
Chapter 2
Comments on Signals and Systems

Abstract To prepare the mechatronic foundation of active noise control, this chap-
ter contains some elements of system theory. Since we will be talking about active
noise control systems and signals, it is necessary to define these terms. Furthermore,
it is necessary to introduce values and functions that can be used to characterize
signals and systems in time domain but also in frequency domain. However, it is
not intended to present a compact summary of system theory that is in great detail
presented in textbooks, such as in (Cadzov and van Landingham in Signals, sys-
tems, and transforms, Prentice Hall, New Jersey, 1985), (Fliege in Systemtheorie,
Teubner, Stuttgart, 1991), (Girod et al. in Einführung in die Systemtheorie, Teub-
ner, Stuttgart, 2005), (Johnson in Digitale Signalverarbeitung, Hanser, München
in Cooperation with Prentice Hall International, London, 1991), (Oppenheim and
Willsky in Signale und Systeme—Lehrbuch, VCH Verlagsgesellschaft, Weinheim,
1989), (Sundararajan in A practical approach to signals and systems, Wiley Eastern,
Singapore, 2008), (Ziemer et al. in Signals and systems, continuous and discrete,
Macmillan, New York, 1983). A description of stochastic signals and random vibra-
tions of both linear and non-linear mechanical systems is to be found in (Lajos in
Zufallsschwingungen und ihre Behandlung, Springer, Berlin, 1973), whereas digital
audio signal processing is discussed in (Zölzer in Digital audio signal processing,
Wiley, Chichester, 2008).

2.1 Comments on Signals

The concept of signal is central to the system theory philosophy. According to (Cad-
zov and van Landingham 1985) a signal connotes the process of conveying infor-
mation in some format. In the present work, the expression signal is used to denote
a measurement or observation that contains information describing some acoustic
or electric phenomenon.

To define a mathematical structure, we designate signals by means of symbols
such as x or y and refer them as the signals x and y. A signal in which the infor-
mation characteristics fluctuate depends on other variables such as time, distance or
frequency. For the purpose of this chapter, however, it is sufficient to use time as an
independent variable.
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Fig. 2.1 Time-history
classification of signals

2.1.1 Classification

A signal that can change at any instant of time is called continuous-time signal and
will be denoted by x(t) or y(t). On the other hand, if a signal can only change its
value at specific instants of time, it is called discrete-time signal. Such a signal can
be denoted by x(tn) or y(tn), where tn = nT for n = 0,±1,±2, . . . . T is a fixed
time interval (e.g. the sample time) and n is the number of the time interval (e.g. the
sample number). In the present work a discrete-time signal will be denoted by x(n)

or y(n).
As shown in (DIN 1311-1 2000), signals can also be classified according to time

history. An overview on time-history classification of signals discussed in this sec-
tion is given in Fig. 2.1.

A signal is called deterministic, if the time history can be described by a function,
e.g. x(t) = f (t), that links the time t to the instantaneous value x(t). A deterministic
signal with a time history that is repeated after some period T such as

x(t) = x(t + T ) ∀t (2.1)

is a periodic signal. Equation (2.1) also holds for x(t) = x(t + nT ) ∀t with n =
0,1,2, . . . . If a periodic signal can be described by one sine function (or one cosine
function) such as

x(t) = x̂ sin(ωt + ϕ0) (2.2)

it is called a harmonic signal. Here ω = 2π/T is known as the angular frequency,
ϕ0 is known as the zero phase angle, and x̂ > 0 is known as the amplitude. Deter-
ministic signals with time history

x(t) �= x(t + T ) ∀t (2.3)

are non-periodic signals. An important subclass of non-periodic signals are tran-
sient signals that describe the crossover from one condition to another one. Typical
examples, see (DIN 1311-1 2000), are quasi-harmonic signals such as

x(t) = x̂e−σ t cos(ωt + ϕ0) with decay coefficient σ > 0 (2.4)

and sweep sine signals such as

x(t) = x̂ sin
[
ϕ(t)

]
with ω(t) = dϕ(t)

dt
. (2.5)

A signal is called stochastic or random, if the time history cannot be described
by a function. This means that predetermination of x is impossible for any point
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in time t . A stochastic signal can be seen as one realization of a stochastic process
ξ that consists of an ensemble of realizations xi(t). The probability Pw that the
realization xi(t) has a value between a and b at t = tj is obtained by integrating the
probability density function of the stochastic process fx(t)(ξ) over the process such
as

Pw

{
a � xi(t) � b

} =
∫ ξ=b

ξ=a

fx(t=tj )(ξ)dξ. (2.6)

If the probability Pw is independent of the observation time tj for all values of a

and b, the process is stationary, otherwise the process is non-stationary. Stochastic
signals are characterized by their moments or expectation values. The most impor-
tant moments are the mean

x̄ = E
[
x(t)

] =
∫ ξ=∞

ξ=−∞
ξ · fx(ξ)dξ (2.7)

and the variance

σ 2
x = E

[
x(t) − x̄

] =
∫ ξ=∞

ξ=−∞
(ξ − x̄)2 · fx(ξ)dξ. (2.8)

If x̄ = 0 and σ 2
x are independent of tj , the signal is a weak (or wide-sense) sta-

tionary stochastic signal, otherwise the signal is a non-stationary stochastic signal.
If the stochastic process is an ergodic process, the moments defined by (2.7) and
(2.8) are identical with time averaged values obtained from analyzing one realiza-
tion xi(t) of the stochastic process.

2.1.2 Characteristic Values and Functions

A signal x can be characterized by characteristic values and by characteristic func-
tions. These values and functions will be introduced according to (Ziemer et al.
1983) and (Fliege 1991) but also considering (DIN 1311-1 2000).

Characteristic values that can directly be obtained from the time history of x mea-
sured in the time interval t ∈ [t1, t2] are summarized in Table 2.1. In addition to these
values other characteristic values are obtained by time averaging of continuous-time
and discrete-time signals. Strictly speaking, time averaging of stochastic signals has
to be performed on the i-th realization xi of the stochastic process ξ . However, in
what follows the i-th realization is identified with the signal x for convenience.

Continuous-Time Signals

If the continuous-time signal x(t) is observed in the time interval T = t2 − t1, the
arithmetic mean of x(t) is given by
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Table 2.1 Characteristic values directly obtained from time history of signal

Name and description Definition

Maximum value: Maximum value of signal for t ∈ [t1, t2]. xmax := max(x)

Minimum value: Minimum value of a signal for t ∈ [t1, t2]. xmin := min(x)

Maximum absolute value: Minimum absolute value of a
signal for t ∈ [t1, t2].

|xmax| := max(|x(t)|)

Signal range: Difference between maximum and
minimum value.

xh := xmax − xmin

x̄ = E(x) = lim
T →∞

1

T

∫ T/2

−T/2
x(t)dt. (2.9)

The variance of x(t) is defined by

σ 2
x = lim

T →∞
1

T

∫ T/2

−T/2

(
x(t) − x̄

)2
dt. (2.10)

The mean signal power1 of x(t) can be defined by

Πx = lim
T →∞

1

T

∫ T/2

−T/2

∣∣x(t)
∣∣2

dt. (2.11)

It is obvious that the Πx is given by σ 2
x , if the arithmetic mean is zero, i.e. x̄ = 0.

The RMS2 value of x(t) is defined as the square root of Πx

xRMS =
√

lim
T →∞

1

T

∫ T/2

−T/2

∣
∣x(t)

∣
∣2

dt. (2.12)

Furthermore, it is possible to define the mean signal energy for x(t) by

Ex =
∫ ∞

−∞
∣
∣x(t)

∣
∣2

dt. (2.13)

The similarity between two continuous-time signals x(t) and y(t) can be charac-
terized by the cross correlation function (CCF)

rxy(τ ) = x(t)y(t + τ) = lim
T →∞

1

T

∫ T/2

−T/2
x(t)y(t + τ)dt. (2.14)

Consequently the auto correlation function (ACF) can be understood as a func-
tion that describes the change in time history of the signal x(t). The ACF is defined
by

1In system theory it is assumed that the signal x is normalized and dimensionless, see (Ziemer et
al. 1983) and (Fliege 1991). Furthermore, it is assumed that the associated non-normalized signal
has the dimension Volt and its electric energy is measured using a 1 Ohm resistance.
2The RMS of x is also used to define a logarithmic measure such as Lx = 10 log10(x

2
RMS/x2

0 ),
where x0 is a normalization factor.
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rxx(τ ) = x(t)x(t + τ) = lim
T →∞

1

T

∫ T/2

−T/2
x(t)x(t + τ)dt. (2.15)

It is also possible to characterize continuous-time signals in frequency domain.
The frequency domain representation of a continuous-time signal is obtained by
applying the (continuous) Fourier transform which (according to Ziemer et al. 1983
and Fliege 1991) is defined by

x(t)◦–•X(jω) = F
[
x(t)

] :=
∫ +∞

−∞
x(t)e−jωtdt. (2.16)

Conditions for the existence of the Fourier transform are complicated to state in
general (Champeney 1987), but it is sufficient for x(t) to be absolutely integrable,
i.e.,

∫ ∞

−∞
x(t)dt < ∞. (2.17)

The inverse operation is defined by

X(jω)•–◦x(t) = F
−1[X(jω)

] := 1

2π

∫ +∞

−∞
X(jω)ejωtdω. (2.18)

Using (2.16) it is possible to introduce the frequency domain counterparts of the
CCF and the ACF, known as the cross spectral density (CSD)

Sxy(jω) = F
[
rxy(τ )

]
(2.19)

and the auto spectral density (ASD)

Sxx(jω) = F
[
rxx(τ )

]
. (2.20)

For some applications it is advantageous to use the single-sided CSD or the
single-sided ASD that are, according to (DIN 1311-1 2000), introduced as

Gxy(jω) = 2Sxy(jω) with 0 ≤ ω < ∞ (2.21)

and

Gxx(jω) = 2Sxx(jω) with 0 ≤ ω < ∞. (2.22)

In general the CSD is a complex function of frequency, whereas the ASD is a real
valued quantity. The complex nature of the CSD can be seen, if (2.19) is evaluated
for two signals xT (t) and yT (t) that are observed in the time interval T . Using (2.14)
the evaluation of (2.19) results in

SxT yT
(jω) = F

[
rxT yT

(τ )
]

=
∫ ∞

−∞
xT (t)yT (t + τ)e−jωτ dτ

= lim
T →∞

1

T

∫ −T/2

−T/2
xT (t)ejωt

(∫ ∞

−∞
yT (t + τ)e−jω(t+τ)dτ

)
dt
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= lim
T →∞

1

T

∫ −T/2

−T/2
xT (t)ejωtYT (jω)dt

= lim
T →∞

1

T

[
X∗

T (jω)YT (jω)
]
. (2.23)

Equation (2.23) also proves that SxT xT
(jω) = limT →∞ 1

T
|XT (jω)|2 is a real val-

ued function.

Discrete-Time Signals

Discrete-time signals can be characterized similarly to continuous-time signals.
However, instead of time integration, summation over all time steps is required for
time averaging and the computing of both ACF and CCF.

The arithmetic mean of the discrete-time signal x(n) is given by

x̄ = E(x) = lim
N→∞

1

2N + 1

n=N∑

n=−N

x(n). (2.24)

The variance of x(n) is defined by

σ 2
x = lim

N→∞
1

2N + 1

n=N∑

n=−N

(
x(n) − x̄

)2
. (2.25)

The mean signal power of x(n) can be defined by

Πx = lim
N→∞

1

2N + 1

n=N∑

n=−N

∣∣x(n)
∣∣2

. (2.26)

The RMS value of x(n) is defined as the square root of Πx

xRMS =
√√√√ lim

N→∞
1

2N + 1

n=N∑

n=−N

∣∣x(n)
∣∣2

. (2.27)

The Mean signal energy of a discrete-time signal is calculated as

Ex =
∞∑

−∞

∣∣x(n)
∣∣2

(tn+1 − tn). (2.28)

The similarity between two discrete-time signals x(n) and y(n) can also be char-
acterized by the CCF that is now defined as

rxy(m) = x(n)y(n + m) = lim
N→∞

1

2N + 1

n=N∑

n=−N

x(n)y(n + m). (2.29)

Consequently the discrete version of the ACF can be understood as a function that
describes the change in time history of the signal x(n). The ACF for the discrete-
time signal x(n) is defined as
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rxx(m) = x(n)x(n + m) = lim
N→∞

1

2N + 1

n=N∑

n=−N

x(n)x(n + m). (2.30)

As with continuous-time signals it is also possible to characterize discrete-time
signals in frequency domain. The (discrete) frequency domain representation of a
discrete-time signal is obtained by applying the Fourier transform of sampled sig-
nals that is (according to Fliege 1991 and Nelson and Elliott 1992) defined by

x(n)◦–•X(
ejωT

) = Fd

[
x(n)

] :=
∞∑

n=−∞
x(n)e−jωnT . (2.31)

In direct analogy to (2.17) the existence of the Fourier transform for sampled
signals is ensured, if

∞∑

−∞

∣
∣x(n)

∣
∣ < ∞ (2.32)

holds for x(n). The inverse operation is (according to Fliege 1991) defined by

X
(
ejωT

)•–◦x(n) = F
−1
d

[
X

(
ejωT

)] := 1

2π

∫ +π

−π

X
(
ejωT

)
ejωnT d(ωT ). (2.33)

Using (2.31) it is possible to introduce the frequency domain counterparts of the
CCR and the ACF for discrete-time signals. These are the CSD (of discrete-time
signals)

Sxy

(
ejωT

) = Fd

[
rxy(m)

]
(2.34)

and the ASD (of discrete-time signals)

Sxx

(
ejωT

) = Fd

[
rxx(m)

]
. (2.35)

The discrete Fourier transform is used to calculate an approximate solution of the
Fourier integral (2.16). According to (Fliege 1991) and (Nelson and Elliott 1992) it
is defined by

x(n)◦–•X(k) = FDFT

[
x(n)

] :=
N−1∑

n=0

x(n)e−j 2πnk
N . (2.36)

The associated inverse operation is defined by

X(k)•–◦x(n) = F
−1
DFT

[
X(k)

] := 1

N

N−1∑

n=0

X(k)ej 2πnk
N , with 0 � n � N − 1,

(2.37)

where N is the number of time samples used to split the frequency range between
zero and the sampling frequency into N values spaced at a frequency increment of
2π(NT )−1, and k is the index associated with the k-th discrete frequency line.
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2.2 Comments on Systems

2.2.1 Definitions

In system theory the concept of a system is used alongside to that of signal. From
the mathematical point of view a (single input/single output) system represents a
transformation T by which the input signal x(t) is changed into the output signal
y(t), see (Cadzov and van Landingham 1985) and (Fliege 1991). A block diagram
representing a system is shown in Fig. 2.2.

A system is called linear, if and only if

T
[
k1x1(t) + k2x2(t)

] = k1T
[
x1(t)

] + k2
[
x2(t)

]
(2.38)

is fulfilled for arbitrary scalars k1 and k2 and arbitrary pairs of transformations
y1(t) = k1T[x1(t)] and y2(t) = k2T[x2(t)].

An important subclass of linear systems are linear time invariant systems (LTI-
systems). A (continuous) linear system with impulse response h(t) caused by a
Dirac impulse δ(t), compare Fig. 2.3, is a LTI-system if, and only if an arbitrary
time shift τ in the input signal δ(t − τ) causes the same time shift in the output
signal such as

h(t − τ) = T
[
δ(t − τ)

]
. (2.39)

A (discrete) linear system with impulse response h(n) caused by a Dirac impulse
δ(n) is a LTI-system if, and only if an arbitrary time shift k in the input signal
δ(n − k) causes the same time shift in the output signal such as

h(n − k) = T
[
δ(n − k)

]
. (2.40)

2.2.2 Transfer Behavior of LTI-Systems

The transfer behavior of a LTI-system can be described in both time domain and fre-
quency domain. In time domain, the transformation or transfer behavior is described
by the impulse response h, whereas in frequency domain the system behavior is de-
scribed by its transfer function (or frequency response function (FRF)).

The transfer behavior of a continuous LTI-system is shown in Fig. 2.4. If the
input signal x(t) is a deterministic continuous-time signal, the output signal y(t)

can directly be obtained from the input by solving

Fig. 2.2 Block diagram
representing a system

Fig. 2.3 Linear system with
Dirac impulse δ(t) as input
and impulse response h(t) as
output
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Fig. 2.4 Transmission of
deterministic and stochastic
signals through a continuous
LTI-system

Fig. 2.5 Transmission of
deterministic and stochastic
signals through a discrete
LTI-system

y(t) = x(t) ∗ h(t) :=
∫ +∞

−∞
x(τ)h(t − τ)dτ. (2.41)

If the calculation is performed in frequency domain using X(jω) = F[x(t)] and
Y(jω) = F[y(t)], the convolution integral in (2.41) is replaced by a simple multi-
plication

Y(jω) = H(jω)X(jω). (2.42)

Direct computation of the output signal is also possible for discrete LTI-systems
with deterministic input

y(n) = x(n) ∗ h(n) :=
+∞∑

k=−∞
x(k)h(n − k). (2.43)

The associated equation in frequency domain reads

Y
(
ejωT

) = H
(
ejωT

)
X

(
ejωT

)
. (2.44)

For stochastic input signals, see Fig. 2.5, it is only possible to analyze the simi-
larity between the input signal x(t) and the output signal y(t) using the CCF (2.14)
that is, for stationary continuous-time signals and continuous LTI-systems, given by

rxy(τ ) = x(t)y(t + τ)

=
∫ ∞

−∞
x(t)x(λ)h(t + τ − λ)dλ

=
∫ ∞

−∞
rxx(λ − t)h(t + τ − λ)dλ

with λ − t → k and dλ → dk

=
∫ ∞

−∞
rxx(k)h(τ − k)dk =: rxx(τ ) ∗ h(τ). (2.45)

The CCF (2.29) between a stationary discrete-time input signal x(n) that is trans-
formed into the stationary discrete-time output signal y(n) by a discrete LTI-system
is given by
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Fig. 2.6 Schematic diagram of filter operation using a finite impulse response filter of order I

rxy(n) = x(k)y(k + n)

=
∞∑

m=−∞
x(k)x(m)h(k + n − m)

=
∞∑

m=−∞
rxx(m − k)h(k + n − m)

with m − k → l

=
∞∑

l=−∞
rxx(l)h(n − l) =: rxx(n) ∗ h(n). (2.46)

The associated frequency domain equations are

Sxy(jω) = H(jω)Sxx(jω) (2.47)

and

Sxy

(
ejωT

) = H
(
ejωT

)
Sxx

(
ejωT

)
. (2.48)

A convolution defined by (2.43) or (2.46) can be approximated by the inner prod-
uct between a finite set of I coefficients hi(n) and a finite set of I input signals
x(n − i) such as

y(n) = x(n) ∗ h(n) ≈
I−1∑

i=0

hi(n)x(n − i) =: h(n)T x(n), (2.49)

where the (I × 1) column matrix h(n) is a finite impulse response (FIR) filter3 used
to approximate the impulse response h(n) of the LTI-system at discrete time n.

The realization of the FIR filter operation defined by (2.49) is illustrated by
Fig. 2.6 in which the I coefficients of h(n) can be interpreted as weights used to
modify the actual as well as the previous values of the input signal x. The latter are
obtained by successive delaying x with T . To get the output signal y, all weighted
inputs are summed up, as also shown in Fig. 2.6.

3For details on FIR filters see for example (Kuo and Morgan 1996) or (Moschytz and Hofbauer
2000).
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