71(2) to itself. Equivalently, for each f € H~!(£2), the equation
—Aw + (g) " (w) > f has a solution w € HO1 (£2). One takes an approximating
sequence {f,} C L%(2), fu — f in L?(£2), and consider the corresponding solu-
tions wj, to the equation —Aw, + (3g) "' (w,) 3 f, in 2, w, € H& (£2) N H*(2).
Taking into account that g*(wy,) + 2((32)""'w,) = w, (3g) "' (wy), we infer by the
Dunford—Pettis theorem that {y, € (3g)~!(w,)} is weakly compact in L'(£2) and
therefore we may pass to the limit with w, to prove the existence of w € HO1 (£2)

with y € (9g)'w e L1 (£2).
2.7 Let j : R — R be a lower-semicontinuous convex function such that
w|r|P 4+ c; < jr) <wilr|? +c1, VreR,

where w1, w2 > 0 and p > 1. We set 8 = dj. Consider the function ¢ : Wol’p(.Q) —
R" defined by

o(y) = / J(Vy)dr.
22

Show that ¢ is convex, lower-semicontinuous and its subdifferential d¢ : WOl’p (£2)
— W~LP'(£2) is given by

ap(y) = {w € W_l”’/(.Q); w=—divn, nx) e Bj(Vy(x)), ae. x € .Q}
(2.196)
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Show that ¢ is lower-semicontinuous on L2(SZ), too. Does this result remain true if
p=1?

Hint. It suffices to show that the map defined by the second right-hand
side of equation (2.196) is maximal monotone from Wol’p(.Q) to (Wol’p(.Q))’ =
W"’P/(.Q), % +L=11f B is single valued, this reduces to the existence of a
solution y for the nonlinear elliptic boundary-value problem Ay — divdj(Vy) = f
in £2; y=00n 052, where A > 0 and f € L? (£2). (See [4], p. 81.)

If p =1, then ¢ is no longer lower-semicontinuous on L?(£2) if takes D(¢) =

W(} o1 (£2), but remains so if D(gp) is taken to be the space of functions with bounded
variation which are zero on 052.

2.8 Let ¢ be a continuous and convex function on Hilbert space H with the norm
| -], 9(0) =0 and let ¢; be its regularization (see (2.58)), that is,

Ix — yI?

wz(x)=inf{ +o(y); yGH}=S(t)<p, t>0.

Show that S(¢ +5) = S(#)S(s)e, Vt,s > 0, and

dr 1 2
E(p(t,x)—i—iwxgo(t,x)’ =0, Vt>0,xeH.

Remark 2.137 This means that t+ — S(#)¢ is a continuous semigroup on the
space of all continuous convex functions on H with infinitesimal generator ¢ —
—3 [Vxp@)P.

2.9 Let H be a Hilbert space and let F be a convex and continuously differentiable
function on H such that

F(x) _

|x|—00 |x|

400, VF islocally Lipschitz,

(F'(x) = F'(3),x —y) Zolx —y’, Vx,y,Ix], Iyl <.
We set
(S()@)(x) = (¢* +1F)*(t), t=0, x€H.
Show that:

(1) im0 S()e(x) = @(x).
2) SE+s)p=S@)S(s)p, Vs, t > 0.
(3) L S)p + F(V(S(t)g)) =0,V > 0,x € H.

Hint. Show first that (S(t)p)(x) = @(y;(x)); + F*(VF(©@¢(y;(x))), where
Yi(x) = (I +1VF@¢))~(x) and Vi (S@®)g)(x) = (VF) ' ¢~ (x — y:(x))). (For
details, see Barbu and Da Prato [5], p. 25.)
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2.10 The unilateral (free boundary problem)

—V') 4+ y@) = £() in[x [0, TT; y(x) > p],
—y"(x)+y(x) < f(x) in[x€[0,1]: y(x) =p].
yx)=¢, Vxel0,1], y(0)=y(1) =0,

describes the equilibrium state of an elastic string fixed at x = 0, 1 and pushed
against an obstacle y = p < 0 by a distributed force f(x). Represent it as a vari-
ational inequality and solve it for f(x) = —1.

Hint. This is a problem of the form (2.95).
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reau [45]. Theorem 2.43 was first proved by Moreau and later extended to a
general Banach space by Rockafellar [55, 59]. Theorem 2.46 is also due to
Rockafellar [55] and Theorem 2.58 is a slight extension of some results of
Moreau [45] and Brezis [12]. As already noticed, Theorem 2.62 is a special
case of a general perturbation theorem due to Rockafellar [60]. The idea of
the proof given here comes from the work [14] by Brezis, Crandall and Pazy.
Theorem 2.65 is due to Brezis [12, 13]. The theory of variational inequalities
has been the subject of much development in the last fifteen years. For detailed
treatments and applications, we refer the reader to the surveys of Stampacchia
[70], Mosco [47], and to the books of Duvaut and Lions [19]. The nonlinear
complementary problem in infinite dimension has been investigated by Kara-
mardian [35], Habelter and Price [24], Eaves [20], Saigal [67], among others.
Theorem 2.76 may be compared most closely with some results given by Kara-
mardian [36], and Bazaraa et al. [6-9].

The concept of e-subdifferential of convex function was introduced by
Brgnsted and Rockafellar [16]. The properties concerning the maximality with
respect to the e-monotonicity (Definition 2.86) considered for the first time
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2.3.

by Vesely [75] (see also Jofré, Luc and Théra [34]) are established by Pre-
cupanu and Apetrii in [52], where some connections with the e-enlargement
of an operator defined by Revalski and Théra [54] and the special case of &-
subdifferential are investigated. A detailed treatment of calculus rules of the &-
subdifferential of a convex function is presented by Hirriart-Urruty and Phelps
in [28].

The first notion of quasi-subdifferential for a quasi-convex function has been

defined independently by Greenberg and Pierskalla in [23] and Zabotin, Koblev
and Khabibulin in [77]. Different types of e-quasi-subdifferential may be found
in the monographs of Singer [68], Hirriart-Urruty and Lemarechal [27] and the
papers of Ioffe [31], Martinez Legaz and Sach [43], Penot [49]. The concept of
e-quasi-subdifferential given by Definition 2.124 was introduced by Precupanu
and Stamate in [53], where the relationship existing between this new type of
quasi-subdifferential and other quasi-subdifferentials known in the literature is
presented.
The results presented in Sect. 2.3.2 are essentially due to Rockafellar [58, 62]
(see also [56]). The first mini-max theorem was formulated for bilinear func-
tionals on finite-dimensional spaces by von Neumann [76]. Theorems 2.119
and 2.126 are essentially due to Terkelsen [72]. Mini-max Theorems 2.130
and 2.132 extend some classical results due to Ky Fan [40, 41], Sion [69],
Kneser [39], Nikaido [48].

References

12.
13.

. Aubin JP (1982) Mathematical methods of game and economic theory. North Holland, Ams-

terdam

Avriel M, Diewert W, Schaible S, Zang I (1988) Generalized concavity. Kluwer Academic,
New York

Baiocchi C (1974) Problémes a frontiere libre en hydraulique. C R Acad Sci Paris 278:1201—
1204

Barbu V (1996) Abstract periodic Hamiltonian systems. Adv Differ Equ 1:675-688

Barbu V, Da Prato G (1984) Hamilton—Jacobi equations in Hilbert spaces. Research notes in
mathematics, vol 93. Pitman, Boston

Bazaraa MS, Goode J (1972) Necessary optimality criteria in mathematical programming in
the presence of differentiability. J Math Anal Appl 40:609-621

Bazaraa MS, Shetty CM (1976) Foundations of optimization. Lecture notes in economics and
mathematical systems, vol 122. Springer, Berlin

Bazaraa MS, Goode J, Nashed MZ (1972) A nonlinear complementary problem in mathema-
tical programming in Banach spaces. Proc Am Math Soc 35:165-170

Bazaraa MS, Goode J, Nashed MZ (1974) On the cones of tangents with applications to math-
ematical programming. J Optim Theory Appl 13:389-426

Brezis H (1968) Equations et inéquations non linéaires dans les espaces vectoriels en dualité.
Ann Inst Fourier 18:115-175

. Brezis H (1971) Monotonicity methods in Hilbert spaces and some applications to nonlinear

partial differential equations. In: Zarantonello E (ed) Contributions to nonlinear functional
analysis. Academic Press, San Diego, pp 101-156

Brezis H (1972) Problemes unilatéraux. J Math Pures Appl 51:1-64

Brezis H (1973) Opérateurs maximaux monotones et semigroupes de contractions dans les
espaces de Hilbert. Math studies, vol 5. North Holland, Amsterdam



150 2 Convex Functions

14. Brezis H, Crandall M, Pazy A (1970) Perturbations of nonlinear maximal monotone sets.
Commun Pure Appl Math 23:123-144

15. Brgnsted A (1964) Conjugate convex functions in topological vector spaces. Matfys Madd
Dansk Vid Selsk 2 34:2-27

16. Brgnsted A, Rockafellar RT (1965) On the subdifferentiability of convex functions. Proc Am
Math Soc 16:605-611

17. Clarke FH (1975) Generalized gradients and applications. Trans Am Math Soc 205:247-262

18. Clarke FH (1981) Generalized gradients of Lipschitz functionals. Adv Math 40:52-67

19. Duvaut G, Lions JL (1972) Sur les inéqualitions en mécanique et en physique. Dunod, Paris

20. Eaves BC (1971) On the basic theorem of complementarity. Math Program 1:68-75

21. Ekeland I, Temam R (1974) Analyse convexe et problemes variationnels. Dunod, Gauthier—
Villars, Paris

22. Gossez JP (1972) On the subdifferential of a saddle function. J Funct Anal 11:220-230

23. Greenberg HJ, Pierskalla WP (1971) A review of quasi-convex functions. Oper Res 19:1553—
1570

24. Habelter GJ, Price AL (1971) Existence theory for generalized nonlinear complementarity
problem. J Optim Theory Appl 7:223-239

25. Hiriart-Urruty JB (1977) Contributions a la programmation mathématique. These, Université
de Clermont—Ferrand

26. Hiriart-Urruty JB (1979) Tangent cones, generalized gradients and mathematical program-
ming in Banach spaces. Math Oper Res 4:79-97

27. Hiriart-Urruty JB, Lemarechal C (1993) Convex analysis and minimization algorithms.
Springer, Berlin

28. Hiriart-Urruty JB, Phelps RR (1993) Subdifferential calculus using e-subdifferentials. J Funct
Anal 118:154-166

29. Ioffe AD (1976) An existence theorem for a general Bolza problem. SIAM J Control Optim
14:458-466

30. Ioffe AD (1977) On lower semicontinuity of integral functionals. SIAM J Control 15:521—
538; 458-466

31. Ioffe AD (1990) Proximal analysis and approximate subdifferentials. J Lond Math Soc 41:1—
38

32. Ioffe AD, Levin VL (1972) Subdifferential of convex functions. Trudi Mosc Mat Obsc 26:3—
73 (Russian)

33. Ioffe AD, Tihomirov WM (1968) Duality of convex functions and extremal problems. Usp
Mat Nauk 23:51-116 (Russian)

34. Jofré A, Luc DT, Théra M (1996) e-subdifferential calculus for nonconvex functions and &-
monotonicity. C R Acad Sci Paris 323(I):735-740

35. Karamardian S (1971) Generalized complementarity problem. J Optim Theory Appl 8:161—
168

36. Karamardian S (1972) The complementarity problem. Math Program 2:107-129

37. Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their
applications. Academic Press, New York

38. Knaster B, Kuratowski C, Mazurkiewicz S (1929) Eine Beweis des Fixpunktsatzes fiir n-
dimensionale Simplexe. Fundam Math 14:132-137

39. Kneser H (1952) Sur un théoreme fondamental de la théorie des jeux. C R Acad Sci Paris
234:2418-2420

40. Ky F (1953) Minimax theorems. Proc Natl Acad Sci USA 39:42-47

41. Ky F (1963) A generalization of the Alaoglu theorem. Math Z 88:48-66

42. Lions JL, Magenes E (1970) Problemes aux limites non homogenes et applictions. Dunod,
Gauthier—Villars, Paris

43. Martinez-Legaz JE, Sach PH (1999) A new subdifferential in quasi-convex analysis. J Convex
Anal 6:1-11

44. Martinez-Legaz JE, Théra M (1996) e-Subdifterentials in terms of subdifferentials. Set-Valued
Anal 4:327-332



References 151

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

56.
57.

58.

59.

60.

61.
62.

63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

76.
71.

Moreau JJ (1965) Proximité et dualité dans un espace de Hilbert. Bull Soc Math Fr 93:273—
299

Moreau JJ (1966-1967) Fonctionelles convexes. Séminaire sur les équations aux dérivées par-
tielles, College de France

Mosco U (1970) Perturbations of variational inequality. Proc Symp Pure Math 28:182-194
Nikaido H (1954) On von Neumann’s minimax theorem. Pac J Math 4:65-72

Penot JP (2000) What is quasiconvex analysis? Optimization 47:35-110

Ponstein J (1976) Seven kinds of convexity. SIAM Rev 9:115-119

Popoviciu T (1945) Les Fonctions Convexes. Hermann, Paris

Precupanu T, Apetrii M (2006) About g-monotonicity of an operator. An St Univ All Cuza
Tasi, Ser I, Mat 81-94

Precupanu T, Stamate C (2007) Approximative quasi-subdifferentials. Optimization 56:339—
354

Revalski JP, Théra M (2002) Enlargements of sums of monotone operators. Nonlinear Anal
48:505-519

Rockafellar RT (1966) Characterization of the subdifferentials of convex functions. Pac J Math
17:497-510

Rockafellar RT (1969) Convex analysis. Princeton Univ Press, Princeton

Rockafellar RT (1970) Convex functions, monotone operators and variational inequalities. In:
Proc NATO Institute, Venice, Oderisi, Gubio

Rockafellar RT (1970) Monotone operators associated with saddle functions and minimax
problems. In: Browder F (ed) Nonlinear functional analysis. Proc symp pure math, vol 18
Rockafellar RT (1970) On the maximal monotonicity of subdifferentials mappings. Pac J Math
33:209-216

Rockafellar RT (1970) On the maximality of sums of nonlinear operators. Trans Am Math
Soc 149:75-88

Rockafellar RT (1971) Integrals which are convex functionals, II. Pac J Math 39:439-469
Rockafellar RT (1971) Saddle-points and convex analysis. In: Kuhn HW, Szego GP (eds)
Differential games and related topics. North-Holland, Amsterdam, pp 109-128

Rockafellar RT (1976) Integral functionals, normal integrands and measurable selections. In:
Gossez JP et al (eds) Nonlinear operators and the calculus of variations. Lecture notes in math.
Springer, Berlin

Rockafellar RT (1978) The theory of subgradients and its applications to problems of opti-
mization. Lecture notes Univ Montreal

Rockafellar RT (1979) Directional Lipschitzian functions and subdifferential calculus. Proc
Lond Math Soc 39:331-355

Rockafellar RT (1980) Generalized directional derivatives and subgradients of nonconvex
functions. Can J Math 32:257-280

Saigal R (1976) Extensions of the generalized complementarity problem. CORE discussion
papers 7323, Université Catholique de Louvain

Singer I (1997) Abstract convex analysis. Wiley, New York

Sion M (1958) On general minimax theorems. Pac J Math 8:171-176

Stampacchia G (1969) Variational inequalities. In: Ghizzetti A (ed) Theory and applications
of monotone operators, Oderisi, Gubio, pp 35-65

Stoer J, Witzgall C (1970) Convexity and optimization in finite dimension. Springer, Berlin
Terkelsen F (1973) Some minimax theorems. Math Scand 31:405-413

Thibault L (1980) Sur les fonctions compactement Lipschitziennes et leur applications. These,
Université de Sciences et Techniques du Languedoc, Montpellier

Vainberg MM (1968) Le probleme de la minimization des fonctionnelles non linéaires. Uni-
versité de Moscou

Vesely L (1993) Local uniform boundedness principle for families of e-monotone operators.
Nonlinear Anal 24:1299-1304

von Neumann J (1928) Zur Theorie der Gesellschaftsspiele. Math Ann 100:295-320

Zabotin Yal, Korblev Al, Khabibulin RF (1973) Conditions for an extremum of a functional
in the presence of constraints. Kibernetica 6:65-70 (in Russian)



2 Springer
http://www.springer.com/978-94-007-2246-0

Convexity and Optimization in Banach Spaces
Barbu, V.; Precupanu, T.

2012, Xll, 368 p., Hardcover

ISBEN: 278-24-007-2246-0



	Chapter 2: Convex Functions
	2.1 General Properties of Convex Functions
	2.1.1 Deﬁnitions and Basic Properties
	2.1.2 Lower-Semicontinuous Functions
	2.1.3 Lower-Semicontinuous Convex Functions
	2.1.4 Conjugate Functions

	2.2 The Subdifferential of a Convex Function
	2.2.1 Deﬁnition and Fundamental Results
	2.2.2 Further Properties of Subdifferential Mappings
	2.2.3 Regularization of the Convex Functions
	2.2.4 Perturbation of Cyclically Monotone Operators and Subdifferential Calculus
	2.2.5 Variational Inequalities
	2.2.6 epsilon-Subdifferentials of Convex Functions
	2.2.7 Subdifferentiability in the Quasi-convex Case
	2.2.8 Generalized Gradients

	2.3 Concave-Convex Functions
	2.3.1 Saddle Points and Mini-max Equality
	2.3.2 Saddle Functions
	2.3.3 Mini-max Theorems

	2.4 Problems
	2.5 Bibliographical Notes
	 References


