
Chapter 2
Convex Functions

In this chapter, the basic concepts and the properties of extended real-valued convex
functions defined on a real Banach space are described. The main topic, however, is
the concept of subdifferential and its relationship to maximal monotone operators.
In addition, concave–convex functions are examined because of their importance in
the duality theory of minimization problems as well as in min-max problems.

2.1 General Properties of Convex Functions

We develop here the basic concepts and results on convex functions which were
briefly presented in Chap. 1.

2.1.1 Definitions and Basic Properties

In Chap. 1, we have already become familiar with convex functions (see Defini-
tion 1.32) and their relationship to convex sets. In this section, the concept of convex
function on a real linear space X will be extended to include functions with values
in R= [−∞,+∞] (extended real-valued functions).

Definition 2.1 The function f : X → R is called convex if the inequality

f
(
λx + (1 − λ)y

)≤ λf (x) + (1 − λ)f (y) (2.1)

holds for every λ ∈ [0,1] and all x, y ∈ X such that the right-hand side is well
defined. The function f is called strictly convex if an inequality strictly holds in
inequality (2.1) for every λ ∈ ]0,1[ and for all pairs of distinct points x, y in X with
f (x) < ∞ and f (y) < ∞.
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68 2 Convex Functions

The function g : X → R is said to be (strictly) concave if the function −g is
(strictly) convex. It should be observed that if f is convex, then the inequality

f

(
n∑

i=1

λixi

)

≤
n∑

i=1

λif (xi), λi ≥ 0,

n∑

i=1

λi = 1

holds for all x1, . . . , xn in X, for which the right-hand side makes sense.
Another consequence of convexity of f : X → R is the convexity of the level

sets,
{
x ∈ X; f (x) ≤ λ

}
,

where λ ∈ R. However, as is readily seen, the functions endowed with this property
are not necessarily convex. Such functions are called quasi-convex.

The function f is called proper convex if f (x) > −∞ for every x ∈ X, and if
f is not the constant function +∞ (that is, f �≡ +∞). Given any convex function
f : X →R, we denote by Dom(f ) (sometimes domf ) the convex set

Dom(f ) = {x ∈ X; f (x) < +∞}. (2.2)

Such a set Dom(f ) is called the effective domain of f . If f is proper, then Dom(f )

is the finiteness domain of f . Conversely, if A is a nonempty convex subset of X

and if f is a finite and convex function on A, then one can obtain a proper convex
function on X by setting f (x) = +∞ if x ∈ X \ A. Using all this, we are able to
introduce an important example of convex function. Given any nonempty subset A

of X, the function IA on X, defined by

IA(x) =
{

0, if x ∈ A,

+∞, if x ∈A,
(2.3)

is called the indicator function of A.

The characterization of convexity follows.

Proposition 2.2 The subset A of X is convex if and only if its indicator function IA

is convex.

Let f : X →R be any extended real-valued function on X. The set

epif = {(x,α); x ∈ X, α ∈ R, f (x) ≤ α
}

(2.4)

is called the epigraph of f . The set

hypof = {(x,α); x ∈ X, α ∈R, f (x) ≥ α
}

(2.5)

is called the hypograph of f .
Proposition 2.3, which follows, demonstrates that the above-mentioned theory of

convex functions and that of convex sets overlap considerably.
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Proposition 2.3 A function f : X → R is convex if and only if its epigraph is a
convex subset of X ×R.

Proof Sufficiency. Suppose that f is convex and (x,α), (y,β) ∈ epif and λ ∈
[0,1]. We set w = (1 − λ)x + λy and t = (1 − λ)α + λβ . From the inequality

f (w) ≤ (1 − λ)f (x) + λf (y) ≤ t

it follows that (w, t) ∈ epif . This proves that epif is a convex set of X ×R.
Necessity. Suppose that epif is convex, but for some x, y ∈ X and some λ ∈

[0,1] the inequality

f (w) = f
(
(1 − λ)x + λy

)
> (1 − λ)f (x) + λf (y)

holds. In particular, the latter shows that 0 < λ < 1 and that neither f (x) nor f (y)

can be +∞. Thus, there exist real numbers α,β such that (x,α) and (y,β) belong
to epif . Thus, for each x, y and λ, one has

inf
{
(1 − λ)α + λβ; (x,α), (y,β) ∈ epif

}= (1 − λ)f (x) + λf (y).

Since the epigraph of f is convex, we have

f (w) = inf
{
t; (w, t) ∈ epif

}≤ (1 − λ)f (x) + λf (y) < f (w).

The contradiction we arrived at concludes the proof. �

A similar characterization of concave function can be given in terms of its hypo-
graph.

2.1.2 Lower-Semicontinuous Functions

Let X be a topological space.

Definition 2.4 The function f : X → R is called lower-semicontinuous (upper-
semicontinuous) at x0 if

f (x0) = lim inf
x→x0

f (x)
(
f (x0) = lim sup

x→x0

f (x)
)
. (2.6)

We recall that

lim inf
x→x0

f (x) = sup
V ∈V (x0)

inf
s∈V

f (s) (2.7)

and

lim sup
x→x0

f (x) = inf
V ∈V (x0)

sup
s∈V

f (s), (2.8)

where V (x0) is a base of neighborhoods of x0 in X.
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A function which is lower-semicontinuous at each point of X is called lower-
semicontinuous on X.

Let us denote by τ� the topology on R defined by the following basis of open
sets:

τ� = {]a,+∞[; a ∈ [−∞,+∞[}∪ {∅,R
}
.

It is readily seen that the function f : X → R is lower-semicontinuous (l.s.c.) at x0

if and only if f : X → (R, τ�) is continuous at x0. The topology τ� is called the
lower-topology of R. The upper-semicontinuity is similarly defined.

Since a function f is upper-semicontinuous if and only if −f is lower-
semicontinuous, the following considerations will be restricted to the basic pro-
peries of lower-semicontinuous functions as required for the purpose of the next
section.

Proposition 2.5 Let X be a topological space and let f : X → R be any extended
real-valued function on X. Then, the following conditions are equivalent:

(i) f is lower-semicontinuous on X.
(ii) The level sets {x ∈ X;f (x) ≤ λ}, λ ∈R, are closed.

(iii) The epigraph of the function f is closed in X ×R.

Proof It is well known that a function is continuous if and only if the inverse image
of every closed subset is closed. Since {x ∈ X;f (x) ≤ λ} = f −1([−∞, λ]) and (i) is
equivalent to the continuity of f : X → (R, τ�), we may conclude that conditions (i)
and (ii) are equivalent.

We define

ϕ(x, t) = f (x) − t for x ∈ X and t ∈R

and observe that f is lower-semicontinuous on X if and only if ϕ : X × R → R is
lower-semicontinuous on the product space X ×R. Furthermore, the equivalence of
conditions (i) and (ii) for ϕ implies that (ii) and (iii) are also equivalent, since

epif − (0, λ) = {(x, t) ∈ X ×R; ϕ(x, t) ≤ λ
}
,

that is, the level sets of the function ϕ are translates of epif . Proposition 2.5 has
now been proved. �

Corollary 2.6 The upper-envelope of a family of lower-semicontinuous functions is
also a lower-semicontinuous function.

Proof It suffices to apply Proposition 2.5, condition (ii), and to observe that

{
x ∈ X; sup

i∈I

fi(x) ≤ λ
}

=
⋂

i∈I

{
x ∈ X; fi(x) ≤ λ

}
.

�
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Corollary 2.7 A subset A of X is closed if and only if its indicator function IA is
lower-semicontinuous.

An important property of lower-semicontinuous functions is given by the follow-
ing well-known Weierstrass theorem.

Theorem 2.8 (Weierstrass) A lower-semicontinuous function f on a compact topo-
logical space X takes a minimum value on X. Moreover, if it takes only finite values,
it is bounded from below.

Proof Since, by Proposition 2.5, every level subset of f is closed, using the
nonempty ones among them we form a filter base on the compact space X. This
filter base has at least one adherent point x0 which clearly lies in all the nonempty
level subsets. Thus, f (x0) ≤ f (x) for all x in X, thereby proving Theorem 2.8. �

2.1.3 Lower-Semicontinuous Convex Functions

Throughout this section, X is a topological linear space over a real field. It may be
seen that, if a convex function f takes the value −∞, then the set of all points where
f is finite is quite “rare”. If f is actually convex and lower-semicontinuous on X,
then f is nowhere finite on X. Namely, one has the following proposition.

Proposition 2.9 Let f : X → R be a convex and lower-semicontinuous function.
Assume that there exists x0 ∈ X such that f (x0) = −∞. Then f is nowhere finite
on X.

Proof If there was a y0 ∈ X such that −∞ < f (y0) < +∞, then the convexity of f

would imply that f (λx0 + (1 − λ)y0) = −∞, for each λ ∈ ]0,1].
Inasmuch as f is lower-semicontinuous, letting λ approach to zero, f (y0) = −∞

would hold, which contradicts the assumption. The proof is now complete.
Let f : X → R be any convex function on X. The closure of the function f ,

denoted by clf , is by definition the lower-semicontinuous hull of f , that is,
clf = lim infy→x f (y) for all x ∈ X if lim infy→x′ f (y) > −∞ for every x′ ∈ X

or clf () = −∞ for all x ∈ X if lim infy→x′ f (y) = −∞ for some x′ ∈ X. The con-
vex function f is said to be closed if clf = f . Particularly, a proper convex function
is closed if and only if it is lower-semicontinuous.

For every proper closed convex function one has

(clf )(x) = lim inf
y→x

f (y), ∀x ∈ X. (2.9)

As a consequence of equality (2.9), one obtains

epi(clf ) = epif , (2.10)
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or, more specifically,

{
x ∈ X; (clf )(x) ≤ α

}=
⋂

λ>α

{
x ∈ X; f (x) ≤ λ

}

for every α ∈R. In particular, it follows from (2.7) that

inf
{
f (x); x ∈ X

}= inf
{
(clf )(x); x ∈ X

}
. (2.11)

Likewise, it should be observed that in general the closure of the convex function
f is the greatest closed convex function majorized by f (namely, the pointwise
supremum of the collection of all closed convex functions g, such that g(x) ≤ f (x),
for every x ∈ X). �

Furthermore, we give some simple results pertaining to lower-semicontinuous
convex functions.

Proposition 2.10 Let X be a locally convex space. A proper convex function
f : X → ]−∞,+∞] is lower-semicontinuous on X if and only if it is lower-
semicontinuous with respect to the weak topology on X.

Proof We have already seen in Chap. 1 (Proposition 1.73 and Remark 1.78) that
a convex subset is (strongly) closed if and only if it is closed in the corresponding
weak topology on X. In particular, we may infer that epif is (strongly) closed if it
is weakly closed. This establishes Proposition 2.10. �

Theorem 2.11 Let f be a lower-semicontinuous, proper and convex function on a
reflexive Banach space X. Then f takes a minimum value on every bounded, convex
and closed subset M of X. In other words, x0 ∈ M exists such that

f (x0) = inf
{
f (x); x ∈ M

}
.

Proof We apply Theorem 2.8 to the space X endowed with weak topology. (Accor-
ding to Corollary 1.95, every closed and bounded subset of a reflexive Banach space
is weakly compact.) �

Remark 2.12 If in Theorem 2.11 we further suppose that f is strictly convex, then
the minimum point x0 is unique.

Remark 2.13 In Theorem 2.11, the condition that M is bounded may be replaced
by the coercivity condition

lim
‖x‖→+∞
x∈M

f (x) = +∞. (2.12)

In fact, let x1 ∈ Dom(f ) and k > 0 be such that

f (x) > f (x1) for ‖x‖ > k, x ∈ M.
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Obviously,

inf
{
f (x); x ∈ M

}= inf
{
f (x); x ∈ M ∩ S(0, k)

}
,

where S(0, k) = {x ∈ X; ‖x‖ ≤ k}. Thus, we may apply the preceding theorem
where M is replaced by M ∩ S(0, k).

Now, we divert our attention to the continuity properties of the convex functions.
The main result is contained in the following theorem.

Theorem 2.14 Let X be a topological linear space and let f : X → ]−∞,+∞] be
a proper convex function on X. Then, the function f is continuous on int Dom(f )

if and only if f is bounded from above on a neighborhood of an interior point of
Dom(f ).

Proof Since the necessity is obvious, we restrict ourselves to proving the sufficiency.
To this end, consider any point x0 which is interior to the effective domain Dom(f ).
Let V ∈ V (x0) be a circled neighborhood of x0 such that f (x) ≤ k for all x ∈ V .
Since X is a linear topological space, the function f is continuous at x = x0 if and
only if the function x → f (x + x0) − f (x0) is continuous at x = 0. Thus, without
any loss of generality, we may assume that x0 = 0 and f (x0) = 0. Furthermore, we
may assume that V is a circled neighborhood of 0. Since f is convex, we have

f (x) = f

(
ε

x

ε
+ (1 − ε)0

)
≤ εf

(
x

ε

)
≤ εk,

for all x ∈ εV , where ε ∈ ]0,1[. On the other hand,

0 = f (0) ≤ 1

2

(
f (x) + f (−x)

)

and therefore

−f (x) ≤ f (−x) ≤ εk for every x ∈ −εV = εV .

Thus, we have shown that |f (x)| ≤ εk for each x ∈ εV . In other words, the function
f is continuous at the origin. Now, we prove that f is continuous on int Dom(f ).
Let z be any point in int Dom(f ) and let ρ > 1 be such that z0 = ρz ∈ Dom(f ).
According to the first part of the proof, it suffices to show that f is bounded from
above on a neighborhood of z. Let V be the neighborhood of the origin given above,
and let V (z) be a neighborhood of z defined by

V (z) = z +
(

1 − 1

ρ

)
V.
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Once again, making use of the convexity of f , we obtain

f (u) = f

(
1

ρ
z0 +

(
1 − 1

ρ

)
x

)
≤ 1

ρ
f (z0) +

(
1 − 1

ρ

)
f (x)

≤ 1

ρ
f (z0) +

(
1 − 1

ρ

)
k for all u ∈ V (z).

Hence, f is bounded above on V (z), as claimed. This completes the proof. �

As a consequence, we obtain the next corollary.

Corollary 2.15 If a proper convex function f : X → ]−∞,+∞] is upper-
semicontinuous at a point which is interior to its effective domain Dom(f ), then
f is continuous on int Dom(f ).

For a lower-semicontinuous convex function, this result may be clarified as fol-
lows.

Proposition 2.16 Let X be a real Banach space and let f : X → ]−∞,+∞] be a
lower-semicontinuous proper convex function. Then f is continuous at every alge-
braic interior point of its effective domain Dom(f ).

Proof Without any loss of generality, we may restrict ourselves again to the case
in which the origin in an algebraic interior to the effective domain Dom(f ). We
choose any real number α such that α > f (0) and set A = {x ∈ X;f (x) ≤ α}. The
level set A is convex, closed and contained in the effective domain of f . Let us
observe that the origin is an algebraic interior point of A. Indeed, for every x ∈ X,
there corresponds ρ > 0 such that x0 = ρx ∈ Dom(f ). Here, we have used the fact
that the origin is an algebraic interior point of Dom(f ). Since f is convex, we have

f (λρx) = f
(
λx0 + (1 − λ)0

)≤ λ
(
f (x0) − f (0)

)+ f (0),

for every λ ∈ [0,1]. Therefore, there exists δ > 0 such that f (λρx) ≤ α for every
λ ∈ [0, δ]. This shows that the origin is an algebraic interior point of A. According
to Remark 1.24, this fact implies that the origin is an interior point of the closed
convex set A. In other words, we have shown that f is bounded from above by α on
the neighborhood A of the origin. Applying Theorem 2.14, we may infer that f is
continuous on this neighborhood, thereby proving Proposition 2.16. �

If X is a finite-dimensional space, Proposition 2.16 can be considerably
strengthened. More precisely, we have the next proposition.

Proposition 2.17 Every proper convex function f on a finite-dimensional separated
topological liner space X is continuous on the interior of its effective domain.
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Proof We suppose again that the origin belongs to the interior of the effective
domain Dom(f ) of the function f . Let {ei; i = 1,2, . . . , n} be a basis of the n-
dimensional space X, and let a be a sufficiently small positive number such that

U =
{

x ∈ X; x =
n∑

i=1

xiei, 0 < xi <
a

n
, i = 1,2, . . . , n

}

⊂ Dom(f ).

Using the convexity of f , since

x =
n∑

i=1

xiei =
n∑

i=1

xi

a
aei +

(

1 −
n∑

i=1

xi

a

)

· 0,

we obtain the inequality

f (x) ≤
n∑

i=1

xi

a
f (aei) +

(

1 −
n∑

i=1

xi

a

)

f (0) ≤ 1

n

n∑

i=1

∣∣f (aei)
∣∣+ ∣∣f (0)

∣∣

for every x ∈ U.

Thus, the function f is bounded from above on U ⊂ Dom(f ). But it is obvious
that U is open. This implies, according to Theorem 2.14, that f is continuous on
int Dom(f ), which completes the proof. �

Concerning the continuity of proper convex functions, the results are similar to
those obtained for linear functionals: the continuity at a point implies the continuity
everywhere and this is equivalent to the boundedness on a certain neighborhood.
However, for convex functions these facts are restricted to the interior of effective
domain. In this context, our attention has to be restricted to those points of Dom(f )

which do not belong to int Dom(f ). In addition to the continuity of f on X, we
introduce the concept of continuity on Dom(f ). These two concepts are clearly
equivalent on int Dom(f ), but not necessarily on Dom(f ). Also, we notice for later
use that

int(epif ) = {(x,α) ∈ X ×R; x ∈ int Dom(f ), f (x) < α
}
. (2.13)

2.1.4 Conjugate Functions

Let X be a real linear locally convex space and let X∗ be its conjugate space. Con-
sider any function f : X → R. The function f ∗ : X∗ → R defined by

f ∗(x∗) = sup
{
(x, x∗) − f (x); x ∈ X

}
, x∗ ∈ X∗ (2.14)

is called the conjugate function of f . The conjugate of f ∗, that is, the function f ∗∗
on X defined by

f ∗∗(x) = sup
{
(x, x∗) − f ∗(x∗); x∗ ∈ X∗}, x ∈ X, (2.15)
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is called the biconjugate of f (with respect to the natural dual system given by X

and X∗). The conjugate of order n, denoted by f (n)∗, of the function f is similarly
defined.

We pause briefly to observe that relations (2.14) and (2.15) yield

f (x) + f ∗(x∗) ≥ (x, x∗) (2.16)

and

f ∗(x∗) + f ∗∗(x) ≥ (x, x∗), (2.17)

for all x ∈ X and x∗ ∈ X∗. Inequality (2.16) is known as the Young inequality.
Observe also that if f is proper, then “sup” in relation (2.14) may be restricted to
the points x which belong to Dom(f ).

Example 2.18 The conjugate of the indicator function IA of a subset A of X is
given by

I ∗
A(x∗) = sup

{
(x, x∗); x ∈ A

}
. (2.18)

The function I ∗
A, usually denoted by sA, is called the support functional of A. It

should be observed that A is contained in a closed half-space, {x ∈ X; (x, x∗) ≤
α} if and only if α ≥ I ∗

A(x∗). Thus, I ∗
A(x∗) may be determined by the minimal

half-space containing A. In other words, if the linear function x → (x, x∗) reaches
its maximum on A, then (x, x∗) = I ∗

A(x∗) represents the equation of a supporting
hyperplane of A.

Let A◦ be the polar of A, that is,

A◦ = {x∗ ∈ X∗; (x, x∗) ≤ 1, ∀x ∈ A
}
. (2.19)

In terms of I ∗
A defined above, the polar of A may be expressed as

A◦ = {x∗ ∈ X∗; I ∗
A(x∗) ≤ 1

}
. (2.20)

We observe that, if A = C is a cone with vertex in 0, then the polar set C◦ is again
a cone with vertex in 0, which is given by

C◦ = {x∗ ∈ X∗; (x, x∗) ≤ 0, ∀x ∈ C
}

(2.21)

and is called the dual cone of C.
If A = Y is a linear subspace of X, then

Y ◦ = {x∗ ∈ X∗; (x, x∗) = 0, ∀x ∈ Y
}

(2.22)

is also a linear subspace, called the orthogonal of the space Y , sometimes denoted
by Y⊥.

As is readily seen, the polar A◦ of a subset A is a closed convex subset which
contains the origin. If we take into account (2.20) and Corollary 1.23, the question
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arises whether I ∗
A is a Minkowski functional associated with the subset A◦. In gen-

eral, the answer is negative. However, we have

pA◦(x∗) = max
{
I ∗
A(x∗),0

}
, ∀x∗ ∈ X∗. (2.23)

Therefore, if 0 ∈ A, then I ∗
A(x∗) ≥ 0 and

pA◦ = I ∗
A. (2.24)

Furthermore,

p∗
A = IA◦ for every A ⊂ X with 0 ∈ A. (2.25)

Indeed, if x∗ ∈A◦, then there exists x̄ ∈ A such that (x∗, x̄) > 1. This implies that

p∗
A(x∗) = sup

x∈X

{
(x, x∗) − pA(x)

}≥ λ(x̄, x∗) − pA(λx̄)

= λ
[
(x̄, x∗) − pA(x̄)

]≥ λ
[
(x̄, x∗) − 1

]
, ∀λ > 0.

Hence, p∗
A(x∗) = +∞ for every x∗ ∈A◦. Now, if x∗ ∈ A◦, since for every x ∈

Dom(pA), x ∈ (pA(x) + ε)A, for all ε > 0, we have

p∗
A(x∗) = sup

{
(x, x∗) − pA(x); x ∈ Dom(pA)

}

≤ sup
a∈A

sup
x∈Dom(pA)

{
(pA(x) + ε)(a, x∗) − pA(x)

}≤ ε, ∀ε > 0.

Hence, p∗
A(x∗) ≤ 0. Because 0 ∈ Dom(pA), we may infer that p∗

A(x∗) ≥ 0, which
completely proves relation (2.25).

Proposition 2.19 contains some elementary facts concerning conjugacy relations.

Proposition 2.19 Let f : X →R be any function on X. Then

(i) The functions f ∗ and f ∗∗ are always convex and lower-semicontinuous in the
weak-star topology of X∗ and in the weak topology of X, respectively.

(ii) f ∗∗ ≤ f .
(iii) f (n)∗ = f ∗ or f (n) = f ∗∗ depending on whether n is odd or even.
(iv) f1 ≤ f2 implies that f ∗

1 ≥ f ∗
2 .

Proof We observe that f ∗ is the supremum of a family of convex and weak-star
continuous functions on X∗. Similarly, relation (2.15) shows that f ∗∗ is the supre-
mum of a family of convex and weakly continuous functions on X. Thus, we obtain
part (i) as an immediate consequence of Corollary 2.6.

As already mentioned, it follows from relation (2.14) that

(x, x∗) − f ∗(x∗) ≤ f (x) for all x ∈ X, x∗ ∈ X∗,

which clearly implies that f ∗∗ ≤ f , as claimed. Part (iv) is immediate, and therefore
its proof is omitted. To prove part (iii), it suffices to show that f ∗∗∗ = f ∗. In fact,
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it follows from part (ii) that f ∗∗∗ ≤ f ∗, while part (iv) implies that f ∗ ≤ f ∗∗∗, as
claimed.

We observe from the definition of f ∗ that, if the function f is not proper, that is,
if f takes on −∞ or it is identically +∞, then its conjugate is also not proper. Fur-
thermore, the conjugate f ∗ may not be proper on X∗ though f is proper on X. This
is the reason for saying that a function admits conjugate if its conjugate is proper.
In particular, it follows from Proposition 2.19 that, if f admits a conjugate, then it
admits conjugate of every order. We shall see later that a lower-semicontinuous con-
vex function is proper if and only if it admits conjugate. This assertion will follow
from the Proposition 2.20 below. �

Proposition 2.20 Any convex, proper and lower-semicontinuous function is
bounded from below by an affine function.

Proof Let f : X → ]−∞,+∞] be any convex and lower-semicontinuous function
on X, f �≡ +∞. As already seen, the epigraph epif of f is a proper convex and
closed subset of product space X ×R. If x0 ∈ Dom(f ), then (x0, f (x0)− ε)∈ epif
for every ε > 0. Thus, using the Hahn–Banach theorem (see Corollary 1.45), there
exists u ∈ (X ×R)∗ such that

sup
(x,t)∈epif

u(x, t) < u
(
x0, f (x0) − ε

)
.

Identifying the dual space (X × R)∗ with X∗ × R, we may infer that there exist
x∗

0 ∈ X∗ and α ∈R, not both zero, such that

sup
(x,t)∈epif

{
x∗

0 (x) + tα
}

< x∗
0 (x0) + α

(
f (x0) − ε

)
.

We observe that α �= 0 and must be negative, since (x0, f (x0)+n) ∈ epif for every
n ∈N. On the other hand, (x, f (x)) ∈ epif for every x ∈ Dom(f ). Thus,

x∗
0 (x) + αf (x) ≤ x∗

0 (x0) + αf (x0), ∀x ∈ Dom(f ),

or

f (x) ≥ − 1

α
x∗

0 (x) + 1

α
x∗

0 (x0) + f (x0), ∀x ∈ Dom(f ),

but the function in the right-hand side is affine, as claimed. �

Corollary 2.21 A lower-semicontinuous convex function is proper if and only if its
conjugate is proper.

Proof If the function f : X → ]−∞,+∞] is convex lower-semicontinuous and
nonidentically +∞, then relation (2.14) and Proposition 2.20 show that f ∗ �≡ +∞
and f ∗(x∗) > −∞ for every x∗ ∈ X∗. Next, we assume that f ∗ is proper on X∗.
Then, inequality (2.16) implies that f is nowhere −∞ on X while relation (2.14)
shows that f must be nonidentically +∞. �
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Now, we establish a central result of Convex Analysis which is known in the
literature as the biconjugate theorem.

Theorem 2.22 Let f : X → ]−∞,+∞] be any function nonidentically +∞. Then
f ∗∗ = f if and only if f is convex and lower-semicontinuous on X.

Proof If f = f ∗∗, then Proposition 2.19 implies that f is convex and lower-
semicontinuous. Now, we assume that f is proper, convex and lower-semicontinuous
on X. Since the conjugate f ∗ of f is proper, using Corollary 2.21, we may
infer that f ∗∗ > −∞ everywhere on X. Moreover, Proposition 2.19(ii) implies
that f ∗∗(x) ≤ f (x), for every x ∈ X. Suppose that there exists x0 ∈ X such that
f ∗∗(x0) < f (x0) and we argue from this to a contradiction. Thus, (x0, f

∗∗(x0))∈
epif , so that, using the same reasoning as in the proof of Proposition 2.20, we may
conclude that there exist x∗

0 ∈ X∗ and α ∈R such that

x∗
0 (x0) + αf ∗∗(x0) > sup

{
x∗

0 (x) + αt; (x, t) ∈ epif
}
. (2.26)

Since (x, t + n) ∈ epif for every n ∈ N and (x, t) ∈ epif , relation (2.26) implies
that α ≤ 0. Furthermore, α must be negative. Indeed, otherwise (that is, α = 0),
inequality (2.26) implies that

x∗
0 (x0) > sup

{
x∗

0 (x); x ∈ Dom(f )
}
. (2.27)

Let h > 0 and y∗
0 ∈ Dom(f ∗) be arbitrarily chosen. (We recall that Dom(f ∗) �= ∅

because f ∗ is proper.) One obtains

f ∗(y∗
0 + hx∗

0 ) = sup
{
(x, y∗

0 ) + h(x, x∗
0 ) − f (x); x ∈ Dom(f )

}

≤ sup
{
(x, y∗

0 ) − f (x); x ∈ Dom(f )
}

+ h sup
{
(x∗

0 , x); x ∈ Dom(f )
}

= f ∗(y∗
0 ) + h sup

{
(x∗

0 , x); x ∈ Dom(f )
}
.

On the other hand, a simple calculation involving the latter expression and inequa-
lity (2.17) yields

f ∗∗(x0) ≥ (y∗
0 + hx∗

0 , x0) − f ∗(y∗
0 + hx∗

0 )

≥ (y∗
0 , x0) − f ∗(y∗

0 ) + h
[
(x∗

0 , x0) − sup
{
(x∗

0 , x); x ∈ Dom(f )
}]

.

Comparing this inequality with (2.27) and letting h → +∞, we obtain f ∗∗(x0) =
+∞, which is absurd. Therefore, α is necessarily negative. Thus, we may divide
inequality (2.26) by −α to obtain

x∗
0

(
−x0

α

)
− f ∗∗(x0) > sup

{
x∗

0

(
−x

α

)
− t; (x, t) ∈ epif

}

= sup

{(
− 1

α
x∗

0 , x

)
− f (x); x ∈ Dom(f )

}
= f ∗

(
− 1

α
x∗

0

)
.
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But this inequality obviously contradicts inequality (2.17). Hence, f ∗∗(x0) = f (x0)

for every x0 ∈ Dom(f ∗∗). Since f ∗∗(x) = f (x), for all x ∈ Dom(f ∗∗), it results
that f ∗∗(x) = f (x) for all x ∈ X. Thus, the proof is complete. �

More generally, if f is not lower-semicontinuous, then f ∗∗ = clf . Thus, we
obtain the following corollary.

Corollary 2.23 The biconjugate of a convex function f coincides with its closure,
that is, f ∗∗ = clf .

Proof It is clear that clf is lower-semicontinuous if it is proper and, therefore,
(clf )∗∗ = clf as a consequence of Theorem 2.22. But as has already been men-
tioned, f ∗ = (clf )∗, which shows that f ∗∗ = clf , as claimed. If clf is not proper,
the result is immediately clear, since f ∗∗ = (clf )∗∗ = clf ≡ −∞. �

Corollary 2.24 A proper function f is convex and lower-semicontinuous on X if
and only if it is the supremum of a family of affine continuous functions.

Proof If f is a proper convex and lower-semicontinuous, then f (x) = f ∗∗(x) =
sup{(x, x∗) − f ∗(x∗); x∗ ∈ D(f ∗)} for every x ∈ X, and x → (x, x∗) − f ∗(x∗) is
an affine continuous function for each x∗ ∈ Dom(f ∗), as claimed. The converse is
obvious (see Corollary 2.6). �

There is a close connection between the effective domain Dom(f ) of a lower-
semicontinuous convex function f : X → R

∗
and the growth properties of its con-

jugate f ∗ : X∗ → R
∗
.

Proposition 2.25 Assume that X is a reflexive Banach space. Then the following
two conditions are equivalent:

(i) int Dom(f ) �= ∅.
(ii) There are ρ > 0 and C > 0 such that

f ∗(p) ≥ ρ‖p‖X∗ − C, ∀p ∈ X. (2.28)

Moreover, Dom(f ) = X if and only if

lim‖p‖→∞
f ∗(p)

‖p‖ = +∞. (2.29)

Proof If int Dom(f ) �= ∅, then there is a ball B(x0, ρ) ⊂ int Dom(f ) and by Theo-
rem 2.14, f is bounded on B(x0, ρ). Then, by the duality formula (2.14), we have
(for simplicity, assume x0 = 0)

f ∗(p) ≥ ρ‖p‖X∗ − f

(
ρ

x

‖x‖X

)
≥ ρ‖p‖X∗ − C, ∀p ∈ X∗,

as claimed.
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If (ii) holds, then by (2.15) we see that

f (x) = f ∗∗(x) ≤ sup
x

{
(x, x∗) − ρ‖x∗‖X∗ − C

}≤ ∞ for ‖x‖X ≤ ρ

and therefore B(0, ρ) ⊂ Dom(f ), as claimed.
Now, if Dom(f ) = X, then by the above argument it follows that (2.28) holds

for all ρ > 0, that is, for all ρ > 0,

f ∗(p) ≥ ρ‖p‖X∗ − Cρ, ∀p ∈ X∗,

which implies that (2.29) holds. Conversely, if (2.29) holds, then, by (2.15), we see
that Dom(f ) = X, as claimed. �

Theorem 2.22 and Corollary 2.23, in particular, yield a simple proof for the well-
known bipolar theorem (Theorem 2.26 below), which plays an important role in the
duality theory.

Theorem 2.26 The bipolar A◦◦ of a subset A of X is the closed convex hull of the
origin and of A, that is,

A◦◦ = conv
(
A ∪ {0}). (2.30)

Proof Inasmuch as the polar is convex, weakly closed and contains the origin, it
suffices to show that A◦◦ = A for every convex, closed subset of X, which contains
the origin. In this case, relations (2.24) and (2.25) imply that

IA◦◦ = p∗
A◦ = I ∗∗

A = IA,

because IA is convex and lower-semicontinuous. Hence, A = A∞, as claimed. �

Remark 2.27 We notice that the conjugate correspondence f → f ∗ is one-to-one
between convex and lower-semicontinuous convex functions on X and weak-star
lower-semicontinuous convex functions on X∗. In this context, the concept of con-
jugate defined above seems to be more suitable for convex functions.

For concave functions, it is more natural to introduce a concept of conju-
gate which preserves the concavity and upper-semicontinuity. Given any function
g : x →R, the function g∗ : X∗ →R defined by

g∗(x) = inf
{
(x, x∗) − g(x); x ∈ X

}
, (2.31)

is called the concave conjugate function of g. We observe that the concave conjugate
g∗ of a function g can be equivalently expressed with the aid of convex conjugate
defined by relation (2.14) as it follows that

g∗(x∗) = −(−g)∗(−x∗) for every x∗ ∈ X∗,

where the conjugate in the right-hand side is in the convex sense.
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In general, facts and definitions for concave conjugate functions are obtained
from those above by interchanging ≤ with ≥, +∞ with −∞ and infimum with
supremum wherever these occur. Typically, we consider the concave conjugate for
concave functions and the conjugate for convex functions.

Remark 2.28 Let f be a convex function on a linear normed space X and let
f ∗ : X∗ →R be the conjugate function of f . Let (f ∗)∗;X∗∗ →R be the conjugate
of f ∗ defined on the bidual X∗∗ of X. It is natural also to call (f ∗)∗ the biconju-
gate of f and, if X is reflexive, obviously (f ∗)∗ coincides with f ∗∗. In general, the
restriction of (f ∗)∗ to X (when X is regarded in the canonical way as the linear
subspace of X∗∗) coincides with f ∗∗.

Remark 2.29 The theory of conjugate functions can be developed in a context more
general than that of the linear locally convex space. Specifically, let X and Y be
arbitrary real linear spaces paired by a bilinear functional (·, ·) and let X and Y be
endowed with compatible topologies with respect to this pairing. Let f : X → R be
any extended real-valued function on X. Then the function f ∗ on Y defined by

f ∗(y) = sup
{
(x, y) − f (x); x ∈ X

}
, y ∈ Y, (2.32)

is called the conjugate of f (with respect to the given pairing). A closer examination
of the proofs shows that the above results on conjugate functions are still valid in
this general framework.

2.2 The Subdifferential of a Convex Function

The subdifferential of a convex is a basic concept for convex analysis and it will be
developed in detail in this section.

2.2.1 Definition and Fundamental Results

Throughout this section, X denote a real Banach space with dual X∗ and norm ‖ · ‖.
As usually, (·, ·) denote the canonical pairing between X and X∗.

Definition 2.30 Given the proper convex function f : X → ]−∞,+∞], the subd-
ifferential of such a function is the (generally multivalued) mapping ∂f : X → X∗
defined by

∂f (x) = {x∗ ∈ X∗; f (x) − f (u) ≤ (x − u,x∗), ∀u ∈ X
}
. (2.33)

The elements x∗ ∈ ∂f (x) are called subgradients of f at x.
It is clear from relation (2.33) that ∂f (x) is always a closed convex subset of X∗.

The set ∂f (x) may well be empty as happens, e.g., if f (x) = +∞ and f �≡ +∞.
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The set of those x for which ∂f (x) �= ∅ is called the domain of ∂f and is denoted
by D(∂f ). Clearly, if f is not the constant +∞, D(∂f ) is a subset of Dom(f ). The
function f is said to be subdifferentiable at x, if x ∈ D(∂f ).

Example 2.31 Let K be a closed convex subset of X. The normal cone NK(x) to K

at a point x ∈ K consists, by definition, of all the normal vectors to half-spaces that
support K at x, that is,

NK(x) = {x∗ ∈ X∗; (x∗, x − u) ≥ 0 for all u ∈ K
}
.

This is a closed convex cone containing the origin and, in terms of the indicator
function IK of K , we can write it as

NK(x) = ∂IK(x), x ∈ K.

Clearly, D(∂IK) = K and ∂IK(x) = {0} when x ∈ intK . In particular, if K is a
linear subspace of X, then ∂IK(x) = K⊥ for all x ∈ K (K⊥ is the subspace of X∗
orthogonal to K).

Example 2.32 Let f (x) = 1
2 ‖x‖2. Then, f is a convex continuous function on X.

Furthermore, f is everywhere subdifferentiable on X and the subdifferential ∂f

coincides with the duality mapping F : X → X∗ (see Definition 1.99). Indeed, if
x∗ ∈ F(x), then, by the definition of F , one has

(x − u,x∗) = ‖x‖2 − (u, x∗) ≥ ‖x‖2 − ‖u‖‖x‖
≥ 1

2

(‖x‖2 − ‖u‖2), for every u ∈ X.

In other words, x∗ ∈ ∂f (x). Conversely, suppose that x∗ ∈ ∂f (x). Hence,

(x − u,x∗) ≥ 1

2

(‖x‖2 − ‖u‖2), ∀u ∈ X.

Taking in the latter inequality u = x + λv, where λ ∈ R
+ and v ∈ X, we see that

−λ(v, x∗) ≥ −1

2

(
2λ‖x‖‖v‖ + λ2‖v‖2).

Therefore
∣∣(v, x∗)

∣∣≤ ‖v‖‖x‖, ∀v ∈ X.

Furthermore, we take u = (1 − λ)x, divide by λ and let λ ↘ 0; we get

(x, x∗) ≥ ‖x‖2.

Combining these inequalities, we obtain

(x, x∗) = ‖x‖2 = ‖x∗‖2.

Thus, we have shown that x∗ ∈ F(x), as claimed.
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In the general theory of convex optimization, the following trivial consequence
of Definition 2.30 plays an important role.

If f is a proper convex function on X, then the minimum (global) of f over X

is attained at the point x ∈ X if and only if 0 ∈ ∂f (x).
It must be observed that, if f is strictly convex, then for every x∗ ∈ X∗ the func-

tion f (x)−(x, x∗) attains its minimum in at most one point x = (∂f )−1(x∗). Hence,
in this case, the map (∂f )−1 is single valued.

To make use of this minimum (necessary and sufficient condition), it is necessary
to calculate the subdifferentials of certain convex functions; this can be easy or
difficult, depending on the nature and the complexity of the given function. It is
found as a result that, if f is lower-semicontinuous, the subdifferential ∂f ∗ of the
conjugate function f ∗ coincides with (∂f )−1. More precisely, one has the following
proposition.

Proposition 2.33 Let f : X → ]−∞,+∞] be a proper convex function. Then, the
following three properties are equivalent:

(i) x∗ ∈ ∂f (x).
(ii) f (x) + f ∗(x∗) ≤ (x, x∗).

(iii) f (x) + f ∗(x∗) = (x, x∗).

If, in addition, f is lower-semicontinuous, then all of these properties are equivalent
to the following one.

(iv) x ∈ ∂f ∗(x∗).

Proof The Young inequality (relation (2.16)) shows that (i) and (iii) are equivalent.
If statement (iii) holds, then, using again the Young inequality, we find that

f (u) − f (x) ≥ (u − x, x∗), ∀u ∈ X,

that is, x∗ ∈ ∂f (x). Using a similar argument, it follows that (i) implies (iii). Thus,
we have shown that (i), (ii) and (iii) are equivalent. Now, we assume that f is a
lower-semicontinuous, proper convex function on X. Since statements (i) and (iii)
are equivalent for f ∗, relation (iv) can be equivalently expressed as

f ∗(x∗) + (f ∗)∗(x) = (x, x∗), (2.34)

where (f ∗)∗ : X∗∗ → ]−∞,+∞] is the conjugate function of f ∗. As mentioned in
Sect. 2.1.4, the restriction of (f ∗)∗ to X (which, from the canonical viewpoint, is
regarded as a subspace of X∗∗) is f ∗∗ and the latter coincides with f (see Theo-
rem 2.22). Thus, (iii) and (iv) are equivalent. This completes the proof of Proposi-
tion 2.33. �

Remark 2.34 Since the set of all minimum points of the function f coincides with
the set of solutions x of the equation 0 ∈ ∂f (x), Proposition 2.33 implies that in the
lower-semicontinuous case, a function f attains its infimum on X if and only if its
conjugate function f ∗ is subdifferentiable at the origin, that is, ∂f ∗(0) ∩ X∗ �= ∅.
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Remark 2.35 If the space X is reflexive, then it follows from Proposition 2.33 that
∂f ∗ : X∗ → X∗∗ = X is just the inverse of ∂f , in other words,

x ∈ ∂f ∗(x∗) ⇐⇒ x∗ ∈ ∂f (x). (2.35)

If X is not reflexive, ∂f ∗ is a (multivalued) mapping from X∗ to the bidual X∗∗,
which strictly contains X, and the relation between ∂f and ∂f ∗ is more complicated
(see, for example, Rockafellar [59]).

Proposition 2.36 If the convex function f : X → ]−∞,+∞] is (finite and) contin-
uous at x0, then f is subdifferentiable at this point, that is, x0 ∈ D(∂f ).

Proof Let us denote by H the epigraph of the function f , that is,

H = {(x,λ) ∈ X ×R; f (x) ≤ λ
}
.

H is a convex subset of X ×R and (x0, f (x0)+ ε) ∈ intH for every ε > 0, because
f is continuous at x0. We denote by H the closure of H and observe that (x0, f (x0))

is a boundary point of H . Thus, there exists a closed supporting hyperplane of H

which passes through (x0, f (x0)) (see Theorem 1.38). In other words, there exist
x∗

0 ∈ X∗ and α0 ∈R
+, such that

α0
(
f (x0) − f (x)

)≤ (x0 − x, x∗
0 ) for every x ∈ Dom(f ). (2.36)

It should be observed that α0 �= 0 (that is, the hyperplane is not vertical) because,
otherwise, (x0 − x, x∗

0 ) = 0 for all x in Dom(f ), which is a neighborhood of x0.
But this would imply that x∗

0 = 0, which is not possible. However, inequality (2.36)

shows that
x∗

0
α0

is a subgradient of f at x0, thereby proving Proposition 2.36. �

Remark 2.37 From the above proof, it follows that a proper convex function f is
subdifferentiable in an element x0 ∈ Dom(f ) if and only if there exists a nonvertical
closed support hyperplane of the epigraph passing through (x0, f (x0)).

Corollary 2.38 Let f be a lower-semicontinuous proper convex function on a Ba-
nach space X. Then

int Dom(f ) ⊂ D(∂f ). (2.37)

Proof We have seen in Sect. 2.1.3 (Proposition 2.16) that f is continuous at every
interior point of its effective domain Dom(f ). Thus, relation (2.37) is an immediate
consequence of Proposition 2.36.

The question of when a convex function is subdifferentiable at a given point is
connected with the properties of the directional derivative at this point. Also, we
shall see later that the subdifferential of a convex function is closely related to other
classical concepts, such as the Gâteaux (or Fréchet) derivative.

First, we review the definition and some basic facts about directional and weak
derivatives.
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Let f be an proper convex function on X. If f is finite at the point x, then, for
every h ∈ X, the difference quotient λ → λ−1(f (x + λh) − f (x)) is monotonically
increasing on ]0,∞[. Thus, the directional derivative at x in the direction h

f ′(x,h) = lim
λ↓0

λ−1(f (x + λh) − f (x)
)= inf

λ>0
λ−1(f (x + λh) − f (x)

)
(2.38)

exists for every h ∈ X. The function h → f ′(x,h) is called the directional differen-
tial of f at x. It is immediate from the definition that for fixed x ∈ Dom(f ), f ′(x,h)

is a positively homogeneous subadditive function on X. The function f is said to be
weakly or Gâteaux differentiable at x if h → f ′(x,h) is a linear continuous function
on X. In particular, this implies that

−f ′(x,−h) = f ′(x,h) = lim
λ→0

λ−1(f (x + λh) − f (x)
)

for every h ∈ X. If f is weakly differentiable at x, then we denote by ∇f (x) or
gradf (x) (the gradient of f at x) the element of X∗ defined by

f ′(x,h) = (h,gradf (x)
)

for every h ∈ X.

The function f is said to be Fréchet differentiable at x if the difference quotients
in (2.38) as a function of h converges uniformly on every bounded set. �

Proposition 2.39 Let f : X → ]−∞,+∞] be a proper convex function. If f is
finite and continuous at x0, then

f ′(x0, h) = sup
{
(h, x∗); x∗ ∈ ∂f (x0)

}
(2.39)

and, in general, one has

∂f (x0) = {x∗ ∈ X; (h, x∗) ≤ f ′(x0, h), ∀h ∈ X
}
. (2.40)

Proof Since (2.40) is immediate from the definition of ∂f and (2.38), we confine
ourselves to prove (2.39). For the sake of simplicity, we denote by f0 the function
f0(h) = f ′(x0, h), ∀h ∈ X. Inasmuch as f is continuous at x0, the inequality

(h,w) ≤ f0(h) ≤ f (x0 + h) − f (x0), ∀w ∈ ∂f (x0)

implies that f0 is everywhere finite and continuous on X. Furthermore, a simple
calculation involving the definition of conjugate (see relation (2.14)) shows that
the conjugate of the function x → λ−1(f (x0 + λx) − f (x0)) is just the function
x∗ → λ−1(f ∗(x∗) + f (x0) − (x0, x

∗)). Therefore,

f ∗
0 (x∗) = sup

λ>0
λ−1(f (x0) + f ∗(x∗) − (x0, x

∗)
)
,

because

f0(h) = inf
λ>0

λ−1(f (x0 + λh) − f (x0)
)
.
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According to Proposition 2.33, one has

∂f (x0) = {x∗ ∈ X∗; f (x0) + f ∗(x∗) − (x0, x
∗) = 0

}

and, therefore,

f ∗
0 (x∗) =

{
0, if x∗ ∈ ∂f (x0),

+∞, otherwise.

Thus, f ∗∗
0 = f0 is the support functional of the closed convex set ∂f (x0) ⊂ X∗.

This, clearly, implies relation (2.39), thereby proving Proposition 2.39.
If ∂f (x0) happens to consist of a single element, Proposition 2.39 says that

f ′(x0, h) can be written as

f ′(x0, h) = (h, ∂f (x0)
)

for every h ∈ X.

In particular, this implies that f is Gâteaux differentiable at x0 and gradf (x0) =
∂f (x0). It follows that the converse result is also true. �

Namely,

Proposition 2.40 If the convex function f is Gâteaux differentiable at x0, then
∂f (x0) consists of a single element x∗

0 = gradf (x0). Conversely, if f is continu-
ous at x0 and if ∂f (x0) contains a single element, then f is Gâteaux differentiable
at x0 and gradf (x0) = ∂f (x0).

Proof Suppose that f is Gâteaux differentiable at x0, that is,
(
h,gradf (x0)

)= lim
λ→0

λ−1(f (x0 + λh) − f (x0)
)
, ∀h ∈ X.

However,

λ−1(f (x0 + λh) − f (x0)
)≤ f (x0 + h) − f (x0) for λ ∈ ]0,1[

because f is convex. This implies that

f (x0) − f (x0 + h) ≤ −(h,gradf (x0)
)

for all h ∈ X,

that is, gradf (x0) ∈ ∂f (x0). Now, let x∗
0 be any element of ∂f (x0). We have

f (x0) − f (u) ≤ (x0 − u,x∗
0 ), ∀u ∈ X,

and, therefore,

λ−1(f (x0 + λh) − f (x0)
)≥ (h, x∗

0 ) for every λ > 0.

This show that (gradf (x0) − x∗
0 , h) ≥ 0 for all h ∈ X, that is, x∗

0 = gradf (x0). We
conclude the proof by noting that the second part of Proposition 2.40 has already
been proven by the above remarks. �
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Remark 2.41 Let f be a continuous convex function on X. If f ∗ is strictly convex,
then, as noticed earlier, (∂f ∗)−1 = ∂f is single valued. Then, by Proposition 2.40,
f is Gâteaux differentiable. In particular, if f (x) = 1

2 ‖x‖2, this fact leads to a well-
known result in the metric theory of normed spaces. (See Theorem 1.101.) Namely,
if the dual X∗ of X is strictly convex, then X is itself smooth.

Remark 2.42 If g is a concave function on X, then, by definition its subdifferential
is ∂g = −∂(−g). In other words, x∗ ∈ ∂g(x) if and only if

g(x) − g(u) ≥ (x − u,x∗) for every u ∈ X.

2.2.2 Further Properties of Subdifferential Mappings

It is apparent from Definition 2.30 that every subdifferential mapping ∂f : X → X∗
is monotone in X × X∗. In other words,

(x1 − x2, x
∗
1 − x∗

2 ) ≥ 0 for x∗
i ∈ ∂f (xi), i = 1,2. (2.41)

The theorem below ensures us that any subdifferential mapping is maximal mono-
tone.

Theorem 2.43 (Rockafellar) Let X be a real Banach space and let f be a lower-
semicontinuous proper convex function on X. Then, ∂f is a maximal monotone op-
erator from X to X∗.

Proof In order to avoid making the treatment too ponderous, we confine ourselves
to proving the theorem in the case in which X is reflexive. We refer the reader to
Rockafellar’s work [59] for the proof in a general context. Then, using the renorming
theorem, we may assume without any loss of generality that X and X∗ are strictly
convex Banach spaces. Using Theorem 1.141, the maximal monotonicity of ∂f is
equivalent to R(F + ∂f ) = X∗, where, as usual, F : X → X∗ stands for the duality
mapping of X. Let x∗

0 be any fixed element of X∗. We must show that the equation

F(x) + ∂f (x) � x∗
0 ,

has at least one solution x0 ∈ D(∂f ). To this end, we define

f1(x) = ‖x‖2

2
+ f (x) − (x, x∗

0 ) for every x ∈ X.

Clearly, f1 : X → ]−∞,+∞] is convex and lower-semicontinuous on X. More-
over, since f is bounded from below by an affine function, we may infer that

lim‖x‖→+∞f1(x) = +∞.
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Thus, using Theorem 2.11 (see Remark 2.13), the infimum of f1 on X is attained.
In other words, there is x0 ∈ Dom(f ) such that

f1(x0) ≤ f1(x) for every x ∈ X.

We write this inequality in the form

f (x0) − f (x) ≤ (x0 − x, x∗
0 ) + (x − x0,F (x)

)
for every x ∈ X

and set x = tx0 + (1 − t)u, where t ∈ [0,1], and u is any element of X. Since the
function f is convex, one obtains

f (x0) − f (u) ≤ (x0 − u,x∗
0 ) + (u − x0,F

(
tx0 + (1 − t)u

))
.

Passing to limit t → 1, we obtain

f (x0) − f (u) ≤ (x0 − u,x∗
0 ) + (u − x0,F (x0)

)

because F is demicontinuous from X to X∗ (see Theorem 1.106). Since u was
arbitrary, we may conclude that

x∗
0 − F(x0) ∈ ∂f (x0),

as we wanted to prove. �

Corollary 2.44 Let f : X → ]−∞,+∞] be a lower-semicontinuous proper and
convex function on X. Then D(∂f ) is a dense subset of Dom(f ).

Proof For simplicity, we assume that X is reflexive. Let x be any element of
Dom(f ). Then, Theorem 1.141 and Corollary 1.140 imply that, for every λ > 0,
the equation

F(xλ − x) + λ∂f (xλ) � 0 (2.42)

has a unique solution xλ ∈ D(∂f ). By the definition of ∂f , we see that, multiplying
equation (2.42) by xλ − x, we obtain

‖xλ − x‖2 + λf (xλ) ≤ λf (x)

and therefore

lim
λ→0

‖xλ − x‖ = 0,

because f is bounded from below by an affine function. Therefore, x ∈ D(∂f ) and
the corollary has been proved. �

It is well known that not every monotone operator arises from a convex function.
For instance (see Proposition 2.51 below), a positive linear operator acting in a real
Hilbert space is the subdifferential of a proper convex function on H if and only if
it is self-adjoint. Thus, we should look for properties which should characterize the
maximal monotone operators which are subdifferentials.
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Definition 2.45 The operator (multivalued) A : X → X∗ is said to be cyclically
monotone if

(x0 − x1, x
∗
0 ) + · · · + (xn−1 − xn, x

∗
n−1) + (xn − x0, x

∗
n) ≥ 0, (2.43)

for every finite set of points in the graph of A, that is, x∗
i ∈ Axi for i = 0,1, . . . , n.

The operator A is said to be maximal cyclically monotone if it is cyclically monotone
and has no cyclically monotone extension in X × X∗.

Obviously, every cyclically monotone operator is also monotone. If f is a proper
convex function on X, then a simple calculation involving the definition of ∂f shows
that the operator ∂f is cyclically monotone. Moreover, it follows from Theorem 2.43
that, if f is in addition lower-semicontinuous on X, then its subdifferential ∂f is
cyclically maximal monotone. Surprisingly, it turns out that condition (2.43) is both
necessary and sufficient for an operator A to be the subdifferential of some proper
convex function. The next theorem is more precise.

Theorem 2.46 Let X be a real Banach space and let A be an operator from X to
X∗. In order that a lower-semicontinuous proper convex function f on X exists such
that A = ∂f , it is necessary and sufficient that A be a maximal cyclically monotone
operator. Moreover, in this case, A determines f uniquely up to an additive constant.

Proof The necessity of the condition was proved in the above remarks. To prove the
sufficiency, we suppose therefore that A is maximal cyclically monotone in X ×X∗.
We fix [x0, x

∗
0 ] in A. For every x ∈ X, let

f (x) = sup
{
(x − xn, x

∗
n) + · · · + (x1 − x0, x

∗
0 )
}
,

where x∗
i ∈ Axi for i = 1, . . . , n and the supremum is taken over all possible finite

sets of pairs [xi, x
∗
i ] ∈ A. We shall prove that A = ∂f . Clearly, f (x) > −∞ for all

x ∈ X. Note also that f is convex and lower-semicontinuous on X. Furthermore,
f (x0) = 0 because A is cyclically monotone. Hence, f �≡ +∞. Now, choose any x̃

and x̃∗ with x̃∗ ∈ Ax̃. To prove that [x̃, x̃∗] ∈ ∂f , it suffices to show that, for every
λ < f (x̃), we have

f (x) ≥ λ + (x − x̃, x̃∗) for all x ∈ X. (2.44)

Let λ < f (x̃). Then, by the definition of f there exist the pairs [xi, x
∗
i ] ∈ A, i =

1, . . . ,m, such that

λ < (x̃ − xm,x∗
m) + · · · + (x1 − x0, x

∗
0 ).

Let xm+1 = x̃ and x∗
m+1 = x̃∗. Then, again by the definition of f , one has

f (x) ≥ (x − xm+1, x
∗
m+1) + (xm+1 − xm,x∗

m) + · · · + (x1 − x0, x
∗
0 ),

for all x ∈ X, which implies inequality (2.44).
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By the arbitrariness of [x̃, x̃∗] ∈ A, we conclude that A ⊂ ∂f . Since A is maximal
in the class of cyclical sets of X ×X∗, it follows that A = ∂f , as claimed. It remains
to be shown that f is uniquely determined up to an additive constant. This fact will
be shown later (see Corollary 2.60 below). �

As mentioned earlier (see Theorem 1.143 and Corollary 1.140), if a maximal
monotone operator A : X → X∗ is coercive, then its range is all of X∗. We would
like to know more about A−1 in the case in which A is cyclically maximal mono-
tone. This information is contained in the following proposition.

Proposition 2.47 Let X be reflexive and A = ∂f , where f : X → ]−∞,+∞] is
a lower-semicontinuous proper convex function. Then, the following conditions are
equivalent.

lim‖x‖→+∞
f (x)

‖x‖ = +∞, (2.45)

R(A) = X∗ and A−1 is bounded on bounded subsets. (2.46)

Proof 1°. (2.45)⇒(2.46). Let x0 be arbitrary, but fixed in D(A). By the definition
of ∂f , one has

(
∂f (x), x − x0

)≥ f (x) − f (x0) for any x ∈ D(A)

and therefore

lim
‖x‖→∞
[x,y]∈A

(x − x0, y)

‖x‖ = +∞.

Thus, Corollary 1.140 quoted above implies that R(A) = X∗. Moreover, it is readily
seen that the operator A−1 is bounded on every bounded subset of X∗.

2°. (2.46)⇒(2.45). Inasmuch as f is bounded from below by an affine function,
no loss of generality results in assuming that f ≥ 0 on X. Let r > 0. Then, for every
z ∈ X∗, ‖z‖ ≤ r , v ∈ D(A) and C > 0 such that

z ∈ Av, ‖v‖ ≤ C.

Next, by

f (u) − f (v) ≥ (u − v, z) for all u in X,

it follows that (u, z) ≤ f (u) + Cr for any u ∈ Dom(f ) and z in X with ‖z‖ ≤ r .
Hence,

f (u) + Cr ≥ r‖u‖,
or

f (u)

‖u‖ ≥ r − Cr

‖u‖ for all u ∈ X.

This shows that condition (2.45) is satisfied, thereby completing the proof. �
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Remark 2.48 A convex function f satisfying condition (2.45) is called cofinite
on X. Recalling that (∂f )−1 is just the subdifferential ∂f ∗ of the conjugate func-
tion f ∗ (see Proposition 2.33). Proposition 2.47 says that a lower-semicontinuous
proper convex function f is cofinite on X if and only if its conjugate f ∗ is every-
where finite and ∂f ∗ is bounded on every bounded subset of X∗. In particular, if
X = R, then condition (2.46) and Dom(f ∗) = R are equivalent. Thus, in this case,
a lower-semicontinuous convex function f is cofinite if and only if f ∗ �= +∞ ev-
erywhere on X∗.

We conclude this section with some examples of cyclically monotone operators.

Example 2.49 (Maximal monotone graphs in R × R) Every maximal monotone
graph in R

2 is cyclically monotone. Indeed, let β be a maximal monotone graph
in R × R. We prove that there exists a lower-semicontinuous convex function
j : R → ]−∞,+∞] such that ∂j = β . Indeed, there exist −∞ ≤ a ≤ b ≤ +∞
such that ]a, b[⊂ Dom(β) ⊂ [a, b]. Let β◦ : Dom(β) → R be the minimal sec-
tion of β , that is, |β◦(r)| = inf{|w|; w ∈ β(r)} (see Sect. 1.4.1). Clearly, the
function β◦ is single valued, monotonically increasing and, for each r ∈ ]a, b[,
β(r) = [β◦(r − 0), β◦(r + 0)] while β(a) = ]−∞, β◦(a + 0)] if a ∈ Dom(β) and
β(b) = [β◦(b − 0),+∞[ if b ∈ Dom(β) (this is an immediate consequence of the
maximality).

Now, let r0 be fixed in Dom(β) and define the function j :R→ ]−∞,+∞]

j (r) =
{∫ t

r0
β◦(s)ds, if r ∈ [a, b],

+∞, if r ∈[a, b].
Then, we have

j (r) − j (t) ≤
∫ r

t

β◦(s)ds ≤ ξ(r − t),

for all r ∈ Dom(β), t ∈ R and ξ ∈ β(r). Hence, β(r) ∈ ∂j (r) for all r ∈ Dom(β).
We have therefore proved that β = ∂j .

By Corollary 2.60 below, the function j is uniquely defined up to an additive
constant.

Example 2.50 (Self-adjoint operators in Hilbert spaces) Let H be a real Hilbert
space whose norm and inner product are denoted | · | and (·, ·), respectively. Let A

be a single-valued, linear and densely defined maximal monotone operator in H .

Proposition 2.51 A is cyclically maximal monotone if and only if it is self-adjoint.
Moreover, in this case, A = ∂f , where

f (x) =
{

1
2 |A 1

2 x|2, if x ∈ D(A
1
2 ),

+∞, otherwise.
(2.47)
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Proof First, suppose that A is self-adjoint. Then, f defined by (2.47) (A
1
2 denotes

the square-root of the operator A) is convex and lower-semicontinuous on H

(because A
1
2 is closed). Let x ∈ D(A). We have

1

2

∣∣A
1
2 x
∣∣2 − 1

2

∣∣A
1
2 u
∣∣2 ≤ (Ax,x − u), for all u ∈ D

(
A

1
2
)
,

because (Ax,u) = (A
1
2 x,A

1
2 u) for all x in D(A) and u ∈ D(A

1
2 ). Hence, A ⊂ ∂f .

On the other hand, it follows by a standard device that A is maximal, that is,
R(I + A) = H . (One proves that R(I + A) is simultaneously closed and dense
in H .) We may conclude, therefore, that A = ∂f .

Suppose now that A is cyclically maximal monotone. According to Theo-
rem 2.46, there exists f : H → ]−∞,+∞] convex and lower-semicontinuous,
such that A = ∂f . Inasmuch as A0 = 0, we may choose the function f such that
f (0) = 0. Let g(t) be the real-valued function on [0,1] defined by

g(t) − f (tu),

where u ∈ D(A). By the definition of the subgradient, we have

g(t) − g(s) ≤ (t − s)t (Au,u) for t, s ∈ [0,1].
The last inequality shows that g is absolutely continuous on [0,1] and d

dt
g(t) =

t (Au,u) almost everywhere on this interval. By integrating the above relation on
[0,1], we obtain

f (u) = 1

2
(Au,u) for every u ∈ D(A)

and, therefore,

∂f (u) = 1

2
(Au + A∗u) for every u ∈ D(A) ∩ D(A∗).

This, clearly, implies that A = A∗, as claimed. �

Example 2.52 (Convex integrands and integral functionals) Let Ω be a Lebesgue
measurable subset of Rn and let L

p
m(Ω), 1 ≤ p < ∞, be the usual Banach space of

p-summable functions y : Ω →R
m.

A function g : Ω ×R
m → R

∗ = ]−∞,+∞] is said to be a normal convex inte-
grand on Ω ×R

m if the following conditions are satisfied:

(i) g(x, ·) : Rm → R
∗

is convex, lower-semicontinuous and �≡ +∞, a.e. x ∈ Ω .
(ii) g is measurable with respect to σ -field of subsets of Ω × R

m generated by
products of Lebesgue sets in Ω and Borel sets in R

m.

It is easy to see that, if g is a normal convex integrand on Ω × R
m, then for

every measurable function y : Ω → R
m the function x → g(x, y(x)) is Lebesgue

measurable on Ω .
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Condition (ii) extends the classical Carathéodory condition. In particular, it is
satisfied if g(x, y) is finite, measurable in x and continuous in y. If g satisfies con-
dition (i) and intD(g(x, ·)) �= ∅ a.e. x ∈ Ω , then condition (ii) is satisfied if and
only if g(x, y) is measurable with respect to x for each y ∈ R

m. The proof of this
assertion along with other sufficient conditions for normality of convex integrands
can be found in the papers [61, 63] of Rockafellar who introduced and developed
the theory of convex normal integrands (see also the survey of Ioffe and Levin [32]).

Besides (i), (ii), we assume that g satisfies the following two conditions:

(iii) g increases at least one function h on Ω ×R
m of the form

h(x, y) = (y,α(x)
)+ β(x),

where α ∈ L
p′
m (Ω), ((p′)−1 + p−1 = 1) and β ∈ L1

m(Ω).
(iv) There exists at least one function y0 ∈ L

p
m(Ω) such that g(x, y0) ∈ L1(Ω).

It must be observed that conditions (iii) and (iv) automatically hold if g is inde-
pendent of x.

For any y ∈ L
p
m(Ω), define the integral

Ig(y) =
∫

Ω

g
(
x, y(x)

)
dx. (2.48)

More precisely, the functional Ig is defined on L
p
m(Ω) by

Ig(y) =
{∫

Ω
g(x, y(x))dx, if g(x, y) ∈ L1

m(Ω),

+∞, otherwise.

Proposition 2.53 Let conditions (i), (ii), (iii) and (iv) be satisfied. Then, the func-
tion Ig : Lp

m(Ω) → R
∗
, 1 ≤ p < +∞, is convex, lower-semicontinuous and �≡ +∞.

Moreover, for every y ∈ L
p
m(Ω), the subdifferential ∂Ig(y) is given by

∂Ig(y) = {w ∈ L
p′
m (Ω); w(x) ∈ ∂g

(
x, y(x)

)
a.e. x ∈ Ω

}
. (2.49)

Proof By conditions (ii) and (iv), it follows that the integral Ig(y) is well defined
(either a real number or +∞) for every y ∈ L

p
m(Ω). The convexity of Ig is a di-

rect consequence of the convexity of g(x, ·) for every x ∈ Ω . To prove the lower-
semicontinuity of Ig , consider a sequence {yn} strongly convergent to y in L

p
m(Ω).

On a subsequence, again denoted {yn}, we have

yn(x) → y(x) a.e. x ∈ Ω

and, therefore,

g
(
x, yn(x)

)− (yn(x),α(x)
)− β(x) → g

(
x, y(x)

)− (y(x),α(x)
)− β(x)

a.e. x ∈ Ω.
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Then, by the Fatou Lemma

lim inf
n→∞ Ig(yn) ≥ Ig(y)

because lim infn→∞ g(x, yn(x)) ≥ g(x, y(x))(g(x, ·)) is lower-semicontinuous.
Now, let w ∈ ∂Ig(y). By the definition of ∂Ig(y), we have

∫

Ω

(
g
(
x, y(x)

)− g
(
x,u(x)

))
dx ≤

∫

Ω

(
w(x), y(x) − u(x)

)
dx

for all u ∈ L
p
m(Ω). Let E be any measurable subset of Ω and

ũ(x) =
{

u, if x ∈ E,

y(x), if x ∈ Ω \ E,

where u is arbitrary in R
m. We have

∫

E

(
g
(
x, y(x)

)− g(x,u) − (w(x), y(x) − u
))

dx ≤ 0.

Since E is arbitrary, we may conclude that

g
(
x, y(x)

)≤ g(x,u) + (w(x), y(x) − u
)

a.e. x ∈ Ω,

and therefore

w(x) ∈ ∂g
(
x, y(x)

)
a.e. x ∈ Ω,

as claimed. Conversely, it is easy to see that every w ∈ L
p′
m (Ω) satisfying the latter

belongs to ∂Ig(y). �

Remark 2.54 Under the assumptions of Proposition 2.53, the function Ig is weakly
lower-semicontinuous on L

p
m(Ω) (because it is convex and lower-semicontinuous).

It turns out that the convexity of g(x, ·) is also necessary for the weak lower-
semicontinuity of the function Ig (see Ioffe [29, 30]). This fact has important impli-
cations in the existence of a minimum point for Ig .

We note also that in the case p = ∞ the structure of ∂Ig(y) ∈ (L∞(Ω))∗ is
more complicated and is described in Rockafellar’s work [61]. (See, also, [32].) In
a few words, any element w ∈ ∂Ig(y) is of the form wa + ws , where wa ∈ L1(Ω),
wa(x) ∈ ∂g(x, y(x)), a.e., x ∈ Ω , and ws ∈ (L∞(Ω))∗ is a singular measure.

Now, we shall indicate an extension of Proposition 2.53 to a more general context
when R

m is replaced by an infinite-dimensional space.
Let H be a real separable Hilbert space and [0, T ] a finite interval of real axis. Let

ϕ : [0, T ] → R be such that, for every t ∈ [0, T ], the function x → ϕ(t, x) is convex,
lower-semicontinuous and �≡ +∞. Further, we assume that ϕ is measurable with
respect to the σ -field of subsets of [0, T ] × H generated by the Lebesgue sets in
[0, T ] and the Borel sets in H .
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In accordance with the terminology used earlier, we call such a function ϕ a
convex normal integrand on [0, T ] × H .

Assume, further, that there exist functions α0 ∈ Lp′
(0, T ;H), β ∈ L1(0, T ) and

x0 ∈ Lp(0, T ;H) such that ϕ(t, x0) ∈ L1(0, T ) and

ϕ(t, x) ≥ (α0(t), x
)+ β(t), (2.50)

for all x ∈ H and t ∈ [0, T ].
Define the function Iϕ : Lp(0, T ;H) →R

∗
, 1 ≤ p < ∞,

Iϕ(x) =
{∫ T

0 ϕ(t, x)dt, if ϕ(t, x) ∈ L1(0, T ),

+∞, otherwise.
(2.51)

Proposition 2.55 The function Iϕ is convex, lower-semicontinuous and �≡ +∞ on
Lp(0, T ;H). The subdifferential ∂Iϕ is given by

∂Iϕ(x) = {w ∈ Lp′
(0, T ;H); w(t) ∈ ∂ϕ

(
t, x(t)

)
a.e. t ∈ ]0, T [}, (2.52)

where 1
p

+ 1
p′ = 1.

The proof closely parallels the proof of Proposition 2.53, and so, it is left to the
reader.

Example 2.56 Let Ω be a bounded and open domain of Rn with a smooth bound-
ary Γ . Let g : R → R

∗
be a lower-semicontinuous convex function and let β = ∂g

be its subdifferential. Define the function ϕ : L2(Ω) →R
∗ = ]−∞,+∞]

ϕ(y) =
{

1
2

∫
Ω

|grady|2 dx + ∫
Ω

g(y)dx, if y ∈ H 1
0 (Ω) and g(y) ∈ L1(Ω),

+∞, otherwise.

Proposition 2.57 The function ϕ is convex, lower-semicontinuous and

∂ϕ(y) = {w ∈ L2(Ω);w(x) ∈ −Δy(x) + ∂g
(
y(x)

)
a.e. x ∈ Ω

}
,

D(∂ϕ) = {y ∈ H 1
0 (Ω) ∩ H 2(Ω); ∃ w̃ ∈ L2(Ω), w̃(x) ∈ ∂g

(
y(x)

)

a.e. x ∈ Ω
}
.

(2.53)

Proof We have

ϕ(y) = Ig(y) + IΔ(y), ∀y ∈ L2(Ω),

where Ig is defined by (2.48) and IΔ : L2(Ω) → R
∗
,

IΔ(y) = −1

2

∫

Ω

yΔy dξ = 1

2

∫

Ω

|∇y|2 dξ, ∀y ∈ H 1
0 (Ω).
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This implies that ϕ is convex and lower-semicontinuous. If we denote by F :
L2(Ω) → L2(Ω) the map defined by the right-hand side of (2.53), we see that Fy ∈
∂ϕ(y), ∀y ∈ D(F) = {y ∈ H 1

0 (Ω) ∩ H 2(Ω); ∃w̃ ∈ L2(Ω), w̃(x) ∈ ∂g(y(x)) a.e.
x ∈ Ω}.

To show that F = ∂ϕ, it suffices to check that F is maximal monotone, that is,
the range of I + F is all of L2(Ω). In other words, for each f ∈ L2(Ω), the elliptic
equation

y − Δy + ∂g(y) � f in Ω; y ∈ H 1
0 (Ω) ∩ H 2(Ω)

has solution.
One might apply for this the standard existence theory for nonlinear elliptic equa-

tions or Theorem 2.65, because, as easily seen, condition (2.89), that is,
∫

Ω

g
(
(1 + εA)−1y

)
dx ≤

∫

Ω

g(y)dx, ∀y ∈ L2(Ω),

where A = −Δ, D(A) = H 1
0 (Ω) ∩ H 2(Ω), is satisfied. (We assume that g(0) = 0.)

A similar result follows for the function ϕ̃ : L2(Ω) →R, defined by

ϕ̃(y) =
{

1
2

∫
Ω

|grady|2 dx + ∫
Γ

g(y)dx, if y ∈ H 1(Ω), g(y) ∈ L1(Γ ),

+∞, otherwise. �

Arguing as in the preceding example, we see that ϕ is convex and lower-
semicontinuous. As regards its subdifferential ∂ϕ : L2(Ω) → L2(Ω), it is given
by (see Brezis [11, 12])

∂ϕ(y) = −Δy, ∀y ∈ D(∂g), (2.54)

where

D(∂ϕ) =
{
y ∈ H 2(Ω); −∂y

∂ν
∈ β(y) a.e. on Γ

}
.

In particular, if g ≡ 0, the domain of ∂ϕ consists of all y ∈ H 2(Ω) with zero Neu-
mann boundary-value conditions, that is, ∂y

∂ν
= 0 a.e. on Γ .

2.2.3 Regularization of the Convex Functions

Let X and X∗ be reflexive and strictly convex. Let f : X → R
∗

be a lower-
semicontinuous convex function and let A = ∂f . Since A : X → X∗ is maximal
monotone, for every λ > 0 the equation

F(xλ − x) + λAxλ � 0, (2.55)
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where F : X → X∗ is the duality mapping of X, has at least one solution xλ ∈ D(A)

(see Theorem 1.141). The inequality

(
F(x) − F(y), x − y

)≥ (‖x‖ − ‖y‖)2 for all x, y in X

and the strict convexity of X and X∗ then imply that the solution xλ of (2.55) is
unique. We set

xλ = Jλx, (2.56)

Aλx = −λ−1F(xλ − x). (2.57)

(See Sect. 1.4.1.)
For every λ > 0, we define

fλ(x) = inf

{‖x − y‖2

2λ
+ f (y); y ∈ X

}
, x ∈ X. (2.58)

Since, for every x ∈ X, the infimum defining fλ(x) is attained, we may infer that fλ

is convex, lower-semicontinuous and everywhere finite on X. One might reasonably
expect that the function fλ “approximates” f for λ → 0. Theorem 2.58 given below
says that this is indeed the case.

Theorem 2.58 Let f : X → ]−∞,+∞] be a lower-semicontinuous proper and
convex function on X. Let A = ∂f . Then, the function fλ is Gâteaux differentiable
on X and Aλ = ∂fλ for every λ > 0. In addition,

fλ(x) =
(

λ

2

)
‖Aλx‖2 + f (Jλx) for every x ∈ X, (2.59)

lim
λ→0

fλ(x) = f (x) for every x ∈ X, (2.60)

f (Jλx) ≤ fλ(x) ≤ f (x) for every x ∈ X and λ > 0. (2.61)

Proof It is readily seen that the subdifferential of the function y → ‖x−y‖2

2λ
+ f (y)

is just the operator y → λ−1F(y − x) + ∂f (y). This fact shows that the infimum
defining fλ(x) is attained in a point xλ, which satisfies the equation

F(xλ − x) + λ∂f (xλ) � 0.

Thus, xλ = Jλx and equality (2.59) is immediate. Since inequality (2.61) is ob-
vious, we restrict ourselves to verify relation (2.60). There are two cases to be
considered. If x ∈ Dom(f ), then limλ→∞ Jλx = x, by using Corollary 1.70 and
Proposition 1.146. This fact, combined with the lower-semicontinuity of f and in-
equality (2.61), shows that limλ→0 fλ(x) = f (x). Now, assume that f (x) = +∞.
We must show that fλ(x) → +∞ for λ → 0. Suppose that this is not the case, and
that, for example,

fλn(x) ≤ C where λn → 0.
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If equality (2.59) is used again, it would follow that, under the present circum-
stances, Jλnx → x and f (Jλnx) ≤ C. Then the lower-semicontinuity of f would
imply that f (x) ≤ C, which is a contradiction. To conclude the proof, it must be
demonstrated that f is Gâteaux differentiable at every point x ∈ X and ∂fλ(x) =
Aλx. A simple calculation involving relations (2.56), (2.57), and (2.59), and the
definition of ∂f gives

fλ(y) − fλ(x) ≤ λ

2

(‖Aλy‖2 − ‖Aλx‖2)+ (Aλy,Jλy − Jλx),

that is,

fλ(y) − fλ(x) ≤ (Aλy, y − x) + (Aλy,Jλy − y) + (Aλy, x − Jλx)

+ λ

2

(‖Aλy‖2 + ‖Aλx‖2).

Finally,

0 ≤ fλ(y) − fλ(x) − (Aλx, y − x) ≤ (Aλy − Aλx,y − x), (2.62)

for all λ > 0 and x, y in X.
In inequality (2.62), we set y = x + tu, where t > 0 and divide by t . We obtain

lim
t→0

fλ(x + tu) − fλ(x)

t
= (Aλx,u) for every x ∈ X,

because Aλ is demicontinuous by Proposition 1.146. Therefore, fλ is Gâteaux diffe-
rentiable at any x ∈ X and ∂fλ(x) = Aλx. �

Corollary 2.59 In Theorem 2.58, assume that X = H is a real Hilbert space. Then,
the function fλ is Fréchet differentiable of H and its Fréchet differential ∂fλ = Aλ

is Lipschitzian on H .

Proof Denote by I the identity operator in H . Then, F = I and Jλ, respectively,
Aλ, can be expressed as

Jλ = (I + λA)−1

and

Aλ = λ−1(I − Jλ).

Then, Aλ is Lipschitzian on H with the Lipschitz constant 1
λ

(see Proposi-
tion 1.146), so that inequality (2.62) yields

∣∣fλ(y) − fλ(x) − (Aλx, y − x)
∣∣≤ ‖y − x‖2

λ
for all λ > 0,

which, obviously, implies that f is Fréchet differentiable on H . �
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Corollary 2.60 Let X be a reflexive Banach space and let f and ϕ be lower-
semicontinuous, convex and proper functions on X. If ∂ϕ(x) = ∂f (x) for every
x ∈ X, then the function x → ϕ(x) − f (x) is constant on X.

Proof Let ϕλ and fλ be defined by formula (2.58). Then, using Theorem 2.58, we
may infer that ∂ϕλ = ∂fλ for every λ > 0, so that

ϕλ(x) − fλ(x) = constant, for every x ∈ X and λ > 0,

because ϕλ and fλ are Gâteaux differentiable. But this clearly implies that

ϕλ(x) − fλ(x) = ϕλ(x0) − fλ(x0) for every x ∈ X and λ > 0,

where x0 is any element in X. Again, using Theorem 2.58, we may pass to the limit,
to obtain

ϕ(x) − f (x) = ϕ(x0) − f (x0) for every x ∈ X,

as claimed. �

Remark 2.61 Let X = H be a Hilbert space and g(x) = 1
2 |x|2. Then the function

fλ can be equivalently written as

fλ = (f ∗ + λg)∗.

2.2.4 Perturbation of Cyclically Monotone Operators
and Subdifferential Calculus

It is apparent that, given two lower-semicontinuous proper convex functions f and
ϕ from X to ]−∞,+∞], then

∂f (x) + ∂ϕ(x) ⊂ ∂(f + ϕ)(x) for every x ∈ D(∂f ) ∩ D(∂ϕ). (2.63)

Thus, it may be ascertained that ∂f + ∂ϕ = ∂(f + ϕ) if and only if the monotone
operator ∂f + ∂ϕ is again maximal. More generally speaking, the following is an
interesting problem: if A and B are maximal monotone operators, is A + B again a
maximal monotone operator? In general, the answer has to be negative since A + B

can even be empty, as happens, for example, if D(A) does not meet D(B). The main
result for the problem in this line is due to Rockafellar [60] and it states that, if at
least one of the maximal monotone operators A or B has a domain with a nonempty
interior and (intD(A)) ∩ D(B) �= ∅ (or (D(A) ∩ intD(B) �= ∅), then A + B is
maximal monotone. Instead of proving this theorem in full, we generally restrict
ourselves to the case when B = ∂f .
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Theorem 2.62 Let X be a reflexive Banach space and let A be a maximal monotone
operator from X to X∗. Let f : X → ]−∞,+∞] be a lower-semicontinuous proper
and convex function on X. Assume that at least one of the following conditions is
satisfied.

D(A) ∩ int Dom(f ) �= ∅, (2.64)

Dom(f ) ∩ intD(A) �= ∅. (2.65)

Then A + ∂f is a maximal monotone operator.

Proof Using the renorming theorem, we can choose in X and X∗ any strictly convex
equivalent norms. Without loss of generality, we may assume that 0 ∈ D(A), 0 ∈ A0
and 0 ∈ ∂f (0). Moreover, according to relations (2.55) and (2.65), we may further
assume that

0 ∈ D(A) ∩ int Dom(f ), (2.66)

or

0 ∈ Dom(f ) ∩ intD(A). (2.67)

This can be achieved by shifting the domains and ranges of A and ∂f . In view of
Theorem 1.141, A + ∂f is maximal monotone if and only if, for every y∗ ∈ Y ∗,
there exists x ∈ D(A) ∩ D(∂f ) such that

F(x) + Ax + ∂f (x) � y∗. (2.68)

To show that equation (2.68) has at least one solution, consider the approximate
equation

Fxλ + Axλ + ∂fλ(x) � y∗, λ > 0, (2.69)

where fλ is the convex function defined by (2.58). According to Theorem 2.58,
the operator ∂fλ = (∂f )λ is monotone and demicontinuous from X to X∗. Corol-
lary 1.140 and Theorem 1.143 are therefore applicable. These ensure us that, for
every λ > 0, equation (2.69) has a solution (clearly, unique) xλ ∈ D(A). Multiply-
ing equation (2.69) by xλ, it yields

‖xλ‖ ≤ ‖y∗‖ for every λ > 0, (2.70)

because Aλ, ∂fλ are monotone and ∂fλ(0) = 0, 0 ∈ A).
First, we assume that condition (2.66) is satisfied. Since f is continuous on the

interior of its effective domain Dom(f ), there is ρ > 0 such that

fλ(ρw) ≤ f (ρw) ≤ C for every w ∈ X, ‖w‖ = 1,

where C is a positive constant independent of λ and w is in X. Then, multiplying
equation (2.69) by xλ − ρw, it yields

(Fxλ, xλ − ρw) + (Axλ, xλ − ρw) + fλ(xλ) ≤ (y∗, xλ − ρw) + C. (2.71)
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Let y∗
λ = y∗ − Fxλ − ∂fλ(xλ) ∈ Axλ. In relation (2.71), we choose

w = −F−1
(

y∗
λ

‖y∗
λ‖
)

to obtain

ρ‖y∗
λ‖ ≤ C for all λ > 0. (2.72)

(We shall denote by C several positive constants independent of λ.) Thus, with the
aid of equations (2.69) and (2.70), this yields

∥
∥∂fλ(xλ)

∥
∥≤ C for all λ > 0. (2.73)

Next, we assume that condition (2.67) is satisfied. Then, according to Theo-
rem 1.144, the operator A is locally bounded at x = 0, so that there is ρ > 0, such
that

sup
{‖z∗‖; z∗ ∈ Ax; ‖x‖ ≤ ρ

}≤ C. (2.74)

Let w be any element in X such that ‖w‖ = 1.
Again, multiplying equation (2.69) by xλ − ρw, we obtain

(Fxλ, xλ − ρw) + (∂fλ(xλ), xλ − ρw
)+ (Axλ, xλ − ρw) = (y∗

λ, xλ − ρw).

Then, we put

w = −F−1
(

∂fλ(xλ)

‖∂fλ(xλ)‖
)

and use the monotonicity of A and estimate (2.74) to get

∥∥∂fλ(xλ)
∥∥≤ C for every λ > 0.

So far, we have shown that y∗
λ,Fxλ and ∂fλ(xλ) remain in a bounded subset of X∗.

Since the space X is reflexive, we may assume that

xλ → x weakly in X,

Fxλ + y∗
λ → z∗ weakly in X∗.

(2.75)

To conclude the proof, it remains to be seen that [x, z∗] ∈ A + F and y∗ − z∗ ∈
∂f (x). Let λ,μ > 0. Subtracting the corresponding equations yields

(Fxλ + Fxμ,xλ − xμ) + (y∗
λ − y∗

μ,xλ − xμ) + (∂fλ(xλ) − ∂fμ(xμ), xλ − xμ

)= 0

and therefore

lim
λ,μ→0

(Fxλ + y∗
λ − Fxμ − y∗

μ,xλ − xμ) = 0 (2.76)
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because
(
∂fλ(xλ) − ∂fμ(xμ), xλ − xμ

)

≥ (∂fλ(xλ) − ∂fμ(xμ), xλ − Jλxλ − xμ + Jμxmu
)

≥ −(∥∥∂fλ(xλ)
∥∥+ ∥∥∂fμ(xμ)

∥∥)(λ
∥∥∂fλ(xλ)

∥∥+ μ
∥∥∂fμ(xμ)

∥∥).

Here, we have used relations (2.56), (2.57) and the monotonicity of ∂f . Extracting
further subsequences, if necessary, we may assume that

lim
λ→0

(
F(xλ) + y∗

λ, xλ

)= �.

Then, relation (2.75) shows that (z∗, x) = �. Now, let [u,v] be any element in the
graph of A + F . We have

(Fxλ + y∗
λ − v, xλ − u) ≥ 0, ∀λ > 0.

Hence,

(z∗ − v, x − u) ≥ 0, (2.77)

because (z∗, x) = �. Since F is monotone and demicontinuous from X to X∗, it
follows from Corollary 1.140 quoted above that A + F is maximal monotone in
X × X∗. Inasmuch as [u,v] was arbitrary in A + F , then inequality (2.77) implies
that [x, z∗] ∈ A + F . In other words, z∗ ∈ Ax + Fx.

Now, we fix any u in X and multiply equation (2.69) by xλ − u. It follows from
the definition of the subgradient that

fλ(xλ) ≤ fλ(u) + (y∗, xλ − u) − (xλ + y∗
λ, xλ − u) (2.78)

and therefore

lim sup
λ→0

fλ(xλ) ≤ f (u) + (y∗, x − u) − (z∗, x − u). (2.79)

Here, we have used in particular Theorem 2.58 and relation (2.77).
Since {∂fλ(xλ); λ > 0} is bounded in X∗, we have

lim
λ→0

(
xλ − Jλ(xλ)

)= 0 strongly in X.

Hence,

Jλ(xλ) → x weakly in X as λ → 0.

We recall that a convex function f on a topological vector space X, which is
lower-semicontinuous with respect to the given topology on X, is necessarily lower-
semicontinuous also with respect to the corresponding weak topology on X. Thus,
the combination of relations (2.59) and (2.79) yields

f (x) ≤ f (u) + (y∗, x − u) − (z∗, x − u)
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and therefore

y∗ − z∗ ∈ ∂f (x),

because u was arbitrary in X. Hence, x satisfies equation (2.68). The proof of The-
orem 2.62 is complete. �

Corollary 2.63 Let f and ϕ be two lower-semicontinuous, proper and convex func-
tions defined on a reflexive Banach space X. Suppose that the following condition is
satisfied.

Dom(f ) ∩ int Dom(ϕ) �= ∅. (2.80)

Then

∂(f + ϕ) = ∂f + ∂ϕ. (2.81)

Proof Since D(∂ϕ) is a dense subset of Dom(ϕ) (see Corollary 2.44), condi-
tion (2.80) implies that Dom(f ) ∩ intD(∂ϕ) �= ∅. Theorem 2.62 can therefore be
applied to the present situation. Thus, the operator ∂ϕ + ∂f is maximal monotone
in X × X∗. Since ∂ϕ + ∂f ⊂ ∂(ϕ + f ), relation (2.81) follows. �

Remark 2.64 It results that Corollary 2.63 remains valid if X is a general Banach
space. An alternative proof of Corollary 2.63 in this general setting will be given in
the next chapter.

We conclude this section with a maximality criterion for the case in which neither
D(A) nor Dom(f ) has a nonvalid interior.

Theorem 2.65 Let f : H → ]−∞,+∞] be a lower-semicontinuous, proper convex
function on a real Hilbert space H . Let A be a maximal monotone operator from H

into itself. Suppose that, for some h ∈ H and C ∈ R,

f
(
(I + λA)−1(x + λh)

)≤ f (x) + Cλ for all x ∈ H and λ > 0. (2.82)

Then the operator A + ∂f is maximal monotone and

D(A + ∂f ) = D(A) ∩ D(∂f ) = D(A) ∩ Dom(f ). (2.83)

Proof To prove that A + ∂f is maximal monotone, it suffices to show that for every
y ∈ H there exists x ∈ D(A) ∩ D(∂f ) such that

x + Ax + ∂f (x) � y. (2.84)

To show that this is indeed the case, consider the equation

xλ + Aλxλ + ∂f (xλ) � y, (2.85)
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where Aλ = λ−1(I − (I − λA)−1). Since Aλ is monotone and continuous on H ,
equation (2.85) has, for every λ > 0, a unique sol xλ ∈ D(∂f ). Let x0 be any ele-
ment in D(A) ∩ D(∂f ). Since ‖Aλx0‖ ≤ ‖A0x0‖ and the operators A and ∂f are
monotone, we see by multiplying equation (2.85) by xλ −x0 that {‖xλ‖} is bounded.
Next, we observe that condition (2.82) implies that

(
∂f (x),Aλ(x + λh)

)= λ−1(∂f (x), x + λh − (I + λA)−1(x + λh)
)

≥ (∂f (x),h
)+ (f (x) − f (I + λA)−1(x + λh)

)
λ−1

≥ −C − ‖h‖‖∂f (x)‖. (2.82′)

Now, we write equation (2.82′) as

xλ + Aλ(xλ + λh) + ∂f (xλ) = y + Aλ(xλ + λh) − Aλxλ

and multiply it (scalarly in H ) by Aλ(xλ + λh). Recalling that Aλ is Lipschitzian
with Lipschitz constant λ−1, it follows by (2.82) that {‖Aλxλ‖} is bounded for
λ → 0. We subtract the defining equations for xλ and xμ and then multiply by
xλ − xμ; we obtain

‖xλ − xμ‖2 + (Aλxλ − Aμxμ,xλ − xμ) ≤ 0.

Since Aλxλ ∈ AJλxλ and A is monotone, we see that

‖xλ − xμ‖2 → 0 as λ,μ → 0.

Hence, limλ→0 xλ = 0 exists in the strong topology of H . It remains to be shown
that x satisfies equation (2.84). The techniques is similar to the one previously used,
but with some simplifications. Indeed, we can extract from {xλ} a subsequence {xλn}
such that

Aλnxλn → y0 in the weak topology of H.

Since A is maximal monotone, it is also demiclosed (that is, its graph is strongly–
weakly closed in H × H ) (see Proposition 1.146). Therefore, x ∈ D(A) and y0 ∈
Ax. The same argument applied to ∂f shows that y − Aλxλ − xλ converges weakly
to y1 ∈ ∂f (x). Hence, x satisfies equation (2.84). To prove (2.83), we fix any x in
D(A)∩ Dom(f ). Then, there exist xε ∈ Dom(f ) such that xε → x strongly in H as
ε → 0. We set uε = (I + εA)−1(xε + εh) and observe that

‖uε − x‖ ≤ ∥∥uε − (I + εA)−1x
∥∥+ ∥∥(I + εA)−1x − x

∥∥

≤ ‖xε − x‖ + ∥∥(I + εA)−1x − x
∥∥+ ε‖h‖.

Hence, uε → x as ε → 0. Moreover, by condition (2.82), uε ∈ D(A) ∩ Dom(f ).
Briefly, we have shown that D(A) ∩ Dom(f ) ⊂ D(A) ∩ Dom(f ). Now, we prove
that D(A) ∩ Dom(f ) ⊂ D(A) ∩ D(∂f ). Let u be any element in D(A) ∩ Dom(f )

and let uε ∈ D(A) ∩ D(∂f ) be the unique solution to the equation

uε + εAuε + ε∂f (uε) � u.
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We have

f (uε) − f (u) ≤
(

u − uε

ε
− Auε,uε − u

)
≤ −1

ε
‖uε − u‖2 − (Au,uε − u),

which implies that limε→0 uε = 0. Since u is arbitrary in D(A) ∩ Dom(f ), we may
infer that D(A)∩ Dom(f ) ⊂ D(A) ∩ D(∂f ), as claimed. Since D(A)∩ Dom(f ) ⊂
D(A) ∩ Dom(f ), Relation (2.83) follows, and this completes the proof. �

We have shown, incidentally, in the proof of Theorems 2.62 and 2.65 that, under
appropriate assumptions on A and f , the solution x of the equation

Ax + ∂f (x) � 0

can be obtained as a limit, as λ tends to 0 of the solutions xλ to the approximating
equations

Axλ + ∂fλ(λ) � 0.

This approach to construct the solution x closely resembles the penalty method in
constrained optimization. To be more specific, let us assume that f = IK , where K

is a closed convex subset of a Hilbert space H and A = ∂ϕ.
Thus, equation Ax + ∂f (x) � 0 assumes the form

min
{
ϕ(x); x ∈ K

}
,

while the corresponding approximate equation can be equivalently expressed as the
following unconstrained optimization problem:

min

{
ϕ(x) + 1

2λ
‖x − PKx‖2; x ∈ H

}
,

because fλ(x) = 1
2λ

‖∂fλ(x)‖2 + f ((I + λ∂f )−1x) and (I + λ∂IK)−1x = PKx

(PKx is the projection of x on K).
The family of continuous functions x → 1

2λ
‖x − PKx‖2, x ∈ H , for a fixed

λ > 0, is a family of exterior penalty functions for the closed convex set K .
Now, we prove a mean property for convex functions.

Proposition 2.66 Let X be a real Banach space and f : X → R be a continuous
convex function. If x and y are distinct points of X, then there is a point z on the
open segment between x and y and w ∈ ∂f (z) such that

f (x) − f (y) = (w,x − y). (2.86)

Proof Without loss of generality, we may assume that y = 0. Define the function
ϕ : R →R

ϕ(μ) = f (μx), μ ∈ R.
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Since ∂ϕ(μ) = (∂f (μx), x) for all μ ∈ R, it suffices to show that there exist
θ ∈ ]0,1[ and ζ ∈ ∂ϕ(θ) such that ϕ(1)−ϕ(0) = ζθ . To this end, consider the regu-
larization ϕλ of ϕ defined by formula (2.58). Since ϕλ is continuously differentiable,
for every λ > 0, there exists θλ ∈ ]0,1[, such that ϕλ(1) − ϕ1(0) = ∂ϕλ(θλ). On a
sequence λn → 0 we have θλn → θ and ∂ϕλn(θλn) → η ∈ ∂ϕ(θ). Since ϕλ → ϕ for
λ → 0, we infer that ϕ(1)−ϕ(0) = η ∈ ∂ϕ(θ), as claimed (obviously, θ ∈ ]0,1[). �

2.2.5 Variational Inequalities

Let X be a reflexive real Banach space and X∗ its dual space. Let A be a linear or
nonlinear monotone operator form X to X∗ and let K be a closed convex set of X.
We say that x satisfies a variational inequality if

x ∈ K, (Ax − f,u − x) ≥ 0 for all u ∈ K, (2.87)

where f is given in X∗. In terms of subdifferentials, inequality (2.87) can be writ-
ten as

Ax + ∂IK(x) � f, (2.88)

where IK : X → [0,+∞] is the indicator function of K (defined by relation (2.3)).
Note that, when K = X or x is an interior point of K , inequality (2.87) actually

reduces to the equality

(Ax − f,w) = 0 for all w in X,

that is, Ax − f = 0.
It should be said that many problems in the calculus of variations naturally arise

in the general form of a variational inequality such as (2.87). For instance, when A is
the subdifferential of a lower-semicontinuous convex function ϕ on X, then any so-
lution x of the variational inequality (2.87) is actually a solution of the optimization
problem

Minimize ϕ(x) − (f, x) over all x ∈ K.

Theorem 2.67 Let A : X → X∗ be a monotone, demicontinuous operator and let
K be a closed convex subset of X. In addition, assume that either K is bounded or
A is coercive on K , that is, for some x0 ∈ K ,

lim{‖x‖→+∞, x∈K}(Ax,x − x0)‖x‖−1 = +∞. (2.89)

Then, the variational inequality (2.87) has at least one solution. Moreover, the set
of solutions is bounded, closed and convex. If A is strictly monotone, the solution
to (2.87) is unique.
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Proof By Corollary 1.142, the operator A is maximal monotone and by Theo-
rem 2.62, A + ∂IK is a maximal monotone subset of X × X∗. Since, by assump-
tion, A + ∂IK is coercive, it follows by Theorem 1.143 that the range R(A + ∂IK)

of A + ∂IK is all of X∗. Hence, the set C of solutions to the variational inequal-
ity (2.87) is nonempty. Since C = (A + ∂IK)−1(0) and (A + ∂IK)−1 is maximal
monotone (because so is A + ∂IK ), we may conclude that C is convex and closed.
Using the coercivity of A+∂IK , we see that C is bounded. If A is strictly monotone,
that is,

(Ax − Ay,x − y) = 0 if and only if x = y,

then obviously C consists of a single point. Thus, the proof is complete. �

We pause, briefly, to point out an important generalization of Theorem 2.67
(see Brezis [10]).

The operator A : K → X∗ is said to be pseudo-monotone if the following condi-
tions are satisfied:

(i) If {un} ⊂ K is weakly convergent to u in X and lim supn→∞(Aun,un −u) ≤ 0,
then lim infn→∞(Aun,un − v) ≥ (Au,u − v) for all v ∈ K .

(ii) For every v ∈ K , the mapping u → (Au,u−v) is bounded from below on every
bounded subset of K .

It is easy to show that every monotone demicontinuous operator from K to X∗ is
pseudo-monotone.

The result is that Theorem 2.67 remains valid if one merely assumes that A is
pseudo-monotone and coercive from K to X∗. Other existence results for the above
variational inequality could be obtained by applying the general perturbations the-
orems given in Sect. 2.2.4. We confine ourselves to mention the following simple
consequence of Theorem 2.65.

Corollary 2.68 Let X = H be a real Hilbert space and K be a closed convex subset
of H . Let A be a maximal monotone (possible) multivalued operator from H into
itself such that

(I + λA)−1(x + λh) ∈ K for all x ∈ K and λ > 0, (2.90)

where h is some fixed element of H .
If, in addition, either K is bounded, or A is coercive on K , then the variational

inequality (2.87) has at least one solution.

Proof Applying Theorem 2.65, where f = IK , we infer that the operator A + ∂IK

is maximal monotone in H × H . Since A + ∂IK is coercive, this implies that its
range is all of H (see Corollary 1.140).

To be more specific, let us suppose in Theorem 2.67 that X = V and X∗ = V ′
are Hilbert spaces which satisfy

V ⊂ H ⊂ V ′
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where H is a real Hilbert space identified with its own dual and the inclusion map-
ping of V into H is continuous and densely defined. We further assume that the
operator A : V → V ′ is defined by

(Au,v) = a(u, v) for all u,v in V,

where a(u, v) is a bilinear continuous form on V ×V , which satisfies the coercivity
condition

a(u,u) ≥ ω‖u‖2 for all u in V, (2.91)

where ω > 0. (As usual, ‖ · ‖ denotes the norm in V , and (·, ·) the pairing between
V and V ′.) Clearly, A is linear, continuous and positive from V to V ′. Let K be a
closed convex subset of V . Observe that in this case the variational inequality (2.87)
becomes

a(u, v − u) ≥ (f, v − u) for all v ∈ K. (2.92)

In particular, if the bilinear form a is symmetric, problem (2.92) can be equivalently
expressed as

min

{
1

2
a(v, v) − (f, v); v ∈ K

}
. (2.93)

�

We deduce from Theorem 2.67 the following corollary.

Corollary 2.69 For every f ∈ V ′, the variational inequality (2.92) has a unique
solution u ∈ K .

It should be observed that relation (2.92) implies that the mapping f → u is
Lipschitzian from V ′ into V with Lipschitz constant 1

ω
.

The variational inequality (2.92) includes several partial differential equations
with unilateral boundary conditions and free boundary-value problems of elliptic
type. In applications, usually A is an elliptic differential operator on a subset of Rn,
and K incorporates various unilateral conditions on the boundary Γ or on Ω . We
illustrate this by a few typical examples.

Example 2.70 (The obstacle problem) Consider in a bounded open subset Ω of Rn,
the second-order differential operator

Av = −(aij (x)vxi

)
xj

, (2.94)

where the coefficients aij are in L∞(Ω) and satisfy the condition (ω > 0)

aij (x)ξiξj ≥ ω|ξ |2, ∀ξ ∈ R
n, ξ = (ξ1, . . . , ξn).
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In equation (2.94), the derivatives are taken in the sense of distributions in Ω . More
precisely, the operator A is defined from H 1(Ω) to (H 1(Ω))′ by

(Au,v) = a(u, v) =
∫

Ω

aij (x)uxi
vxj

dx for all u,v ∈ H 1(Ω). (2.94′)

Let V be a linear space such that H 1
0 (Ω) ⊂ V ⊂ H 1(Ω) and let f ∈ (H 1(Ω))′. An

element u ∈ V , which satisfies the equation

a(u, v) = (f, v) for all v in V,

is a solution to a certain boundary-value problem. For instance, the Dirichlet prob-
lem

−(aijuxi
)xj

= f in Ω, u = 0 in Γ

arises for V = H 1
0 (Ω).

Let V = H 1
0 (Ω), f ∈ L1(Ω), and K = {v ∈ V ;v ≥ ψ a.e. in Ω}, where ψ ∈

H 2(Ω) is a given function such that ψ(x) ≤ 0 a.e. x ∈ Γ . Then, the variational
inequality (2.92) becomes

∫

Ω

aij (x)uxi
(v − u)xj

dx ≥
∫

Ω

f (v − u)dx for all v ∈ K. (2.95)

According to Corollary 2.69, the latter has a unique solution u ∈ K . We shall see
that u can be viewed as a solution to the following boundary-value problem (the
obstacle problem):

−(aij (x)uxi

)
xj

= f in E = {x ∈ Ω; u(x) > ψ(x)
}
, (2.96)

−(aij (x)uxi

)
xj

≥ f in Ω, (2.97)

u ≥ ψ on Ω, u = ψ in Ω \ E, u = 0 in Γ. (2.98)

To this end, we assume that E is an open subset. Let α ∈ C∞
0 (E) and ρ > 0 be such

that u ± ρα ≥ ψ on Ω . Then, in (2.95), we take v = u ± ρα to get
∫

Ω

aijuxi
αxj

dx =
∫

E

f α dx for all α ∈ C∞
0 (E).

The latter shows that u satisfies equation (2.96) (in the sense of distributions). Next,
we take in (2.95) v = α+ψ , where α ∈ C∞

0 (Ω) is such that α ≥ 0 on Ω , to conclude
that u satisfies inequality (2.97) (again in the sense of distributions). As regards
relations (2.98), they are simple consequences of the fact that u ∈ K .

Problem (2.96)–(2.98) is an elliptic boundary-value problem with the free boun-
dary ∂I , where I is the incidence set {x ∈ Ω;u(x) = ψ(x)}. For a detailed study
of this problem, we refer the reader to the recent book [37] by Kinderlehrer and
Stampacchia.
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As seen earlier, in the special case aij = aji , the variational inequality (2.95)
reduces to the minimization problem

min

{∫

Ω

aij (x)vxi
vxj

dx −
∫

Ω

f dx; v ∈ K

}
.

The variational inequality (2.95) models the equilibrium configuration of an elas-
tic membrane Ω fixed at Γ , limited from below by a rigid obstacle ψ and subject to
a vertical field of forces with density f (y is the deflection of the membrane). Simi-
lar free boundary-value problems occur in hydrodynamic and plasma physics. For
instance, such a free boundary problem models the water flow through an isotropic
homogeneous rectangular dam (see Baiocchi [3]).

Example 2.71 Suppose now that the energy integral

1

2

∫

Ω

|gradv|2 dx −
∫

Ω

f v dx

has to be minimized on K = {v ∈ H 1
0 (Ω); |gradv| ≤ 1, a.e. on Ω}. As seen earlier,

this problem can be equivalently expressed as
∫

Ω

gradugrad(u − v)dx ≤
∫

Ω

f (u − v)dx for all v ∈ K.

This is a variational inequality of the form (2.92) and it arises in the elasto-plastic
torsion of beams of section Ω under a torque field f (see Duvaut and Lions [19]).
Arguing as in Example 2.56, it follows that formally the solution u satisfies the free
boundary-value problem

−Δu = f on Ω1, u = 0 on Γ,

|gradu| = 1 on Ω2,

where Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω .

Example 2.72 Let a : H 1(Ω) × H 1(Ω) →R be the bilinear form

a(u, v) =
∫

Ω

gradugradv dx +
∫

Ω

uv dx

and

K = {u ∈ H 1(Ω); u ≥ 0 a.e on Γ
}
.

We recall that, by Theorem 1.133, the “trace” of u ∈ H 1(Ω) belongs to H
1
2 (Γ ) ⊂

L2(Γ ), so that K is well defined. Invoking once again Corollary 2.69, we deduce
that, for every f ∈ L2(Ω), the variational inequality

a(u, v − u) ≥
∫

Ω

f (v − u)dx, for all v ∈ K, (2.99)
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has a unique solution u ∈ K . Let v = u ± ϕ, where ϕ ∈ C∞
0 (Ω). Then, inequal-

ity (2.99) yields

a(u,ϕ) −
∫

Ω

f ϕ dx = 0, for all ϕ ∈ C∞
0 (Ω).

Hence,

−Δu + u = f on Ω (2.100)

in the sense of distributions. In particular, it follows from equation (2.100) that the

outward normal derivative ∂u
∂ν

belongs to H− 1
2 (Γ ) (see Lions and Magenes [42]).

We may apply Green’s formula
∫

Ω

(Δu − u)v dx =
∫

Γ

v
∂u

∂ν
dσ − a(u, v) or all v ∈ H 1(Ω). (2.101)

In formula (2.101), we have denoted by
∫
Γ

v ∂u
∂ν

dσ the value of ∂u
∂ν

∈ H− 1
2 (Γ ) at

v ∈ H
1
2 (Γ ). Thus, comparing equation (2.101) with (2.99) and (2.100), it yields

∫

Γ

(v − u)
∂u

∂ν
dσ ≥ 0 for all v ∈ K.

To sum up, we have shown that the solution u of the variational problem (2.99)
satisfies (in the sense of distribution) the following unilateral problem:

− Δu + u = f on Ω,

u ≥ 0,
∂u

∂ν
≥ 0, u

∂u

∂ν
= 0 on Γ.

(2.102)

Remark 2.73 The unilateral problem (2.102) is the celebrated Signorini’s problem
from linear elasticity (see Duvaut and Lions [19]) and under our assumptions on
f it follows that u ∈ H 2(Ω) (see Brezis [12]) and equations (2.102) hold a.e. on
Ω and Γ , respectively. As a matter of fact, the variational inequality (2.99) can be
equivalently written as ∂ϕ(u) � f , where ϕ : L2(Ω) → ]−∞,+∞] is given by (see
Example 2.56)

ϕ(y) = 1

2

∫

Ω

|grady|2 dx +
∫

Γ

g(y)dσ

and g(r) = 0 for r ≥ 0, g(r) = +∞ for r < 0.
Similarly, if aij ∈ C1(Ω) and f ∈ L2(Ω), then the solution u to the variational

inequality (2.95) belongs to H 1
0 (Ω) ∩ H 2(Ω) and satisfies the complementarity

system

−(aij (x)uxi

)
xj

− f (x)
(
u(x) − ψ(x)

)= 0 a.e. x ∈ Ω,

u(x) ≥ ψ(x); −(aij (x)uxi
(x)
)
xj

≥ f (x) a.e. x ∈ Ω.
(2.96′)
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Indeed, by Corollary 2.68, the equation

AH u + ∂IK(u) � f, (2.103)

where

AH u = Au ∩ H for u ∈ D(AH ) = H 1
0 (Ω) ∩ H 2(Ω) and

K = {u ∈ L2(Ω); u(x) ≥ ψ(x) a.e. x ∈ Ω
} (2.104)

has a unique solution u ∈ K ∩ D(AH ). (It must be noticed that condition (2.90)
holds for h(x) = (aij (x)ψxi

)xj
by the maximum principle for linear elliptic equa-

tions.) Since, by Proposition 2.53,

∂IK(u) = {w ∈ L2(Ω); w(x)
(
u(x) − ψ(x)

)= 0, w(x) ≥ 0 a.e. x ∈ Ω
}
, (2.105)

we see that u satisfies equation (2.96′), as claimed.

Example 2.74 (Generalized complementarity problem) Several problems arising in
different fields such as mathematical programming, game theory, mechanics, theory
of economic equilibrium, have the same mathematical form, which may be stated
as follows:

For a given map A from the Banach space X into its dual space X∗, find x0 ∈ X

satisfying

x0 ∈ C, −Ax0 ∈ C◦, (x0,Ax0) = 0, (2.106)

where C is a given closed, convex cone with the vertex at 0 in X and C◦ is its
polar, that is, C◦ = {x∗ ∈ X∗; (x, x∗) ≤ 0 for all x ∈ C}.

This problem is referred to as the generalized complementarity problem. In the spe-
cial case, when X = X∗ = R

n, C = R
n+ (where R

n is the n-dimensional Euclidean
space and R

m+ the set of nonnegative n-vectors), the above problem takes the familiar
form

x0 ≥ 0, Ax0 ≥ 0, (x0,Ax0) = 0. (2.107)

The following simple lemma indicates the equivalence between problem (2.106)
and a variational inequality.

Lemma 2.75 The element x0 ∈ C is a solution of problem (2.106) if and only if

(Ax0, x − x0) ≥ 0 for all x ∈ C. (2.108)

Proof It is obvious that every solution x0 of the complementarity problem (2.106)
satisfies the above variational inequality. Let x0 ∈ C be any solution of inequal-
ity (2.108). Taking x = x0 + y in (2.108), where y ∈ C, it follows that (Ax0, y) ≥ 0.
Hence, −Ax0 ∈ C◦. Also, taking x = 2x0, we see that (x0,Ax0) ≥ 0, while, for
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x = 0, (2.108) implies that (x0,Ax0) ≤ 0. Therefore (x0,Ax0) = 0. This completes
the proof. �

Now, we are ready to prove the main existence result for the complementarity
problem.

Theorem 2.76 Let X be a real reflexive Banach space, C a closed convex cone in
X, and let A be a monotone, demicontinuous operator from X to X∗. If, in addition,
A is coercive on C, then the generalized complementarity problem (2.106) has at
least one solution. Moreover, the set of all solutions of this problem is bounded
closed convex subset of C, which consists of a single vector if A is strictly monotone.

Proof There is nothing left to do, except to combine Theorem 2.67 with Lem-
ma 2.75. �

As mentioned earlier, Theorem 2.67 remains valid if the operator A is pseudo-
monotone and coercive from K to X∗. In particular, this happens when the space X

is finite-dimensional and A is continuous and coercive on K .

Corollary 2.77 Let X be finite-dimensional and let A be continuous on C. If, in
addition, there exists a vector x0 ∈ C such that

lim
‖x‖→+∞
x∈C

(Ax,x − x0)

‖x‖ = +∞, (2.109)

then the generalized complementarity problem (2.106) has at least one solution.

Before leaving the subject of complementarity problems, we should point out
another existence result which can be derived on the basis of Corollary 2.68.

Corollary 2.78 Let X = H be a real Hilbert space and let A be a maximal mono-
tone (possible) multivalued operator from H into itself, which is coercive on C.
Assume further that there is h ∈ H such that

(I + λA)−1(x + λh) ⊂ C for all x ∈ C and λ > 0.

Then, problem (2.106) has at least one solution.

2.2.6 ε-Subdifferentials of Convex Functions

In the following we present a generalization of subdifferential taking into ac-
count its characterization with the aid of support hyperplanes to the epigraph
(see Remark 2.37). It is clear that, if x ∈ D(∂f ), then x ∈ Dom(f ) and f is



2.2 The Subdifferential of a Convex Function 115

lower-semicontinuous at x. Conversely, for a given proper convex lower-semi-
continuous function f , the existence of support nonvertical hyperplanes passing
through (x, f (x)) is not ensured for every x ∈ Dom(f ), that is, it is possible that
x∈D(∂f ).

But for any x ∈ Dom(f ) there exists at least one closed hyperplane passing
through (x, f (x) − ε), ε > 0, such that epif is contained in one of the two closed
half-spaces determined by that hyperplane. These hyperplanes can be considered as
the approximants of support hyperplanes passing through (x, f (x)). Consequently,
we get a notion of approximate subdifferential.

Definition 2.79 The mapping ∂εf : X → X∗ defined by

∂εf (x) = {x∗ ∈ X∗; f (x) − f (u) ≤ (x − u,x∗) + ε, ∀u ∈ X∗}, (2.110)

where f is an extended real-valued function on X, is called the ε-subdifferential
of f at x.

It is clear that this mapping is generally multivalued and D(∂εf ) = ∅ if f is not
proper. If f is a proper function, then we must have ε ≥ 0 and D(∂εf ) ⊂ Dom(f ).
For ε = 0 we obtain the subdifferential defined by Definition 2.30. Also, we
have

∂f (x) =
⋂

ε>0

∂εf (x), x ∈ Dom(f ). (2.111)

Some properties of ε-subdifferential generalize properties of subdifferential but
most of their properties are different because ∂f is a local notion while ∂εf is a
global one.

Proposition 2.80 If f is a proper convex lower-semicontinuous function, then
∂εf (x) is a nonvoid closed convex set for any ε > 0 and x ∈ Dom(f ).

Proof We have (x, f (x) − ε)∈ epif for any fixed ε > 0, x ∈ Dom(f ). By hypoth-
esis, epif is a nonvoid closed convex set (see Propositions 2.36 and 2.39). Using
Corollary 1.45, we get a closed hyperplane passing through (x, f (x) − ε) at epif .
This hyperplane is necessarily nonvertical, that is, it can be considered of the form
(x∗,1). Thus, we obtain x∗ ∈ ∂εf (x). �

Corollary 2.81 For any proper convex lower-semicontinuous function f we have
D(∂εf ) = Dom(f ), where ε > 0.

It should be observed that the reverse of Proposition 2.80 is also true. Conse-
quently, it can be given a characterization of proper convex lower-semicontinuous
functions in terms of ε-subdifferentials.
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Theorem 2.82 An extended valued function f on X is convex and lower-semi-
continuous if and only if ∂εf (x) �= ∅ for all x ∈ Dom(f ).

Proof According to Proposition 2.80, we must prove only the sufficiency part. First,
we remark that, if there exists ū ∈ X such that f (ū) = −∞, then ū ∈ Dom(f ),
while ∂εf (ū) = ∅. Hence, f must be a proper function. Now, if x ∈ Dom(f ) and
(x,α)∈ epif , then there exists ε > 0 such that (x, f (x) − ε)∈ epif . But since
∂εf (x) �= ∅, we have a closed nonvertical hyperplane passing through (x, f (x)− ε)

such that epif is contained in one of the two closed half-spaces determined by
that hyperplane. Consequently, epif is an intersection of closed half-spaces. Hence,
epif is a closed set. Therefore, f is convex and lower-semicontinuous (see Propo-
sitions 2.3, 2.5). �

Proposition 2.33, concerning the relationship between the subdifferential and the
conjugate, becomes the following proposition.

Proposition 2.83 Let f : X →] − ∞,+∞] be a proper convex function. Then the
following three properties are equivalent:

(i) x∗ ∈ ∂εf (x).
(ii) f (x) + f ∗(x) ≤ (x, x∗) + ε.

If, in addition, f is lower-semicontinuous, then all these properties are equivalent
to the following one.

(iii) x ∈ ∂εf
∗(x∗).

Remark 2.84 If X is reflexive, then ∂εf
∗ : X → X is just the inverse of ∂εf , that is,

(i) and (iii) are equivalent for each proper convex function f .

Remark 2.85 As follows from Definition 2.79, if x ∈ Dom(f ), then f (u) ≥
f (x) − ε for all u ∈ Dom(f ) if and only if 0 ∈ ∂εf (x). Therefore, for a lower-
semicontinuous function f , ∂εf

∗(0) is just the set of all ε-minimum elements
of f .

Now, to describe some properties of monotonicity of ε-subdifferential we give a
weaker type of monotonicity for a multivalued mapping.

Definition 2.86 A mapping A : X → X∗ is called ε-monotone if

(x − y, x∗ − y∗) ≥ −2ε, for all x∗ ∈ Ax, y∗ ∈ Ay. (2.112)

It is obvious that ∂εf is ε-monotone for each ε > 0. But while ∂f is a maximal
monotone operator, ∂εf may be not maximal ε-monotone. In this line, we shall give
the following two examples.
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Example 2.87 Let f be the indicator function of the closed interval (−∞,0]. By
an elementary computation for a given ε > 0, we find ∂εf (0) = [0,∞], ∂εf (x) =
[0,− ε

x
] if x < 0, and ∂εf (x) = ∅ if x > 0. Thus, −2ε ∈ ∂εf (1), but for any x ∈

∂εf (a), a ≤ 0, we obtain (x + 2ε)(a − 1) = ax −x + 2εa − 2ε ≥ −2ε for all x ≤ 0.
Hence, ∂εf ∪ {(−2ε,1)}, ε > 0, is also the graph of an ε-monotone operator, that
is, ∂εf is not maximal ε-monotone.

Example 2.88 Let X be a real Hilbert space and f : X → R the quadratic form
defined by

f (x) = 1

2
〈Ax,x〉 + 〈b, x〉 + c, for all x ∈ X,

where A is one-to-one linear continuous self-adjoint operator, b ∈ X and c ∈R. For
any ε ≥ 0, we get

∂εf (x) = Ax + b + {y ∈ A; 〈A−1y, y
〉≤ 2ε

}
, ε ≥ 0, x ∈ X. (2.113)

Indeed, if z ∈ ∂εf (x), then we must have

1

2
〈Ax,x〉 + 〈b, x〉 − 1

2
〈Au,u〉 − 〈b,u〉 ≤ 〈x − u, z〉 + ε,

for all u ∈ X. But, for fixed x ∈ X and z ∈ ∂εf (x), this quadratic form of u takes a
maximum value on X in an element u0 where its derivative is null, that is, Au0 +
b − z = 0. Thus, we have

1

2
〈Ax,x〉 + 〈v, x〉 − 1

2

〈
z − b,A−1(z − b)

〉+ 〈z − b,A−1(z − b)
〉≤ 〈x, z〉 + ε,

from which we obtain

〈Ax,x〉 + 2〈x, b − z〉 + 〈A−1(z − b), z − b
〉≤ 2ε,

and so,
〈
x − A−1(z − b), b − z

〉+ 〈x, b − z + Ax〉 ≤ 2ε.

Therefore, if we denote y = z − Ax − b, then

〈
A−1y, y

〉≤ 2ε,

that is, equality (2.113) is completely proved.
Now, let us consider (u, v) ∈ X × X such that 〈x − u, z − v〉 ≥ −2ε, for all

z ∈ ∂εf (x).
According to equality (2.113), it follows that

〈x − u,Ax + b + y − v〉 ≥ −2ε, for all x ∈ X, (2.114)
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and every y ∈ X fulfilling the inequality 〈A−1y, y〉 ≤ 2ε. But the quadratic form
from (2.114) has a minimal element x0 ∈ X where the derivative is null, that is,
2Ax0 + b + y − v − Au = 0. Consequently, we have

1

4

〈
A−1(v − y − v) − u,Au + y + b − v

〉≥ −2ε,

whenever 〈A−1y, y〉 ≤ 2ε.
Taking z = v − Au − b, we get

〈
A−1(y − z), y − z

〉≤ 8ε, if
〈
A−1y, y

〉≤ 2ε. (2.115)

Therefore it is necessary that 〈A−1z, z〉 ≤ 2ε. Indeed, if there exists z0 ∈ X such

that 〈A−1z0, z0〉 > 2ε, it follows that ‖A− 1
2 z0‖2 > 2ε. Hence, A− 1

2 z0 = (
√

2ε +
a)u0, where a > 0 and ‖u0‖ = 1. Taking y0 = −√

2ε A
1
2 u0, we have 〈A−1y0, y0〉 =

2ε, but 〈A−1(y0 − z0), y0 − z0〉 1
2 = ‖A− 1

2 (y0 − z0)‖ = 2
√

2ε + a > 2
√

2ε, which
contradicts (2.115). Thus, we proved that v = Au + b + z, where 〈A−1z, z〉 ≤ 2ε,
that is, v ∈ ∂εf (u). Hence, ∂εf is a maximal ε-monotone mapping.

Remark 2.89 Since A is a self-adjoint operator, we have

〈
A−1y, y

〉= 〈A− 1
2 y,A− 1

2
〉= ∥∥A− 1

2 y
∥∥2

,

and so, 〈A−1y, y〉 ≤ 2ε if and only if y = √
2ε A

1
2 u, where ‖u‖ ≤ 1. Conse-

quently, (2.113) can be rewritten in the form

∂εf (x) = Ax + b + √
2ε A

1
2
(
S(0;1)

)
, ε ≥ 0, x ∈ X.

If A is the identity operator, we obtain

∂ε

(
1

2
‖ · ‖2

)
(x) = x + √

2ε S(0;1), ε ≥ 0, x ∈ X. (2.116)

It is obvious that the ε-subdifferential can be considered as an enlargement of
subdifferential satisfying a weak property of monotonicity. In the sequel, we prove
that the ε-subdifferential can be obtained by a special type of enlargement of subd-
ifferential. Firstly, we define the notion of ε-enlargement which was considered by
Revalski and Théra [54] in the study of some important properties of monotonicity.

Definition 2.90 Given an operator A : X → X∗ and ε ≥ 0, the ε-enlargement of A,
denoted by Aε , is defined by

Aεx = {x∗ ∈ X∗; (x − y, x∗ − y∗) ≥ −2ε, for all y∗ ∈ Ay
}
, x ∈ X. (2.117)

Proposition 2.91 Let A : X → X∗ be an arbitrary operator. Then, the following
properties are true:
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(i) Aεx is convex and w∗ closed for any x ∈ X.
(ii) A ⊂ Aε if and only if A is ε-monotone.

(iii) If A is ε-monotone, then A, convA, convA and A−1 are ε-monotone.
(iv) Aε1 ⊂ Aε2 if 0 ≤ ε1 ≤ ε2.
(v) If A is ε-monotone and locally bounded, then Ã and convÃ are ε-monotone,

where Ã : X → X∗ is defined as closure of GraphA in X × X∗ with respect to
strong, weak-star topology on X and X∗, respectively.

Proof Since properties (i)–(iv) are immediate from the definition of Aε , we confine
ourselves to prove (v). Let us consider (x, x∗), (y, y∗) ∈ Ã. Hence, there exist two
nets (xi, x

∗
i )i∈I ⊂ A such that xi → x, yi → y, strongly in X and x∗

i → x∗, y∗
i →

y∗, weak-star in X∗. Since A is an ε-monotone locally bounded operator, by passing
to the limit in the equality 〈x −y, x∗ −y∗〉 = 〈x −xi, x

∗
i −y∗

i 〉+〈yj −y, x∗
i −y∗

j 〉+
〈xi − yj , x

∗
i − y∗

j 〉 + 〈x − y, x∗
i − x∗

i 〉 + 〈x − y, y∗
j − y∗〉, we obtain 〈x − y, x∗ −

y∗〉 ≥ −2ε, that is, Ã is ε-monotone. According to property (iii), convÃ is also
ε-monotone. �

Concerning the maximality of an ε-monotone operator, we have the following
special case.

Proposition 2.92 If A is an ε-monotone operator, then Aε is ε-monotone if and
only if there exists a unique maximal ε-monotone operator which contains A.

Proof If B is an ε-monotone operator which contains A, then B ⊂ Aε , and so, if Aε

is ε-monotone, then Aε is the unique maximal ε-monotone operator. �

Generally, Aε is not an ε-monotone operator even if A is monotone. In the special
case A = ∂f , where f is a subdifferentiable function, the ε-enlargement (∂f )ε is
larger than the ε-subdifferential of f , that is, ∂εf ⊂ (∂f )ε . Generally, this inclusion
is strict. However, formula (2.111) remains true in the case of ε-enlargement of ∂f .
Firstly, it is obvious that x∗ ∈ Aεx for all ε > 0 if and only if (x∗ − y∗, x − y) ≥ 0,
for every y∗ ∈ Ay, and so, in the case of maximal monotone operator we have the
following result.

Proposition 2.93 If A is a maximal operator, then

Ax =
⋂

ε>0

Aεx, for all x ∈ X.

Corollary 2.94 If f is a proper convex lower-semicontinuous function, then

∂f (x) =
⋂

ε>0

(∂f )ε(x), for all x ∈ X. (2.118)

Now, we give a formula for ε-differential established by Martinez-Legaz and
Théra [44]. This formula proves that the ε-subdifferential can be considered as a
special type of enlargement of subdifferential.
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Theorem 2.95 Let X be a Banach space and f a lower-semicontinuous proper
convex function. Then

∂εf (x) =
{

x∗ ∈ X∗; (x∗, x0 − x) +
m−1∑

i=0

(x∗
i , xi+1 − xi) + (x∗

m; x − xm) ≤ ε

for all x∗
i ∈ ∂f (xi), i = 0,1, . . . ,m

}

, (2.119)

where x ∈ Dom(f ) and ε > 0.

Proof According to the proof of Theorem 2.46, for a fixed element x0 ∈ D(∂f ),
taking x∗

0 ∈ ∂f (x0), we have

f (x) = f (x0)

+ sup

{
n−1∑

i=0

(x∗
i , xi+1 − xi) + (x∗

n, x − xn); x∗
i ∈ ∂f (xi), i=1, n, n ∈ N∗

}

,

for all x ∈ Dom(f ). Therefore, for any η > 0 there exist a finite set {xi; i = 1, n} ⊂
D(∂f ) and x∗

i ∈ ∂f (xi), i = 1, n, such that

n−1∑

i=0

(x∗
i , xi+1 + xi) + (x∗

n, x − xn) > f (x) − f (x0) − η.

Thus, if x∗ is an element belonging to the right-hand side of formula (2.119),
we have

f (x) − f (x0) − η ≤ (x∗, x − x0) + ε, for all η > 0,

that is,

f (x) − f (x0) ≤ (x∗, x − x0) + ε, for every x0 ∈ D(∂f ).

Now, since D(∂f ) is a dense subset of Dom(f ) (see Corollary 2.44), by lower-
semi-continuity this inequality holds for every x0 ∈ Dom(f ), and so, x∗ ∈ ∂εf (x).

Conversely, if x∗ ∈ ∂εf (x), since ∂f is cyclically monotone (see Defini-
tion 2.45), by Definition 2.104 of the ε-subdifferential it is easy to see that x∗
satisfies the inequality of the right-hand side of formula (2.119), thereby proving
Theorem 2.95. �

Remark 2.96 The multivalued operator defined by the right-hand side of (2.119)
can be considered the ε-enlargement cyclically monotone of ∂f .



2.2 The Subdifferential of a Convex Function 121

2.2.7 Subdifferentiability in the Quasi-convex Case

Here, we consider the special case of quasi-convex functions. (See Sect. 2.1.1.) We
recall that a function is quasi-convex lower-semicontinuous if and only if its level
sets are closed convex sets. Thus, similarly to the convex case, if the role of epigraph
is replaced by level sets, the continuous linear functionals that describe the closed
semispaces whose intersection is a certain level set are candidates for the approx-
imative quasi-subdifferentials (see Theorem 1.48). Given a function f and λ ∈ R,
we denote by Nλ(f ) the corresponding level set, that is,

Nλ(f ) = {x ∈ X; f (x) ≤ λ
}
. (2.120)

Let us consider the following sets:

Dλf (x0) = {(x∗, δ) ∈ X∗ × (0,∞); x∗(x0 − x) ≥ δ whenever f (x) ≤ λ
}
,

(2.121)
for every x0 ∈ X and λ ∈ R.

It is obvious that, if Dλf (x0) �= ∅, then f (x0) > λ. Indeed, if we suppose that
f (x0) ≤ λ, then, for an element (x∗, δ) ∈ Dλf (x0), we have 0 = x∗(x0 − x0) ≥ δ,
which is a contradiction with the choice of δ.

Definition 2.97 The projection of Dλf (x0) on X∗ is called the λ-quasi-
subdifferential of f at x0 and is denoted by ∂λ

q f (x0).

Taking into account the correspondence between the convexity and quasi-
convexity, we see that this type of approximate subdifferential is proper to the quasi-
convex functions.

Indeed, it is well known that a function f is convex if and only if the associated
function Ff : X ×R→ R defined by

Ff (x, t) = f (x) − t, (x, t) ∈ X ×R, (2.122)

is quasi-convex, since Nλ(Ff ) = −(0, λ) + epif , for all λ ∈R. Thus, we have

DλFf (x0, t0) = {(x∗, α, δ) ∈ X∗ ×R× (0,∞); x∗(x0 − x) + α(t0 − t) ≥ δ,

whenever f (x) − t ≤ λ
}
.

By a simple calculation, we find that (x∗, α, δ) ∈ DλFf (x0, t0) if α = 0 and
sup{(x∗, x);x ∈ Dom(f )} ≤ x∗(x0) − δ or α < 0 and − x∗

α
∈ ∂ε0f (x0), where

ε0 = f (x0) − t0 − λ − δ
α

. We recall that, necessarily, we must have f (x0) − t0 =
Ff (x0, t0) > λ, α ≤ 0, whenever DλFf (x0, t0) �= ∅.

Therefore, the projection on X∗ contains elements of approximative subdifferen-
tial defined for convex functions. More precisely, (x∗,−1, δ) ∈ DλFf (x0,0) if and
only if x∗ ∈ ∂ε0f (x0), ε0 = f (x0) − t0 − λ > 0, x0 ∈ Dom(f ).

Now, we can establish the following characterization of quasi-convex lower-
semicontinuous functions.
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Theorem 2.98 A function f : X → R is quasi-convex and lower-semicontinuous
if and only if, for all λ ∈ R and x0 ∈ X such that f (x0) > λ, the set Dλf (x0) is
nonempty.

Proof According to Theorem 1.48, the function f is quasi-convex and lower-
semicontinuous if and only if its level sets can be represented as an intersection
of closed half-spaces.

Equivalently, for every x0 ∈Nλ(f ) there exists a closed hyperplane strongly se-
parating Nλ(f ) and x0. Thus, if f (x0) > λ, there exist x∗ ∈ X∗ \ {0} and k ∈ R such
that x∗(x0) > k and x∗(x) ≤ k for all x ∈ Nλ(f ). Taking δ = x∗(x0) − k > 0, we
obtain x∗(x − x0) ≤ −δ for all x ∈ Nλ(f ), equivalently (x∗, δ) ∈ Dλf (x0). This
finishes the proof of Theorem 2.98. �

Corollary 2.99 A proper function f : X → R is quasi-convex and lower-semicon-
tinuous if and only if ∂λ

q f (x0) �= ∅ for all x0 ∈ X, λ ∈ R, with f (x0) > λ.

Now, it is easy to see that the λ-quasi-subdifferential of a function f can also be
defined by the formula

∂λ
q f (x0) =

{
x∗ ∈ X∗; sup

x∈Nλf

x∗(x − x0) < 0
}
. (2.123)

Proposition 2.100 Let us consider f : X → R, x0 ∈ X, f (x0) �= −∞, ε > 0. Then
the following properties are equivalent:

(i) x0 is an ε-minimum element of f .
(ii) ∂λ

q f (x0) = X∗, whenever λ < f (x0) − ε.
(iii) 0 ∈ ∂λ

q f (x0), whenever λ < f (x0) − ε.

Proof If there exists x1 ∈ X such that f (x1) < f (x0) − ε, then, taking λ = f (x1),
we have Nλ(f ) �= ∅ and so, 0∈∂λ

q f (x0). On the other hand, if 0 ∈ ∂λ
q f (x0), then,

for all λ < f (x0) − ε, we get Nλ(f ) = ∅, that is, f (x) ≥ f (x0) − ε for all x ∈ X.
Also, (ii) and (iii) are obviously equivalent. �

In the following, we establish some relationships between the quasi-subdiffe-
rential defined by (2.123) and other two notions of quasi-subdifferentials introduced
as extensions to the case quasi-convex of the subdifferential of a convex function.
We denote

∂λ
GPf (x0) = {x∗ ∈ X∗; x∗(x − x0) < 0 if f (x) < λ

}
, x0 ∈ X, (2.124)

∂M–Lf (x0) = {x∗ ∈ X∗; there exists k ∈ K such that k ◦ x∗ ≤ f

and k
(
x∗(x0)

)= f (x0)
}
, x0 ∈ X, (2.125)

where K is a given family of functionals k ∈ R → R closed under pointwise supre-
mum.
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If λ = f (x0) ∈ R, the λ-quasi-subdifferential (2.124) was introduced by Green-
berg and Pierskalla [23] for X = R

n, while the quasi-subdifferential (2.125) was
introduced by Martinez-Legaz and Sach [43]. It is well known that ∂GPf (x0) =
∂Kf (x0) if K is the family of all nondecreasing functions.

The λ-quasi-subdifferential associated to the quasi-subdifferential (2.125) is de-
fined as follows:

∂λ
M–Lf (x0) = {x∗ ∈ X∗; there exists k ∈ K such that k ◦ x∗ ≤ f

and k
(
(x∗)(x0)

)≥ λ
}
. (2.126)

Proposition 2.101 Let K be the family of all nondecreasing functions k : R → R.
If f : X → R, x0 ∈ X and λ ∈R, then

∂λ
GPf (x0) = ∂λ

M–Lf (x0).

Proof From the definition of ∂λ
M–L given by (2.126), we obtain the inclusion

∂λ
M–Lf (x0) ⊂ ∂λ

GPf (x0). Conversely, if x∗ ∈ ∂λ
GPf (x0), taking k : R → R defined

by

k(t) = inf
{
a; x∗(x) ≥ t if f (x) < a

}
,

we have k(x∗(x)) ≤ a whenever f (x) < a. But k is obvious a nondecreasing func-
tion, and so k ◦ x∗ ≤ f . Also, k(x∗(x0)) ≥ λ. Hence, x∗ ∈ ∂λ

M–Lf (x0) and the proof
is complete. �

Proposition 2.102 Let K be the family of all nondecreasing lower-semicontinuous
functions. If f : X → R, x0 ∈ X, λ1, λ2 ∈R and λ1 > λ2, then

(i) ∂
λ1
M–Lf (x0) ⊂ ∂

λ2
q f (x0) ⊂ ∂

λ2
M–Lf (x0).

(ii)
⋂

λ<f (x0)
∂λ
q f (x0) =⋂λ<f (x0)

∂λ
M–Lf (x0) = ∂M–Lf (x0), if f (x0) ∈R.

Proof Equality (ii) follows by using (i) and the equality
⋂

λ<f (x0)

∂λ
q f (x0) = ∂M–Lf (x0).

Now, if x∗ ∈ ∂λ
q f (x0), taking the function k defined in the proof of Proposi-

tion 2.101, we notice that k is also lower-semicontinuous. Hence, k(x∗(x)) ≤ a

if f (x) < a, and so, k ◦ x∗ ≤ f . Since supx∈Nλ(f ) x
∗(x − x0) < 0, it follows that

k(x∗(x0)) ≥ λ. Hence, ∂λ
q f (x0) ⊂ ∂λ

M–Lf (x0). On the other hand, if ∂λ
M–Lf (x0) = ∅

or Nλ(f ) = ∅, then the inclusion of the left-hand side of (i) is obvious. Let us sup-
pose that Nλ(f ) �= ∅. Thus, if x∗ ∈ ∂

λ1
M–Lf (x0), we have k(x∗(x)) − k(x∗(x0)) <

λ − λ1, for all x, such that f (x) ≤ λ. Let us denote α = supx∈Nλ(f ) x
∗(x − x0)

and consider a net (xi) ⊂ Nλ(f ) such that x∗(xi) → supx∈Nλ(f ) x
∗(x). Since

k(x∗(xi)) − k(x∗(x0)) < λ − λ1, by passing to the limit we obtain

k
(
x∗(x0) + α

)− k
(
x∗(x0)

)≤ λ − λ1 < 0.
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Hence, α < 0 and so, x∗ ∈ ∂λ
q f (x0). Thus, Proposition 2.102 is completely

proved. �

2.2.8 Generalized Gradients

In this section, we briefly present a theory of generalized gradients for lower-
semicontinuous functions of Rn due to Clarke [17]. This theory is still under de-
velopment but some significant results have already become known.

Assume first that f : Rn → R is a locally Lipschitz function. According to
Rademacher’s theorem, f is a.e. differentiable on R

n. By definition, the general-
ized gradient of f at x, denoted by ∂f (x), is the convex hull of the set of points of
the form {limn→∞ ∇f (x + xn)}, where xn → 0 and ∇f (x + xn) (the gradient of f

at x + xn) exist.
In order to extend this definition to general lower-semicontinuous functions, we

consider a closed subset C of Rn and denote by dC(x) the distance from x to C,
that is,

dC(x) = inf
{‖x − y‖; y ∈ C

}
.

Since dC is locally Lipschitz, we may define ∂dC . By analogy with the case when
C is convex, we define the cone of normals to C at x, denoted N(x;C), the closure
of the set

{
z ∈ R

n; λz ∈ ∂dC(x) for some λ > 0
}
. (2.127)

We observe that, if C is convex, then, by Theorem 2.58, where f = IC , it follows
that dC is differentiable outside C and

∇dC(x) = (x − PC(x)
)∥∥x − PC(x)

∥∥−1
, x ∈ C,

where PC is the projection operator on C (we take the Euclidean norm on R
n).

Hence, for all x ∈ R
n, we have

∇dC(x) ∈ ∂IC(PCx)

and, therefore, if C is convex, then N(x;C) is just the cone of normals to C at x

(see Example 2.31).
It is obvious that, if f is continuously differentiable on a neighborhood of x, then

∂f (x) = ∇f (x). If f is convex, then its epigraph E(f ) is a convex closed subset
of Rn+1 and, as observed earlier, N((x,f (x));E(f )) = NE(f )(x;f (x)). Hence, in
this case, ∂f (x) is the set of all subgradients of f at x (here, E(f ) = epif ).

Given the lower-semicontinuous function f : Rn → R, we define the upper
derivative of f at x with respect to y, as

f ↑(x, y) = lim
x′→x

f (x′)→f (x)

λ↓0

inf
y′→y

f (x′ + λy′) − f (x′)
λ

. (2.128)

It should be observed that, if f is convex, then f ↑ = f ′.
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Now, let x be a point where f (x) is finite.
We define

∂f (x) = {z ∈R
n; (z,−1) ∈ N

((
x,f (x)

);E(f )
)}

and call ∂f (x) the generalized gradient of f at x.

Proposition 2.103 The generalized gradient ∂f (x) is also given by

∂f (x) = {z ∈ R
n; f ↑(x, y) ≥ (y, z), ∀y ∈R

n
}
. (2.129)

If f ↑(x,0) = −∞, then ∂f (x) is empty, but otherwise ∂f (x) �= ∅ and one has

f ↑(x, y) = max
{
(y, z); z ∈ ∂f (x), ∀y ∈R

n
}
. (2.130)

The reader will be aware of the analogy between Propositions 2.39 and 2.103.
Formula (2.129) represents another way (due to Rockafellar) to define the gener-
alized gradient. The proof of Proposition 2.103, which is quite technical, can be
found in the work of Rockafellar [64] (see also [65, 66]). In this context, the works
of Hirriart-Urruty [25, 26] must be also cited. The above definition of generalized
gradient can be extended to infinite-dimensional Banach space. For instance, if X is
a Banach space and f : X → R a locally Lipschitz function, we define the general-
ized directional derivative of f at x in the direction z, denoted by f 0(x, z) by

f 0(x, z) = lim sup
x′→x
λ↓0

f (x′ + λz) − f (z)

λ
.

If X = R
n, then f 0 = f ↑.

It is easy to see that f 0 is a positively homogeneous and subadditive function
of z. Thus, by the Hahn–Banach theorem, we may infer that there exists at least one
x∗ ∈ X∗ satisfying

f 0(x, z) ≥ (z, x∗) for all z ∈ X. (2.131)

By definition, the generalized gradient of f at x, denoted by ∂f (x) is the set of all
x∗ ∈ X∗ satisfying (2.131).

It is readily seen that, for every x ∈ X, ∂f (x) is a nonempty, closed, convex
and bounded subset of X∗, thus ∂f (x) is w∗-compact. Moreover, ∂f is w∗-upper-
semicontinuous, that is, if ηi ∈ ∂f (x), where ηi → η weak-star in X∗ and xi → x

strongly in X, then η ∈ ∂f (x) (see Clarke [18]). Note also that f 0(x, ·) is the support
functional of ∂f (x), that is, for any z in X, we have (compare with (2.130))

f 0(x, z) = max
{
(z, x∗); x∗ ∈ ∂f (x)

}
.

For the definition and the properties of generalized gradient of vectorial functions
defined on Banach spaces, we refer the reader to the work of Thibault [73].
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2.3 Concave–Convex Functions

This section is concerned mainly with minimax problems for concave–convex func-
tions. This subject is discussed in some detail in Sect. 2.3.3. Relevant to it are the
closed saddle functions studied in Sect. 2.3.2.

2.3.1 Saddle Points and Mini-max Equality

Let X,Y be two nonempty sets and let F be an extended real-valued function on the
product set X × Y .

It is easy to prove that we always have

sup
x∈X

inf
y∈Y

F (x, y) ≤ inf
y∈Y

sup
x∈X

F(x, y). (2.132)

If the equality holds, the common value is called the saddle value of F on X × Y .
Furthermore, we shall require that the supremum from the left side and the infimum
from the right side are actually achieved. In this case, we say that F verifies the
mini-max equality on X × Y and we denote this by

max
x∈X

min
y∈Y

F (x, y) = min
y∈Y

max
x∈X

F(x, y).

Of course, the mini-max equality holds if and only if the following three condi-
tions are satisfied:

(i) F has saddle value, that is, supx∈X infy∈Y F (x, y) = infy∈Y supx∈X F(x, y).
(ii) There is x̃ ∈ X such that infy∈Y F (x̃, y) = supx∈X infy∈Y F (x, y).

(iii) There is ỹ ∈ Y such that supx∈X F(x, ỹ) = infy∈Y supx∈X F(x, y).

Clearly, F(x̃, ỹ) is the saddle value of F . Also, supx∈X F(x, ỹ) and
infy∈Y F (x̃, y) are attained, respectively, at x̃ and ỹ since, from conditions (ii) and
(iii), one easily obtains

sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

F (x̃, y) ≤ F(x̃, ỹ) ≤ sup
x∈X

F(x, ỹ) = inf
y∈Y

sup
x∈X

F(x, y).

According to condition (i), this inequality becomes an equality. Moreover, we
obtain

sup
x∈X

F(x, ỹ) = F(x̃, ỹ) = inf
y∈Y

F (x̃, y)

from which we obtain

F(x, ỹ) ≤ F(x̃, ỹ) ≤ F(x̃, y), ∀(x, y) ∈ X × Y. (2.133)

Definition 2.104 The pair (x̃, ỹ) ∈ X×Y is said to be a saddle point for the function
F : X × Y → R if relation (2.133) holds.
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Thus, the mini-max equality implies the existence of a saddle point.
It is easily proven that the converse of this statement is also true. Indeed,

from (2.133), we have

inf
y∈Y

sup
x∈X

F(x, y) ≤ sup
x∈X

F(x, ỹ) ≤ inf
y∈Y

F (x̃, y) ≤ sup
x∈X

inf
y∈Y

F (x, y),

which, by (2.132), implies conditions (i), (ii) and (iii). Thus, the following funda-
mental result holds.

Proposition 2.105 A function satisfies the mini-max equality if and only if it has a
saddle point.

2.3.2 Saddle Functions

The purpose of this section is to present a new class of functions (that is, functions
which are partly convex and partly concave), which are closely related to extremum
problems.

We assume in everything that follows that X and Y are real Banach spaces with
duals X∗ and Y ∗. For the sake of simplicity, we use the same symbol ‖ · ‖ to denote
the norms ‖ · ‖X , ‖ · ‖Y , ‖ · ‖X∗ and ‖ · ‖Y ∗ in the respective spaces X,Y,X∗ and Y ∗.
As usual, we use the symbol (·, ·) to denote the pairing between X,X∗ and Y,Y ∗,
respectively. If f is an arbitrary convex function on X, then we use the symbol clf
to denote its closure (see Sect. 2.1.3). For a concave function g, the closure clg is
defined by

clg = − cl(−g).

Definition 2.106 By a saddle function on X × Y , we mean an extended real-valued
function K defined everywhere, such that K(x,y) is a concave function of x ∈ X

for each y ∈ Y , and a convex function of y ∈ Y for each x ∈ X.

Given a saddle function K on X×Y , we denote by cl1 K the function obtained by
closing K(x,y) as a concave function of x for each y. Similarly, cl2 K is obtained
by closing K(x,y) as a convex function of y for each x.

Definition 2.107 A saddle function K is said to be closed if the following condi-
tions hold:

cl1 cl2 K = cl1 K, cl2 cl1 K = cl2 K. (2.134)

It should be observed that conditions (2.134) automatically hold if K(x,y) is
upper-semicontinuous in x and lower-semicontinuous in y. Two saddle functions K

and K ′ are said to be equivalent if

cl1 K = cl1 K ′ and cl2 K = cl2 K ′.
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In other words, the saddle function K is closed if cl1 K and cl2 K are equivalent
to K .

It is worth mentioning that equivalent saddle functions have the same saddle
value and saddle points (if any). In fact, let K be an arbitrary saddle function on
X ×Y . Inasmuch as the infimum of a convex function is the same as the infimum of
its closure, one obtains

inf
{
K(x,y); y ∈ Y

}= inf
{
cl2 K(x,y); y ∈ Y

}
for every x ∈ X, (2.135)

and, similarly,

sup
{
K(x,y); x ∈ X

}= sup
{
cl1 K(x,y); x ∈ X

}
for every y ∈ Y. (2.136)

Hence, if (x0, y0) is a saddle point of K , that is,

K(x,y0) ≤ K(x0, y0) ≤ K(x0, y) for all (x, y) ∈ X × Y,

we have

sup
{
cl1 K(x,y0); x ∈ X

}= K(x0, y0) = inf
{
cl2 K(x0, y); y ∈ Y

}

and therefore for any saddle function K ′ equivalent with K ,

sup
{
K ′(x, y0); x ∈ X

}= K(x0, y0) = inf
{
K ′(x0, y); y ∈ K

}
,

which implies that K(x0, y0) = K ′(x0, y0), and therefore (x0, y0) is a saddle point
of K ′.

Let K be a saddle function on X × Y and let

D1(K) = {x ∈ X; K(x,y) > −∞ for every y ∈ Y
}
, (2.137)

D2(K) = {y ∈ Y ; K(x,y) < +∞ for every x ∈ X
}
. (2.138)

It is easy to see that D1(K) and D2(K) are convex sets. The set

domK = D1(K) × D2(K) (2.139)

is called the effective domain of K . Obviously, K is finite on domK and, if K is
finite everywhere, one has domK = X × Y .

As an example, let A and B be nonempty convex sets in X and Y , respectively,
and let

K(x,y) =

⎧
⎪⎨

⎪⎩

K0(x, y), if x ∈ A and y ∈ B,

+∞, if x ∈ A and y ∈B,

−∞, if x ∈A and y ∈ Y,

(2.140)

where K0 is any finite saddle function on A × B . Then, K is a saddle function on
X × Y with

domK = A × B.
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A saddle function K : X × Y →R = [−∞,+∞] is called proper if domK �= ∅.
Most of the results which are proved below closely resemble the corresponding

properties of lower-semicontinuous convex functions previously established.

Theorem 2.108 Let K be a closed proper saddle function on X × Y . Then

(i) For every y ∈ intD2(K), the function K(·, y) is concave, upper-semicontinuous
and proper on X. Furthermore, its effective domain coincides with D1(K).

(ii) For every y ∈ intD1(K), the function K(x, ·) is convex, lower-semicontinuous
and proper on Y , and its effective domain is D2(K).

Proof (i) The closedness of K implies that cl1 cl2 K = cl1 K . Hence

cl1 K(x,y) = lim
ε→0

sup
‖x−u‖≤ε

cl2 K(u,y) for every y ∈ D2(K).

We set

ϕε(x, y) = sup
‖x−u‖≤ε

cl2 K(u,y).

Since cl2 K ≤ cl1 K and the function x → cl1 K(x,y), x ∈ X, is upper-semicontin-
uous and concave on X, we may infer that

ϕε(x, y) < +∞ for every x ∈ X and y ∈ D2(K). (2.141)

Here, we have used in particular Corollary 2.6. On the other hand, ϕε(x, y) is lower-
semicontinuous and convex as a function of y, because this is true for each of the
functions cl2 K(u, ·). Therefore, ϕε(x, y) is, for any ε > 0, a continuous function
of y ∈ intD2(K) (see Proposition 2.16). But this function majorizes the convex
function cl1 K(x, ·), and hence we may conclude that the latter is also continuous
on intD2(K). Of course, cl1 K ≥ K ≥ cl2 K , while the closedness of K implies that
cl2 K = cl2 cl1 K . From the latter relation, we have

cl1 K(x,y) = cl2 K(x,y) for every x ∈ X and y ∈ intD2(K),

hence

K(x,y) = cl1 K(x,y) for every x ∈ X and y ∈ intD2(K).

Hence, K(·, y) is concave and upper-semicontinuous for every y ∈ intD2(K). Ob-
viously, the effective domain of this function includes D1(K). We shall prove that
it is just D1(K). To this end, let x0 ∈ X be such that K(x0, y0) > −∞, where y0 is
arbitrary but fixed in intD2(K).

Therefore, the convex function y → cl2 K(x0, y), y ∈ Y , is not identically −∞
which shows that cl2 K(x0, y) is nowhere −∞. This implies that x0 ∈ D1(K), as
claimed. The proof of part (ii) is entirely similar to that of part (i), so that it is
omitted.



130 2 Convex Functions

Given a saddle function K : X × Y → R, we denote by ∂yK(x, y) the set of
all subgradients of K(x, ·) at y and by −∂xK(x, y) the set of all subgradients of
−K(·, y) at x. In other words,

∂yK(x, y) = {y∗ ∈ Y ∗; K(x,y) ≤ K(x,y) + (y − v, y∗), ∀v ∈ Y
}
, (2.142)

∂xK(x, y) = {x∗ ∈ X∗; K(u,y) ≤ K(x,y) + (u − x, x∗), ∀u ∈ X
}
. (2.143)

The multivalued operator ∂K : X × Y → X∗ × Y ∗ defined by

∂K(x, y) = {−∂xK(x, y), ∂yK(x, y)
}
, (x, y) ∈ X × Y, (2.144)

is called the subdifferential of the saddle function K .
It should be observed that the concave–convex function K has a saddle point

(x0, y0) if and only if

(0,0) ∈ ∂K(x0, y0). (2.145)

�

Proposition 2.109 Let K be a proper saddle function on X × Y . The multivalued
mapping ∂K : X × Y → X∗ × Y ∗ is a monotone operator with

D(∂K) ⊂ domK. (2.146)

Proof Let (x∗
1 , y∗

1 ) ∈ ∂K(x1, y1) and (x∗
2 , y∗

2 ) ∈ ∂K(x2, y2). By definition,

−K(x,y1) ≥ −K(x1, y1) + (x − x1, x
∗
1 ), ∀x ∈ X, (2.147)

K(x1, y) ≥ K(x1, y1) + (y − y1, y
∗
1 ), ∀y ∈ Y, (2.148)

−K(x,y2) ≥ −K(x2, y2) + (x − x2, x
∗
2 ), ∀x ∈ X, (2.149)

K(x2, y) ≥ K(x2, y2) + (y − y2, y
∗
2 ), ∀y ∈ Y. (2.150)

Since (x, y) is arbitrary, we have −K(x1, y1) < +∞ from relation (2.147) and
K(x1, y1) < +∞ from relation (2.148). Hence, K(x1, y1) is finite, and from condi-
tions (2.147) and (2.148), we have (x1, y1) ∈ domK , establishing relation (2.146).
Taking x = x2 in (2.147), y = y2 in (2.148), x = x1 in (2.149), and y = y1 in (2.150),
by adding the four inequalities we obtain

(x∗
1 − x∗

2 , x1 − x2) + (y∗
1 − y∗

2 , y1 − y2) ≥ 0,

which means that ∂K is a monotone operator (see Sect. 1.4.1). �

Corollary 2.110 Let K be a proper closed saddle function on X × Y . Then

int domK ⊂ D(∂K) ⊂ domK. (2.151)
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Proof Let (x, y) ∈ int domK . Thus, x ∈ intD1(K) and y ∈ intD2(K), so that The-
orem 2.108 together with Corollary 2.38 imply that K is subdifferentiable at (x, y),
establishing (2.151). �

Corollary 2.111 Let K be a proper and closed saddle function on X × Y . Then K

is continuous on int domK .

Proof From Theorem 1.144, and Corollary 2.110, it follows that the monotone oper-
ator ∂K is locally bounded on int domK ⊂ intD(∂K). Let (x0, y0) be any element
in int domK . By definition, for all (x × Y , one has

K(x0, y0) − K(x,y) ≤ (y0 − y, y∗
0 ) + (x − x0, x

∗) (2.152)

and

K(x,y) − K(x0, y0) ≤ (y − y0, y
∗) + (x0 − x, x∗

0 ), (2.153)

where (x∗
0 , y∗

0 ) ∈ ∂K(x0, y0) and (x∗, y∗) ∈ ∂K(x, y). Since ∂K is locally bounded
at (x0, y0), there exist ρ > 0 and C > 0 such that

‖x∗‖ + ‖y∗‖ ≤ C for ‖x − x0‖ < ρ and ‖y − y0‖ < ρ.

Inserting this in relations (2.152) and (2.153), it follows that
∣∣K(x0, y0) − K(x,y)

∣∣≤ C1
(‖x − x0‖ + ‖y − y0‖

)
,

for all (x, y) ∈ X × Y such that ‖x − x0‖ < ρ and ‖y − y0‖ < ρ. Here, C1 is a pos-
itive constant independent of x and y. Thus, we have shown that K is Lipschitzian
in a neighborhood of (x0, y0). The proof of Corollary 2.111 is complete. �

The results presented above bring out many connections between closed saddle
functions and lower-semicontinuous functions. The most important fact is stated in
Theorem 2.112 below.

Theorem 2.112 The formulas

L(x, y∗) = sup
{
(y, y∗) − K(x,y); y ∈ Y

}
, (2.154)

K(x,y) = sup
{
(y, y∗) − L(x, y∗; y∗ ∈ Y

}
(2.155)

define a one-to-one correspondence between the lower-semicontinuous proper con-
vex functions L on the space X × Y ∗ and the closed saddle functions K on X × Y

satisfying

cl2 cl1 K = K. (2.156)

Moreover, under this correspondence, one has

(x∗, y∗) ∈ ∂K(x, y) ⇐⇒ (−x∗, y) ∈ ∂L(x, y∗). (2.157)
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Proof Let L : X × Y ∗ → ]−∞,+∞] be convex, lower-semicontinuous and non-
identically +∞ on X × Y ∗. Formula (2.155) says that K is he partial conjugate of
L and this implies that the function K(x,y) is convex and lower-semicontinuous
in y on Y . Furthermore, it follows that L(x, ·) is in turn the conjugate of K(x, ·),
establishing formula (2.154). Lastly, a simple calculation involving relation (2.155)
and the convexity of L on X × Y ∗ implies that K(x,y) is concave as a function of
x on X. We leave the simple details to the reader. Now, we prove that K defined by
formula (2.155) satisfies condition (2.156). To this end, we consider the conjugate
L∗ : X∗ × Y → ]−∞,+∞] of L, that is,

L∗(x∗, y) = sup
{
(x, x∗) + (y, y∗) − L(x, y∗); x ∈ X, y∗ ∈ Y ∗}.

According to relation (2.155), we get

L∗(x∗, y) = sup
{
(x, x∗) + K(x,y); x ∈ X

}
. (2.158)

Hence,

cl1 K(x,y) = − sup
{
(x, x∗) − L∗(x∗, y); x∗ ∈ X∗}. (2.159)

But L = L∗∗, because L is lower-semicontinuous. In other words,

L(x, y∗) = sup
{
(x, x∗) + (y, y∗) − L∗(x∗, y); x∗ ∈ X∗, y ∈ Y ∗}.

Hence, by equality (2.159), we must have

L(x, y∗) = sup
{
(y, y∗) − cl1 K(x,y); y ∈ Y

}
,

and therefore

cl2 cl1 K(x,y) = sup
{
(y, y∗) − L(x, y∗); y∗ ∈ Y ∗}.

Combining this with relation (2.155), we obtain

cl2 cl1 K(x,y) = K(x,y) for every (x, y) ∈ X × Y,

as claimed.
Next, we assume that K is any closed proper saddle function on X×Y which sat-

isfies condition (2.156). First, we note that the function L defined by formula (2.154)
is convex on the product space X × Y ∗. Furthermore, since domK �= ∅, we must
have

L(x, y∗) > −∞ for every (x, y∗) ∈ X × Y ∗

and L �≡ +∞. It remains to be proved that L is lower-semicontinuous on X × Y ∗.
Let L∗ be the conjugate of L. One has

clL(x, y∗) = sup
{
(x, x∗) + (y, y∗) − L∗(x∗, y); x∗ ∈ X∗, y ∈ Y

}
.
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Combining this with equality (2.159), we obtain

clL(x, y∗) = sup
{
(y, y∗) − cl1 K(x,y); y ∈ Y

}

= sup
{
(y, y∗) − cl2 cl1 K(x,y); y ∈ Y

}
,

which is equivalent to

clL(x, y∗) = sup
{
(y, y∗) − K(x,y); y ∈ Y

}= L(x, y∗)

in view of relations (2.156) and (2.154). Thus, L is lower-semicontinuous on X×Y ∗.
In order to verify relation (2.157), we fix any (x∗, y∗) in ∂K(x, y) and use the

definition of ∂xK(x, y). Then

−(x∗, x − x1) + (y, y∗ − y∗
1 ) ≥ −K(x,y) + K(x1, y) + (y, y∗ − y∗

1 )

for all x1 ∈ X, y∗
1 ∈ Y ∗. (2.160)

From relation (2.154), we have

K(x1, y) − (y, y∗
1 ) ≥ −L(x1, y

∗
1 ) (2.161)

while (2.142) implies that

K(x,y) + L(x, y∗) = (y, y∗) (2.162)

because y → K(x,y) is the conjugate of the proper convex function L(x, ·) (see
Proposition 2.33). Adding relations (2.161) and (2.162) and substituting the result
in (2.160), one obtains

−(x∗, x − x1) + (y, y∗ − y∗
1 ) ≥ L(x, y∗) − L(x1, y

∗
1 ), (2.163)

for all x1 ∈ X and y∗
1 ∈ Y ∗. In other words, we have proved that (−x∗, y) ∈

∂L(x, y∗). It remains to be proved that (−x∗, y) ∈ ∂L(x, y∗) implies that (x∗, y∗) ∈
∂K(x, y). This follows by using a similar argument, but the details are omitted. �

Remark 2.113 The closed saddle function K associated with a convex and lower-
semicontinuous function L are referred to in the following as the Hamiltonian func-
tion corresponding to L.

Given any closed and proper saddle function K on X ×Y , there always exists an
equivalent closed saddle function K ′ which satisfies condition (2.156). An exam-
ple of such a function could be K ′ = cl2 K . This fact shows that formulas (2.154)
and (2.155) define a one-to-one correspondence between the equivalence classes
of closed proper saddle functions K on X × Y and lower-semicontinuous, proper
convex functions L on X × Y ∗.

Theorem 2.114 below may be compared most closely to Theorem 2.43.
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Theorem 2.114 Let Y be a reflexive Banach space and let K : X × Y → R be a
proper, closed saddle function on X×Y . Then the operator ∂K : X×Y → X∗ ×Y ∗
is maximal monotone.

Proof It should be observed that, if K ′ is a saddle function equivalent to K ,
then ∂K ′ = ∂K . Indeed, as observed earlier, (x∗

0 , y∗
0 ) ∈ ∂K(x0, y0) if and only

if (x0, y0) is a saddle point of the function (x, y) → K(x,y) + (x, x∗
0 ) − (y, y∗

0 )

which is in turn equivalent to (x, y) → K ′(x, y) + (x, x∗
0 ) − (y, y∗

0 ). Since two
equivalent closed saddle functions have the same saddle points, we conclude that
(x∗

0 , y∗
0 ) ∈ ∂K ′(x0, y0), as claimed. Thus, replacing, if necessary, the function K by

cl2 K , we may assume that the concave–convex function satisfies condition (2.156)
in Theorem 2.112. If Y is reflexive, then X ×Y ∗ is a Banach space, whose dual may
be identified with X∗ ×Y . Since the function L defined by formula (2.154) is convex
and lower-semicontinuous on X × Y ∗, its subdifferential ∂L is maximal monotone
(see Theorem 2.43) from X ×Y ∗ into X∗ ×Y . Hence, using relation (2.157), ∂K is
also maximal monotone. �

Remark 2.115 Theorem 2.114 follows also in the case when X rather than Y is
reflexive, by replacing K by −K .

Corollary 2.116 Let X and Y be two reflexive Banach spaces, and let K : X×Y →
R be a proper, closed saddle function on X × Y . Then, the domain D(∂K) of the
operator ∂K is a dense subset of domK .

Proof Let (x0, y0) be any element of domK , and let (xλ, yλ) ∈ X × Y be such that

F1(xλ − x0) − λ∂xK(xλ, yλ) � 0, λ > 0, (2.164)

F2(yλ − y0) − λ∂yK(xλ, yλ) � 0, λ > 0, (2.165)

where F1 : X → X∗ and F2 : Y → Y ∗ are duality mappings of X and Y , re-
spectively. Since ∂K is maximal monotone and the operator (x, y) → (F1(x −
x0),F2(y −y0)) is monotone, coercive and demicontinuous from X×Y to X∗ ×Y ∗
(without any loss of generality, we may assume that X and Y as well as their duals
are strictly convex), the above equation has at least one solution (xλ, yλ) ∈ D(∂K)

(see Corollary 1.140). We multiply the first equation by xλ − x0, the second by
yλ − y0 and add the results; thus, we obtain

(
F1(xλ − x0), xλ − x0

)+ (F2(yλ − y0), yλ − y0
)

≤ λ
(
K(xλ, y0) − K(x0, yλ)

)
, for all λ > 0. (2.166)

Inasmuch as (x0, y0) ∈ domK , the functions x → −K(x,y0) and y → K(x0, y) are
convex and not identically +∞ on X and Y , respectively. Thus, these functions are
bounded from below by affine functions (see Proposition 2.20). This fact implies

‖xλ − x0‖2 + ‖yλ − y0‖2 ≤ Cλ
(‖xλ‖ + ‖yλ‖ + 1

)
. (2.167)

Therefore xλ → x0 and yλ → y0 as λ → 0, thereby proving Corollary 2.116. �
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Remark 2.117 It turns out that Corollary 2.116 remains true if one merely assumes
that X or Y is reflexive (see Gossez [22]).

As a final (but, actually, immediate) application of Theorem 2.114, we cite a
minimax result which plays a fundamental role in game theory (see, for instance,
Aubin [1]).

Corollary 2.118 Let X and Y be reflexive Banach spaces, and let A and B be
two closed and convex subsets of X and Y , respectively. Let K0 be a closed saddle
function on X × Y satisfying the following condition:

(a) There exists some (x0, y0) ∈ A × B such that

lim
‖x‖+‖y‖→+∞
x∈A, y∈B

(
K0(x, y0) − K0(x0, y)

)= −∞. (2.168)

Then, the function K0 has at least one saddle point on A × B .

Proof Let K : X × Y → [−∞,+∞] be the closed saddle function defined
by (2.140). By Theorem 2.114, the operator ∂K : X × Y → X∗ × Y ∗ is maximal
monotone. Hence, for each λ > 0 (xλ, yλ) ∈ D(∂K) = A × B such that

λF1(xλ) − ∂xK(xλ, yλ) � 0, (2.169)

λF2(yλ) + ∂yK(xλ, yλ) � 0, (2.170)

where F1 : X → X∗ and F2 : Y → Y ∗ are dually mappings of X and Y , respectively.
Let (x0, y0) ∈ A × B be fixed as in condition (2.168). We multiply equa-

tion (2.169) by xλ − x0, equation (2.170) by yλ − y0, and use the definition of ∂K

to obtain

λ
(
F1(xλ), xλ − x0

) ≤ K(xλ, yλ) − K(x0, yλ),

λ
(
F2(yλ), yλ − y0

) ≤ K(xλ, yλ) + K(xλ, y0).

Therefore,

λ
(‖xλ‖2 + ‖yλ‖2)≤ λ

(‖xλ‖‖x0‖ + ‖yλ‖‖y0‖
)+ K(xλ, y0) − K(x0, yλ).

According to condition (a), this inequality shows that (xλ, yλ) must be bounded in
X × Y as λ tends to 0. Thus, without loss of generality, we may assume that

xλ → x̃ weakly in X,

yλ → ỹ weakly in Y,
(2.171)

as λ → 0. If we let λ → 0 in equations (2.169) and (2.170), we may infer that

lim
λ→0

∂K(xλ, yλ) = (0,0) strongly in X∗ × Y ∗. (2.172)
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Since ∂K is maximal monotone, from assumptions (2.171) and (2.172) it is imme-
diately clear that (x̃, ỹ) ∈ D(∂K) and

(0,0) ∈ ∂K(x̃, ỹ). (2.173)

Thus, we have shown that K has a saddle point (x̃, ỹ) on X×Y . But it is not difficult
to see that (x̃, ỹ) is a saddle point of K if and only if (x̃, ỹ) is a saddle point of K0
with respect to A × B , that is,

K0(x, ỹ) ≤ K0(x̃, ỹ) ≤ K0(x̃, y) for all x ∈ A and y ∈ B,

and this establishes Corollary 2.118. �

Let K∗ : X∗ ×Y ∗ → R be the concave–convex conjugate of K . By analogy with
the terminology used in the study of convex functions, K∗ is called the conjugate
of K . If K is closed, so is K∗ and, according to Theorem 2.114, if X and Y are
reflexive, then the subdifferential ∂K∗ of K∗ is a maximal monotone operator from
X∗ × Y ∗ into X × Y . It is not difficult to see that ∂K∗ is the inverse of ∂K , that is,

(x, y) ∈ ∂K∗(x∗, y∗) ⇐⇒ (x∗, y∗) ∈ ∂K(x, y). (2.174)

In particular, this means that the saddle points of K are just the elements of
∂K∗(0,0). Thus, K has a saddle point, if and only if K∗ has a subgradient at (0,0).
In particular, this implies that the set of all saddle points of the proper closed saddle
function K is a closed and convex subset of the product space X × Y . Furthermore,
if K∗ happens to be continuous at (0,0), then this set is weakly compact in X×Y . It
follows that the conditions ensuring the subdifferentiability of K∗ may be regarded
as mini-max theorems. This subject is discussed in some detail in the sequel.

2.3.3 Mini-max Theorems

Let X,Y be two separated linear topological spaces and let F : X × Y → R. An
important problem is to establish certain conditions on F,X and Y under which the
mini-max equality

max
x∈X

min
y∈Y

F (x, y) = min
y∈Y

max
x∈X

F(x, y) (2.175)

is true or at least a saddle value exists, that is,

sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

sup
x∈X

F(x, y). (2.176)

All the results of this type are termed mini-max theorems. In view of Proposi-
tion 2.105, the mini-max equality is equivalent to the existence of a saddle point
of F on X × Y .
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This section is concerned with the main mini-max theorems and some general-
izations of the famous mini-max theorem of von Neumann [76].

First, we prove a general result established by Terkelsen [72].

Theorem 2.119 Let A b e a compact set in a topological space, let B be an arbi-
trary set, and let F be a real-valued function defined on A × B such that F(·, y) is
an upper-semicontinuous function on A for every y ∈ B . Then, the following state-
ments are equivalent.

(a) For every α ∈R and y1, y2, . . . , yn ∈B such that α >maxx∈A min1≤i≤n F (x, yi),
there is y0 ∈ B such that α > maxx∈A F(x, y0).

(b) F satisfies the equality

max
x∈A

inf
y∈B

F(x, y) = inf
y∈B

max
x∈A

F(x, y). (2.177)

Proof First, we notice that because A is a compact set according to the Weierstrass
theorem for the upper-semicontinuous functions (see Theorem 2.8), we can take
“max” instead of “sup”.

We immediately obtain statement (a) from equality (2.177) by using the defini-
tion of a supremum. Let us prove that statement (a) implies (b). Let an arbitrary
α ∈ R be such that

α > max
x∈A

inf
y∈B

F(x, y).

We write Ay = {x ∈ A; F(x, y) ≥ α}, for every y ∈ B , and hence
⋂

y∈B Ay = ∅. By
hypothesis, Ay is closed; therefore, A being a compact set, there are y1, . . . , yn ∈ B

with
⋂n

i=1 Ayi
= ∅, which implies min1≤i≤n F (x, yi) < α, for each x ∈ X. Thus,

maxx∈A min1≤i≤n F (x, yi) < α and then, from statement (a) we obtain y0 ∈ B such
that α > maxx∈A F(x, y0), from which it results that α > infy∈B maxx∈A F(x, y).
Now, if α tends to maxx∈A infy∈B F(x, y), we have

max
x∈A

inf
y∈B

F(x, y) ≥ inf
y∈B

max
x∈A

F(x, y).

Moreover, it follows from (2.132) that equality (2.177) holds. �

Corollary 2.120 Under the same assumptions as in the theorem, if for every
y1, y2 ∈ B there is y3 ∈ B such that F(x, y3) ≤ F(x, y1) and F(x, y3) ≤ F(x, y2)

for every x ∈ A, then F satisfies equality (2.177).

Corollary 2.121 If (fn) is a decreasing sequence of real-valued upper-semicontin-
uous functions on a compact set A, then

lim
n→∞ max

x∈A
fn(x) = max

x∈A
lim

n→∞ fn(x). (2.178)

Proof To prove this, take B = N and define F(x,n) = fn(x), x ∈ A, n ∈ N. We have
satisfied a directed condition which, obviously, implies statement (a), hence equal-
ity (2.178). �
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Remark 2.122 The previous theorem is not really a mini-max theorem. If, moreover,
B is a compact set and y → F(x, y) is a lower-semicontinuous function on B

for every x ∈ A, then statement (a) is equivalent to the mini-max equality (2.175)
because the infimum is also attained.

Property (a) is a rather natural one because, from equality (2.175), inequal-
ity (2.178) is equivalent to the following assertion:

for every α ∈ R such that α > maxx∈A infy∈B F(x, y), there is y0 ∈ B such that
α ≥ maxx∈A F(x, y0).

Since the set A is compact and the function F(·, y) is upper-semicontinuous, it
is “possible” to consider the infimum only on the finite subsets of B .

The natural framework for presenting mini-max theorems is that of concave–
convex functions. Among the various methods used in the proof of mini-max theo-
rems, we notice the following: the first relies on separation properties of convex
sets and the second is based on the celebrated Knaster–Kuratowski–Mazurkiewicz
Theorem [38] (Theorem 2.129 below). However, these methods can be extended to
functions more general than concave–convex functions.

Definition 2.123 A function F : X × Y → R is said to be concave–convex-like if
the following conditions hold:

(i) For every x1, x2 ∈ X and t ∈ [0,1] there is an x3 ∈ X such that

tF (x1, y) + (1 − t)F (x2, y) ≤ F(x3, y) for all y ∈ Y, (2.179)

whenever the left-hand side makes sense.
(ii) For every y1, y2 ∈ Y and t ∈ [0,1], there is a y3 ∈ Y such that

F(x, y3) ≤ tF (x, y1) + (1 − t)F (x, y2) for all x ∈ X, (2.180)

whenever the right-hand side is well defined.

Definition 2.124 A function F : X × Y → R is said to be quasi-concave–convex
if the level sets {x ∈ X;F(x, ȳ) ≥ α} and {y ∈ Y ;F(x̄, y) ≤ α} are convex sets for
every ȳ ∈ Y , x̄ ∈ X and α ∈R.

It is clear from condition (i) that the following property results.

(i)′ For every x1, x2 ∈ X and t1, t2, . . . , tn ≥ 0 with
∑n

i=1 ti = 1, there is an x0 ∈ X

such that
n∑

i=1

tiF (xi, y) ≤ F(x0, y) for all y ∈ Y, (2.181)

whenever the left-hand side is well defined.

A similar statement for condition (ii) holds.
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Remark 2.125 The concepts of concave–convex-like and quasi-concave–convex are
independent of each other. However, a concave–convex function is at the same time
concave–convex-like and quasi-concave–convex.

In the following, we assume that A ⊂ X, B ⊂ Y are two nonempty convex sets
and that F is real-valued on A × B . Hence, for extended real-valued functions, the
set A × B plays the role of effective domain.

Theorem 2.126 Let X,Y be separated topological linear spaces, A ⊂ X, B ⊂ Y

compact convex sets and F a real-valued upper-semicontinuous concave–convex-
like function on A × B . Then F satisfies the mini-max equality on A × B .

Proof Let us prove that F has property (a) from Theorem 2.119.
Let α ∈ R and y1, y2, . . . , yn ∈ B be such that

α > max
x∈A

min
1≤i≤n

F (x, y). (2.182)

Now, we consider the following convex sets of Rn:

C1 = conv
{(

F(x, y1),F (x, y2), . . . ,F (x, yn)
); x ∈ A

}
,

C2 = {(u1, u2, . . . , un); ui ≥ α, i = 1,2, . . . , n
}
.

Obviously, C2 is a cone with vertex ᾱ = (α,α, . . . , α) ∈ R
n and C1 ∩ C2 = ∅. In-

deed, if u = (u1, u2, . . . , un) ∈ C1, there are xj ∈ A and αj ≥ 0, j = 1,2, . . . ,m,
with

∑m
j=1 aj = 1, such that ui =∑m

j=1 ajF (xj , yi) for every i = 1,2, . . . , n. Now,
from (i)′, there exists a point x0 ∈ A such that

F(x0, y) ≥
m∑

j=1

ajF (xj , y). (2.183)

Using (2.182), we find i0 for which α > F(x0, yi0). Therefore, it follows from
inequality (2.183) that α > ui0 , that is, u = (u1, u2, . . . , un)∈C2. According to
Corollary 1.41, for the disjoint convex subsets C1,C2 we find a nonzero element
c = (c1, c2, . . . , cn) ∈R

n such that

sup
u∈C1

n∑

i=1

ciui ≤ inf
u∈C2

n∑

i=1

ciui . (2.184)

However, the cone C2 contains all the points (α,α, . . . , α,α + n,α, . . . , α),
n ∈ N, and therefore ci ≥ 0; hence, the infimum is attained at the vertex. Tak-
ing c′

i = ci(
∑n

j=1 cj )
−1 and ui = F(x, yi), from inequality (2.184), we obtain∑n

i=1 c′
iF (x, yi) ≤ α for all x ∈ A. Combining this with property (ii) from Defi-

nition 2.123, there is a point y0 ∈ B such that F(x, y0) ≤ α for every x ∈ A; hence,
α ≥ maxx∈A F(x, y0) and thus assertion (a) from Theorem 2.119 is really satisfied.
Therefore relation (2.177) is true. Now, using (2.177) and the lower-semicontinuity
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of F(x, ·) on the compact B for every x ∈ A, we obtain the mini-max equal-
ity (2.175). �

Corollary 2.127 If X,Y are reflexive Banach spaces, A ⊂ X, B ⊂ Y are bounded
closed and convex sets, F is an upper-lower-semicontinuous concave–convex func-
tion on A × B , then F has a saddle point on A × B .

Proof It is sufficient to recall that in a reflexive Banach space, every bounded closed
convex set in weakly compact (Theorem 1.94) and the lower-(upper-)semicontinuity
is equivalent to the weak lower-(upper-)semicontinuity for the class of convex (con-
cave) functions, by virtue of Proposition 2.10. We can, therefore, apply the theorem
where X,Y are endowed with their weak topologies. �

Remark 2.128 As is easily seen from the proof of Theorem 2.119, we omit the
compactness condition of the set B and the lower-semicontinuity condition of the
function F(x, ·), we obtain equality (2.177).

Now, we prove similar results for quasi-concave–convex functions. As noted
above, we use the following statement due to Knaster, Kuratowski and Mazur-
kiewicz [38].

Theorem 2.129 (Knaster–Kuratowski–Mazurkiewicz) Let U be an arbitrary set
in a finite-dimensional separated topological linear space E. To every u ∈ U ,
let F (u) ⊂ E be a compact set such that the convex hull of every finite subset
{u1, u2, . . . , un} ⊂ U is contained in the corresponding union

⋃
i=1 F (ui). Then,⋂

u∈U F (u) �= ∅.

The first main result for the quasi-concave–convex functions is the following.

Theorem 2.130 Let F be a real-valued upper-lower-semicontinuous quasi-
concave–convex function on A × B . If there are y0 ∈ B and α0 <

infy∈B supx∈A F(x, y) such that the level set {x ∈ A;F(x, y0) ≥ α0} be compact,
then

sup
x∈A

inf
y∈B

F(x, y) = inf
y∈B

sup
x∈A

F(x, y). (2.185)

Proof Suppose by contradiction that equality (2.185) is not true. From inequal-
ity (2.132), there is α > α0, such that

sup
x∈A

inf
y∈B

F(x, y) < α < inf
y∈B

sup
x∈A

F(x, y). (2.186)

Write Ay = {x ∈ A;F(x, y) ≥ α} and Bx = {y ∈ B;F(x, y) ≤ α}, which by hypo-
thesis are nonempty convex and closed sets. Using (2.186), it follows that

⋂

y∈B

Ay = ∅,
⋂

x∈A

Bx = ∅.
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Since Ay0 is compact, there are y1, . . . , yn ∈ B such that
⋂n

i=1 Ay1 = ∅. On the other
hand, as the convex sets finitely generated are compact, there are x1, . . . , xm ∈ A

such that
m⋂

i=1

Bxj
∩ conv{yi; i = 1,2, . . . , n} = ∅.

Let A′ = conv{x1, x2, . . . , xm} and B ′ = conv{y1, y2, . . . , yn}. Define the multi-
valued mapping F on A′ × B ′ by

F (u, v) = {(w, s) ∈ A′ × B ′; F(w,v) ≥ α or F(u, s) ≤ α
}
. (2.187)

One may easily show that all the conditions of Theorem 2.129 are fulfilled. Indeed,
F (u, v) is a compact set since F is upper-semicontinuous and A′ ×B ′, λi ≥ 0, with∑p

i=1 λi = 1 such that

p∑

i=1

λi(ui, vi)∈F (uj , vj ) for all j = 1,2, . . . , p;

it follows that

F

(
p∑

i=1

λiui, vj

)

< α and F

(

uj ,

p∑

i=1

λivi

)

> α, j = 1,2, . . . , p.

Since the sets
{

y ∈ B ′; F

(
p∑

i=1

λiui, y

)

< α

}

and

{

x ∈ A′; F

(

x,

p∑

i=1

λivi

)

> α

}

are convex, at the same time we obtain

F

(
p∑

i=1

λiui,

p∑

i=1

λivi

)

< α and F

(
p∑

i=1

λiui,

p∑

i=1

λivi

)

> α,

which is a contradiction. Hence,

p∑

i=1

λi(ui, vi) ∈
p⋃

i=1

F (ui, vi).

Thus, according to Theorem 2.129, there is (x0, y0) ∈ A′ × B ′ such that (x0, y0) ∈
F (x, y) for all (x, y) ∈ A′ × B ′, that is, F(x0, y0) ≥ α or F(x0, y0) ≤ α for all
x ∈ A′ and y ∈ B ′. On the other hand, it follows that there are i0 and j0 such that
x0 ∈Ayi0

and y0 ∈Bxj0
, which implies

α < F(xj0 , y0) ≤ α or α ≤ F(x0, yi0) < α.

This is a contradiction. Therefore, equality (2.185) holds. �
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Remark 2.131 It is worth noting that it is sufficient to assume that F(x, ·) is lower-
semicontinuous only on the intersection of B with any finite-dimensional space.
It should be emphasized that in equality (2.185) “sup” may be replaced by “max”
because F(·, y) is upper-semicontinuous and A may be replaced by the compact
set Ay0 .

According to Theorem 2.130, we obtain a result similar to Theorem 2.126, for
the class of quasi-concave–convex functions.

Theorem 2.132 Let A,B be two compact convex sets and let F be a real-valued
upper-semicontinuous quasi-concave–convex function on A × B . Then F satisfies
the mini-max equality on A × B .

Remark 2.133 By Remark 2.125 and Theorem 2.126 or Theorem 2.132, we find the
classical mini-max theorem for concave–convex functions. Likewise, we find again
Corollary 2.118 for the semicontinuous saddle functions.

Corollary 2.134 Let X,Y be reflexive Banach spaces, and let A ⊂ X, B ⊂ X be
closed convex sets. If F is a semicontinuous saddle function on A×B satisfying the
conditions:

(a) A and B are bounded, or
(b) There is (x0, y0) ∈ A × B such that

lim
‖x‖+‖y‖→∞
(x,y)∈A×B

{
F(x0, y) − F(x, y0)

}= ∞, (2.188)

then F verifies the mini-max equality on A × B .

Proof If F satisfies condition (a), Theorem 2.132 can be used for the work topolo-
gies on X and Y . Hence, it is sufficient to prove the corollary if F satisfies the
coercivity condition (b). It is clear, from condition (b), that there exists h > 0 such
that, for every (x, y) ∈ A × B with ‖x‖ + ‖y‖ ≥ h, we have

F(x0, y) − F(x, y0) > 0. (2.189)

We can assume that h > max{‖x0‖,‖y0‖}. From the first part of the corollary
applied to the function F with respect to nonempty bounded closed convex sets
A′ = {x ∈ A; ‖x‖ ≤ h} and B ′ = {y ∈ B; ‖y‖ ≤ h}, it follows that there is a saddle
point (x′, y′) ∈ A′ × B ′, that is,

F(x, y′) ≤ F(x′, y′) ≤ F(x′, y), (2.190)

for every (x, y) ∈ A′ × B ′.
Particularly, since (x0, y0) ∈ A′ × B ′, we obtain

F(x0, y
′) ≤ F(x′, y′) ≤ F(x′, y0)
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from which we see that (x′, y′) does not satisfy inequality (2.189); therefore, ‖x′‖ <

h and ‖y′‖ < h. Then, for every y ∈ B , we can choose a suitable λ ∈ ]0,1[ such that
λy + (1 −λ)y′ ∈ B ′. From the right-hand side of inequality (2.190), by virtue of the
convexity of F(x′, ·), we obtain

F(x′, y′) ≤ F
(
x′, λy + (1 − λ)y′)≤ λF(x′, y) + (1 − λ)F (x′, y′),

which leads to

F(x′, y′) ≤ F(x′, y),

for every y ∈ B . Similarly, from the left side of inequality (2.190) and, by virtue of
the concavity of F(·, y′), we have

F(x, y′) ≤ F(x′, y′),

for every x ∈ A. The last two inequalities imply that (x′, y′) is a saddle point of F

on A × B and the proof is complete (Proposition 2.105). �

Remark 2.135 Condition (a) or (b) in the previous corollary may be replaced by the
following conditions:

(a)′ B is bounded and there is y0 ∈ B such that

lim
‖x‖→∞
x∈A

F (x, y0) = −∞, (2.191)

or, by the symmetric condition

(b)′ A is bounded and there is x0 ∈ A such that

lim
‖y‖→∞
y∈B

F (x0, y) = +∞. (2.192)

Also, relations (2.191) and (2.192) together are sufficient.

All the results in this section can be applied to functions with values in R, defined
on a product of two separated topological linear spaces. It is known that, if F0 is a
real-valued function on A × B , there is an extended real-valued function F defined
on all space X×Y such that F |domF = F0 (see (2.140) from Sect. 2.3.2). Moreover,
we have

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈B

F0(x, y), (2.193)

inf
y∈Y

sup
x∈X

F(x, y) = inf
y∈B

sup
x∈A

F0(x, y). (2.194)

Hence, if F0 has a saddle value, then F has the same saddle value and reciprocally.
Also, (x, y) is a saddle point of F on X × Y if and only if (x, y) is a saddle point
of F0 on A × B (provided F0 is a proper function). On the other hand, giving an



144 2 Convex Functions

extended real-valued function F : X × Y → R, the role of A and B is played by
D1(F ) and D2(F ). In general, relations (2.193) and (2.194) are not true. However,
we can indicate a sufficiently large class of functions which satisfy these equalities.

Proposition 2.136 If F is a proper closed saddle function on X × Y , then rela-
tions (2.193) and (2.194) hold, where A × B = domF .

Proof By definition of A = D1(F ), we have

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈X

inf
y∈Y

cl2 F(x, y) = sup
x∈A

inf
y∈Y

cl2 F(x, y).

On the other hand, since F is closed, by definition of B = D2(F ) we have

inf
y∈Y

cl2 F(x, y) = inf
y∈Y

cl2 cl1 F(x, y) = inf
y∈Y

cl1 F(x, y) = inf
y∈B

cl1 F(x, y),

hence

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈B

cl1 F(x, y) ≥ sup
x∈A

inf
y∈B

F(x, y).

Also, the converse inequality holds

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈Y

cl2 F(x, y) = sup
x∈A

inf
y∈Y

F (x, y) ≤ sup
x∈A

inf
y∈B

F(x, y).

Similarly an obtains (2.194). �

2.4 Problems

2.1 Let f : I → R be a function on the real interval I ⊂ R. Prove that f is quasi-
convex if and only if it is either monotone or there exists x0 ∈ I such that f is
decreasing on (−∞, x0] ∩ I and increasing on [x0,∞) ∩ I .

Hint. We denote α = inf{f (x);x ∈ I }. Let us consider a sequence (xn)n∈N∗ ⊂ I

such that f (xn) → α. Let x̄ be a cluster element in R of the sequence (xn)n∈N∗ and
denote by a, b ∈ R the extremities of the interval I . The following three cases are
possible: (1) x̄ = a; (2) x̄ = b; (3) a < x̄ < b. In the first case, the function f is
increasing on I . Indeed, if u,v ∈ I , u < v and f (u) > f (v), taking f (v) < β <

f (u), we find xn̄ such that f (xn̄) < β , where xn̄ < u, since α < β . Therefore, the
interval {x ∈ I ;f (x) ≤ β} (see Sect. 2.1.1) contains the points xn̄ and v. Hence, it
also contains the element u, that is, f (u) ≤ β , which is a contradiction. Similarly,
we prove that f is decreasing if x̄ = b. Now, if a < x̄ < b, then f is decreasing on
[a, x̄] ∩ I and increasing on [x̄, b] ∩ I .
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2.2 Let ϕ be a lower-semicontinuous convex function on the Hilbert space H and
let {xn} be defined by the following algorithm:

xn+1 + ∂ϕ(xn+1) � xn, n ∈ N.

Prove that the sequence {xn} is weakly convergent to a minimum point xe ∈
(∂ϕ)−1(0) of ϕ.

Hint. This is the descent step algorithm. If we set

K =
{
w − lim

nk→∞xnk

}
,

we show first that K ⊂ (∂ϕ)−1(0) and then prove that the sequence {|xn − y|2}n is
decreasing for each y ∈ (∂ϕ)−1(0). If

ξ1 = w − lim
nk→∞xnk

and ξ2 = w − lim
n′

k→∞
xn′

k
,

this implies that

lim
n′

k→∞
|xn′

k
− ξ1|2 = lim

n′′
k→∞

|xn′′
k
− ξ1|2,

lim
n′′

k→∞
|xn′′

k
− ξ2|2 = lim

n′
k→∞

|xn′
k
− ξ2|2

and therefore ξ1 = ξ2, as claimed.

2.3 Let K be a closed convex subsets of Rm and let

K = {y ∈ (Lp(Ω)
)m; y(x) ∈ K, a.e. x ∈ Ω

}
,

where 1 ≤ p < ∞ and Ω is a measurable sub set of R
n. Find the normal cone

NK (y) ⊂ (Lq(Ω))m to K at y, 1
p

+ 1
q

= 1.

Hint. Apply Proposition 2.53, where g(x, y) = 0 if y ∈ K , g(x, y) = +∞ if
y ∈K .

2.4 Find the normal cone NK for

K = {y ∈ Lp(Ω); a ≤ y(x) ≤ b, a.e. x ∈ Ω
}
,

K = {y ∈ (Lp(Ω)
)m; ∥∥y(x)

∥∥
m

≤ ρ, a.e. x ∈ Ω
}
,

where ‖ · ‖m is the Euclidean norm in R
m.

2.5 Find the normal cone NK to the set K = {y ∈ L2(Ω); a ≤ y(x) ≤ b, a.e.
x ∈ Ω,

∫
Ω

y(x)dx = �}, where am(Ω) ≤ � ≤ bm(Ω) (m is the Lebesgue measure).
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Hint. We represent K = K1 ∩K2 where K1 = {y ∈ L2(Ω); a ≤ y(x) ≤ b, a.e.
x ∈ Ω}, K2 = {y ∈ L2(Ω); ∫

Ω
y(x)dx = �} and show that

NK (y) = NK1(y) + NK2(y), ∀y ∈ K .

Since NK1(y) + NK2 ⊂ NK (y), it suffices to show that, for every f ∈ L2(Ω), the
equation y + NK1(y) + NK2(y) � f has a solution y ∈ K . Since NK2(y) = R, the
above equation reduces to y = PK1(f − λ), λ ∈ R, where PK1 is projection on K1.

2.6 Let g : R →R be a lower-continuous convex function such that lim|r|→∞ g(r)
|r| =

+∞ and let ϕ : H−1(Ω) → R
∗

be defined by

ϕ(y) =
{∫

Ω
g(y(x))dx, if g(y) ∈ L1(Ω),

+∞, otherwise.

Show that ϕ is lower-semicontinuous and that

∂ϕ(y) = {−Δw; w ∈ H 1
0 (Ω), y ∈ H−1(Ω) ∩ L1(Ω),

w(x) ∈ ∂g
(
y(x)

)
a.e. x ∈ Ω

}
. (2.195)

Hint. Let F(y) = {w ∈ H 1
0 (Ω); w(x) ∈ ∂g(y(x)) a.e. x ∈ Ω}. Clearly, F(y) ⊂

∂ϕ(y) for each y ∈ D(F). It suffices to show that F is maximal monotone from
(H 1

0 (Ω))′ = H−1(Ω) to itself. Equivalently, for each f ∈ H−1(Ω), the equation
−Δw + (∂g)−1(w) � f has a solution w ∈ H 1

0 (Ω). One takes an approximating
sequence {fn} ⊂ L2(Ω), fn → f in L2(Ω), and consider the corresponding solu-
tions wn to the equation −Δwn + (∂g)−1(wn) � fn in Ω , wn ∈ H 1

0 (Ω) ∩ H 2(Ω).
Taking into account that g∗(wn) + g((∂g)−1wn) = wn(∂g)−1(wn), we infer by the
Dunford–Pettis theorem that {yn ∈ (∂g)−1(wn)} is weakly compact in L1(Ω) and
therefore we may pass to the limit with wn to prove the existence of w ∈ H 1

0 (Ω)

with y ∈ (∂g)−1w ∈ L1(Ω).

2.7 Let j : R → R be a lower-semicontinuous convex function such that

ω2|r|p + cz ≤ j (r) ≤ ω1|r|p + c1, ∀r ∈R,

where ω1,ω2 > 0 and p > 1. We set β = ∂j . Consider the function ϕ : W 1,p

0 (Ω) →
R

∗
defined by

ϕ(y) =
∫

Ω

j (∇y)dx.

Show that ϕ is convex, lower-semicontinuous and its subdifferential ∂ϕ : W 1,p

0 (Ω)

→ W−1,p′
(Ω) is given by

∂ϕ(y) = {w ∈ W−1,p′
(Ω); w = −divη, η(x) ∈ ∂j

(∇y(x)
)
, a.e. x ∈ Ω

}
.

(2.196)
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Show that ϕ is lower-semicontinuous on L2(Ω), too. Does this result remain true if
p = 1?

Hint. It suffices to show that the map defined by the second right-hand
side of equation (2.196) is maximal monotone from W

1,p

0 (Ω) to (W
1,p

0 (Ω))′ =
W−1,p′

(Ω), 1
p

+ 1
p′ = 1. If β is single valued, this reduces to the existence of a

solution y for the nonlinear elliptic boundary-value problem λy − div ∂j (∇y) = f

in Ω ; y = 0 on ∂Ω , where λ > 0 and f ∈ Lp′
(Ω). (See [4], p. 81.)

If p = 1, then ϕ is no longer lower-semicontinuous on L2(Ω) if takes D(ϕ) =
W

1,1
0 (Ω), but remains so if D(ϕ) is taken to be the space of functions with bounded

variation which are zero on ∂Ω .

2.8 Let ϕ be a continuous and convex function on Hilbert space H with the norm
| · |, ϕ(0) = 0 and let ϕt be its regularization (see (2.58)), that is,

ϕt (x) = inf

{ |x − y|2
2t

+ ϕ(y); y ∈ H

}
= S(t)ϕ, t ≥ 0.

Show that S(t + s) = S(t)S(s)ϕ, ∀t, s > 0, and

d+

dt
ϕ(t, x) + 1

2

∣∣∇xϕ(t, x)
∣∣2 = 0, ∀t > 0, x ∈ H.

Remark 2.137 This means that t → S(t)ϕ is a continuous semigroup on the
space of all continuous convex functions on H with infinitesimal generator ϕ →
− 1

2 |∇xϕ(x)|2.

2.9 Let H be a Hilbert space and let F be a convex and continuously differentiable
function on H such that

lim|x|→∞
F(x)

|x| = +∞, ∇F is locally Lipschitz,

(
F ′(x) − F ′(y), x − y

)≥ ωr |x − y|2, ∀x, y, |x|, |y| ≤ r.

We set
(
S(t)ϕ

)
(x) = (ϕ∗ + tF )∗(t), t ≥ 0, x ∈ H.

Show that:

(1) limt→0 S(t)ϕ(x) = ϕ(x).
(2) S(t + s)ϕ = S(t)S(s)ϕ, ∀s, t > 0.
(3) d+

dt
S(t)ϕ + F(∇x(S(t)ϕ)) = 0, ∀t > 0, x ∈ H .

Hint. Show first that (S(t)ϕ)(x) = ϕ(yt (x))t + F ∗(∇F(∂ϕ(yt (x))), where
yt (x) = (I + t∇F(∂ϕ))−1(x) and ∇x(S(t)ϕ)(x) = (∇F)−1(t−1(x − yt (x))). (For
details, see Barbu and Da Prato [5], p. 25.)
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2.10 The unilateral (free boundary problem)

−y′′(x) + y(x) = f (x) in
[
x ∈ [0, T ];y(x) > ρ

]
,

−y′′(x) + y(x) ≤ f (x) in
[
x ∈ [0,1];y(x) = ρ

]
,

y(x) ≥ ϕ, ∀x ∈ [0,1], y(0) = y(1) = 0,

describes the equilibrium state of an elastic string fixed at x = 0,1 and pushed
against an obstacle y = ρ < 0 by a distributed force f (x). Represent it as a vari-
ational inequality and solve it for f (x) ≡ −1.

Hint. This is a problem of the form (2.95).

2.5 Bibliographical Notes

2.1. Most of the material on the general theory of convex functions presented in this
subsection can be found in the mimeographed lecture notes of Moreau [46],
the survey of Rockafellar [57] and the book [21] of Ekeland and Temam. In
finite-dimensional spaces, excellent surveys on the subject are available in the
Rockafellar book [56], the work of Ioffe and Tihomirov [33] and the books of
Stoer and Witzgall [71] and Vainberg [74]. In infinite-dimensional spaces, the
theory of conjugate functions has originally been developed by Bronsted [15]
and, subsequently, studied by Bronsted and Rockafellar [16], Moreau [45, 46].
Some special types of convex function are studied by Ponstein [50] (see also
the monograph of Avriel, Diewert, Schaible and Zang [2]). The first study on
convex functions was published in 1945 by Popoviciu [51].

2.2. Subdifferential mappings were originally studied in Hilbert spaces by Mo-
reau [45]. Theorem 2.43 was first proved by Moreau and later extended to a
general Banach space by Rockafellar [55, 59]. Theorem 2.46 is also due to
Rockafellar [55] and Theorem 2.58 is a slight extension of some results of
Moreau [45] and Brezis [12]. As already noticed, Theorem 2.62 is a special
case of a general perturbation theorem due to Rockafellar [60]. The idea of
the proof given here comes from the work [14] by Brezis, Crandall and Pazy.
Theorem 2.65 is due to Brezis [12, 13]. The theory of variational inequalities
has been the subject of much development in the last fifteen years. For detailed
treatments and applications, we refer the reader to the surveys of Stampacchia
[70], Mosco [47], and to the books of Duvaut and Lions [19]. The nonlinear
complementary problem in infinite dimension has been investigated by Kara-
mardian [35], Habelter and Price [24], Eaves [20], Saigal [67], among others.
Theorem 2.76 may be compared most closely with some results given by Kara-
mardian [36], and Bazaraa et al. [6–9].

The concept of ε-subdifferential of convex function was introduced by
Brønsted and Rockafellar [16]. The properties concerning the maximality with
respect to the ε-monotonicity (Definition 2.86) considered for the first time
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by Vesely [75] (see also Jofré, Luc and Théra [34]) are established by Pre-
cupanu and Apetrii in [52], where some connections with the ε-enlargement
of an operator defined by Revalski and Théra [54] and the special case of ε-
subdifferential are investigated. A detailed treatment of calculus rules of the ε-
subdifferential of a convex function is presented by Hirriart-Urruty and Phelps
in [28].

The first notion of quasi-subdifferential for a quasi-convex function has been
defined independently by Greenberg and Pierskalla in [23] and Zabotin, Koblev
and Khabibulin in [77]. Different types of ε-quasi-subdifferential may be found
in the monographs of Singer [68], Hirriart-Urruty and Lemarechal [27] and the
papers of Ioffe [31], Martinez Legaz and Sach [43], Penot [49]. The concept of
ε-quasi-subdifferential given by Definition 2.124 was introduced by Precupanu
and Stamate in [53], where the relationship existing between this new type of
quasi-subdifferential and other quasi-subdifferentials known in the literature is
presented.

2.3. The results presented in Sect. 2.3.2 are essentially due to Rockafellar [58, 62]
(see also [56]). The first mini-max theorem was formulated for bilinear func-
tionals on finite-dimensional spaces by von Neumann [76]. Theorems 2.119
and 2.126 are essentially due to Terkelsen [72]. Mini-max Theorems 2.130
and 2.132 extend some classical results due to Ky Fan [40, 41], Sion [69],
Kneser [39], Nikaido [48].
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