
2Fields

The way of mathematical thought is twofold: the mathematician first proceeds in-
ductively from the particular to the general and then deductively from the general
to the particular. Moreover, throughout its development, mathematics has shown
two aspects—the conceptual and the computational—the symphonic interleaving of
which forms one of the major aspects of the subject’s aesthetic.

Let us therefore begin with the first mathematical structure—numbers. By the
Hellenistic times, mathematicians distinguished between two types of numbers: the
rational numbers, namely those which could be written in the form m

n
for some in-

teger m and some positive integer n, and those numbers representing the geometric
magnitude of segments of the line, which today we call real numbers and which, in
decimal notation, are written in the form m.k1k2k3 . . . where m is an integer and the
ki are digits. The fact that the set Q of rational numbers is not equal to the set R of
real numbers was already noticed by the followers of the early Greek mathemati-
cian/mystic Pythagoras. On both sets of numbers we define operations of addition
and multiplication which satisfy certain rules of manipulation. Isolating these rules
as part of a formal system was a task first taken on in earnest by nineteenth-century
British and German mathematicians. From their studies evolved the notion of a field,
which will be basic to our considerations. However, since fields are not our primary
object of study, we will delve only minimally into this fascinating notion. A seri-
ous consideration of field theory must be deferred to an advanced course in abstract
algebra.

A nonempty set F together with two functions F × F → F , respectively called
addition (as usual, denoted by +) and multiplication (as usual, denoted by · or by
concatenation), is a field if the following conditions are satisfied:
(1) (associativity of addition and multiplication): a + (b + c) = (a + b) + c and

a(bc) = (ab)c for all a, b, c ∈ F .
(2) (commutativity of addition and multiplication): a + b = b + a and ab = ba for

all a, b ∈ F .
(3) (distributivity of multiplication over addition): a(b + c) = ab + ac for all

a, b, c ∈ F .
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6 2 Fields

(4) (existence of identity elements for addition and multiplication): There exist dis-
tinct elements of F , which we will denote by 0 and 1 respectively, satisfying
a + 0 = a and a1 = a for all a ∈ F .

(5) (existence of additive inverses): For each a ∈ F there exists an element of F ,
which we will denote by −a, satisfying a + (−a) = 0.

(6) (existence of multiplicative inverses): For each 0 �= a ∈ F there exists an ele-
ment of F , which we will denote by a−1, satisfying a−1a = 1.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Weber,
Dedekind, Kronecker and Steinitz).

The development of the abstract theory of fields is generally credited to the nineteenth-
century German mathematician Heinrich Weber, based on earlier work by the German
mathematicians Richard Dedekind and Leopold Kronecker. Another nineteenth-century
mathematician, the British Augustus De Morgan, was among the first—along with French
mathematician François Joseph Servois—to isolate the importance of such properties as
associativity, distributivity, and so forth. The final axioms of a field are due to the twentieth-
century German mathematician Ernst Steinitz.

Note that we did not assume that the elements −a and a−1 are unique, though
we will soon prove that in fact they are. If a and b are elements of a field F , we will
follow the usual conventions by writing a − b instead of a + (−b) and a

b
instead

of ab−1. Moreover, if 0 �= a ∈ F and if n is a positive integer, then na denotes the
sum a + · · · + a (n summands) and an denotes the product a · · ·a (n factors). If n

is a negative integer, then na denotes (−n)(−a) and an denotes (a−1)−n. Finally,
if n = 0 then na denotes the field element 0 and an denotes the field element 1. For
0 = a ∈ F , we define na = 0 for all integers n and an = 0 for all positive integers n.
The symbol 0k is not defined for k ≤ 0.

As an immediate consequence of the associativity and commutativity of addition,
we see that the sum of any list a1, . . . , an of elements of a field F is the same, no mat-
ter in which order we add them. We can therefore unambiguously write a1 +· · ·+an.
This sum is also often denoted by

∑n
i=1 ai . Similarly, the product of these elements

is the same, no matter in which order we multiply them. We can therefore unam-
biguously write a1 · · ·an. This product is also often denoted by

∏n
i=1 ai . Also, a

simple inductive argument shows that multiplication distributes over arbitrary sums:
if a ∈ F and b1, . . . , bn is a list of elements of F then a(

∑n
i=1 bi) = ∑n

i=1 abi .
We easily see that Q and R, with the usual addition and multiplication, are fields.
A subset G of a field F is a subfield if and only if it contains 0 and 1, is closed

under addition and multiplication, and contains the additive and multiplicative in-
verses of all of its nonzero elements. Thus, for example, Q is a subfield of R. It is
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easy to verify1 that the intersection of a collection of subfields of a field F is again
a subfield of F .

We now want to look at several additional important examples of fields.

Example Let C = R2 and define operations of addition and multiplication on C by
setting (a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac − bd, ad + bc).
These operations define the structure of a field on C, in which the identity element
for addition is (0,0), the identity element for multiplication is (1,0), the additive
inverse of (a, b) is (−a,−b), and

(a, b)−1 =
(

a

a2 + b2
,

−b

a2 + b2

)

for all (0,0) �= (a, b). This field is called the field of complex numbers. The set
of all elements of C of the form (a,0) forms a subfield of C, which we normally
identify with R and therefore it is standard to consider R as a subfield of C. In
particular, we write a instead of (a,0) for any real number a. The element (0,1) of
C is denoted by i. This element satisfies the condition that i2 = (−1,0) and so it is
often written as

√−1. We also note that any element (a, b) of C can be written as
(a,0) + b(0,1) = a + bi, and, indeed, that is the way complex numbers are usually
written and how we will denote them from now on. If z = a + bi, then a is the real
part of z, which is often denoted by Re(z), while bi is the imaginary part of z, which
is often denoted by Im(z). The field of complex numbers is extremely important in
mathematics. From a geometric point of view, if we identify R with the set of points
on the Euclidean line, as one does in analytic geometry, then it is natural to identify
C with the set of points in the Euclidean plane.

With kind permission of the Harvard Arts Museum (Descartes); With kind permission of ETH-Bibliothek
Zurich, Image Archive (Euler); With kind permission of Bibliothèque nationale de France (Argand).

The term “imaginary” was coined by the seventeenth-century French philosopher and math-
ematician René Descartes. The use of i to denote

√−1 was introduced by the eighteenth-
century Swiss mathematician Leonhard Euler. The geometric representation of the com-
plex numbers was first proposed at the end of the eighteenth century by the Norwegian
surveyor Caspar Wessel, and later by the French accountant Jean-Robert Argand. It was
studied in detail by the nineteenth-century Italian mathematician Giusto Bellavitis.

1When a mathematician says that something is “easy to see” or “trivial”, it means that you are
expected to take out a pencil and paper and spend some time—often considerable—checking it out
by yourself.
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If z = a + bi ∈ C then we denote the complex number a − bi, called the complex
conjugate of z, by z. It is easy to see that for all z, z′ ∈ C we have z + z′ = z + z′e,
−z = −z, zz′ = z · z′, z−1 = (z)−1, and z = z. The number zz equals a2 +b2, which
is a nonnegative real number and so has a square root in R, which we will denote
by |z|. Note that |z| is nonzero whenever z �= 0. From a geometric point of view,
this number is just the distance from the number z, considered as a point in the
Euclidean plane, to the origin, just as the usual absolute value |a| of a real number
a is the distance between a and 0 on the real line. It is easy to see that if y and z are
complex numbers then |yz| = |y| · |z| and |y +z| ≤ |y|+|z|. Moreover, if z = a +bi

then

z + z = 2a ≤ 2|a| = 2
√

a2 ≤ 2
√

a2 + b2 = 2|z|.
We also note, as a direct consequence of the definition, that |z| = |z| for every com-
plex number z and so z−1 = |z|−2z for all 0 �= z ∈ C. In particular, if |z| = 1 then
z−1 = z.

Example The set Q2 is a subfield of the field C defined above. However, it is also
possible to define field structures on Q2 in other ways. Indeed, let F = Q2 and
let p be a fixed prime integer. Define addition and multiplication on F by setting
(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac + bdp,ad + bc).

Again, one can check that F is indeed a field and that, again, the set of all ele-
ments of F of the form (a,0) is a subfield, which we will identify with Q. More-
over, the additive inverse of (a, b) ∈ F is (−a,−b) and the multiplicative inverse of
(0,0) �= (a, b) ∈ F is

(
a

a2 − pb2
,

−b

a2 − pb2

)

.

(We note that a2 −pb2 is the product of the nonzero real numbers a +b
√

p and a −
b
√

p and so is nonzero.) The element (0,1) of F satisfies (0,1)2 = (p,0) and so one
usually denotes it by

√
p and, as before, any element of F can be written in the form

a +b
√

p, where a, b ∈ Q. The field F is usually denoted by Q(
√

p). Since there are
infinitely-many distinct prime integers, we see that there are infinitely-many ways
of defining different field structures on Q×Q, all having the same addition.

Example Fields do not have to be infinite. Let p be a positive integer and let
Z/(p) = {0,1, . . . , p − 1}. For each nonnegative integer n, let us, for the pur-
poses of this example, denote the remainder after dividing n by p as [n]p . Thus
we note that [n]p ∈ Z/(p) for each nonnegative integer n and that [i]p = i for all
i ∈ Z/(p). We now define operations on Z/(p) by setting [n]p + [k]p = [n + k]p
and [n]p · [k]p = [nk]p . It is easy to check that if the integer p is prime then Z/(p),
together with these two operations, is again a field, known as the Galois field of
order p. This field is usually denoted by GF(p). While Galois fields were first con-
sidered mathematical curiosities, they have since found important applications in
coding theory, cryptography, and modeling of computer processes.
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These are not the only possible finite fields. Indeed, it is possible to show that for
each prime integer p and each positive integer n there exists an (essentially unique)
field with pn elements, usually denoted by GF(pn).

With kind permission of Bibliothèque nationale de France
(Galois); With kind permission of the American Mathemat-
ical Society (Moore).

The nineteenth-century French mathematical ge-
nius Evariste Galois, who died at the age of 21,
was the first to consider such structures. The study
of finite and infinite fields was unified in the 1890s
by Eliakim Hastings Moore, the first American-
born mathematician to achieve an international
reputation.

Example Some important structures are “very nearly” fields. For example, let
R∞ = R∪ {∞}, and define operations � and � on R∞ by setting

a � b =
⎧
⎨

⎩

min{a, b} if a, b ∈ R,

b if a = ∞,

a if b = ∞,

and

a � b =
{

a + b if a, b ∈ R,

∞ otherwise.

This structure, called the optimization algebra, satisfies all of the conditions of a
field except for the existence of additive inverses (such structures are known as semi-
fields). As the name suggests, it has important applications in optimization theory
and the analysis of discrete-event dynamical systems. There are several other semi-
fields which have significant applications and which have been extensively studied.

Another possibility of generalizing the notion of a field is to consider an algebraic
structure which satisfies all of the conditions of a field except for the existence of
multiplicative inverses, and to replace that condition by the condition that if a, b �= 0
then ab �= 0. Such structures are known as integral domains. The set Z of all integers
is the simplest example of an integral domain which is not a field. Algebras of
polynomials over a field, which we will consider later, are also integral domains. In
a course in abstract algebra, one proves that any integral domain can be embedded
in a field.

In the field GF(p) which we defined above, one can easily see that the sum
1 + · · · + 1 (p summands) equals 0. On the other hand, in the field Q, the sum of
any number of copies of 1 is always nonzero. This is an important distinction which
we will need to take into account in dealing with structures over fields. We therefore
define the characteristic of a field F to be equal to the smallest positive integer p

such that 1+· · ·+1 (p summands) equals 0—if such an integer p exists—and to be
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equal to 0 otherwise. We will not delve deeply into this concept, which is dealt with
in courses on field theory, except to note that the characteristic of a field, if nonzero,
always turns out to be a prime number, as we shall prove below.

In the definition of a field, we posited the existence of distinct identity elements
for addition and multiplication, but did not claim that these elements were unique.
It is, however, very easy to prove that fact.

Proposition 2.1 Let F be a field.
(1) If e is an element of F satisfying e + a = a for all a ∈ F then e = 0;
(2) If u is an element of F satisfying ua = a for all a ∈ F then u = 1.

Proof By definition, e = e + 0 = 0 and u = u1 = 1. �

Similarly, we prove that additive and multiplicative inverses, when they exist, are
unique. Indeed, we can prove a stronger result.

Proposition 2.2 If a and b are elements of a field F then:
(1) There exists a unique element c of F satisfying a + c = b.
(2) If a �= 0 then there exists a unique element d of F satisfying ad = b.

Proof (1) Choose c = b − a. Then

a + c = a + (b − a) = a + [b + (−a)]
= a + [(−a) + b] = [a + (−a)] + b = 0 + b = b.

Moreover, if a + x = b then

x = 0 + x = [(−a) + a] + x

= (−a) + (a + x) = (−a) + b = b − a,

proving uniqueness.
(2) Choose d = a−1b. Then ad = a(a−1b) = (aa−1)b = 1b = b. Moreover, if

ay = b then y = 1y = (a−1a)y = a−1(ay) = a−1b, proving uniqueness. �

We now summarize some of the elementary properties of fields, which are all we
will need for our discussion.
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Proposition 2.3 If a, b, and c are elements of a field F then:
(1) 0a = 0;
(2) (−1)a = −a;
(3) a(−b) = −(ab) = (−a)b;
(4) −(−a) = a;
(5) (−a)(−b) = ab;
(6) −(a + b) = (−a) + (−b);
(7) a(b − c) = ab − ac;
(8) If a �= 0 then (a−1)−1 = a;
(9) If a, b �= 0 then (ab)−1 = b−1a−1;

(10) If a + c = b + c then a = b;
(11) If c �= 0 and ac = bc then a = b;
(12) If ab = 0 then a = b or b = 0.

Proof (1) Since 0a + 0a = (0 + 0)a = 0a, we can add −(0a) to both sides of the
equation to obtain 0a = 0.

(2) Since (−1)a + a = (−1)a + 1a = [(−1) + 1]a = 0a = 0 and also (−a) +
a = 0, we see from Proposition 2.2 that (−1)a = −a.

(3) By (2) we have a(−b) = a[(−1)b] = (−1)ab = −(ab) and similarly
(−a)b = −(ab).

(4) Since a + (−a) = 0 = −(−a) + (−a), this follows from Proposition 2.2.
(5) From (3) and (4) it follows that (−a)(−b) = a[−(−b)] = ab.
(6) Since (a + b) + [(−a) + (−b)] = a + b + (−a) + (−b) = 0 and (a + b) +

[−(a + b)] = 0, the result follows from Proposition 2.2.
(7) By (3) we have a(b − c) = ab + a(−c) = ab + [−(ac)] = ab − ac.
(8) Since (a−1)−1a−1 = 1 = aa−1, this follows from Proposition 2.2.
(9) Since (a−1b−1)(ba) = a−1ab−1b = 1 = (ab)−1(ba), the result follows from

Proposition 2.2.
(10) This is an immediate consequence of adding −c to both sides of the equa-

tion.
(11) This is an immediate consequence of multiplying both sides of the equation

by c−1.
(12) If b = 0 we are done. If b �= 0 then by (1) it follows that multiplying both

sides of the equation by b−1 will yield a = 0. �

The following two propositions are immediate consequences of Proposition 2.3.

Proposition 2.4 Let a be a nonzero element of a finite field F having q ele-
ments. Then a−1 = aq−2.

Proof If q = 2 then F = GF(2) and a = 1, so the result is immediate. Hence we
can assume q > 2. Let B = {a1, . . . , aq−1} be the nonzero elements of F , writ-
ten in some arbitrary order. Then aai �= aah for i �= h since, were they equal,
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we would have ai = a−1(aai) = a−1(aah) = ah. Therefore B = {aa1, . . . , aaq−1}
and so

∏q−1
i=1 ai = ∏q−1

i=1 (aai) = aq−1
[∏q−1

i=1 ai

]
. Moreover, this is a product of

nonzero elements of F and so, by Proposition 2.3(12), is also nonzero. Therefore,
by Proposition 2.3(11), 1 = aq−1, and so aa−1 = 1 = aq−1 = a(aq−2), implying
that a−1 = aq−2. �

Proposition 2.5 If F is a field having characteristic p > 0, then p is prime.

Proof Assume that p is not prime. Then p = hk, where 0 < h,k < p. Therefore,
a = h1F and b = k1F are nonzero elements of F . But ab = (hk)1F = p1F = 0,
contradicting Proposition 2.3(12). �

Of course, one can use Proposition 2.3 to prove many other identities among
elements of a field. A typical example is the following

Proposition 2.6 (Hua’s identity) If a and b are nonzero elements of a field
F satisfying a �= b−1 then

a − aba = (
a−1 + [

b−1 − a
]−1)−1

.

Proof We note that

a−1 + (
b−1 − a

)−1 = a−1[(b−1 − a
) + a

](
b−1 − a

)−1

= a−1b−1(b−1 − a
)−1

,

so (a−1 + [b−1 − a]−1)−1 = (b−1 − a)ba = a − aba. �

Loo-Keng Hua was a major twentieth-century Chinese mathemati-
cian.
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Exercises

Exercise 1
Let F be a field and let G = F ×F . Define operations of addition and multiplica-
tion on G by setting (a, b)+ (c, d) = (a + c, b+d) and (a, b) · (c, d) = (ac, bd).
Do these operations define the structure of a field on G?

Exercise 2
Let K be the set of the following four-tuples of elements of GF(3):

(0,0,0,0), (1,2,1,1), (2,1,2,2), (1,0,0,1), (2,2,1,2),

(2,0,0,2), (0,1,2,0), (0,2,1,0), (1,1,2,1).

Define operations of addition and multiplication on K so that it becomes a field.

Exercise 3
Let r ∈ R and let 0 �= s ∈ R. Define operations � and � on R × R by (a, b) �
(c, d) = (a + c, b+d) and (a, b)� (c, d) = (ac−bd(r2 + s2), ad +bc+2rbd).
Do these operations, considered as addition and multiplication, respectively, de-
fine the structure of a field on R×R?

Exercise 4
Define a new operation † on R by setting a † b = a3b. Show that R, on which
we have the usual addition and this new operation as multiplication, satisfies all
of the axioms of a field with the exception of one.

Exercise 5
Let 1 < t ∈ R and let F = {a ∈ R | a < 1}. Define operations ⊕ and � on F as
follows:
(1) a ⊕ b = a + b − ab for all a, b ∈ F ;
(2) a � b = 1 − t logt (1−a) logt (1−b) for all a, b ∈ F .
For which values of t does F , together with these operations, form a field?

Exercise 6
Show that the set of all real numbers of the form a + b

√
2 + c

√
3 + d

√
6, where

a, b, c, d ∈Q, forms a subfield of R.

Exercise 7
Is {a + b

√
15 | a, b ∈ Q} a subfield of R?

Exercise 8
Show that the field R has infinitely-many distinct subfields.

Exercise 9
Let F be a field and define a new operation ∗ on F by setting a ∗ b = a + b + ab.
When is (F,+,∗) a field?
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Exercise 10
Let F be a field and let Gn be the subset of F consisting of all elements which
can be written as a sum of n squares of elements of F .
(1) Is the product of two elements of G2 again an element of G2?
(2) Is the product of two elements of G4 again an element of G4?

Exercise 11
Let t = 3

√
2 ∈ R and let S be the set of all real numbers of the form a + bt + ct2,

where a, b, c ∈Q. Is S a subfield of R?

Exercise 12
Let F be a field. Show that the function a 
→ a−1 is a permutation of F � {0F }.

Exercise 13
Show that every z ∈ C satisfies

z4 + 4 = (z − 1 − i)(z − i + i)(z + 1 + i)(z + 1 − i).

Exercise 14
In each of the following, find the set of all complex numbers z = a+bi satisfying
the given relation. Note that this set may be empty or may be all of C. Justify your
result in each case.
(a) z2 = 1

2 (1 + i
√

3);
(b) (

√
2)|z| ≥ |a| + |b|;

(c) |z| + z = 2 + i;
(d) z4 = 2 − (

√
12)i;

(e) z4 = −4.

Exercise 15
Let y be a complex number satisfying |y| < 1. Find the set of all complex num-
bers z satisfying |z − y| ≤ |1 − yz|.

Exercise 16
Let z1, z2, and z3 be complex numbers satisfying the condition that |zi | = 1 for
i = 1,2,3. Show that |z1z2 + z1z3 + z2z3| = |z1 + z2 + z3|.
Exercise 17
For any z1, z2 ∈C, show that |z1|2 + |z2|2 − z1z2 − z1z2 = |z1 − z2|2.

Exercise 18
Show that |z + 1| ≤ |z + 1|2 + |z| for all z ∈ C.

Exercise 19
If z ∈C, find w ∈C satisfying w2 = z.
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Exercise 20
Define new operations ◦ and � on C by setting y ◦ z = |y|z and

y � z =
{

0 if y = 0,
1
|y|yz otherwise

for all y, z ∈ C. Is it true that w � (y ◦ z) = (w � y) ◦ (w � z) and w ◦ (y � z) =
(w ◦ y) � (w ◦ z) for all w,y, z ∈C?

Exercise 21
Let 0 �= z ∈C. Show that there are infinitely-many complex numbers y satisfying
the condition yy = zz.

Exercise 22
(Abel’s inequality) Let z1, . . . , zn be a list of complex numbers and, for each
1 ≤ k ≤ n, let sk = ∑k

i=1 zi . For real numbers a1, . . . , an satisfying a1 ≥ a2 ≥
· · · ≥ an ≥ 0, show that |∑n

i=1 aizi | ≤ a1(max1≤k≤n |sk|).

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The nineteenth-century Norwegian mathematical genius Niels Henrik
Abel died tragically at the age of 26.

Exercise 23
Let 0 �= z0 ∈ C satisfy the condition |z0| < 2. Show that there are precisely two
complex numbers, z1 and z2, satisfying |z1| + |z2| = 1 and z1 + z2 = z0.

Exercise 24
If p is a prime positive integer, find all subfields of GF(p).

Exercise 25
Find 10−1 in GF(33).

Exercise 26
Find elements c, d �= ±1 in the field Q(

√
5) satisfying cd = 19.
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Exercise 27
Let F be the set of all real numbers of the form

a + b
( 3
√

5
) + c

( 3
√

5
)2

,

where a, b, c ∈Q. Is F a subfield of R?

Exercise 28
Let p be a prime positive integer and let a ∈ GF(p). Does there necessarily exist
an element b of GF(p) satisfying b2 = a?

Exercise 29
Let F = GF(11) and let G = F × F . Define operations of addition and multi-
plication on G by setting (a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) =
(ac + 7bd, ad + bc). Do these operations define the structure of a field on G?

Exercise 30
Let F be a field and let G be a finite subset of F � {0} containing 1 and satisfying
the condition that if a, b ∈ F then ab−1 ∈ G. Show that there exists an element
c ∈ G such that G = {ci | i ≥ 0}.
Exercise 31
Let F be a field satisfying the condition that the function a 
→ a2 is a permutation
of F . What is the characteristic of F ?

Exercise 32
Is Z/(6) an integral domain?

Exercise 33
Let F = {a + b

√
5 ∈Q(

√
5) | a, b ∈ Z}. Is F an integral domain?

Exercise 34
Let F be an integral domain and let a ∈ F satisfy a2 = a. Show that a = 0 or
a = 1.

Exercise 35
Let a be a nonzero element in an integral domain F . If b �= c are distinct elements
of F , show that ab �= ac.

Exercise 36
Let F be an integral domain and let G be a nonempty subset of F containing 0
and 1 and closed under the operations of addition and multiplication in F . Is G

necessarily an integral domain?

Exercise 37
Let U be the set of all positive integers and let F be the set of all functions
from U to C. Define operations of addition and multiplication on F by setting
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f + g : k 
→ f (k) + g(k) and fg : k 
→ ∑
ij=k f (i)g(j) for all k ∈ U . Is F , to-

gether with these operations, an integral domain? Is it a field?

Exercise 38
Let F be the set of all functions f from R to itself of the form f : t 
→∑n

k=1[ak cos(kt) + bk sin(kt)], where the ak and bk are real numbers and n

is some positive integer. Define addition and multiplication on F by setting
f + g : t 
→ f (t) + g(t) and fg : t 
→ f (t)g(t) for all t ∈ R. Is F , together
with these operations, an integral domain? Is it a field?

Exercise 39
Show that every integral domain having only finitely-many elements is a field.

Exercise 40
Let F be a field of characteristic other than 2 in which there exist elements
a1, . . . , an satisfying

∑n
i=1 a2

i = −1. (This happens, for example, in the case
F = C.) Show that for any c ∈ F there exist elements b1, . . . , bk of F satisfying
c = ∑k

i=1 b2
i .

Exercise 41
Let p be a prime integer. Show that for each a ∈ GF(p) there exist elements b

and c of GF(p), not necessarily distinct, satisfying a = b2 + c2.

Exercise 42
Let F be a field in which we have elements a, b, and c (not necessarily distinct)
satisfying a2 + b2 + c2 = −1. Show that there exist (not necessarily distinct)
elements d and e of F , satisfying d2 + e2 = −1.

Exercise 43
Is every nonzero element of the field GF(5) in the form 2i for some positive
integer i? What happens in the case of the field GF(7)?

Exercise 44
Find the set of all fields F in which there exists an element a satisfying the
condition that a + b = a for all b ∈ F � {a}.

Exercise 45
(Binomial formula) If a and b are elements of a field F , and if n is a positive
integer, show that (a + b)n = ∑n

k=0

(
n
k

)
akbn−k .

Exercise 46
Let F be a field of characteristic p > 0. Show that the function γ : F → F

defined by γ : a 
→ ap is monic.
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Exercise 47
Let a and b be nonzero elements of a finite field F , and let m and n be positive
integers satisfying am = bn = 1. Show that there exists a nonzero element c of F

satisfying ck = 1, where k is the least common multiple of m and n.

Exercise 48
If a is a nonzero element of a field F , show that (−a)−1 = −(a−1).

Exercise 49
Let F = GF(7) and let K = F × F . Define addition and multiplication on K by
setting (a, b) + (c, d) = (a + b, c + d) and (a, b) · (c, d) = (ac − bd, ad + bc).
Do these operations turn K into a field? What happens if F = GF(5)?

Exercise 50
A field F is orderable if and only if there exists a subset P closed under addition
and multiplication such that for each a ∈ F precisely one of the following condi-
tions holds: (i) a = 0; (ii) a ∈ P ; (iii) −a ∈ P . Show that GF(5) is not orderable.

Exercise 51
Let F be a field and let K be the set of all functions f ∈ FZ satisfying the
condition that there exists an integer (perhaps negative) nf such that f (i) = 0
for all i < nf . Define operations of addition and multiplication on K by setting
f + g : i 
→ f (i)+ g(i) and fg : i 
→ ∑

j+h=i f (j)g(h). Show that K is a field,

called the field of formal Laurent series over F .2

Exercise 52
Let F be a field. Find A = {(x, y) ∈ F 2 | x2 + y2 = 1}.
Exercise 53
Let F be a field having characteristic p > 0 and let c ∈ F . Show that there is at
most one element b of F satisfying bp = c.

Exercise 54
A ternary ring is a set R containing distinguished elements 0 and 1, together
with a function θ : R3 → R satisfying the following conditions:
(1) θ(1, a,0) = θ(a,1,0) = a for all a ∈ R;
(2) θ(a,0, c) = θ(0, a, c) = c for all c ∈ R;
(3) If a, b, c ∈ R then there is a unique element y of R satisfying θ(a, b, y) = c;
(4) If a, a′, b, b′ ∈ R with a �= a′ then there is a unique element x of R satisfying

θ(x, a, b) = θ(x, a′, b′);
(5) If a, a′, b, b′ ∈ R with a �= a′ then there are unique elements x and y of R

satisfying θ(a, x, y) = b and θ(a′, x, y) = b′.

2These series were first studied by the nineteenth-century French engineer and mathematician,
Pierre Alphonse Laurent.
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Such structures have applications in projective geometry. If F is a field, show that
we can define a function θ : F 3 → F in such a way that F becomes a tertiary ring
(with 0 and 1 being the neutral elements of the field).

Exercise 55
For h = 1,2,3, let zh = ah + bhi be a complex number satisfying |zh| = 1. As-
sume, moreover, that

∑3
i=1 zi = 0. Show that the points (ah, bh) are the vertices

of an equilateral triangle in the Euclidean plane.
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