Chapter 2
The Spectrum of a Closed Operator

The main themes of this chapter are the most important concepts concerning general
closed operators, spectrum and resolvent. Section 2.2 is devoted to basic properties
of these notions for arbitrary closed operators. In Sect. 2.3 we treat again differen-
tiation operators as illustrating examples. First however, in Sect. 2.1 we introduce
regular points and defect numbers and derive some technical results that are useful
for the study of spectra (Sect. 2.2) and for self-adjointness criteria (Sect. 13.2).

2.1 Regular Points and Defect Numbers of Operators

Let T be a linear operator on a Hilbert space .

Definition 2.1 A complex number X is called a regular point for T if there exists a
number ¢, > 0 such that

|(T —xDx|| = cllx|l  forall x € D(T). (2.1)
The set of regular points of T is the regularity domain of T and denoted by 7 (T).

Remark There is no unique symbol for the regularity domain of an operator in the
literature. It is denoted by 6(T) in [BS], by IT(T) in [EE], and by I'(T) in [We].
Many books have no special symbol for this set.

Recall that the dimension of a Hilbert space #, denoted by dim #, is defined by
the cardinality of an orthonormal basis of H.

Definition 2.2 For A € 7(T), we call the linear subspace R(T — AI)T of H the
deficiency subspace of T at A and its dimension d; (T) := dimR(T — AI)* the
defect number of T at A.

Deficiency spaces and defect numbers will play a crucial role in the theory of
self-adjoint extensions of symmetric operators developed in Chap. 13.
A number of properties of these notions are collected in the next proposition.
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26 2 The Spectrum of a Closed Operator

Proposition 2.1 Let T be a linear operator on H, and ) € C.

(i) A €n(T) ifand only if T — 11 has a bounded inverse (T — A1)~ defined on
R(T — Al). In this case inequality (2.1) holds with ¢; = ||(T — A1)~4 =L
(ii) 7w (T) is an open subset of C. More precisely, if Ao € n(T), » € C, and
|A — Aol < cay, Where ¢y, is a constant satisfying (2.1) for Ao, then A € w(T).
(i) If T is closable, then w(T) = n(T), d5(T) = d(T), and R(T — Al) is the
closure of R(T — MI) in H for each ) € w(T).
(v) If T is closed and . € w(T), then R(T — Al) is a closed linear subspace of H.

Proof (i): First suppose that A € w(T). Then N(T — AI) = {0} by (2.1), so the
inverse (T — A1)~ ! exists. Let ye DT — AD)~Y = R(T — AI). Then we have
y = (T — AI)x for some x € D(T), and hence,

(T =D y|| = Ixll < (T —aDx| = ¢ Iyl

by (2.1). That s, (T — A1)~ is bounded, and ||(T — A1)~'| < ¢ "
Assume now that (7 — AI)~! has a bounded inverse. Then, with x and y as
above,

Ixll = [(T =D~y | < (T —=aD~ iyl = (T —aD || (T = 2D)x].

Hence, (2.1) holds with ¢; = (T — A~ 1.
(ii): Let Ao € w(T) and A € C. Suppose that [A — Ao| < c;,, Where c;,, is a con-
stant such that (2.1) holds. Then for x € D(T'), we have

I(T = xDx| = (T —roD)x — A = 2o)x || = [|(T = roDx | — |A — Aolllx|
> (€ao = 12 = 2ol) Ixll.

Thus, A € w(T'), since |A — Ag| < cy,. This shows that the set 7 (T') is open.
(iii): Let y be in the closure of R(T — A[I). Then there is a sequence (x;),cN Of
vectors x, € D(T') such that y,, :== (T — Al)x, — y in . By (2.1) we have

= xll < e (T = 2D Gen = x0) | = €5y — yell-

Hence, (x,) is a Cauchy sequence in H, because (y,) is a Cauchy sequence. Let
x := lim, x,,. Then lim, Tx, = lim,(y, + Ax,) = y 4+ Ax. Since T is closable,
x € D(T) and Tx =y + Ax, so that y = (T — AI)x € R(T — AI). This proves
that R(T — AI) € R(T — AI). The converse inclusion follows immediately from
the definition of the closure 7. Thus, R(T — Al) = R(T — 1I).

Clearly, 7(T) = 7(T) by (2.1). Since R(T — A1) is the closure of R(T — AI),
both have the same orthogonal complements, so dy (T) = d(T) for » € 7 (T).

(iv) follows at once from (iii). O

Combining Proposition 2.1(iii) and formula (1.7), we obtain

Corollary 2.2 If T is a closable densely defined linear operator, and 1 € n(T),
then H =R(T —Al) ®N(T* — AI).
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The following technical lemma is needed in the proof of the next proposition.

Lemma 2.3 If F and G are closed linear subspaces of a Hilbert space H such that
dim F < dim G, then there exists a nonzero vector y € GN F L.

Proof 1In this proof we denote by | M| the cardinality of a set M. First, we suppose
that k = dim F is finite. We take a (k + 1)-dimensional subspace Gy of G and define
the mapping @ : Go — F by @ (x) = Px, where P is the projection of H onto F.
If @ would be injective, then k + 1 = dim Gy = dim @ (Gp) < dim F =k, which is a
contradiction. Hence, there is a nonzero vector y € N'(®). Clearly, y e GN F L
Now suppose that dim F is infinite. Let { f; : k € K} and {g; : [ € L} be orthonor-
mal bases of F and G, respectively. Set Li:={l € L : (fi, g1) # 0} for k € Kand
L' =Jyeg Lk Since each set Ly is at most countable and dim F = | K| is infinite,
we have |L'| < |K||N| = |K]|. Since |K| =dim F < dimG = |L| by assumption, we
deduce that L’ # L. Each vector g; with [ € L \ L’ is orthogonal to all fi, k € K,
and hence, it belongs to G N FL O

The next proposition is a classical result of M.A. Krasnosel’skii and M.G. Krein.

Proposition 2.4 Suppose that T is a closable linear operator on H. Then the defect
number d, (T) is constant on each connected component of the open set 7w (T).

Proof By Proposition 2.1(iii), we can assume without loss of generality that T is
closed. Then R(T — pl) is closed for all u € w(T") by Proposition 2.1(iv). There-
fore, setting KO\, :=R(T — wl)*, we have

(Kt =R(T —pul) for pen(T). (2.2)

Suppose that Ag € 7(T') and A € C are such that |\ — Ag| < c,. Then A € 7 (T)
by Proposition 2.1(ii). The crucial step is to prove that dy (T) = dj,(T).

Assume to the contrary that d; (T') # d,(T). First suppose that d, (T) < d;,,(T).
By Lemma 2.3 there exists a nonzero vector y € K, such that y € (K;)L. Then
y € R(T — AI) by (2.2), say y = (T — AI)x for some nonzero x € D(T). Since
y=(T —A)x € K;,,, we have

(T —ADx, (T — xD)x)=0. (2.3)

Equation (2.3) is symmetric in A and A, so it holds also when dy,(T) < dy(T).
Using (2.3), we derive

(T = xoD)x|> = (T = 2D)x + (. = ho)x, (T — roD)x)
< & =2olllxI[|(T = 2o Dx .
Thus, (T — Aol)x]|l <|A — Aolllx]l. Since x # 0 and | — Ag| < c,, we obtain
1= dolllx ]| < cxpllxll < (T = hoD)x|| < [& — Aol [1x]|
by (2.1), which is a contradiction. Thus, we have proved that dy (T') = d,,,(T).
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The proof will be now completed by using a well-known argument from ele-
mentary topology. Let & and § be points of the same connected component I/ of the
open set 7 (7T') in the complex plane. Then there exists a polygonal path P contained
inU froma to B.For A € P, letly ={) € C: |\ — A| <c;}. Then {Uy : A € P} is

an open cover of the compact set P, so there exists a finite subcover {Uf;,,, ..., U}
of P. Since d; (T) is constant on each open set Ufy, as shown in the preceding para-
graph, we conclude that dy (T') = dg(T). O

The numerical range of a linear operator T in H is defined by
O(T)={(Tx,x):x e D(T), |Ix|| =1}

A classical result of F. Hausdorff (see, e.g., [K2, V, Theorem 3.1]) says that & (T)
is a convex set. In general, the set ® (T') is neither closed nor open for a bounded or
closed operator. However, we have the following simple but useful fact.

Lemma 2.5 Let T be a linear operator on H. If A € C is not in the closure of O (T),
then A € w(T).

Proof Set y, :=dist(A, ©(T)) > 0. For x € D(T), ||x|| = 1, we have
(T —ADx| = |((T — ADx, x)| = |(Tx, x) = A| = y1.
so that || (T — AI)y|| = y, ||y for arbitrary y € D(T). Hence, 1 € = (T). O

2.2 Spectrum and Resolvent of a Closed Operator
In this section we assume that 7 is a closed linear operator on a Hilbert space H.

Definition 2.3 A complex number A belongs to the resolvent set p(T) of T if the
operator T — A1 has a bounded everywhere on H defined inverse (T — AI)~!, called
the resolvent of T at X and denoted by R, (T).

The set o (T) :=C\ p(T) is called the spectrum of the operator T'.

Remarks 1. Formally, the preceding definition could be also used to define the spec-
trum for a not necessarily closed operator 7. But if A € p(T'), then the bounded
everywhere defined operator (T — A1)~! is closed, so is its inverse T — AI by The-
orem 1.8(vi) and hence T. Therefore, if T is not closed, we would always have
that p(T) =@ and o (T') = C according to Definition 2.3, so the notion of spectrum
becomes trivial. For this reason, we assumed above that the operator T is closed.

2. The reader should notice that in the literature the resolvent R, (T) is often
defined by (A1 — T)~! rather than (T — AI)~! as we do.

By Definition 2.3, a complex number X is in p(7) if and only if there is an
operator B € B(H) such that
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B(T—A)CI and (T —AB=1.

The operator B is then uniquely determined and equal to the resolvent R, (T').

Proposition 2.6

) p(T)={1en(T):d,(T)=0}.
(ii) p(T) is an open subset, and o (T) is a closed subset of C.

Proof (1) follows at once from Proposition 2.1, (i) and (iv). Since 7 (T') is open and
d) (T) is locally constant on 7 (7) by Proposition 2.4, the assertion of (i) implies
that p(T) is open. Hence, o (T) = C\ p(T) is closed. Il

The requirement that the inverse (T — A1 )~ is bounded can be omitted in Defi-
nition 2.3. This is the first assertion of the next proposition.

Proposition 2.7 Let T be a closed operator on H.

(1) p(T) is the set of all numbers ) € C such that T — Al is a bijective mapping of
D(T) on H (or equivalently, N(T — A1) = {0} and R(T — A1) =H).

(i) Suppose that D(T) is dense in ‘H and let . € C. Then A € o (T) if and only if
A € o (T*). Moreover, R (T)* = R(T*) for A € p(T).

Proof (i): Clearly, T — A[ is bijective if and only if the inverse (T — AJ)~! exists
and is everywhere defined on . It remains to prove that (I — AI)~! is bounded
if T — Al is bijective. Since T is closed, T — A is closed, and so is its inverse
(T — AI)~! by Theorem 1.8(vi). That is, (T — AI)~! is a closed linear operator
defined on the whole Hilbert space H. Hence, (T — AI)~! is bounded by the closed
graph theorem.

(ii): It suffices to prove the corresponding assertion for the resolvent sets.

Let A € p(T). Then, by Theorem 1.8(iv), (T — AI)* = T* — AI is invertible, and
(T* =2~ = (T — AI)™Y*. Since (T — AI)~! € B(H) by A € p(T), we have
(T —xI)~"Y* e B(H), and hence (T* — A1)~! € B(H), thatis, A € p(T*).

Replacing 7 by T* and A by A and using the fact that 7 = T**, it follows that
A€ p(T*) implies A € p(T). Thus, A € p(T) if and only if A € p(T*). O

Proposition 2.8 Let T be a closed operator on H. Let U be a connected open
subset of C\®(T). If there exists a number Ly € U which is contained in p(T), then
U C p(T). Moreover, ||(T — A1)~Y|| < (dist(r, ©(T)))~! for » eU.

Proof By Lemma 2.5 we have U C 7 (T'). Therefore, since T is closed, it follows
from Proposition 2.1(iv) that R(T — A1) is closed in H for all A € Y. By Propo-
sition 2.4, the defect number d, (T') is constant on the connected open set /. But
dy,(T) =0 for A9 € U, since Ag € p(T). Hence, d,(T) = 0 on the whole set /.
Consequently, U € p(T') by Proposition 2.6(i).

From the inequality |[(T — AI)y|| > y.|ly| for y € D(T) shown in the proof of
Lemma 2.5 we get || (T — a1 | < y)f] for A e U, where y, =dist(A, ©(T)). U
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Next we define an important subset of the spectrum.

Definition 2.4 o,(T) := {1 € C : N(T — AI)#{0}} is the point spectrum of T.
We call A € 0p,(T) an eigenvalue of T, the dimension of N(T — A1) its multiplicity,
and any nonzero element of (T — AI) an eigenvector of T at A.

Let A be a point of the spectrum o (7"). Then, by Proposition 2.7(i), the operator
(T — A1) : ' D(T) — H is not bijective. This means that T — A is not injective or
T — Al is not surjective. Clearly, the point spectrum o}, (T) is precisely the set of all
A € o (T) for which T — A[ is not injective. Let us look now at the numbers where
the surjectivity of the operator 7 — A/ fails.

The set of all A € C for which T'— Al has a bounded inverse which is not defined
on the whole Hilbert space H is called the residual spectrum of T and denoted by
or(T). Note that o(T) = {A € n(T) : d,(T) # 0}. By Proposition 2.4 this descrip-
tion implies that o;(7T') is an open set. It follows from Proposition 3.10 below that
for self-adjoint operators 7', the residual spectrum o(7") is empty.

Further, the set of A € C for which the range of T — A is not closed, that is,
R(T — A1) # R(T — 1I), is called the continuous spectrum o.(T) of T. Then
o(T) = op(T) U or(T) Uoc(T), but the sets o.(T') and op(T') are in general not
disjoint, see Exercise 5.

Remark The reader should be cautioned that some authors (for instance, [RN,
BEH]) define o¢(T') as the complement of o (7T) U or(T) in o (T); then o (T) be-
comes the disjoint union of the three parts.

Example 2.1 (Example 1.3 continued) Let ¢ be a continuous function on an inter-
val J. Recall that the operator M, was defined by My, f = ¢- f for f in the domain
D(My) = {feL*(T) 1 ¢-f € L*(])).

Statement o (M) is the closure of the set ¢(J).

Proof Let & € ¢(J), say A = ¢(tg) for tp € J. Given ¢ > 0, by the continuity of ¢
there exists an interval K C J of positive length such that |¢(¢) — ¢(f)| < ¢ for all
t € K. Then ||[(My — AD) xk || < el xk . If A would be in p (M), then

Ixkll = | Rx(Mp)(My — MDD xk | < | Ri.(My) | el xk .

which is impossible if e||R; (My)|l < 1. Thus, A € 0(My) and ¢(J) € o(M,).
Hence, ¢(J) C o (My).

Suppose that X ¢ ¢(J). Then there is a ¢ > 0 such that |A — ¢(¢)| > ¢ for all
t € J. Hence, ¥ (t):=(¢(t) — A)~! is a bounded function on .7, so My, is bounded,
D(My) = L*(J), and My = (M, — AI)~". Therefore, A € p(M,). Oo

Now we turn to the resolvents. Suppose that 7 and S are closed operators on ‘H
such that D(S) € D(T). Then the following resolvent identities hold:
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Ru(T) — Ru(S) = Ru(T)(S = T)Rp(S) forrep(S)Np(T),  (24)
Ry(T) — Ry (T) = (A — 2) R (T) Ry (T)  for &, a9 € p(T). (2.5)
Indeed, if A € p(S) N p(T) and x € H, we have R, (S)x € D(S) CD(T) and

Ru(T)(S = T)R,.(S)x = Ru(T)((S — A1) — (T — A1) Ry.(S)x
= R).(T)x — Ry (S)x,

which proves (2.4). The second formula (2.5) follows at once from the first (2.4) by
setting § =T + (A — Ag)[ and using the relation Ry (S) = R (T).

Both identities (2.4) and (2.5) are very useful for the study of operator equations.
In particular, (2.5) implies that R, (T) and R;,(T) commute.

The next proposition shows that the resolvent R, (T') is an analytic function on
the resolvent set p(7") with values in the Banach space (B(H), || - ||).

Proposition 2.9 Suppose that Ao € p(T), A € C, and |A — L] < ||R)\O(T)||_1. Then
we have ) € p(T) and

Ru(T) =) (b —20)" Rpy ()", (2.6)
n=0

where the series converges in the operator norm. In particular,

Alinkl()” Ru(T) — Ry, (T)| =0 forrg € p(T). 2.7

Proof As stated in Proposition 2.1(i), (2.1) holds with ¢;, = ||R,\0(T)||’1, so that
|A — Aol < c3, by our assumption. Therefore, A € n(T) and d,(T) = d,,(T) =0,
and hence, A € p(T') by Propositions 2.4 and 2.6.

Since |[(A — Ag) Ry, (T)|| < 1 by assumption, the operator I — (A — Ag) Ry, (T)
has a bounded inverse on A which is given by the Neumann series

o0
(I = (= 2 Rio (1) =Y (k= 10)" Ry (T)". (2.8)
n=0
On the other hand, we have R, (T)(I — (A — X0)Ry,(T)) = Ry,(T) by (2.5), and
hence, R; (T) = R, (T)(I — (A —Ao) Ry, ()~ L. Multiplying (2.8) by Ry, (T) from
the left and using the latter identity, we obtain R, (7). This proves (2.6).
Since analytic operator-valued functions are continuous, (2.6) implies (2.7). U

From formula (2.6) it follows in particular that for arbitrary vectors x, y € H, the
complex function A — (R, (T)x, y) is analytic on the resolvent set p(T).

For T € B(H), it is well known (see, e.g., [RS1, Theorem VI1.6]) that the spec-
trum o (T') is not empty and contained in a circle centered at the origin with radius

r(T):= lim [7"]"".
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This number r(7T') is called the spectral radius of the operator T. Clearly, we
have r(T) < ||T||. If T € B(H) is self-adjoint, then r(T) = ||T'||.

By Proposition 2.6 the spectrum of a closed operator is a closed subset of C. Let
us emphasize that any closed subset (!) of the complex plane arises in this manner.
Example 2.2 shows that each nonempty closed subset is spectrum of some closed
operator. A closed operator with empty spectrum is given in Example 2.4 below.

Example 2.2 Suppose that M is a nonempty closed subset of C. Since C is separa-
ble, so is M, that is, there exists a countable subset {r, : n € N} of M which is dense
in M. Define the operator T on I>(N) by D(T) = {(x,) € [?(N) : (ryx,) € I>(N)}
and T (x,) = (r,x,) for (x,) € D(T). It is easily seen that D(T) = D(T*) and
T*(xp) = (ryxy) for (x,) € D(T*). Hence, T = T**, so T is closed. Each num-
ber r, is an eigenvalue of T, and we have o (T) ={r, :n e N} = M. o

The next propositions relate the spectrum of the resolvent to the spectrum of the
operator. Closed operators with compact resolvents will play an important role in
several later chapters of this book.

Proposition 2.10 Let A be a fixed number of p(T), and let > € C, L # Xp.

(i) &€ p(T) ifand only if (A = 20) ™" € p(Ry(T)).
(i) A is an eigenvalue of T if and only if (A — ro) " LVisan eigenvalue of R, (T). In
this case both eigenvalues have the same multiplicities.

Proof Both assertions are easy consequences of the following identity:
T—AI:(RAO(T)—(A—ko)’]l)(T—)\ol)()\o—)»). (2.9)

(1): Since (T — Apl) (o — M) is a bijection from D(T) to H, it follows from (2.9)
that 7 — A1 is a bijection from D(T') to H if and only if R, (T) — (A — ro) isa
bijection of H. By Proposition 2.7(i) this gives the assertion.

(ii): From (2.9) we conclude that (T — Aol ) (Ao — A) is a bijection of N (T — A1)
on N (Ry, (T) — (A — 20) " 1). O

We shall say that a closed operator T has a purely discrete spectrum if o (T') con-
sists only of eigenvalues of finite multiplicities which have no finite accumulation
point.

Proposition 2.11 Suppose that there exists a Ao € p(T) such that R;,(T) is com-
pact. Then Ry (T) is compact forall A € p(T),and T has a purely discrete spectrum.

Proof The compactness of R) (T") follows at once from the resolvent identity (2.5).
By Theorem A.3 all nonzero numbers in the spectrum of the compact operator
R;,(T) are eigenvalues of finite multiplicities which have no nonzero accumula-
tion point. By Proposition 2.10 this implies that the operator T has a purely discrete
spectrum. g
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2.3 Examples: Differentiation Operators I1

In this section we determine spectra and resolvents of the differentiation operators
. d
—i

7; on intervals from Sect. 1.3.1.

Example 2.3 (Example 1.4 continued: bounded interval (a, b)) Recall thatD(T*) =
H'(a,b) and T*f = —if’ for f € D(T*). For each 1 € C, f;(x) := ¢ is in
D(T*), and T* fj. = Afy, so A € 0p(T*). Thus, o(T*) = C. Since T = (T*)*,
Proposition 2.7(ii) implies that o (T") = C. o

Example 2.4 (Example 1.5 continued)
Statement o (S.) = {1 € C:e* @Dz =1} for z € C and 6 (Ss) = 9.

Proof Let & € C and g € L?(a, b). In order to “guess” the formula for the resolvent
of S;, we try to find an element f € D(S;) suchthat (S, — A f=—if —Af =g.
The general solution of the differential equation —if" — Af = g is

X

fx) =i (/ e Mg(t) dr + c,\,g), where ¢; , € C. (2.10)
a

Clearly, f € H'(a, b), since g € L%(a, b) and hence e g(¢) € L' (a, b). Hence, f
is in D(S;) if and only if f satisfies the boundary condition f(b) = zf (a) forz € C
resp. f(a) =0 for z = co.

First suppose that z € C and @2z £ 1. Then f € D(S,) if and only if

c)\’g:(e‘)‘(a_h)z—l)il‘/ e Mg()dt. (2.11)
a

‘We therefore define

X b
(Ri.(S)g) (x) = ie™ (/ e Meg(r) dt+(ei“”_b)z—l)*1/ e Mg(r) dt).

a a

Next suppose that z = 0o. Then f € D(Sx) if and only if ¢; , = 0, so we define

X
(Ri.(So0)g) (x) =i / e Mg,
a

We prove that Ry (S.), z € C U {oo}, is the resolvent of S.. Let g € L?(a, b)
and set f := R, (S;)g. By the preceding considerations, we have f € D(S;) and
(S;—=AD) f=(S; —AI)R,(S;)g = g. Hence, S; — Al is surjective. From (2.10) and
(2.11) we conclude that g = 0 implies that f =0, so S; — A/ is injective. Therefore,
by Proposition 2.7(i), A € p(S;) and (S; — A~ = R;.(S;). Thus, we have shown
that {1 : ¢*(@=0) 7 £ 1} C p(S,) for z € C and p(Sx) = C.

Suppose that z € C and ¢*@~?z = 1. Then f; (x) := ¢** belongs to D(S,), and
S, fo», = Lfy. Hence, A € 0 (S;). This completes the proof of the statement. O
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Let us consider the special case where |z| = 1, say z = €/*(®~%) with 1 € R. Then
the operator S; is self-adjoint (by Example 1.5) and the above statement yields

o(S)={u+b-a"2nk:keZ}. o

Example 2.5 (Example 1.6 continued: half-axis) Recall that D(T) = HOl (0, +00).
We prove that 0 (T) = {A € C: Im A < 0}.
Assume that ImA < 0. Then f.(x) := ¢** € D(T*) and T* f, = A f3, so that
e 0p(T*) and A € o (T) by Proposition 2.7(ii). Hence, {1 : ImA <0} C o (T).
Suppose now that Im A > 0 and define

X .
(Ru(T)g)(x) =i f M Dg()dr, g e L*(0,+00).
0
That is, R, (T) is the convolution operator with the function h(t) := ie™ on the
half-axis [0, +00). Since ImA > 0 and hence 4 € L'(0, +00), R;.(T) is a bounded
operator on L%(0, 400). Indeed, using the Cauchy—Schwarz inequality, we derive

00 X 2
||(RA(T)g)|}2=/0 ‘/O h(x —t)g(t)dt| dx

< /Ooo</0x]h(x —z)\dr)(/ox}h(x —t)||g(z)|2dz)dx

o X 5
snhnu(o,m)/o /0 Ih(e = 1)[|g(0)|*dt dx

o o 2
< 1Al L1 0,400 fo fo ()¢ drdx" = 111171 g o0 18117

Set f := Ry (T)g. Clearly, f € ACJa, b] for all intervals [a, b] € (0, +00). Since
f e L?(0,+00), f' =i(Af + g) € L?(0,+00) and f(0) =0, we have f €
Hol(O, 4+00) =D(T) and (T — Al)f = (T — AI)R,(T)g = g. This shows that
T — M is surjective. Since ImA > 0, N (T — AI) = {0}. Thus, T — A is bijective,
and hence A € p(T') by Proposition 2.7(i). From the equality (T — AR, (T)g =g
for g € L2(0, +00) it follows that R, (T) = (T — A1)~ is the resolvent of 7.

By the preceding we have proved that o (T) = {A : Im A < 0}. o

Example 2.6 (Example 1.7 continued: real line) Then the operator T = —i% on

H'(R) is self-adjoint. We show that o (T') =R.

Suppose that A € R. Let us choose a function @ € C°(R), w # 0, and put
he(x) := €'/2e™ g (ex) for € > 0. Since ||he| = ||w|| and |(T — ADhe|| = €||']l,
it follows that A is not in 7 (7') and so not in p(T). Hence, A € ¢ (T). Since T is
self-adjoint, o (T") € R by Corollary 3.14 below. Thus, o (T) = R.

The resolvents of T for A € C\R are given by the formulas

(R.(T)g) (x) :i/x e Detydr, Imi >0, (2.12)

+oo |
(Ri(T)g)(x) = —i/ e Derydr, Imi <. (2.13)

X
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Exercises

. Find a bounded operator T such that @ (T) is not the convex hull of o (T).

Hint: Look for some lower triangular 2 x 2-matrix.

. Let o = (a0;)nen be a complex sequence. Define an operator 7, on 12(N) with

domain D(T) = {(gn) € *(N) : (@ngn) € >N} by Tu(@n) = (@npn).
a. Determine the spectrum o (1) and the point spectrum o (7).
b. When has T, a discrete spectrum?

. Let M, be the multiplication operator from Example 2.1. Find necessary

and/or sufficient conditions for a number belonging to the point spectrum
op(My).

. Let T7 and T5 be closed operators on H; and H,, respectively.

a. Show that 71 @ T, is a closed operator on H| @ Hs.
b. Show that o (T & T7) = o (T1) Ua (T3).

. Find a bounded operator T and a A € o,(T) such that R(T — AlI) #

R(T — AI).
Hint: Look for some operator T =71 & T>.

.LetT=—iL onD(T)={f € H'(0,1): f(0) =0} in H = L2(0, 1).

a. Show that T is a closed operator.
b. Determine the adjoint operator 7*.
c. Show that p(T') = C and determine the operator R, (T') for A € C.

. Prove the two resolvent formulas (2.12) and (2.13) in Example 2.6. Show that

none of these operators is compact.

. Let g be a real-valued continuous function on [a, b], a,b € R, a < b. For

z € T, define an operator 7, on L%*(a,b) by (T, f)(x) = —if'(x) + qg(x) f (x)
with domain D(T,) = {f € H'(a,b) : f(b) =zf (a)}.
a. Show that 7, is a self-adjoint operator on L>(a, b).
b. Determine the spectrum and the resolvent R; (77) for A € p(T).
Hint: Find a unitary operator U on L?(a, b) such that T, = UTU*, where
T is the operator from Example 2.3.

. Find a densely defined closed operator 7" such that each complex number is

an eigenvalue of T*, but T has no eigenvalue.

Let T be a closed operator on H. Use formula (2.6) to prove that
dR;(T) . Ry n(T) — Ry (T) 2
= 1 == R T 5 )\. S T N
h Jim A w(T) p(T)

in the operator norm on H.

Prove that o (T S)U{0} = o (ST)U{0} for T € B(H1, Hz) and S € B(H3, H1).
Hint: Verify that (ST — A1)~ = A~ [S(TS —AI)~'T — I for » #0.
(Volterra integral operator)

Let K be a bounded measurable function on {(x, y) € R%Z:0 < y<x <1}
Prove that the spectrum of the Volterra operator Vi is equal to {0}, where

(VKf)(X):/0 K(x,nf@dt, feL*0,1).
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2 The Spectrum of a Closed Operator
Hints: Show that (V)" is an integral operator with kernel K, satisfying

|[KnCe.p)[ < M"1x = yI"~ /(e = DL where M := ||K | L~0.1)-
Then deduce that ||(Vg)"|| < M" /(n — 1)! and hence lim,, ||(Vg)"||!/" = 0.
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