Cots Sparse Matrix Utilization
in Distribution Power Flow Applications

Dino Ablakovic, Izudin Dzafic and Hans-Theo Neisius

Abstract Sparse matrix is used in many modern industrial applications, to pro-
vide low cost and high performance solution. Unlike a number of previous works
in the field of distribution networks, which analyzed the sparse matrix calculations
as integral part of its calculation engine, this paper presents the considerations and
analysis for the utilization of commercial of-the-shelf sparse matrix solvers (COTS
SMS). Analysis is given for the parallel direct sparse solver utilized in unbalanced
and unsymmetrical Distribution System Power Flow solution, which maximizes
parallelization on multi-core processors. Optimal matrix population algorithm and
container class from the power network object model is proposed for the fast
population, search and access to the matrix elements. Optimal use cases of sym-
metrical and unsymmetrical matrices for the given method are analyzed. Test
results for the Current Injection—Power Flow algorithm on a Three-Phase large
scale system are presented which show the performance scales for symmetric and
unsymmetrical matrices over a scope of system sizes and for different network
topologies.

Keywords Power flow - Sparse matrix - Distribution network - Three-phase

D. Ablakovic (X)) - I. Dzafic - H.-T. Neisius
Siemens AG, Humboldtstrasse 59, 90459 Nuernberg, Germany
e-mail: dino.ablakovic@siemens.com

1. Dzafic
e-mail: izudin.dzafic @siemens.com

H.-T. Neisius
e-mail: hans-theo.neisius @siemens.com

James J. (Jong Hyuk) Park et al. (eds.), Computer Science and Convergence, 11
Lecture Notes in Electrical Engineering 114, DOI: 10.1007/978-94-007-2792-2_2,
© Springer Science+Business Media B.V. 2012



12 D. Ablakovic et al.

1 Introduction

Distribution Power Networks have changed immensely in recent years, becoming
larger and more complex every day. Distribution generation increased the problem
complexity by far. Networks became much larger with the need for interconnection
between different networks on distribution and medium voltage level. Three-Phase
unbalanced and unsymmetrical networks, typical for the USA, require three-phase
analysis. All of this requires better, and more performant DSPF application.

Advanced DSPF solutions can utilize sparse matrix as the system impedance/
admittance matrix depending on the methods used. Introduced in 1960s to the
power systems calculation [1], sparse matrix utilization evolved to present times as
the crucial element of DSPF. Nodal matrix method, Newton—Raphson and Fast-
Decoupled DSPF algorithms in all different variations make a great use of sparse
matrix. However, almost all previous DSPF solutions utilize sparse matrix inter-
nally, and all operations such as factorization and eventually forward backward
substitution are deeply integrated into the DSPF algorithm.

It has long been realized that DSPF parallelization with different technologies
and hardware can provide significant performance improvements [2—4].

Different factorization algorithms can be differently parallelized. From the
perspective of DSPF application, it has become very hard to choose the right
algorithm, hardware and implementation technique. The problem for the industrial
real-time DSPF application is exponentially more complex when design and
development time, and costs are considered. The aim of this paper is to analyze the
utilization of Commercial Of-the-shelf Sparse Matrix Solvers (COTS SMS) for the
DMS and more specifically DSPF, which are now more than ever, to maximize the
power of parallel processing through multi-core CPU processors or even GPUs [5].

2 Cots Sparse Solvers in DSPF

Unlike so many previous works in research and industry which implement their
own direct sparse solvers for the DSPF, COTS solvers offer equally performant,
but much faster to implement and more feasible solution. A SWOT analysis of
using COTS SS, which are elaborated here, is given in Table 1.

Two types of sparse solvers in general use in industry are: Direct and Iterative
solvers. Both types have advantages and disadvantages, depending on the appli-
cation. For the Power Systems in general, research up-to-date shows that Iterative
method is still not developed enough, having convergence problems with different
pre-conditioners. Direct sparse solvers have more predictable convergence, but
require large memory to hold the factorized matrix. They are however, more
stable, robust and reliable, and for those reasons found greater acceptance in DSPF
applications and power systems in general.



Cots Sparse Matrix Utilization

Table 1 SWOT analysis of COTS SMS

Strengths

Weaknesses

Developed by dedicated sparse solver entities
Very feasible, no special development needed

Clear interface to network applications

Updateable without additional development

Opportunities

Make best use of parallel processing, multi-core CPU or
GPU, FPGA

Ability to chose different SS for different hardware,
operating systems and projects on demand

Updateable without additional development at small cost

Special interface needed

Wrappers for all used COTS SS
necessary

Special container class needed,
additional memory used

Dependency on 3rd party entity

Threats

Eventual bugs in 3rd party
software

Product update and support
discontinuity

Compatibility issues

Portability issues

Numerical evaluation of sparse direct solvers for the solution of large sparse
symmetric linear systems of equations [5], analyses 10 different COTS solvers and
provides the performance profile for different matrix types for each of them.
Although the referenced benchmarking work is done only for symmetrical solvers
with real numbers, many of the tested ones support also unsymmetrical matrices,
and almost all support complex numbers. This is crucial consideration for
choosing the right solver, depending on the DSPF implementation.

A few direct sparse solvers are developed directly by the processor vendors
which can only emphasize the maximum output from their most deep knowledge
of the hardware on which the solver runs. According to the Moore’s law the
processor performance is doubled every 18-24 months [6]. With currently avail-
able 8 and 12-core processors, parallel sparse solvers are inevitable in serious
DSPF application. Other than processor vendors, there are serious research entities
dedicated to the sparse solver development which are more concentrated on the
algorithms for improving the solvers, by constantly finding better solutions for
ordering, pivoting and factorization algorithms. This dedicated development of
sparse solvers is very time and resource consuming and can be too big task for
Power Systems development groups. Given that hardware development is so fast
that it constantly requires revision of the sparse solver algorithms and re-imple-
mentation and the above stated arguments it can be concluded that COTS SMS can
be feasible, performant, up-to-date solution for DSPF. From all of the above,
requirements for the COTS SMS in DSPF are defined as follows:

Direct solver type

Support float and double complex numbers

Must support symmetrical and unsymmetrical matrices
Platform independent (Windows/Linux)

Acceptable licensing/pricing model

Acceptable upgrade/development roadmap

A



14 D. Ablakovic et al.

Fig. 1 COTS SMS interface cNetObjModel
cDSPFSolver
«interface»
iCOTS SS
clterativeSS cDirectSS cMultigridSS cFPGASS

—e! el el e

Iterative SS Direct SS Multigrid FPGA SS
library library SS library library

3 Interface and Wrappers of Cots Sparse Solver

The aim is to enable DSPF and DMS to integrate any COTS SMS, and to replace it
at lowest possible cost when better one is available, or even to be able to use more
than one solver depending on the available hardware platform, operating system.
Solution must be so robust to integrate iterative, direct and even GPU and FPGA
solvers.

Since there are a number of different solvers encapsulated in different libraries,
which are created in different programming languages, the Interface must be
defined with specific minimum functionalities, each solver must provide. Class
wrappers must be used to encapsulate the solvers, which will then in Object
Orientated Design OOD inherit from the defined interface. If C++ is the chosen
language, as it is widely used in the DMS development, Fig. 1 presents the pro-
posed interface.

Template capabilities of C++ are to be used for the input of data types of the
solver. The first step is defining the iCOTS_SS interface and its functions, which
means that all inheriting wrappers will have to provide those. Solvers main
functions are obviously factorization and then solving the system of linear equa-
tions with factorized matrix.

4 Sparse Matrix Container

There are many methods for storing the matrix data, i.e.: compressed row, com-
pressed column, block compressed row storage, diagonal storage, jagged diagonal
storage etc. All of those sparse storage schemes use the continuous storage



Cots Sparse Matrix Utilization 15

memory allocation for the nonzero elements of the matrix, or eventually a limited
number of zeros when indefinite matrices are used. Overview of the standard
formats given in [8, 9] shows that the compressed row and column storage formats
are the simplest because they don’t consider the scarcity structure of the matrix,
and they don’t store any unnecessary elements. Because of it, they are on the other
hand not very efficient, needing an indirect addressing step for every single scalar
operation in a matrix—vector product or preconditioned solve. An example of
compressed row format for the symmetric matrix with real numbers is given in (1)
where only upper triangular elements are stored saving the space of both 0 and
symmetric values.

10300 e M1 13 1216 (7 (3 1419

020 60| [colwm [T [T [3 (212 21255
[4)=13 0 7 0 of Lidx_

060 3 4 [rowpointer [[R] [I[3]S5]6]8]

000409 o))

The length of the value and column index arrays is actually the number of
non-zero elements in the upper triangular matrix, and the row pointer array gives
the location of the first non-zero element within a row.

Power networks topology is dynamic in its nature. Switching equipment
changing its statuses define the network topology, combining and separating
sub-networks. Having different sub-networks and topologies requires an imple-
mentation of tracing or graph theory coloring algorithm to collect all galvanically
connected network elements, from which a sub-network is composed, at one point
in time, by which the network object model is created. Bus bars are essentially
graph vertices and branches, i.e. lines and transformers are graph edges. Switches
are in general DSPF calculation ignored because their impedances are, when
compared to branches, negligible.

When one sub-network object model is created, sparse admittance matrix
vectors need to be populated. Because of its stacked sparse format, population
process requires special sparse matrix container class which will provide fast
population and access to matrix elements. Since the benchmark solver is using
compressed row format shown in (1), it means for both algorithms that matrix
must be populated by sweeping columns for each row, one by one. Because of
virtually unknown number of non-zero elements the container must have dynamic
size and grow as elements are inserted. This means no continuous memory allo-
cation, but use of single linked lists. This container class is essentially made of one
vector-array containing the first column of struct elements defined above. The
array itself uses continual memory allocation and therefore the access to each row
can be done in a single step. Later when row is found, iteration over the elements
in the row by using a pointer to each next element and comparing the column value
is needed. It is represented on Fig. 2.



16 D. Ablakovic et al.

Fig. 2 Advanced sparse - ]
matrix container structure V ® O o 0—%?_
Pt
& ® 4.
Yise=
® ® L .‘-%‘ﬂ-%?"
¥ .F%?«

5 Symmetrical Matrix in DSPF

Unbalanced and unsymmetrical DSPF calculations in phase domain require
admittance sparse matrix Y apc of size 3n, where n is the number of electrical
nodes and 3 is a phase multiplicator. Unsymmetrical matrix factorization is in
general slower than the symmetrical matrix factorization because of the more
complex permutation calculation and larger fill-in calculation. Full unsymmetrical
matrix size is n* and symmetrical (n> 4+ n)/2. To achieve the best utilization of the
matrix in DSPF, with the proposed modeling two main goals are:

1. Make only one Y admittance matrix factorization
2. Make the Y admittance matrix symmetrical

Nodal admittance matrix Y apc contains the branch admittances, i.e. lines and
transformers. Loads are modeled in an injection vector, because they are depen-
dent on the calculated voltage, which in the end makes this method iterative
calculation process. When local control algorithm is implemented with DSPF, tap
changer positions and capacitor banks are also considered in an injection vector.

To improve the method solvability, matrix numerical conditioning and decrease
the number of iterations, advance modeling can be utilized in following:

3. Model constant impedance loads in the matrix
4. Model initial tap positions and capacitor banks in the matrix, and final tap
positions simulate as current injections

Therefore general equation for the Current Injection method is presented in (3)

[Yapc| x [V] = [IL] + [Ip] — [Is] = [I] — [I5] (2)



Cots Sparse Matrix Utilization 17

where:

I;, —Load injection vector calculated from the voltage dependent loads.

Ip —Injection vector calculated from tap positions of load tap changers and
capacitor calculated in local control simulation.

Is —Injection source (Slack) compensation vector.

To avoid first calculation iteration, instead of filling the slack voltage values to
(V) and doing one forward—backward calculation, I vector is initially set as given
in (4). Because of mutual coupling between phases and the affect on the angle,
initial Slack values at node k must be set with 120° phase shift.

Iy =120°=1+j0p.u
Iig =14 —120° = —0.5 +j — 0.8660p.u (3)
Iic = 1£120° = —0.5 + j0.8660p.u

Is is a compensation vector which ensures that Injection sources—Slack Buses
are kept at the referent voltage during the DSPF iterations, keeping the matrix
symmetrical at the same time.

Isj = Yagc, x I}~ (4)

Where:
n —iteration number = 0
k —Index of the Slack Bus

o ) <L) = L] L g

When all Current injection vectors are added it still has to be ensured that
values for Slack Buses are as given in (5), which means all branches and loads on
the Slack Buses are ignored. Important to note is that Is vector must be calculated
only once and in the first iteration of the Power Flow when only Slack values are
populated. The Load vector I} is calculated in each Power Flow iteration and Delta
Ip in each Local Control Iteration.

6 Result and Analysis

This paper presents the results of DSPF Admittance matrix population and
factorization with implemented proposed sparse matrix container against the bal-
anced tree container found in C++ Standard Template Library (STL). The test net-
work is created from modified IEEE 34 test feeder [10] by multiplying the feeder 148



18 D. Ablakovic et al.

Table 2 Number of

. e Type of equipment Number of equipments units
equipment units in the
network Bus bars 5.071
Transformers 390
Lines 4.770
Loads 2.250
Capacitors 180
Switching devices 10.381
Fig. 3 Matrix population 350 313
and factorization times for 300
radial network 250 196
’g 200
< 150 107
100 TIHHT 70 60—66
; Il
0 T .
Unsymmetric std::map AdvSparse
matrix type

‘u Matrix population @ Factorization ‘

times and adding them in parallel to the same feeder head bus bar. Additionally
connection line segments on Buses 864 and 840 are added in order to provide the
meshed network topology. In Meshed configuration two loops are made between
each two feeders on the given buses. The network size in total is given in Table 2.

Test Application: DSPF—Distribution System Power Flow

Benchmark Test Server: 2 x Intel Xenon(R) E5420 CPU 2.5 GHz, RAM 24 GB
Num of processor cores: 2 x 4 = 8 cores

Operating System: Windows Server 2003 SP2

Sparse solver: Intel MKL Pardiso [7]

Test Tool/Methods:

e Win32 API timing functions for profiling used directly in code utilizing number
of processor ticks with precision to millisecond (ms).

e No code optimization and no SSE2 instructions in compiler optimization.

e Average calculation times on 10 runs are presented

Results presented show that both matrix population and factorization times can
be significantly improved with usage of symmetrical matrix alone, even with usage
of Standard Template library collections. Utilizing the Advanced Sparse Matrix
container, population time is far better and shows the importance of giving so
much attention to the entire process of sparse matrix utilization. Results are pre-
sented on Figs. 3 and 4, Table 3.



Cots Sparse Matrix Utilization 19

Fig. 4 Matrix population 350 320
and factorization times for 300
meshed network 250 o1+
@ 200 ]
€150 11
100 T 78 g4—74
- ==
0
Unsymmetric std::map AdvSparse
matrix type

0 Matrix populationm Factorization‘

Table 3 Results of comparison tests for radial and meshed networks

Unsymmetrical Symmetric Symmetric
std::map AdvSparseMat
Radial networks Population 313 196 60
Factorization 107 70 66
Meshed Population 320 211 64
networks Factorization 111 78 74

Finally, from the presented results it can also be seen that results are worse for
Meshed network types, which is result of more off-diagonal elements and spread
matrix structure. A topic for further research is to determine exactly how the
network topology affects the matrix population and factorization times.

References

1. Tinney WF, Walker JW (1967) Direct solutions of sparse network equations by optimally
ordered triangular factorization. In: Proceedings of the IEEE, Nov 1967

2. Wu JQ, Bose A (1995) Parallel solution of large sparse matrix equations and parallel power
flow. IEEE Trans Power Syst 10(3):1343 (August)

3. Feng Z, Zeng Z, Li P (2010) Parallel on-chip power distribution network analysis on multi-
core-multi-GPU platforms. IEEE Trans Very Large Scale Integr VLSI Syst, vol PP, Issue: 99

4. Johnson J, Nagvajara P, Nwankpa C (2004) Sparse linear solver for power system analysis
using FPGA, Drexel University, HPEC

5. Gould NIM, Hu Y, Scott JA (2005) A numerical evaluation of sparse direct solvers for the
solution of large sparse, symmetric linear systems of equations, Technical report, RAL-TR-
2005-005, CCLRC Rutherford Appleton laboratory

6. Ramanathan RM Intel® Multi-core processors: making the move to quad-core and beyond,
White Paper. Intel Corporation

7. Intel® Math Kernel library reference manual—March 2009 630813-031US

8. Templates for the solution of algebraic eigenvalue problems: a practical guide (2000) In: Bai
Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (eds) SIAM, Philadelphia



20 D. Ablakovic et al.

9. Distributed sparse data structures for linear algebra operations (1992) Technical report CS
92-169, Computer science department, University of Tennessee, Knoxville, TN, LAPACK
working note

10. IEEE 34 node test feeder, IEEE distribution system analysis subcommittee



2 Springer
http://www.springer.com/978-94-007-2791-5

Computer Science and Convergence

CSA4 2011 & WCC 2011 Proceedings

Park, |.J.H.; Chao, H.-C.; Obaidat, M.S.; Kim, |, (Eds.)
2012, LV, 843 p. 329 illus., Hardcowver

ISBEM: 978-94-007-2791-5



	2 Cots Sparse Matrix Utilization in Distribution Power Flow Applications
	Abstract
	1…Introduction
	2…Cots Sparse Solvers in DSPF
	3…Interface and Wrappers of Cots Sparse Solver
	4…Sparse Matrix Container
	5…Symmetrical Matrix in DSPF
	6…Result and Analysis
	References


