
Chapter 2
The Spectrum of a Closed Operator

The main themes of this chapter are the most important concepts concerning general
closed operators, spectrum and resolvent. Section 2.2 is devoted to basic properties
of these notions for arbitrary closed operators. In Sect. 2.3 we treat again differen-
tiation operators as illustrating examples. First however, in Sect. 2.1 we introduce
regular points and defect numbers and derive some technical results that are useful
for the study of spectra (Sect. 2.2) and for self-adjointness criteria (Sect. 13.2).

2.1 Regular Points and Defect Numbers of Operators

Let T be a linear operator on a Hilbert space H.

Definition 2.1 A complex number λ is called a regular point for T if there exists a
number cλ > 0 such that

∥
∥(T − λI)x

∥
∥ ≥ cλ‖x‖ for all x ∈ D(T ). (2.1)

The set of regular points of T is the regularity domain of T and denoted by π(T ).

Remark There is no unique symbol for the regularity domain of an operator in the
literature. It is denoted by ρ̂(T ) in [BS], by Π(T ) in [EE], and by Γ (T ) in [We].
Many books have no special symbol for this set.

Recall that the dimension of a Hilbert space H, denoted by dimH, is defined by
the cardinality of an orthonormal basis of H.

Definition 2.2 For λ ∈ π(T ), we call the linear subspace R(T − λI)⊥ of H the
deficiency subspace of T at λ and its dimension dλ(T ) := dimR(T − λI)⊥ the
defect number of T at λ.

Deficiency spaces and defect numbers will play a crucial role in the theory of
self-adjoint extensions of symmetric operators developed in Chap. 13.

A number of properties of these notions are collected in the next proposition.
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26 2 The Spectrum of a Closed Operator

Proposition 2.1 Let T be a linear operator on H, and λ ∈ C.

(i) λ ∈ π(T ) if and only if T − λI has a bounded inverse (T − λI)−1 defined on
R(T − λI). In this case inequality (2.1) holds with cλ = ‖(T − λI)−1‖−1.

(ii) π(T ) is an open subset of C. More precisely, if λ0 ∈ π(T ), λ ∈ C, and
|λ − λ0| < cλ0 , where cλ0 is a constant satisfying (2.1) for λ0, then λ ∈ π(T ).

(iii) If T is closable, then π(T ) = π(T ), dλ(T ) = dλ(T ), and R(T − λI) is the
closure of R(T − λI) in H for each λ ∈ π(T ).

(iv) If T is closed and λ ∈ π(T ), then R(T −λI) is a closed linear subspace of H.

Proof (i): First suppose that λ ∈ π(T ). Then N (T − λI) = {0} by (2.1), so the
inverse (T − λI)−1 exists. Let y ∈ D((T − λI)−1) = R(T − λI). Then we have
y = (T − λI)x for some x ∈D(T ), and hence,

∥
∥(T − λI)−1y

∥
∥ = ‖x‖ ≤ c−1

λ

∥
∥(T − λI)x

∥
∥ = c−1

λ ‖y‖
by (2.1). That is, (T − λI)−1 is bounded, and ‖(T − λI)−1‖ ≤ c−1

λ .
Assume now that (T − λI)−1 has a bounded inverse. Then, with x and y as

above,

‖x‖ = ∥
∥(T − λI)−1y

∥
∥ ≤ ∥

∥(T − λI)−1
∥
∥‖y‖ = ∥

∥(T − λI)−1
∥
∥
∥
∥(T − λI)x

∥
∥.

Hence, (2.1) holds with cλ = ‖(T − λI)−1‖−1.
(ii): Let λ0 ∈ π(T ) and λ ∈ C. Suppose that |λ − λ0| < cλ0 , where cλ0 is a con-

stant such that (2.1) holds. Then for x ∈ D(T ), we have
∥
∥(T − λI)x

∥
∥ = ∥

∥(T − λ0I )x − (λ − λ0)x
∥
∥ ≥ ∥

∥(T − λ0I )x
∥
∥ − |λ − λ0|‖x‖

≥ (

cλ0 − |λ − λ0|
)‖x‖.

Thus, λ ∈ π(T ), since |λ − λ0| < cλ0 . This shows that the set π(T ) is open.
(iii): Let y be in the closure of R(T − λI). Then there is a sequence (xn)n∈N of

vectors xn ∈D(T ) such that yn := (T − λI)xn → y in H. By (2.1) we have

‖xn − xk‖ ≤ c−1
λ

∥
∥(T − λI)(xn − xk)

∥
∥ = c−1

λ ‖yn − yk‖.
Hence, (xn) is a Cauchy sequence in H, because (yn) is a Cauchy sequence. Let
x := limn xn. Then limn T xn = limn(yn + λxn) = y + λx. Since T is closable,
x ∈ D(T ) and T x = y + λx, so that y = (T − λI)x ∈ R(T − λI). This proves
that R(T − λI) ⊆ R(T − λI). The converse inclusion follows immediately from
the definition of the closure T . Thus, R(T − λI) =R(T − λI).

Clearly, π(T ) = π(T ) by (2.1). Since R(T − λI) is the closure of R(T − λI),
both have the same orthogonal complements, so dλ(T ) = dλ(T ) for λ ∈ π(T ).

(iv) follows at once from (iii). �

Combining Proposition 2.1(iii) and formula (1.7), we obtain

Corollary 2.2 If T is a closable densely defined linear operator, and λ ∈ π(T ),
then H =R(T − λI) ⊕N (T ∗ − λI).
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The following technical lemma is needed in the proof of the next proposition.

Lemma 2.3 If F and G are closed linear subspaces of a Hilbert space H such that
dimF < dimG, then there exists a nonzero vector y ∈ G ∩F⊥.

Proof In this proof we denote by |M| the cardinality of a set M . First, we suppose
that k = dimF is finite. We take a (k + 1)-dimensional subspace G0 of G and define
the mapping Φ : G0 → F by Φ(x) = Px, where P is the projection of H onto F .
If Φ would be injective, then k + 1 = dimG0 = dimΦ(G0) ≤ dimF = k, which is a
contradiction. Hence, there is a nonzero vector y ∈N (Φ). Clearly, y ∈ G ∩F⊥.

Now suppose that dimF is infinite. Let {fk : k ∈ K} and {gl : l ∈ L} be orthonor-
mal bases of F and G, respectively. Set Lk:={l ∈ L : 〈fk, gl〉 �= 0} for k ∈ Kand
L′ = ⋃

k∈K Lk . Since each set Lk is at most countable and dimF = |K| is infinite,
we have |L′| ≤ |K||N| = |K|. Since |K| = dimF < dimG = |L| by assumption, we
deduce that L′ �= L. Each vector gl with l ∈ L \ L′ is orthogonal to all fk , k ∈ K ,
and hence, it belongs to G ∩F⊥. �

The next proposition is a classical result of M.A. Krasnosel’skii and M.G. Krein.

Proposition 2.4 Suppose that T is a closable linear operator on H. Then the defect
number dλ(T ) is constant on each connected component of the open set π(T ).

Proof By Proposition 2.1(iii), we can assume without loss of generality that T is
closed. Then R(T − μI) is closed for all μ ∈ π(T ) by Proposition 2.1(iv). There-
fore, setting Kμ := R(T − μI)⊥, we have

(Kμ)⊥ = R(T − μI) for μ ∈ π(T ). (2.2)

Suppose that λ0 ∈ π(T ) and λ ∈ C are such that |λ − λ0| < cλ0 . Then λ ∈ π(T )

by Proposition 2.1(ii). The crucial step is to prove that dλ(T ) = dλ0(T ).
Assume to the contrary that dλ(T ) �= dλ0(T ). First suppose that dλ(T ) < dλ0(T ).

By Lemma 2.3 there exists a nonzero vector y ∈ Kλ0 such that y ∈ (Kλ)
⊥. Then

y ∈ R(T − λI) by (2.2), say y = (T − λI)x for some nonzero x ∈ D(T ). Since
y = (T − λI)x ∈ Kλ0 , we have

〈

(T − λI)x, (T − λ0I )x
〉 = 0. (2.3)

Equation (2.3) is symmetric in λ and λ0, so it holds also when dλ0(T ) < dλ(T ).
Using (2.3), we derive

∥
∥(T − λ0I )x

∥
∥2 = 〈

(T − λI)x + (λ − λ0)x, (T − λ0I )x
〉

≤ |λ − λ0|‖x‖∥∥(T − λ0I )x
∥
∥.

Thus, ‖(T − λ0I )x‖ ≤ |λ − λ0|‖x‖. Since x �= 0 and |λ − λ0| < cλ0 , we obtain

|λ − λ0|‖x‖ < cλ0‖x‖ ≤ ∥
∥(T − λ0I )x

∥
∥ ≤ |λ − λ0|‖x‖

by (2.1), which is a contradiction. Thus, we have proved that dλ(T ) = dλ0(T ).



28 2 The Spectrum of a Closed Operator

The proof will be now completed by using a well-known argument from ele-
mentary topology. Let α and β be points of the same connected component U of the
open set π(T ) in the complex plane. Then there exists a polygonal path P contained
in U from α to β . For λ ∈ P , let Uλ = {λ′ ∈ C : |λ′ − λ| < cλ}. Then {Uλ : λ ∈ P} is
an open cover of the compact set P , so there exists a finite subcover {Uλ1 , . . . ,Uλs }
of P . Since dλ(T ) is constant on each open set Uλk

as shown in the preceding para-
graph, we conclude that dα(T ) = dβ(T ). �

The numerical range of a linear operator T in H is defined by

Θ(T ) = {〈T x, x〉 : x ∈ D(T ), ‖x‖ = 1
}

.

A classical result of F. Hausdorff (see, e.g., [K2, V, Theorem 3.1]) says that Θ(T )

is a convex set. In general, the set Θ(T ) is neither closed nor open for a bounded or
closed operator. However, we have the following simple but useful fact.

Lemma 2.5 Let T be a linear operator on H. If λ ∈ C is not in the closure of Θ(T ),
then λ ∈ π(T ).

Proof Set γλ := dist(λ,Θ(T )) > 0. For x ∈D(T ), ‖x‖ = 1, we have
∥
∥(T − λI)x

∥
∥ ≥ ∣

∣
〈

(T − λI)x, x
〉∣
∣ = ∣

∣〈T x,x〉 − λ
∣
∣ ≥ γλ,

so that ‖(T − λI)y‖ ≥ γλ‖y‖ for arbitrary y ∈ D(T ). Hence, λ ∈ π(T ). �

2.2 Spectrum and Resolvent of a Closed Operator

In this section we assume that T is a closed linear operator on a Hilbert space H.

Definition 2.3 A complex number λ belongs to the resolvent set ρ(T ) of T if the
operator T −λI has a bounded everywhere on H defined inverse (T −λI)−1, called
the resolvent of T at λ and denoted by Rλ(T ).

The set σ(T ) := C \ ρ(T ) is called the spectrum of the operator T .

Remarks 1. Formally, the preceding definition could be also used to define the spec-
trum for a not necessarily closed operator T . But if λ ∈ ρ(T ), then the bounded
everywhere defined operator (T − λI)−1 is closed, so is its inverse T − λI by The-
orem 1.8(vi) and hence T . Therefore, if T is not closed, we would always have
that ρ(T ) = ∅ and σ(T ) =C according to Definition 2.3, so the notion of spectrum
becomes trivial. For this reason, we assumed above that the operator T is closed.

2. The reader should notice that in the literature the resolvent Rλ(T ) is often
defined by (λI − T )−1 rather than (T − λI)−1 as we do.

By Definition 2.3, a complex number λ is in ρ(T ) if and only if there is an
operator B ∈ B(H) such that
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B(T − λI) ⊆ I and (T − λI)B = I.

The operator B is then uniquely determined and equal to the resolvent Rλ(T ).

Proposition 2.6

(i) ρ(T ) = {λ ∈ π(T ) : dλ(T ) = 0}.
(ii) ρ(T ) is an open subset, and σ(T ) is a closed subset of C.

Proof (i) follows at once from Proposition 2.1, (i) and (iv). Since π(T ) is open and
dλ(T ) is locally constant on π(T ) by Proposition 2.4, the assertion of (i) implies
that ρ(T ) is open. Hence, σ(T ) =C \ ρ(T ) is closed. �

The requirement that the inverse (T − λI)−1 is bounded can be omitted in Defi-
nition 2.3. This is the first assertion of the next proposition.

Proposition 2.7 Let T be a closed operator on H.

(i) ρ(T ) is the set of all numbers λ ∈ C such that T − λI is a bijective mapping of
D(T ) on H (or equivalently, N (T − λI) = {0} and R(T − λI) =H).

(ii) Suppose that D(T ) is dense in H and let λ ∈ C. Then λ ∈ σ(T ) if and only if
λ ∈ σ(T ∗). Moreover, Rλ(T )∗ = Rλ(T

∗) for λ ∈ ρ(T ).

Proof (i): Clearly, T − λI is bijective if and only if the inverse (T − λI)−1 exists
and is everywhere defined on H. It remains to prove that (T − λI)−1 is bounded
if T − λI is bijective. Since T is closed, T − λI is closed, and so is its inverse
(T − λI)−1 by Theorem 1.8(vi). That is, (T − λI)−1 is a closed linear operator
defined on the whole Hilbert space H. Hence, (T − λI)−1 is bounded by the closed
graph theorem.

(ii): It suffices to prove the corresponding assertion for the resolvent sets.
Let λ ∈ ρ(T ). Then, by Theorem 1.8(iv), (T − λI)∗ = T ∗ − λI is invertible, and

(T ∗ − λI)−1 = ((T − λI)−1)∗. Since (T − λI)−1 ∈ B(H) by λ ∈ ρ(T ), we have
((T − λI)−1)∗ ∈ B(H), and hence (T ∗ − λI)−1 ∈ B(H), that is, λ ∈ ρ(T ∗).

Replacing T by T ∗ and λ by λ and using the fact that T = T ∗∗, it follows that
λ ∈ ρ(T ∗) implies λ ∈ ρ(T ). Thus, λ ∈ ρ(T ) if and only if λ ∈ ρ(T ∗). �

Proposition 2.8 Let T be a closed operator on H. Let U be a connected open
subset of C\Θ(T ). If there exists a number λ0 ∈ U which is contained in ρ(T ), then
U ⊆ ρ(T ). Moreover, ‖(T − λI)−1‖ ≤ (dist(λ,Θ(T )))−1 for λ ∈ U .

Proof By Lemma 2.5 we have U ⊆ π(T ). Therefore, since T is closed, it follows
from Proposition 2.1(iv) that R(T − λI) is closed in H for all λ ∈ U . By Propo-
sition 2.4, the defect number dλ(T ) is constant on the connected open set U . But
dλ0(T ) = 0 for λ0 ∈ U , since λ0 ∈ ρ(T ). Hence, dλ(T ) = 0 on the whole set U .
Consequently, U ⊆ ρ(T ) by Proposition 2.6(i).

From the inequality ‖(T − λI)y‖ ≥ γλ‖y‖ for y ∈ D(T ) shown in the proof of
Lemma 2.5 we get ‖(T − λI)−1‖ ≤ γ −1

λ for λ ∈ U , where γλ = dist(λ,Θ(T )). �
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Next we define an important subset of the spectrum.

Definition 2.4 σp(T ) := {λ ∈ C : N (T − λI)�={0}} is the point spectrum of T .
We call λ ∈ σp(T ) an eigenvalue of T , the dimension of N (T − λI) its multiplicity,
and any nonzero element of N (T − λI) an eigenvector of T at λ.

Let λ be a point of the spectrum σ(T ). Then, by Proposition 2.7(i), the operator
(T − λI) : D(T ) → H is not bijective. This means that T − λI is not injective or
T − λI is not surjective. Clearly, the point spectrum σp(T ) is precisely the set of all
λ ∈ σ(T ) for which T − λI is not injective. Let us look now at the numbers where
the surjectivity of the operator T − λI fails.

The set of all λ ∈C for which T −λI has a bounded inverse which is not defined
on the whole Hilbert space H is called the residual spectrum of T and denoted by
σr(T ). Note that σr(T ) = {λ ∈ π(T ) : dλ(T ) �= 0}. By Proposition 2.4 this descrip-
tion implies that σr(T ) is an open set. It follows from Proposition 3.10 below that
for self-adjoint operators T , the residual spectrum σr(T ) is empty.

Further, the set of λ ∈ C for which the range of T − λI is not closed, that is,
R(T − λI) �= R(T − λI), is called the continuous spectrum σc(T ) of T . Then
σ(T ) = σp(T ) ∪ σr(T ) ∪ σc(T ), but the sets σc(T ) and σp(T ) are in general not
disjoint, see Exercise 5.

Remark The reader should be cautioned that some authors (for instance, [RN,
BEH]) define σc(T ) as the complement of σp(T ) ∪ σr(T ) in σ(T ); then σ(T ) be-
comes the disjoint union of the three parts.

Example 2.1 (Example 1.3 continued) Let ϕ be a continuous function on an inter-
val J . Recall that the operator Mϕ was defined by Mϕf = ϕ·f for f in the domain
D(Mϕ) = {f ∈L2(J ) : ϕ·f ∈ L2(J )}.

Statement σ(Mϕ) is the closure of the set ϕ(J ).

Proof Let λ ∈ ϕ(J ), say λ = ϕ(t0) for t0 ∈ J . Given ε > 0, by the continuity of ϕ

there exists an interval K ⊆ J of positive length such that |ϕ(t) − ϕ(t0)| ≤ ε for all
t ∈ K . Then ‖(Mϕ − λI)χK‖ ≤ ε‖χK‖. If λ would be in ρ(Mϕ), then

‖χK‖ = ∥
∥Rλ(Mϕ)(Mϕ − λI)χK

∥
∥ ≤ ∥

∥Rλ(Mϕ)
∥
∥ε‖χK‖,

which is impossible if ε‖Rλ(Mϕ)‖ < 1. Thus, λ ∈ σ(Mϕ) and ϕ(J ) ⊆ σ(Mϕ).
Hence, ϕ(J ) ⊆ σ(Mϕ).

Suppose that λ /∈ ϕ(J ). Then there is a c > 0 such that |λ − ϕ(t)| ≥ c for all
t ∈ J . Hence, ψ(t):=(ϕ(t) − λ)−1 is a bounded function on J , so Mψ is bounded,
D(Mψ) = L2(J ), and Mψ = (Mϕ − λI)−1. Therefore, λ ∈ ρ(Mϕ). � ◦

Now we turn to the resolvents. Suppose that T and S are closed operators on H
such that D(S) ⊆D(T ). Then the following resolvent identities hold:
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Rλ(T ) − Rλ(S) = Rλ(T )(S − T )Rλ(S) for λ ∈ ρ(S) ∩ ρ(T ), (2.4)

Rλ(T ) − Rλ0(T ) = (λ − λ0)Rλ(T )Rλ0(T ) for λ,λ0 ∈ ρ(T ). (2.5)

Indeed, if λ ∈ ρ(S) ∩ ρ(T ) and x ∈H, we have Rλ(S)x ∈D(S) ⊆D(T ) and

Rλ(T )(S − T )Rλ(S)x = Rλ(T )
(

(S − λI) − (T − λI)
)

Rλ(S)x

= Rλ(T )x − Rλ(S)x,

which proves (2.4). The second formula (2.5) follows at once from the first (2.4) by
setting S = T + (λ − λ0)I and using the relation Rλ(S) = Rλ0(T ).

Both identities (2.4) and (2.5) are very useful for the study of operator equations.
In particular, (2.5) implies that Rλ(T ) and Rλ0(T ) commute.

The next proposition shows that the resolvent Rλ(T ) is an analytic function on
the resolvent set ρ(T ) with values in the Banach space (B(H),‖ · ‖).

Proposition 2.9 Suppose that λ0 ∈ ρ(T ), λ ∈ C, and |λ−λ0| < ‖Rλ0(T )‖−1. Then
we have λ ∈ ρ(T ) and

Rλ(T ) =
∞
∑

n=0

(λ − λ0)
nRλ0(T )n+1, (2.6)

where the series converges in the operator norm. In particular,

lim
λ→λ0

∥
∥Rλ(T ) − Rλ0(T )

∥
∥ = 0 for λ0 ∈ ρ(T ). (2.7)

Proof As stated in Proposition 2.1(i), (2.1) holds with cλ0 = ‖Rλ0(T )‖−1, so that
|λ − λ0| < cλ0 by our assumption. Therefore, λ ∈ π(T ) and dλ(T ) = dλ0(T ) = 0,
and hence, λ ∈ ρ(T ) by Propositions 2.4 and 2.6.

Since ‖(λ − λ0)Rλ0(T )‖ < 1 by assumption, the operator I − (λ − λ0)Rλ0(T )

has a bounded inverse on H which is given by the Neumann series

(

I − (λ − λ0)Rλ0(T )
)−1 =

∞
∑

n=0

(λ − λ0)
nRλ0(T )n. (2.8)

On the other hand, we have Rλ(T )(I − (λ − λ0)Rλ0(T )) = Rλ0(T ) by (2.5), and
hence, Rλ(T ) = Rλ0(T )(I − (λ−λ0)Rλ0(T ))−1. Multiplying (2.8) by Rλ0(T ) from
the left and using the latter identity, we obtain Rλ(T ). This proves (2.6).

Since analytic operator-valued functions are continuous, (2.6) implies (2.7). �

From formula (2.6) it follows in particular that for arbitrary vectors x, y ∈ H, the
complex function λ → 〈Rλ(T )x, y〉 is analytic on the resolvent set ρ(T ).

For T ∈ B(H), it is well known (see, e.g., [RS1, Theorem VI.6]) that the spec-
trum σ(T ) is not empty and contained in a circle centered at the origin with radius

r(T ) := lim
n→∞

∥
∥T n

∥
∥

1/n
.
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This number r(T ) is called the spectral radius of the operator T . Clearly, we
have r(T ) ≤ ‖T ‖. If T ∈ B(H) is self-adjoint, then r(T ) = ‖T ‖.

By Proposition 2.6 the spectrum of a closed operator is a closed subset of C. Let
us emphasize that any closed subset (!) of the complex plane arises in this manner.
Example 2.2 shows that each nonempty closed subset is spectrum of some closed
operator. A closed operator with empty spectrum is given in Example 2.4 below.

Example 2.2 Suppose that M is a nonempty closed subset of C. Since C is separa-
ble, so is M , that is, there exists a countable subset {rn : n ∈ N} of M which is dense
in M . Define the operator T on l2(N) by D(T ) = {(xn) ∈ l2(N) : (rnxn) ∈ l2(N)}
and T (xn) = (rnxn) for (xn) ∈ D(T ). It is easily seen that D(T ) = D(T ∗) and
T ∗(xn) = (rnxn) for (xn) ∈ D(T ∗). Hence, T = T ∗∗, so T is closed. Each num-
ber rn is an eigenvalue of T , and we have σ(T ) = {rn : n ∈N} = M . ◦

The next propositions relate the spectrum of the resolvent to the spectrum of the
operator. Closed operators with compact resolvents will play an important role in
several later chapters of this book.

Proposition 2.10 Let λ0 be a fixed number of ρ(T ), and let λ ∈C, λ �= λ0.

(i) λ ∈ ρ(T ) if and only if (λ − λ0)
−1 ∈ ρ(Rλ0(T )).

(ii) λ is an eigenvalue of T if and only if (λ − λ0)
−1 is an eigenvalue of Rλ0(T ). In

this case both eigenvalues have the same multiplicities.

Proof Both assertions are easy consequences of the following identity:

T − λI = (

Rλ0(T ) − (λ − λ0)
−1I

)

(T − λ0I )(λ0 − λ). (2.9)

(i): Since (T −λ0I )(λ0 −λ) is a bijection from D(T ) to H, it follows from (2.9)
that T − λI is a bijection from D(T ) to H if and only if Rλ0(T ) − (λ − λ0)

−1I is a
bijection of H. By Proposition 2.7(i) this gives the assertion.

(ii): From (2.9) we conclude that (T − λ0I )(λ0 − λ) is a bijection of N (T − λI)

on N (Rλ0(T ) − (λ − λ0)
−1I ). �

We shall say that a closed operator T has a purely discrete spectrum if σ(T ) con-
sists only of eigenvalues of finite multiplicities which have no finite accumulation
point.

Proposition 2.11 Suppose that there exists a λ0 ∈ ρ(T ) such that Rλ0(T ) is com-
pact. Then Rλ(T ) is compact for all λ ∈ ρ(T ), and T has a purely discrete spectrum.

Proof The compactness of Rλ(T ) follows at once from the resolvent identity (2.5).
By Theorem A.3 all nonzero numbers in the spectrum of the compact operator
Rλ0(T ) are eigenvalues of finite multiplicities which have no nonzero accumula-
tion point. By Proposition 2.10 this implies that the operator T has a purely discrete
spectrum. �
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2.3 Examples: Differentiation Operators II

In this section we determine spectra and resolvents of the differentiation operators
−i d

dx
on intervals from Sect. 1.3.1.

Example 2.3 (Example 1.4 continued: bounded interval (a, b)) Recall that D(T ∗) =
H 1(a, b) and T ∗f = −if ′ for f ∈ D(T ∗). For each λ ∈ C, fλ(x) := eiλx is in
D(T ∗), and T ∗fλ = λfλ, so λ ∈ σp(T

∗). Thus, σ(T ∗) = C. Since T = (T ∗)∗,
Proposition 2.7(ii) implies that σ(T ) =C. ◦

Example 2.4 (Example 1.5 continued)

Statement σ(Sz) = {λ ∈C : eiλ(a−b)z = 1} for z ∈C and σ(S∞) = ∅.

Proof Let λ ∈ C and g ∈ L2(a, b). In order to “guess” the formula for the resolvent
of Sz, we try to find an element f ∈ D(Sz) such that (Sz − λI)f ≡ −if ′ − λf = g.
The general solution of the differential equation −if ′ − λf = g is

f (x) = ieiλx

(∫ x

a

e−iλtg(t) dt + cλ,g

)

, where cλ,g ∈ C. (2.10)

Clearly, f ∈ H 1(a, b), since g ∈ L2(a, b) and hence e−iλtg(t) ∈ L1(a, b). Hence, f
is in D(Sz) if and only if f satisfies the boundary condition f (b) = zf (a) for z ∈C

resp. f (a) = 0 for z = ∞.
First suppose that z ∈ C and eiλ(a−b)z �= 1. Then f ∈ D(Sz) if and only if

cλ,g = (

eiλ(a−b)z − 1
)−1

∫ b

a

e−iλtg(t) dt. (2.11)

We therefore define

(

Rλ(Sz)g
)

(x) = ieiλx

(∫ x

a

e−iλtg(t) dt + (

eiλ(a−b)z − 1
)−1

∫ b

a

e−iλtg(t) dt

)

.

Next suppose that z = ∞. Then f ∈ D(S∞) if and only if cλ,g = 0, so we define

(

Rλ(S∞)g
)

(x) = ieiλx

∫ x

a

e−iλtg(t) dt.

We prove that Rλ(Sz), z ∈ C ∪ {∞}, is the resolvent of Sz. Let g ∈ L2(a, b)

and set f := Rλ(Sz)g. By the preceding considerations, we have f ∈ D(Sz) and
(Sz −λI)f = (Sz −λI)Rλ(Sz)g = g. Hence, Sz −λI is surjective. From (2.10) and
(2.11) we conclude that g = 0 implies that f = 0, so Sz −λI is injective. Therefore,
by Proposition 2.7(i), λ ∈ ρ(Sz) and (Sz − λI)−1 = Rλ(Sz). Thus, we have shown
that {λ : eiλ(a−b)z �= 1} ⊆ ρ(Sz) for z ∈ C and ρ(S∞) =C.

Suppose that z ∈ C and eiλ(a−b)z = 1. Then fλ(x) := eiλx belongs to D(Sz), and
Szfλ = λfλ. Hence, λ ∈ σ(Sz). This completes the proof of the statement. �
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Let us consider the special case where |z| = 1, say z = eiμ(b−a) with μ ∈ R. Then
the operator Sz is self-adjoint (by Example 1.5) and the above statement yields

σ(Sz) = {

μ + (b − a)−12πk : k ∈ Z
}

. ◦

Example 2.5 (Example 1.6 continued: half-axis) Recall that D(T ) = H 1
0 (0,+∞).

We prove that σ(T ) = {λ ∈C : Imλ ≤ 0}.
Assume that Imλ < 0. Then fλ(x) := eiλx ∈ D(T ∗) and T ∗fλ = λfλ, so that

λ ∈ σp(T
∗) and λ ∈ σ(T ) by Proposition 2.7(ii). Hence, {λ : Imλ ≤ 0} ⊆ σ(T ).

Suppose now that Imλ > 0 and define

(

Rλ(T )g
)

(x) = i
∫ x

0
eiλ(x−t)g(t) dt, g ∈ L2(0,+∞).

That is, Rλ(T ) is the convolution operator with the function h(t) := ieiλt on the
half-axis [0,+∞). Since Imλ > 0 and hence h ∈ L1(0,+∞), Rλ(T ) is a bounded
operator on L2(0,+∞). Indeed, using the Cauchy–Schwarz inequality, we derive

∥
∥
(

Rλ(T )g
)∥
∥2 =

∫ ∞

0

∣
∣
∣
∣

∫ x

0
h(x − t)g(t) dt

∣
∣
∣
∣

2

dx

≤
∫ ∞

0

(∫ x

0

∣
∣h(x − t)

∣
∣dt

)(∫ x

0

∣
∣h(x − t)

∣
∣
∣
∣g(t)

∣
∣
2
dt

)

dx

≤ ‖h‖L1(0,+∞)

∫ ∞

0

∫ x

0

∣
∣h(x − t)

∣
∣
∣
∣g(t)

∣
∣
2
dt dx

≤ ‖h‖L1(0,+∞)

∫ ∞

0

∫ ∞

0

∣
∣h

(

x′)∣∣∣∣g(t)
∣
∣
2
dt dx′ = ‖h‖2

L1(0,+∞)
‖g‖2.

Set f := Rλ(T )g. Clearly, f ∈ AC[a, b] for all intervals [a, b] ⊆ (0,+∞). Since
f ∈ L2(0,+∞), f ′ = i(λf + g) ∈ L2(0,+∞) and f (0) = 0, we have f ∈
H 1

0 (0,+∞) = D(T ) and (T − λI)f = (T − λI)Rλ(T )g = g. This shows that
T − λI is surjective. Since Imλ > 0, N (T − λI) = {0}. Thus, T − λI is bijective,
and hence λ ∈ ρ(T ) by Proposition 2.7(i). From the equality (T − λI)Rλ(T )g = g

for g ∈ L2(0,+∞) it follows that Rλ(T ) = (T − λI)−1 is the resolvent of T .
By the preceding we have proved that σ(T ) = {λ : Imλ ≤ 0}. ◦

Example 2.6 (Example 1.7 continued: real line) Then the operator T = −i d
dx

on
H 1(R) is self-adjoint. We show that σ(T ) =R.

Suppose that λ ∈ R. Let us choose a function ω ∈ C∞
0 (R), ω �= 0, and put

hε(x) := ε1/2eiλxω(εx) for ε > 0. Since ‖hε‖ = ‖ω‖ and ‖(T − λI)hε‖ = ε‖ω′‖,
it follows that λ is not in π(T ) and so not in ρ(T ). Hence, λ ∈ σ(T ). Since T is
self-adjoint, σ(T ) ⊆R by Corollary 3.14 below. Thus, σ(T ) =R.

The resolvents of T for λ ∈C\R are given by the formulas

(

Rλ(T )g
)

(x) = i
∫ x

−∞
eiλ(x−t)g(t) dt, Imλ > 0, (2.12)

(

Rλ(T )g
)

(x) = −i
∫ +∞

x

eiλ(x−t)g(t) dt, Imλ < 0. (2.13)

◦
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2.4 Exercises

1. Find a bounded operator T such that Θ(T ) is not the convex hull of σ(T ).
Hint: Look for some lower triangular 2 × 2-matrix.

2. Let α = (αn)n∈N be a complex sequence. Define an operator Tα on l2(N) with
domain D(T ) = {(ϕn) ∈ l2(N) : (αnϕn) ∈ l2(N)} by Tα(ϕn) = (αnϕn).
a. Determine the spectrum σ(Tα) and the point spectrum σp(Tα).
b. When has Tα a discrete spectrum?

3. Let Mϕ be the multiplication operator from Example 2.1. Find necessary
and/or sufficient conditions for a number belonging to the point spectrum
σp(Mϕ).

4. Let T1 and T2 be closed operators on H1 and H2, respectively.
a. Show that T1 ⊕ T2 is a closed operator on H1 ⊕H2.
b. Show that σ(T1 ⊕ T2) = σ(T1) ∪ σ(T2).

5. Find a bounded operator T and a λ ∈ σp(T ) such that R(T − λI) �=
R(T − λI).
Hint: Look for some operator T = T1 ⊕ T2.

6. Let T = −i d
dx

on D(T ) = {f ∈ H 1(0,1) : f (0) = 0} in H = L2(0,1).
a. Show that T is a closed operator.
b. Determine the adjoint operator T ∗.
c. Show that ρ(T ) = C and determine the operator Rλ(T ) for λ ∈C.

7. Prove the two resolvent formulas (2.12) and (2.13) in Example 2.6. Show that
none of these operators is compact.

8. Let q be a real-valued continuous function on [a, b], a, b ∈ R, a < b. For
z ∈ T, define an operator Tz on L2(a, b) by (Tzf )(x) = −if ′(x) + q(x)f (x)

with domain D(Tz) = {f ∈ H 1(a, b) : f (b) = zf (a)}.
a. Show that Tz is a self-adjoint operator on L2(a, b).
b. Determine the spectrum and the resolvent Rλ(Tz) for λ ∈ ρ(Tz).

Hint: Find a unitary operator U on L2(a, b) such that Tz = UT U∗, where
T is the operator from Example 2.3.

9. Find a densely defined closed operator T such that each complex number is
an eigenvalue of T ∗, but T has no eigenvalue.

10. Let T be a closed operator on H. Use formula (2.6) to prove that

dRλ(T )

dλ
:= lim

h→0

Rλ+h(T ) − Rλ(T )

h
= Rλ(T )2, λ ∈ ρ(T ),

in the operator norm on H.
11. Prove that σ(T S)∪{0} = σ(ST )∪{0} for T ∈ B(H1,H2) and S ∈ B(H2,H1).

Hint: Verify that (ST − λI)−1 = λ−1[S(T S − λI)−1T − I ] for λ �= 0.
∗12. (Volterra integral operator)

Let K be a bounded measurable function on {(x, y) ∈ R
2 : 0 ≤ y ≤ x ≤ 1}.

Prove that the spectrum of the Volterra operator VK is equal to {0}, where

(VKf )(x) =
∫ x

0
K(x, t)f (t) dt, f ∈ L2(0,1).
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Hints: Show that (VK)n is an integral operator with kernel Kn satisfying
∣
∣Kn(x, y)

∣
∣ ≤ Mn|x − y|n−1/(n − 1)!, where M := ‖K‖L∞(0,1).

Then deduce that ‖(VK)n‖ ≤ Mn/(n − 1)! and hence limn ‖(VK)n‖1/n = 0.
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