
Chapter 2
Chemical Bond

2.1 Historical Development of the Concept

The concept of the chemical bond is central to modern chemistry. Its classical form,
which gradually and painstakingly developed in the course of the 19th century, de-
scribed molecules as a combinations of linked atoms. The idea proved extremely
useful for interpreting, systematizing and predicting chemical facts, although for a
long time it developed without any understanding of the underlying physics. This
‘black box’ situation began to change towards the close of the century. G. J. Stoney
in 1881 calculated the elementary charge of electricity and in 1891 named it ‘elec-
tron’. In 1894, W. Weber suggested that the atom consists of positive and negative
electric charges. In 1897, W. Wiechert, J. J. Thomson, and J. S. Townsend measured
the charge of the electron. In 1902–1904, William Thomson (Lord Kelvin) and J. J.
Thomson developed the ‘plum cake’ atomic model, with electrons distributed within
the homogenous sphere of positive electricity. In 1904, H. Nagaoka suggested that
the positive charge is located in the center of the atom, the electrons orbiting around
it. Finally, in 1911 E. Rutherford proved this planetary model experimentally.

In 1904, R.Abegg proposed that the valence of an atom corresponds to the number
of electrons it lost or gained, the sum of which must be equal to 8 and the highest
positive valence to the Group (column) number in the Periodic Table. In 1908, J. Stark
postulated that chemical properties of an atom are defined by its outer (‘valence’)
electrons, and W. Ramsay in his essay Electron as the element already mentioned
the electronic nature of the bond between atoms. Finally, in 1913, N. Bohr proposed
the model where the majority of the electrons in a molecule are located around the
nuclei as in isolated atoms, and only their outer electrons rotate around the axes
connecting atoms, forming the chemical bond. In 1916 W. Kossel explained the
formation of ions by the transfer of electrons from one atom to another to complete
the outer electronic shells of both to the stable 8-electron configurations; he also
introduced the important idea that there is a gradual transition from purely polar
compounds (e.g., HCl) to typically non-polar ones (e.g., H2) [1]. In the same year
Lewis described the formation of the covalent bond by two identical atoms sharing
their electrons to acquire stable octets [2]. Langmuir developed the theory of Lewis,
postulating that electrons in the atom are distributed in layers, with the ‘cells’ for
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2 electrons in the first layer, 8 in the second, 18 in the third and 32 in the fourth
[3, 4, 5]. For a long time, the octet rule was regarded as the norm of chemical bonding,
and deviations from it as exceptions. However, later these exceptions became more
and more numerous, until their explanation required the introduction of new ideas
which will be discussed below. The independent impulse to the development of the
electronic theory was given by the Periodic Law (D. I. Mendeleev, 1869) which got its
physical explanation in the Bohr-Rutherford model, the quantum theory and, finally,
the Pauli exclusion principle, which explained the electronic structure of the atom and
thereby the cellular model of Langmuir. The development of these approaches led to
the creation of quantum chemistry. Though the discussion of latter is beyond scope
of this book, it should be noted that in the fundamental equation of E. Schrödinger
(1926), HΨ = EΨ, where H is the Hamilton operator, E is the total energy of the
system, the wavefunction Ψ (or, more exactly, its square) defines the probability of
finding an electron in a certain part of space. Because of the uncertainty principle,
it is not possible to describe the electron’s orbit precisely, but only in terms of
probability; hence we speak of the ‘electronic cloud’. Schrödinger’s equation cannot
be solved precisely for any system containing more than one electron, therefore the
application of quantum mechanics to chemistry is essentially the quest for suitable
approximations.

The region defined by a wavefunction is termed an atomic orbital, which can be
defined uniquely by three quantum numbers. The principal quantum number n is the
number of the electron shell, the orbital quantum number l defines the sub-shell, and
the shape of the orbital. Thus, atomic s-orbitals with the quantum number l = 0 are
spherically symmetrical, whereas p-orbitals (with l = 1) are dumbbell-shaped, are
directed along the three Cartesian axes (hence their designation as px, py and pz)
and tend to form bonds in these directions. The directionality of a (non-spherical)
orbital is defined by the magnetic quantum number ml . Averaging (hybridization)
of one ns and three np orbitals leads to a tetrahedral arrangement of bonds (for
instance, in diamond), other combinations of s, p and d electrons lead to other types
of hybridization and geometrical configurations. The modern state of the calculations
and ‘experimental measurements’ (reconstruction) of orbitals is discussed in the fine
essay of Schwartz [6], who points that ‘orbitals’ are concepts which are useful to
approximately describe the structures, properties, and processes of real molecules,
crystals, etc. Correspondingly, although orbitals are essentially determined by the
nature of the molecules, they can be defined in different ways for different purposes.
The relation between the wavefunction Ψ and the corresponding orbital Φ is defined
by the equation

Ψ(X1, . . . XN) ≈ Φ(X1, . . . XN) (2.1)

Whether Φ is a satisfactory orbital approximation of Ψ, depends on the type of
the molecule, on its state, and also on the nature of the problem. Hence there are
no such things as the orbitals in a molecule, just as there are no uniquely defined
charges of atoms in a molecule. There are many kinds of atomic charges (see below),
and similarly, there are many different types of orbitals, appropriate for different
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physical phenomena. Firstly, the exact wavefunction Ψ and the exact energy E can
be generated from a simple orbital product function Φ by several theoretically well-
defined operators. Secondly, the popular density functional approaches of Kohn and
Sham (KS) all aim at the calculation of highly reliable molecular energies with
the help of a product wavefunction of ‘KS orbitals’ of different kinds. Thirdly, the
most famous orbital approach for approximate energies is the first-principles, self-
consistent field model of Hartree and Fock. There are also many semi-empirical
varieties, such as the iterative extended Hückel, CNDO, AM1, etc.

In developing the theory of the chemical bond the great contributions were made
by Coulson, Hückel, Hund, Slater, Mulliken (see [7]) and, especially, by Pauling
who played the major role in the formation of modern structural chemistry: he has
formulated such concepts as the hybridization, the polarity and strength of a bond,
the degree of the double-bond character, the principle of the local electro-neutrality
of atoms, the effective valence, i.e., has created that language of the given area of
science on which experimenters began to speak and think. The valence-bond (VB)
theory, developed by Pauling, generally followed the (implicit) idea of nineteenth-
century chemists that atoms persist in a molecule as recognisable entities. Later, with
the triumph of the theory of molecular orbitals, came the widespread view that in a
molecule there are no atoms, only nuclei and electrons (orbitals). However, it is worth
noting that the total energy of a benzene molecule, i.e. the energy required to split it
into six nuclei of charge + 6, six protons and 42 electrons, all at infinite separations,
amounts to 607837 kJ/mol (from MO calculations). The (experimental) atomization
energy of benzene, i.e. the energy required to split the molecule into six carbon and
six hydrogen atoms, is only 5463(3) kJ/mol, or less than 1 % of the former. For
comparison, the sublimation enthalpy of crystalline benzene, which is the measure
of intermolecular cohesion, is 44 kJ/mol. Thus, atoms in a molecule are no less “real”
than molecules in a crystal. Indeed, later Bader [8] and Parr [9] brought back the
concept of atoms in molecules (AIM), now on modern quantum-mechanical basis.
Still, notwithstanding all the successes of quantum chemistry, structural chemistry
remains a predominantly experimental science.

2.2 Types of Bonds: Covalent, Ionic, Polar, Metallic

The traditional classification of chemical bonds into ionic, covalent, donor-acceptor,
metallic and van der Waals corresponds to extreme types, but a real bond is always a
combination of some, or even all of these types (Fig. 2.1). Purely covalent bonding
can be found only in elemental substances or in homonuclear bonds in symmetric
molecules, which comprise a tiny fraction of the substances known. Purely ionic
bonds do not exist at all (although alkali metal halides come close) because some
degree of covalence is always present. Nevertheless, to understand real chemical
bonds it is necessary to begin with the ideal types. In this Section we will consider
mainly the experimental characteristics of different chemical bonds and only briefly
the theoretical aspects of interatomic interactions.
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Fig. 2.1 Tetrahedron of
chemical bond types. The
nature of a given bond can be
described by a point within
the tetrahedron

2.2.1 Ionic Bond

The ionic bond results from the Coulomb attraction of oppositely charged ions. Its
strength is characterised by the electrostatic energy; in MX ionic crystals it is the
crystal lattice energy U(MX), which can be determined experimentally from the
Born-Haber cycle or calculated theoretically from the known net charges of ions (Z,
not to be confused with nuclear charges!) and inter-ionic distances (d), as

U = kM

Z2

d

(

1 − 1

n

)

(2.2)

where kM is the Madelung constant and n is the Born repulsion factor (Table 2.1),
in good agreement with the experiment. The ionic theory explains many facts of
structural inorganic chemistry. Thus, in many ionic structures, larger ions (anions)
form a close packing motif while smaller ions (cations) occupy the voids in it. As
this motif contains only tetrahedral and octahedral voids, this explains why cations
usually have the coordination number, Nc, of 4 or 6. Coulomb interactions being
strong, ionic crystals have high fusion (melting) temperatures and high atomization
energies, but dissolve in polar liquids (e.g. water) due to high solvation (hydration)
heat. The absence of electrons in the inter-ionic space results in low refractive indices
and high atomic polarizations, wide band gaps, and insulator properties.

As noted above, Kossel introduced the idea that the transition from ionic to co-
valent substances is gradual, the covalence increasing with the mutual polarizing
influence of ions. This idea was developed by Fajans and his school who defined
the polarizabilities of ions and estimated the polarizing action of cations (Z/r2), but
ultimately failed to create a quantitative theory. The reason is obvious [10]: there are
no completely ionic substances, only intermediate cases, more or less approaching
this type. Hence the parameters of ideal ions are not available experimentally, the
more so since ionic radii cannot be uniquely defined from interatomic distances (see
Chap. 1). Thus the polarization concept remained only qualitative. However, the
contribution in the bond energy of the polarizing effect of atoms can be described in
the form that has proven itself for the van der Waals interaction (see Sect. 4.4), where
the deviation of the A · · · B distance from the mean of A · · ·A and B · · · B distances
is a function of the difference of the atomic polarizabilities

pα =
[
(αA − αB)

αA

]2/3

(2.3)
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Table 2.1 Hardness
parameters of ions

Electron con- He Ne Ar Kr Xe (and
figuration of ion (and Cu+) (and Ag+) Au+)

n 5 7 9 10 12
fn 1.250 1.167 1.125 1.111 1.091

turning from distances to volumes, this function takes the form

pa =
[
(αA − αB)

αA

]2

(2.4)

Taking into account the interaction of effective charges of atoms, the total ‘energetic’
polarizing effect is

q = pa
(Zi)2

d
(2.5)

Evidently, the smaller the atom the stronger its polarizing effect. If the smaller ion
is the cation (as is usually the case) then it reduces the total α of the substance, if
the anion then α increases. Such simple approach allows calculating polarizability
of inorganic compounds with good accuracy [11].

The ionic model is widely used to predict the coordination numbers, Nc, in crystal
structures. Evidently, the higher the rc/ra ratio, the more anions can be accom-
modated around a given cation. The Magnus-Goldschmidt rules, dating back to
nineteen-twenties [12], predicted from simple geometrical condiderations the fol-
lowing succession. For rc/ra ≤ 0.15 the stable configuration can only be linear
(Nc = 2), from 0.15 to 0.22 it should be equilateral triangle (Nc = 3), from 0.22 to
0.41 a tetrahedron (Nc = 4), from 0.41 to 0.73 an octahedron (Nc = 6), above 0.73
a cube (Nc = 8). However, even for crystals with essentially ionic bonds these rules
often fail. Thus, in MgAl2O4 the large Mg2+ ion has Nc = 4 and the smaller Al3 +
has Nc = 6 whereas it should be the other way round [13]. Crystal structures of MXn

also often confound the simple ionic model [14]. Obviously, one would expect the
cation to adopt higher Nc with smaller F− anion than with other, bulkier, halogens
(X = Cl, Br, I). In fact, Nc(MF) ≤ Nc(MX) and Nc(MF2) ≈ Nc(MX2), and only for
n = 3 or 4 it is Nc(MFn) ≥ Nc(MXn). A striking case is CsF and CsI: their rc/ra of
1.25 and 0.76 both predict Nc = 8. This is correct for CsI, but CsF with the higher
ratio has a NaCl-type (B1) structure with Nc = 6!

These failures show that the simple ionic model is a rather imperfect approxima-
tion. Firstly, the charges of ions are assumed to equal the formal oxidation states of the
corresponding elements. Secondly, the ions are regarded as absolutely hard spheres,
whose spatial distribution is governed only by their relative sizes and the quest for
the densest possible packing and the nearest possible contacts between oppositely-
charged ions. The agreement with the experiment can be improved by assigning to
ions more realistic effective charges, e∗ (see below, Table 2.2). For alkali halides,
for instance, the charges of anions in different compounds with identical cations are
related as (e∗

MF/e
∗

MCl)2 = 1.245, (e∗
MBr/e

∗
MCl)2 = 0.923, (e∗

MI/e
∗

MCl)2 = 0.826.
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Table 2.2 Effective charges of hydrogen and halogen atoms in molecules

HF H2O H2S NH3 C2H2 C2H4 CH4 CH3I CH3Br CH3Cl CH3F

0.41 0.33 0.11 0.23 0.35 0.16 0.11 0.13 0.33 0.47 0.95
CS2 GeH4 SiH4 SnH4 GeBr4 HCl ZnBr2

0 0.09 0.10 0.12 0.17 0.20 0.25

Fig. 2.2 Potential energy (U)
of the bonding and
antibonding orbitals of a
diatomic molecule as
functions of the interatomic
distance R

Multiplying the ultimate radii of anions from Table 1.17 and assuming e∗
MCl = 1, by

these ratios we obtain the effective, or ‘energetic’ ionic radii r∗ (see Sect. 1.6), viz.
F− 2.30, Cl− 2.25, Br− 2.20 and I− 2.17 Å [11]. It follows that the effective, rather
than formal, ratio of the cation and anion radii (rc

∗/ra
∗) in CsF is smaller than in

CsI. Hardness of ions is not infinite and varies from ion to ion. In the Born-Landé
theory it is defined by the repulsion coefficient n and the rigidity factor fn = (n − 1)/n
(see Table 2.1). The product fn × r∗ then gives the radii of spheres with absolutely
identical properties. Their ratio,

R = r∗+
r∗−

f +
n

f −
n

(2.6)

which equals 0.68 for CsF, 0.72 for CsCl, 0.745 for CsBr and 0.77 for CsI, now
describes the changes of Nc correctly. The agreement with reality can be further
improved by taking into account the partly covalent character of the bonding in
ionic compounds [14]. The effects of polarization and deformation of ions on ionic
crystal structures were surveyed by Madden and Wilson [15] who concluded that
the ionic model with formal charges has wider applicability than is often supposed,
but covalent anomalies (layered structures, bent bonds, etc) can be quantitatively
explained by ionic polarization.

2.2.2 Covalent Bond

Usually, a covalent bond between two atoms is formed by two electrons, one from
each atom. These electrons tend to be partly localized in the region between the
two nuclei. If the orbitals of these electrons are Ψ1 and Ψ2, the molecular orbital
of the bonded atoms must be their linear combination, symmetric Ψb = Ψ1 + Ψ2

and antisymmetric Ψa = Ψ1 − Ψ2. As illustrated in Fig. 2.2, the former orbital has
a minimum of energy at certain distance and generally has lower energy than the
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latter, therefore the former orbital is bonding and the latter antibonding. Since an
orbital can be occupied by no more than two electrons, this picture was in fact an-
ticipated by the Lewis’ model (in 1916—a decade before the beginning of quantum
mechanics!) which regarded bonds as shared electron pairs. Lewis also noted that
in stable molecules, each atom usually has 8 electrons in its valence shell (except
H which has two), counting both the bonding and the unshared electron pairs and
taking no account of the bond polarity. This octet rule for a long time was regarded
as a law of chemistry, apparently resulting from the fact that there are only one s and
three p orbitals in an electron shell, which can accommodate a maximum of 8 elec-
trons between them. Compounds which did not conform to this rule were regarded
as special classes of compounds, hypervalent (with >8 electrons) and hypovalent
(with <8 electrons). Alternatively, exceptions were explained away by including d
orbitals into hybridization, or by invoking bond polarity and net atomic charges and
assuming that the octet rule applies to the effective number of electrons around each
atom (contrary to Lewis’own approach). Today it is clear that this rule, although ped-
agogically useful, has numerous exceptions which show no extraordinary properties
[16]. Particularly, comparison of bonds in hypervalent molecules with those in octet
molecules reveals no fundamental difference in their nature. Likewise, saving the
octet rule by assigning net charges to atoms, contributes nothing to understanding the
structures and properties of molecules. Thus, the nitrogen atom in an a protonated
amine or pyridine has a formal charge of +1 but shows no corresponding contraction
of the bond distances; in fact, this atom has a small negative charge!

It seems that the belief in the octet rule and in misread quantum-mechanical
concepts helped for a long time to discourage the search for compounds of ‘inert’
gases, although von Antropoff [17] and Pauling [18] have predicted that these might
be chemically awaken by powerful oxidizing agents with high electronegativity. This
prediction was confirmed in 1962 when xenon compounds were discovered [19–23].
Since then, over 500 compounds of the ‘rare’(formerly ‘inert’and later ‘noble’) gases
were synthesized [24] and dozens of them characterized by X-ray diffraction. Finally,
solid xenon was converted into metallic state under ultra-high pressure [25, 26]

Another note of caution is necessary. In every modern textbook, the explanation
of covalent bonding begins (and sometimes also ends) with the H2 molecule, because
this is the simplest case and historically the first one explored. Unfortunately, it is by
no means a typical one—the fact often not appreciated by the students. In fact, H2

shows many unique properties because it has no non-bonding electrons, so that the
bonding pair has also to ‘take responsibility’ for intermolecular interactions, both
attractive and repulsive. As a result, neither job is done properly. The interatomic
distance and atomization energy, compressibility and other molecular-physical prop-
erties are consistent with the bond order much lower than the conventional 1 [27].
Thus, the covalent radius of hydrogen determined from its bond distances with dif-
ferent atoms (which can compensate the lack of electron density in the bond from
their own) is 0.30 Å [28], hence the actual H−H bond length of 0.74 Å in H2 molecule
corresponds to the bond order of only 0.57 (see below, Eq. 2.8). Usually the ioniza-
tion potentials of A2 molecules are lower than those of isolated atoms, and the bond
dissociation energies ofA2

+ are higher than those of neutral molecules, H2 shows the
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opposite relations in both respects (see Chap. 1). Hydrides of the elements of Groups
15 and 16 violate the general VSEPR rules of molecular geometry (see Sect. 3.2.2):
H−A−H angles are smaller than F−A−F, whereas usually the angles widen with the
decrease of the ligand electronegativity; this effect was also explained by the elec-
tron pair in the A−H bond doubling as the non-bonding pair of the H ligand [29].
The observed van der Waals radius of hydrogen is ca. 0.25 Å lower than the value
obtained by extrapolating the radii of halogens [27]. This indicates the weakness of
the intermolecular repulsion, while the simultaneous weakness of intermolecular at-
traction can be seen from the large deviation of H2 from Trouton’s law: the enthalpy
of evaporation has a constant ratio to the boiling point temperature. For H2 this ratio
is 44.8 J mol−1 K−1, compared to the average of 88 J mol−1 K−1.

Let us consider the relation between of the dissociation energy and the bond length.
Morse [30] introduced the formula which describes well the experimental electronic
energy (E) of a diatomic molecule as a function of the inter-nuclear distance near
the equilibrium state (de)

E(d) = De{1 − exp [−a(d − de)]2} (2.7)

where De is the dissociation energy. Assuming that the attractive energy is pro-
portional to the bond order q [31], from Eq. 2.7 it is possible to derive Pauling’s
equation,

dq = d1 − b ln q (2.8)

where d1 and dq are the lengths of a standard single bond and a bond of the order q,
respectively, and b is an (essentially empirical) constant. Pauling himself used the
0.6 × log q term, which corresponds to b = 0.26 if the natural logarithm is used.
However, the proportionality between bond energy and bond order is a rather crude
simplification: the experimental energies of the C−C and C≡C bonds relate as 1:
2.2, while those of N−N and N≡N bonds as 1: 4.5.

Parr and Borkman [32] have shown that for many diatomic molecules the bond
energy at distances (d) near the equilibrium can be described as

E = Eo + E1

d
+ E2

d2
(2.9)

where the second term reflects the Coulomb interactions, and the third one accounts
for the overlap of atomic orbitals. According to the pseudo-potential method, E is
proportional to d−2 [33], whereas in Phillips’ theory it is proportional to d−2.5(see
Sect. 2.3). The lengths of typical carbon-carbon bonds correlate linearly with bond
dissociation energies (E) in the full range of single, double, triple, and highly strained
bonds, with E ranging from 16 to 230 kcal mol−1. The equation

d = 1.748 − 0.002371E (2.10)

(for d in Å, E in kcal/mol) has been tested on 41 typical carbon-carbon bonds, ranging
in length from 1.20 to 1.71 Å. This sets a maximum bond length limit of 1.75 Å for
carbon-carbon bonds [34].
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By far the most-studied type of chemical bonding is known as ‘aromatic’. The
concept of aromaticity was introduced in the 1860’s by Kekulé and Erlenmeyer to
describe cyclic molecules (of which benzene is the seminal one) for which the clas-
sical theory suggested alternating single and double bonds, but which were much
more stable than implied by such a formula, or than their open-chain analogues actu-
ally were. In the twentienth century, diffraction methods confirmed Kekulé’s insight
that benzene ring has sixfold symmetry (D6h) with all six C−C bonds equivalent
(1.3983 Å, cf. 1.422 Å in graphite) and intermediate in character between single
and double bonds (e.g. in butadiene, 1.467 and 1.349 Å) [35]. At the dawn of quan-
tum chemistry, Pauling [36] introduced the idea of resonance between two or more
valence-bond structures as the source of energy gain. For benzene, he estimated the
resonance energy (RE) as the difference between the heats of formation or of hydro-
genation of benzene and of the (hypothetical) cyclohexatriene. Both comparisons
gave essentially the same RE, ca. 150 kJ/mol (< 3 % of the atomization energy of
benzene). However, other reference reactions would yield different RE; one also must
take into account different energies of steric strain (repulsion between non-bonded
atoms) in the real and model molecules, which are of the same order of magnitude.
Thus, modern estimates of RE of benzene range from 85 to 312.6 kJ/mol [35]. In
the MO theory, aromatic molecules were described in terms of circular π-electron
delocalization. Hückel [37] postulated that cyclic planar π-electron systems with
(4n + 2) π-electrons must be stabilized (aromatic) and those with 4n π-electrons
(e.g. cyclobutadiene) must be destabilized (anti-aromatic) with localized single and
double bonds. Hückel’s rule was vindicated by the discovery of the aromaticity of
cyclopropenyl cation (n = 0), cyclopentadienyl anion and cycloheptatrienyl cation
(n = 1) and various heterocycles, while Pauling’s failure to explain anti-aromaticity
[38] in terms of simpleVB theory discredited the latter [39]. However, today it is clear
that high-precision versions of VB and MO methods (but not the severely simplified
versions of the pre-computer era!) give essentially the same results. Furthermore,
it is realized that the symmetry of the benzene ring is due to σ-bond equalization:
π-bonds ‘left to themselves’ would have yielded a localized Kekulé structure [40].

Aromatic rings provide the circuits in which circular electric currents can be
induced by external magnetic field, hence magnetic susceptibility χm of aromatic
molecules is (i) highly anisotropic and (ii) higher than the sum of atomic increments
χa, its ‘exhaltation’ provides one of the quantitative measures of aromaticity [41]:

� = χm −
∑

χa > 0 (2.11)

Other aromaticity indices are based on equalization of bond lengths, bond orders or
the peculiar proton shifts in NMR spectra (also due to the exhalted magnetism of
aromatics) [42].

Today, it is clear that aromaticity is possible in 3-dimensional, as well as planar,
systems, such as quasi-spherical cages of fullerenes [43, 44] and polyhedral boranes
(e.g. B12H12

2−) [44, 45], in carbon nanotubes and in some metal clusters (e.g.,
Au5Zn+, Au20) [46]. The 2(n + 1)2 rule proposed by Hirsch [47] and successfully
applied to design various novel aromatic compounds, serves as the 3-dimensional
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counterpart of the Hückel’s rule for planar systems. However, deviations from this
rule are found that indicate the need for further refinement. This vast area has been
comprehensively reviewed in two thematic issues of Chemical Reviews [48, 49].

2.2.3 Polar Bond, Effective Charges of Atoms

The term ‘ionic substance’ is often used in inorganic chemistry, but although the
reality of ions is manifest in the ionic conductivity in molten state, and in some cases
in the solid state, in fact there are not many compounds which can be regarded even
as practically ionic, and none with purely ionic bonding. Monoatomic cations are
always smaller than anions (except for F− being smaller than K+, Rb+, Cs+) and
tend to polarize the latter, causing a displacement of the anion’s electron density
towards the cation. The ionization potentials of metals being higher than the electron
affinities of nonmetals (see Chap. 1) has similar effect. Thus even in the most ionic
crystals the charges must be less then the oxidation numbers. How these can be
determined? Dozens of experimental and theoretical methods have been suggested
for the determination of atomic charges [50]. For some AXn or AHn molecules, the
bond polarities and hence the effective charges of ligands are known from IR or XR
spectra [51–54]. These values, always <1, are listed in Table 2.2. The most poplular
method of estimating the atomic charges in molecules is based on the dipole moments
and will be considered in details in Chap. 11 (Table 11.2).

The effective charges of atoms in crystals, rather than molecules, can be deter-
mined by Szigeti’s spectroscopic method [55], which is also described in details in
Chap. 11, using the formula

e∗ = 3νt

Ze(n2 + 2)

[
π

(
ε − n2

)
mV

] 1
2 (2.12)

where νt is the transverse vibration frequency of the lattice, n is the refractive index,
ε is the dielectric constant, V is the molar volume, Z is the valence of an atom, and
m is the reduced mass of a vibrating atom. The results are listed in Tables 2.3 and
2.4, in the conventional form e∗/v where v is the formal valence of the atom (i.e.
the values are the relative bond ionicities). As we can see, the absolute values of
effective charges of O in MO-type oxides are always > 1, whereas in molecules they
are < 1. As discussed in Sect. 1.1.2, the O− + e− → O2−addition requires an expense
of energy, but in crystals this is compensated by the Madelung energy, which makes
the higher negative charges thermodynamically possible. The charges increase with
the coordination number: the phase transition in HgS raises the effective charge from
0.20 to 0.28 as Nc changes from 2 to 4, in MnS a transition with Nc = 4 → 6 increases
e∗ from 0.35 to 0.44. An unexpected feature is the greater effective charges in halides
of Groups 11 and 12 elements. A study of the band structure of CuX and AgX has
revealed that the metals have effective valences exceeding 1, due to participation
of d-electrons. Similar increases of the metal valences were observed also in some
compounds of the MX2 type (see below). The problem of the effective valences of
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Table 2.3 Effective atomic
charges (e∗/v) in MX
crystals by Szigeti’s method
(from [56], except where
specified)

M (v = 1) F Cl Br I

Li 0.81 0.77 0.74 0.54
Na 0.83 0.78 0.75 0.74
K 0.92 0.81 0.77 0.75
Rb 0.97 0.84 0.80 0.77
Cs 0.96 0.85 0.82 0.78
Cu 0.98 0.96 0.91
Ag 0.89 0.71 0.67 0.61
Tl 0.88 0.84 0.83

M (v = 2) O S Se Te
Cu 0.54
Be 0.55 0.26a

Mg 0.59 0.49 0.39
Ca 0.62 0.52 0.36
Sr 0.64 0.54 0.50
Ba 0.74 0.65 0.52
Zn 0.60 0.44 0.40 0.39
Cd 0.59 0.45 0.42 0.38
Hg 0.57 0.28b 0.27 0.26
Eu 0.67 0.55 0.53 0.50
Sn 0.33 0.28c 0.26
Pb 0.58 0.36 0.35 0.28
Mn 0.55 0.44d 0.42 0.33
Fe 0.46e

M (v = 3) N P As Sb
B 0.38 0.25
Al 0.41 0.26 0.21 0.16
Ga 0.41 0.19 0.17 0.13
In 0.22 0.18 0.14

a[57], bNc = 4, for Nc = 2 e∗ = 0.20, c[58], dNc = 6, for Nc = 4
e∗ = 0.35, ee∗ = 0.44 for CoO and 0.41 for NiO.

the metallic elements of Groups 11–14 will be discussed later; here it is sufficient
to note that in MoS2 and MoSe2 we assume v = 2 for the chalcogen and v = 4 for
the metal. Spectroscopic studies of alkali halides [60], MF2 [61, 62], ZnS and GaAs
[63] have shown that their effective charges decrease on heating, signifying that the
bond covalency increases.

Another spectroscopic method of measuring bond polarity (or ionicity) fi in solids
was developed by Phillips and Van Vechten (PVV) [64–67], using the equation

fi = C2

Eg
2 (2.13)

where Eg is the band gap and C is the Coulomb component of the bond energy.
Numerical values of fi according to PVV and charges according to Szigeti do not
coincide because of different dimensionality, but can be related thus

fi = (e∗)2

n2
(2.14)
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Table 2.4 Effective atomic charges (e∗/v) in MnXm crystals, by Szigeti’s method

MX2 e*/2 MX2 e*/2 MX2 e*/2 MnXm e*/v

MgF2 0.76 FeCl2 0.64 SnSe2 0.25 UO2 0.60
CaF2 0.84 FeBr2 0.58 ZrS2 0.44 CeO2 0.56
SrF2 0.85 CoF2 0.74 HfS2 0.50 ScF3 0.76
SrCl2 0.76 CoCl2 0.57 HfSe2 0.45 YF3 0.76
BaF2 0.87 CoBr2 0.52 MoS2 0.06 LaF3 0.74
ZnF2 0.76 NiF2 0.68 MoSe2 0.04 AlF3 0.60
CdF2 0.80 NiCl2 0.51 MnS2 0.42 GaF3 0.60
CdCl2 0.74 NiBr2 0.46 MnSe2 0.38 InF3 0.61
CdBr2 0.69 Na2S 0.58 MnTe2 0.30 YH3 0.50a

CdI2 0.63 Cu2O 0.29 FeS2 0.30 Y2O3 0.62
HgI2 0.38 TiO2 0.60 RuS2 0.36 Y2S3 0.40
EuF2 0.84 TiS2 0.39 RuSe2 0.38 La2O3 0.62
PbF2 0.87 TiSe2 0.18 OsS2 0.40 La2S3 0.40
PbCl2 0.90 SiO2 0.60 OsSe2 0.38 Al2O3 0.59
PbI2 0.72 GeO2 0.54 OsTe2 0.38 Cr2O3 0.49
MnF2 0.81 GeS2 0.18 PtP2 0.28 Fe2O3 0.45
MnCl2 0.69 GeSe2 0.17 PtAs2 0.24 As2S3 0.20
MnBr2 0.66 SnO2 0.57 PtSb2 0.26 As2Se3 0.14
FeF2 0.78 SnS2 0.32 ThO2 0.58 RuTe2 0.39
a[59]

where n is the refractive index. Originally the PVV theory was applied only to
structures of B1 and B3 types, but subsequently, owing to the works of Levin [68–
70] and others [71–73], it was expanded to other structural types. The value of fi

is affected only slightly by the nature of the anion, but sharply by a change of Nc.
Thus, GeO2 has fi = 0.51 in its quartz-like modification, but fi = 0.73 in the rutile-
like form. Phillips used this as the criterion of polymorphism; taking 0.785 as the
critical value of fi for the B3 → B1 transition. This method revealed the evolution of
atomic charges under varying thermodynamic conditions, in particular a reduction
of fi on compression of crystals (see below). It is worth mentioning that PVV were
anticipated by Hertz, Link and Bokii [74–77], [523] who calculated the bond ionicity

i = Pa

Pe

(2.15)

as the ratio of atomic (Pa) and electronic (Pe) polarizabilities of substances; this
parameter can be related to the PVV polarity through the Mossotti-Clausius formula.
Since

Po = PM − Pe = V

(
ε − 1

ε + 2
− n2 − 1

n2 + 2

)

(2.16)

then for low-polarity substances, where ε ≈ n2, we obtain

Pa = V

(
ε − n2

n2 + 2

)

. (2.17)
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Combination of Eq. 2.17 with

Pe = V

(
n2 − 1

n2 + 2

)

(2.18)

gives

i ≈ ε − n2

n2 − 1
(2.19)

apparently similar to the equation:

i = ε − n2

ε − 1
(2.20)

which follows from Eq. 2.13 and the basic formulae of the dielectric theory,

n2 = 1 +
(

hvp

Eg

)2

and ε = 1 +
(

hvp

C

)2

(2.21)

X-ray spectroscopy (XRS) gives important information on the bond polarity. Ex-
periments have shown that the binding energy of inner electrons of an atom (EBIE)
depends on the external electronic environment, i.e. on the effective charges of atoms:
a positive net charge increases and negative one reduces EBIE. Therefore, knowing
the values of EBIE in different crystalline compounds, one can define the magnitudes
and signs of the atomic charges, and how they vary with the composition and structure
changes. Thus, effective atomic charges in MX crystals were found to increase with
Nc and �χ [78], while in the succession MnS, MnO, MnO2, MnF2, the MnKα-edge
of the X-ray absorption band shifts to higher energies by 1, 3, and 3.6 eV, respec-
tively [79]. In the succession Au2O3 →AuCl3 →AuCN →Au → CsAu → M3AuO
the energies of the AuLI and AuLIII absorption edges consistently decrease, passing
through e∗ = 0 for the pure metal, which indicates that in CsAu and M3AuO the
Au atoms bear negative charges, explicable by exceptionally high electron affinity
of gold (2.3 eV) [80]. A study of the electron density distribution in BaAu suggested
a Ba2 + ēAu−electron structure.

The most reliable charge determinations by XRS [81–85] are compiled in Ta-
ble 2.5. The effective charges decrease when the valence of the central atom increases
or when the electronegativity of the ligands decreases. The effective charges of S, P,
Si and Cl atoms in organic compounds were determined by the shifts of the Kα-line
in comparison with the same atoms in the elemental solids [86, 87]. The drawback
of this method is the smallness of �Kα in comparison with the absolute binding
energies, but its advantage is that the the volume to which the charge refers is known
precisely, as electronic transitions are localized within the atom; the values �Kα can
be scaled against the effective atomic charges calculated from electronegativities
[88].

Most structural methods ‘see’ either the position of the atomic nucleus (neutron
diffraction, NMR spectroscopy), or the atomic center of mass (optical and microwave
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Table 2.5 Effective atomic charges from X-ray spectroscopy

MnXm MnXm e*(M)/ e*(M)/v e*(M)/vMXn

NaF 0.95 SiF4 0.35 GeSe  0.17  

NaCl  0.92 SiCl4 0.25 Y2O3 0.54  

NaBr  0.83 SiO 0.23 Al2O3 0.25  

NaI 0.75 SiC 0.12 Al(OH)3 0.26  

Na2O 0.90 SnF  0.83 AlN 0.21  

CuF 1.0  SnCl 0.76 In2S3 0.24  

CuO 0.51 SnI  0.42 In2Se3 0.17  

Cu2O   0.39 SnSe  0.36 As2S3 0.16  

CdCl 0.70 SnCl4  0.23 As2Se3 0.11  

CdBr 0.60 SnBr4 0.20 As2Te3 0.09  

CdI2 0.44 SnI4 0.15 Sb2S3 0.30  

CdS 0.34 SnS  0.33 Sb2Se3 0.28  

CdSe  0.28 SnSe  0.24 PF3 0.27  

CdTe  0.22 GeS 0.20  PCl3  0.14  

2

2

2

2

2

2

2

2

2

v

spectroscopy) or the maximum of the electrostatic potential (electron diffraction)
which practically coincide with the nucleus. On the other hand, X-rays are scattered
mainly by electrons (with a negligible contribution from the nucleus) and therefore
can, in principle, inform about the actual distribution of electrons in crystals. Debye
had foreseen such possibility as early as 1915 [89], but its realization took a better
part of the twentieth century. The present state of the problem is comprehensively
described in books [90, 91] and reviews [92–94].

In principle, a map of the electron density can be calculated by a Fourier se-
ries, the amplitudes of which are related in a simple way to the intensities of the
diffraction peaks (‘reflections’). Unfortunately, we also need to know the phases
of diffracted beams, which are not measurable and have to be deduced. Secondly,
a good-resolution map requires very extensive (ideally — infinite) Fourier series,
but the number of measured reflection is of necessity limited. The Fourier map is
therefore too crude to extract from it chemically meaningful information. To make
X-ray crystallography really informative, the diffraction data is fitted into certain
models, which are ultimately rooted in quantum mechanics. The simplest of these is
the spherical-atom approximation, according to which X-ray scattering of a crystal
is the sum of scattering by the spherically-symmetrical, ground-state atoms (usually
calculated by Hartree-Fock method). The coordinates of these atoms and the param-
eters describing their thermal vibrations, are then refined by least-squares technique,
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until the difference between the calculated and observed scattering intensities (‘R-
factor’) is minimized. It is then tacitly assumed that the resulting ‘atomic’ positions
are those of the atomic nuclei. In most cases the latter is true within 0.01 Å; the excep-
tions are triple-bonded C, N and O atoms with their strongly non-spherical electron
shells, and especially H, which has no non-bonding electrons. The H atom position
determined by X-ray method is usually shifted towards the chemically bonded atom
by 0.1 Å or more, especially if the latter atom is electronegative.

Probably, 99.99 % of all X-ray structure determinations to-date have been done
on this approximation. Of course, the real distribution of the electron density in an
actual crystal/molecule is different from such model (often called pro-crystal/pro-
molecule); its topology can be best understood within the framework of the AIM
theory, developed by Bader [8]. Electron density is concentrated between atoms
which are linked by a covalent bond, and is depleted between atoms which participate
in closed-shell interactions (ionic or van der Waals). A good quantitative measure of
such effects is the Laplacian of the electron density (∇2ρ), equal to the sum of its
principal curvatures (second derivatives) at a given point:

∇2ρ = ∂2ρ/∂x + ∂2ρ/∂y + ∂2ρ/∂z (2.22)

According to the Virial Theorem, the Laplacian of ρe is related to the densities of
kinetic (G) and potential (V ) energies of the electrons,

2G + V = h2

16mπ2
∇2ρe (2.23)

where m is the mass of the electron. A positive Laplacian indicates a local depletion
of ρe and a negative one a local accumulation (this does not imply a local peak!). If
two atomic nuclei are linked by a line along which ρe is enhanced, this gives a clear
indication of covalent bonding (‘bond path’, BP). The one-dimensional minimum of
ρe on the BCP (bond critical point) signifies the contact between the atoms, while in
three dimensions the atomic basin of the electron density is enclosed by surfaces of
zero flux of ρe.

In fact, the difference between ρe of a molecule and of its pro-molecule (deforma-
tion electron density) is not as big as a Lewis diagram may seem to imply: a bonding
electron pair is localized on two atoms, not between them. Thus, in a H2 molecule,
for which precise ab initio calculations are available, the additional accumulation of
electron density between the nuclei (compared to the pro-molecule) is only 16 % of
the sole electron pair—although the H–H bond in one of the strongest bonds known!
In modern X-ray experiments, R-factor usually does not exceed several per cent—
another proof of the smallness of the deformation ρe. Charge-density studies require
much more extensive and accurate sets of experimental data than ordinary, atomic-
approximation, studies. Such experiments were practically impossible before 1970s,
remained prohibitively long until area detectors and synchrotron radiation came into
wide use in 1990’s, and even today are far from routine. It is very difficult to dis-
tinguish the deformation of the electron density due to a chemical interaction, from
the ‘smearing’ due to thermal motion of atoms; the most sure solution is to eliminate
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Fig. 2.3 Experimental
deformation charge density in
the cyclopropane ring of
7-dispiro[2.0.2.1]heptane
carboxylic acid. Reproduced
with permission from [95],
copyright 1996 International
Union of Crystallography

thermal motion physically, by collecting the data at liquid-nitrogen, or better still,
at liquid-helium temperatures. Nevertheless, today the electron density data is re-
producible on a sufficient level of precision, and the main difficulty has shifted to
its interpretation. The results depend crucially on the model, and if the latter is in-
adequate or ambiguous, then the parameters will be biased or indeterminate. The
parameterization retains an element of arbitrariness. Worse, often the same data can
be fitted equally well (in mathematical sense) to very different sets of variables.
More often than is acknowledged, researchers proceed by testing several models
and choosing the one that gives the most physically meaningful outcome. And while
Laplacian is very efficient in revealing subtle features of the electron density topol-
ogy, it by the same token magnifies greatly the noise and bias of the original function.
Partly for this reason, different tools of topological analysis often give contradictory
results.

At present, charge density can be mapped with the precision of 0.05 e/Å3. The
experiments have consistently revealed peaks of the deformation density which can
be identified with bonding and non-bonding (lone) electron pairs, as envisaged by
Lewis and the VSEPR theory. The charge density at the bond critical point was
found to correlate with the strength of the bond, and inversely correlates with bond
length. In cyclo-propane rings, the peaks of a (bond) deformation density do not
lie on the direct C−C lines, but are shifted outwards (Fig. 2.3). The ellipticity of
the bond electron density, i.e. its deviation from cylindrical symmetry, reflects the
π-character of the bond. The experimental charge density can serve as the basis
of calculating various molecular properties, such as electrostatic potential at the
molecular surface (indicating the areas favorable for electrophilic and nucleophilic
attacks) or dipole moments. Some polar compounds have their dipole moments much
enhanced in the crystal compared to the isolated molecule (e.g. for HCN, 4.4 D vs 2.5
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Table 2.6 ‘XRD’ effective atomic charges in binary compounds

MXn

LiF

LiH

NaCl

KCl

KBr

MgF2

MgH2

CaF2

MnF2

CoF2

MgO

MgS

0.92

1.17

1.45

1.57

0.95

0.93

1.28

0.88

0.86

0.88

0.97

0.80

0.61

0.95

0.95

0.86

0.90a

0.86a

0.68

0.75

CaO

BaO

MnO

CoO

NiO

Al2O3

Cr2O3

Sb2O3

SiO2

TiO2

BN

AlN

0.74

0.60
0.72d

1.01

1.08

1.09

1.15

1.49

1.32 1.00

1.00

0.62a

0.74a

0.46

0.55

0.50

0.38b

0.25c

0.63d

0.75

0.15

0.20
1.19e

1.13f 0.64f
0.74e

0.4h

1.0g

0.51

0.02

0.04

0.06

0.05

0.08

0.05

0.07

0.09

Cu2O

МХn      e*M /v r*M e*M/v 

Fe3O4

CaSO4

YH3

InSb

InAs

InP

GaAs

GaP

AlSb

AlAs

AlP

МХ r*Mr*M     e*M/v 

a[96], b[97], cquartz, dstishovite [81], eFeII, f FeIII, gCa, hS

D, respectively). On the other hand, estimates of atomic charges proved very model-
dependent. Thus, for NH4H2PO4 a variety of refinements, fitting the experimental
data equally good, yielded the ammonium cation charges varying all the way from
0 to +1 [96]. Observations of ‘bond paths’, of hydrogen bonds and even weaker
intermolecular interactions, attracted criticism [94], since the electron density in
intermolecular areas is generally low, close to the level of the experimental error,
which makes topological analysis extremely unreliable. Thus, charge-density studies
have confirmed many effects which structural chemists suspected for a long time.
However, so far they delivered relatively few results which were really unexpected
and would have remained unknown without this method.

Many works are devoted to the determination by XRD of charges of atoms in
inorganic crystals. Table 2.6 lists the most reliable values of effective charges and
atomic radii in binary crystalline compounds, obtained in these studies [97–113].
Similar data for complex compounds can be found in Table S2.1. It is remarkable
that in MgH2 the charge on Mg was estimated as +1.91 e, and on hydrogen as
−0.26 e [114] with 1.4 e per formula unit missing. This charge may be delocalized
in interatomic voids, but the material is an insulator with Eg = 5.6 eV [115].

Bond polarities in organic carboxylate salts, R-CO2M (M = H, Be, B, C, N, O, Al,
Si, P, MnII, FeII, FeIII, CoII, NiII, CuII, Zn, Gd) were determined, in good agreement
with spectroscopic data and EN-based estimates, by comparing the lengths of the
two C-O bonds in the carboxy group, from crystal structures [116]. These bonds
must be identical (with the bond order n = 1.5) in the fully ionic case but different
(n = 1 and 2) covalent case:
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It can be concluded that in the majority of crystalline halides and oxides, a degree
of ionicity is between 0.5 and 1.0. The effective sizes (radii) of atoms change with
ionization in a non-linear manner (see Sect. 1.5), this translates into ≤10 % deviation
from the perfectly ionic radii, which explains the efficiency of the ionic radii in
inorganic crystal chemistry.

2.2.4 Metallic Bond

The major feature of the electron structure of metals is the availability of freely
moving electrons (formerly valence electrons) shared by all atoms. This model was
first formulated by Drude who applied the kinetic theory of gases to an ‘electron
gas’ in metals, assuming that there exist charged carriers moving about between the
ions with a given velocity and that they collide with one another in the same manner
as do molecules in a gas. The metallic bond can be regarded as a non-directional
covalent bond. Indeed, a crystal-chemical approach suggests that a transition from
covalent to metallic bonding can be linked with the increase of the coordination num-
ber, so that valence electrons become increasingly delocalized and finally transfer
from the valence into the conduction band. For the metallic bond to form, atoms’
valence electrons must be removed from them to move freely in the interatomic
voids of the crystal space. This requires the condition E(A–A) + I(A) < E(A+· · · e−).
When the A+· · · e− interaction becomes more favourable than the A–A bond, a
dielectric → metal transition occurs.

In the early theory of metals it was supposed that all valence electrons in atoms
become free and the metal structure is a lattice of cations immersed in an ‘electron
sea’. Now it is known that only a part of the outer electrons of atoms are free,
since the metallic radii are larger than those of cations (see Chap. 1). Some studies of
electron density distribution in metals estimated the metallic/core radii ratio as 1:0.64
[117, 118]. The effective radii of the atomic cores in metallic structures are close
to the bond radii of the same metals in crystalline compounds (see Chap. 1) which
correspond to atoms with charges not exceeding ±1. It should be noted that work
functions of bulk metals are always smaller than the first ionization potentials of the
corresponding atoms (see Sect. 1.1.2) and therefore there is no reason to suppose the
ionization of two or more electrons from an atom.

The crystal-chemical mechanism of the metallization in ionic crystals of MX-type
was studied under high pressures [119]. Assuming that the metallization of a material
under pressure occurs when the chemical bond is destroyed, i.e. the compression
energy becomes equal to E(M−X), it was concluded that the interatomic distances
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for an ultimately compressed MX crystal are equal to the sum of the cationic radius
of M+ and the normal covalent radius of X. Thus, metallic binary compounds differ
from pure metals in having a sub-lattice of neutral nonmetal atoms Xo. From here it
follows that in MX under high pressures the M atom can be the donor of electrons
if the bonding is covalent, M◦–X◦, as IM < IX. If the substance is ionic, M+ X−,
then X−anion must be the donor, because AX < IM. The polar character of the M−X
bond prior to pressure-induced metallization can be determined experimentally. The
proposed mechanism of metallization implies the availability not only of mobile
electrons—for in aromatic molecules they are also mobile to a considerable extent—
but also of certain structural voids which these electrons can occupy. Because metallic
structures have high Nc (usually, 12), a cluster should have at least 13 metal atoms
to acquire metallic properties. Measurements of the photoelectron spectra in clusters
of mercury [120, 121] and magnesium [122] showed that their s-p band gaps are
closed when the number of Hg atoms reaches 18, indicating the onset of the metallic
behavior.

It has been shown [123] that the metal sub-lattice in crystal structures of the ZnS,
NaCl, NiAs and CsCl types has the same (or similar) Nc of metal and M−M distances
(dMM), as the structure of pure metal (d◦

MM); hence the degree of metallic bonding
can be defined as

m = c
do

MM

dMM
(2.24)

As the next logical step, it was suggested [124] to apportion the distribution of the
covalent electron density (q) in an MX structure in proportion to the strengths of
M−M and M−X bonds,

q = NMMEMM

NMMEMM + NMXEMX
(2.25)

where NMM,MX and EMM,MX are the coordination numbers and energies of the M−M
and M−X bonds, respectively. Taking into account the proportionality between the
energies and overlap integrals of bonds, we obtain

m = uSMM/So
MM (2.26)

here u is the electron concentration (population) in the metal orbitals, So and S are
the overlap integrals of the M−M bonds at distances do

MM and dMM. The problem
of partitioning of the covalent electron density between M−M and M−X bonds is
solved in [11] using a simpler model, viz.

q = χM

χM + χX

(2.27)

where χM and χX are the electronegativities of the M and X atoms in the MX crystals.
If do

MM and dMM are close, the degree of bond metallicity can be estimated as m = cq,
otherwise it can be determined from experimental data as

m = cq
do

MM

dMM
(2.28)
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In Table S2.2 the values of metallicity calculated by Eqs. 2.25 (m1) and 2.28 (m2)
are listed. Good agreement of the results prove that for an approximate estimation, it
is not necessary to take into account the differences between the metal bond lengths
in compounds and elemental solids.

As mentioned above, the metal sub-lattices in the crystal structures of compounds
are usually the same, or similar to, the structures of the corresponding pure metals.
This problem was considered in depth by Vegas et al. [125] who studied the genesis
of structures in metals, alloys and their derivatives. Thus, MBO4 compounds of the
CrVO4 structural type have the metal lattice like the MB structure. The same situation
exists in ternary oxides of the MAOn type, where A = S or Se, and n = 3 or 4, and
also in MLnO3. This means that the metal skeleton is the basis of the structure of
the compound, and atoms of oxygen are simply included into the voids between
cations. Such inheriting of the structure of the parent substance by its derivatives can
be explained by the minimization of work required to create the new structure on the
basis of the metal lattice, although there are also more complex reasons [126].

One more experimental method of characterizing the metallic state is to compare
the volumes and refractions (R) of solids. As the refractive indices of metals are very
great, the Lorentz-Lorenz function (Eq. 2.18) is close to 1 and R ≈V. According to
the Goldhammer-Herzfeld [127, 128] criterion, V → R when a dielectric converts
into a metal. As the measure of bond metallicity, the ratio

R

V
= n2 − 1

n2 + 2
(2.29)

can be considered [129, 130]. The pressure at which V = R, has been often regarded
as the pressure of metallization. However, both during isomorphic compression
and at phase transitions under high pressures the refractive index also changes (see
Chap. 11). Therefore the Goldhammer–Herzfeld criterion is not absolutely correct,
although for rough estimations of pressures of metallization it is valid. A more
rigorous approach was used in [131, 132] where the changes of R(CH4) and R(SiH4)
under pressure were studied, revealing a large increase in the R/V ratios at 288
and 109 GPa, respectively, which indicates phase transformations of the insulator–
semiconductor type in these materials.

There is one more question to be answered. It is known that phase transition
enthalpies (�Htr) constitute only a small part of the atomization energy (Ea). Thus,
the graphite-diamond transition with change of Nc from 3 to 4 has the �H tr = 2
kJ/mol; the transition from 4- to 6-coordinate Sn has 3 kJ/mol, of 6- to 8-coordinate
Bi has 0.45 kJ/mol, and that of 8- to 12-coordinate Li has 54 J/mol. In each case,
�H tr ≤ 0.01Ea , whereas on transition from the Sn2 molecule (Nc = 1) to α-Sn (Nc =
4) the Ea increases 3.2 times. Similar transformation for Group 1 or Group 11 metals
from Nc = 1 to Nc = 8 or 12 results in a 3.4-fold increase, and for other metals
the changes are even bigger. Note also that the Ea(MX) in crystals exceed those
in molecules by a factor of ≈ 4.3 (see Sect. 2.3), but further increases of Nc in
crystals make very little difference, as indicated by small changes in Madelung’s
constants, from kM = 1.748 at Nc = 6 to kM = 1.764 at Nc = 8, while some increase
in interatomic distances at the B1 → B2 transition, compensates the small increase
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of kM . The reason of this effect consists in the multi-particle interaction of atoms in
crystals, in the Coulomb interactions of cations with anions or free electrons.

For a long time the crystal-chemical approach seemed sufficient to describe of
the nature of the metallic bond. However, physically more general approach is to
consider the band structures of substances, namely that the conduction band contain-
ing electrons must be only partly filled [133]. Thus, with a full band the compound
K2Pt(CN)4 is an insulator and the Pt–Pt distance along the chain is 3.48 Å. How-
ever, the non-stoichiometric compound K2Pt(CN)4Br0.3 ·3H2O is metallic and, since
electrons have been removed from the top of the band where maximum anti-bonding
interactions are found, it has a much shorter Pt–Pt distance of 2.88 Å. Thus, the par-
tial oxidation of K2Pt(CN)4, when the band of PtIV is filled only partly, transforms
this compound into a metal. At full oxidation, K2Pt(CN)4Br2 is an insulator. The
same picture is observed in La2−xSrxCuO4 where the metal conductivity is observed
at x > 0.05.

There is one more way of formation of the metal state in molecular substances
without their transition to structures with high coordination numbers. On compres-
sion of the condensed molecular H2, O2, N2 and halogens, they acquire metallic
properties (see Sect. 5.2 and the review [134]) which result from strengthening
of electronic interactions upon shortening of intermolecular distances. These are
so-called ‘molecular metals’. As the molecules approach one another, three-center
A· · ·A–A orbitals or even chain-like structures are formed, where an increase of Nc

from 1 (A2) to 2 (–A–) leads to a linear delocalization of valence electrons.

2.2.5 Effective Valences of Atoms

The concept of valence (v) is one of the cornerstones of chemistry. According to
IUPAC Compendium of Chemical Terminology, the valence of a chemical element
is defined as the number of hydrogen atoms that one atom of this element is able to
bind in a compound or to replace in other compounds. However, in solid-state physics
and structural chemistry this term usually means the bonding power of atoms and
then v may have a non-integer value (‘effective valence’), which is derived from
physical properties. Thus, there is a widespread opinion [28, 135, 136] that metals of
Group 11 (Cu, Ag, and Au) in the solid state have effective valences v* much higher
than 1, which explains the big difference between Group 1 and Group 11 metals of
the same period, in physical properties, viz. melting temperatures (Tm), densities
(ρ), and bulk moduli Bo (Table 2.7). However, the difference between Groups 1 and
11 goes beyond the solid state, and manifests itself in the structures and properties of
gaseous molecules of these elements. Moreover, a certain parallelism is observed in
the variation of characteristics of elements in both states. According to spectroscopic
data [137], the bonds in molecules Cu2, Ag2, and Au2 are single; i.e. v = 1. This
agrees with the proximity of the M−M half-distance to the covalent radius of M
determined as the length of an M−H bond (definitely single) or an M−CH3 bond
minus the covalent radius of hydrogen or carbon [138]. The same conclusion can
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Table 2.7 Properties of
Groups 1 and 11 metals in the
solid state [138]

M K Cu Rb Ag Cs Au

Tm,◦C 63.4 1085 39.3 961 28.4 1064
ρ, g/cm3 0.86 8.93 1.53 10.5 1.90 19.3
Bo, GPa 3.0 133 2.3 101 1.8 167
v*, Pauling 1 5.5 1 5.5 1 5.5
v*, Brewer 1 4 1 4 1 4
v*, Trömel 1 3 1 3 1 3

be drawn by comparing the ratios between the bond energies and bond lengths in
solids and gas-phase molecules, between the atomization energies of solid metals
and the dissociation energies of molecules M2, and between force constants (f ) in
molecules M2 and metals M of Groups 1 and 11 elements. Table 2.8 shows that
the averaged ratios (k) of these properties for all elements are similar, averaging
1.706 ± 2.2 %, 1.154 ± 1.4 %, and 0.075 ± 5.1 %, respectively. Thus, although the
absolute values of physical properties of Groups 1 and 11 elements differ widely, the
relative changes (from solid to molecule) are practically identical. Table 2.9 shows
the simplest estimation of the electronic energies of isolated atoms, as proportional to
ε = Z∗/ro where Z∗ is the effective nuclear charge (from Table 1.7) and ro is the orbital
radius (from Table 1.8), and the experimental atomization energies (in kJ/mol) of the
three pairs of metals. One can see that the energies of isolated atoms are correlated
with the energies of atoms in solid metals, e.g. the bond strengths of elements are
determined by the properties of isolated atoms. Thus, there are no physical grounds
for ascribing the exaggerated ‘metallic’ valences to Cu, Ag, and Au in the solid state.

Physical properties of the crystalline halides MX of the Groups 1 and 11 metals
also strongly differ: the temperatures of melting (T m) and band gaps (Eg) of alkali
halides decrease in the succession MCl → MI, but in halides of Cu, Ag and Tl in
the same succession they increase or change little (Table S2.2), although d(M−X)
increases in all cases from MCl to MI. Experimental effective charges in alkali
halides on average are smaller than in halides of the Group 11 elements (Table 2.3),
although the difference of electronegativities �χ = χ(X) − χ(M) is smaller in
the case of Cu, Ag and Tl. This fact has been explained [139] by the formation of
additional (dative) M → X bonds involving the (n–1)d-electrons of the metals and
vacant nd-orbitals of the halogens, resulting in an increase of the atomic valences
of Groups 11, 12 and 13 elements on average by 1.5, 2.4 and 3.1, respectively. It
should be noted that Lawaetz [140] and Lucovsky and Martin [141] showed that to
reconcile the band structure of CuX andAgX with experimental data, one can assume
that v∗(Cu, Ag) = 1.5. Robertson [142–145] obtained good results in calculation of
the PbI2 band structure under condition of a 41 % Pb s orbital contribution to the
upper valence band state A+

1. Wakamura and Arai [146] also obtained v∗ = 2.8, 2.6
and 2.6 for crystalline compounds of divalent Mn, Co and Ni, respectively. The
crystal-chemical estimations of v∗ for divalent Sn, Pb, Cr, Mn, Fe, Co, Ni give
2.45 ± 0.05.

Liebau and Wang [147, 148] demonstrated that the classical valence term as in-
troduced by Frankland [149] and the term valence as used by solid-state physicists
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Table 2.8 Comparison of energies (kJ/mol), distances (Å), and force constants (mdyne/Å) of M−M
bonds in solid metals and molecules

M K Cu Rb Ag Cs Au

Ea(M) 89.0 337.4 80.9 284.6 76.5 368.4
Eb(M2) 53.2 201 48.6 163 43.9 221
kE 1.673 1.731 1.665 1.746 1.753 1.667
d(M) 4.616 2.556 4.837 2.889 5.235 2.884
d(M2) 3.924 2.220 4.170 2.530 4.648 2.472
kd 1.176 1.151 1.160 1.142 1.126 1.167
f (M) 0.007 0.108 0.006 0.093 0.005 0.154
f (M2) 0.10 1.33 0.08 1.18 0.07 2.12
kf 0.072 0.081 0.074 0.079 0.071 0.072

Table 2.9 Comparison of
energies in Groups 1 and 11
elements for molecular and
solid states

M Z* ro ε qε Ea qE

K 2.2 2.162 1.02 89.0
Cu 4.4 1.191 3.69 3.62 337.5 3.79
Rb 2.2 2.287 0.96 80.9
Ag 4.9 1.286 3.81 3.97 284.6 3.52
Cs 2.7 2.518 1.07 76.6
Au 5.6 1.187 4.72 4.41 368.4 4.81

and crystallographers, are different in nature, and suggested to call them stoichio-
metric valence and structural valence, respectively. For the majority of crystalline
structures, the difference between these values is <5 %, but for p-block atoms with
one lone electron pair, the differences of up to 30 % have been reported.

Quantum-chemical estimations show also that the ability to form additional bonds
in halides of the Group 11 metals increases from chlorides to iodides. A comparison
of the observed ionization potentials and electron affinities of halogens [139] shows
that it requires a smaller expense of energy to add the second electron to an I− ion
than to Cl−. The X2− ions are not found yet, but if they are ever observed in mass
spectra, the lifetime of I2− can be predicted to exceed that of F2−.

2.3 Energies of the Chemical Interaction of Atoms

2.3.1 Bond Energies in Molecules and Radicals

Energy characteristics of atoms also define, to a large extent, the strengths of their
bonds in molecules, polyatomic ions and radicals. The work required to disrupt
a chemical bond, e.g. to separate chemically bonded atoms from the equilibrium
distance to a practically infinite one (in the ground state) is called bond energy
(Eb). In case of the A2 and AX molecules, Eb is equal to the dissociation energy
of the molecule (De) which can be determined by thermochemical, calorimetric,
kinetic, mass-spectroscopic and molecular spectroscopic techniques. By definition,
De characterizes atoms in molecules at the equilibrium state with zero-point energy,
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Fig. 2.4 Characteristics of
the potential curve

ε (Fig. 2.4). Because ε = ½ hvo > 0, even at 0 K the measurements give

Do = De − 1

2
hvo (2.30)

where De is the dissociation energy calculated at the very bottom of the potential
energy well. The zero-point energy is highest in H2 (26 kJ/mol) and somewhat less
in molecules with heavier atoms, therefore the difference between Do and De can be
ignored for structural-chemistry purposes.

Thermochemical determinations of the bond energy are based on the measure-
ments of the heats of reaction (Q) at constant pressure

Q = (E2 + PV2) − (E1 + PV1) (2.31)

where E1 + PV1 and E2 + PV2 represent the initial and final states of the system.
The enthalpy being H = E + PV, it follows that Q = �H at constant P.

Heats of reactions can be measured by the calorimetric and kinetic methods,
using photo- and mass-spectrometry. Bond dissociation enthalpy calculated from the
thermal effect of the reaction at ambient pressure is close to the bond energy because
PV is small, for example for the hydrogen molecule PV ≈ 2.5 kJ/mol. Finally, the
difference between the dissociation energy at 0 K and that at room temperature is
also very small; for the hydrogen molecule the difference is �E ≈ 1 kJ/mol.

Thus measurements of bond energies by different methods usually diverge by
several kJ/mol; for this reason the experimental bond energies cited in the present
and the next sections, are rounded up to integer kJ/mol, except where indepen-
dent measurements give better agreement. The bond energies of diatomic molecules
and radicals presented here, have been compiled using as the starting-point, such
reference books as the NBS Tables of Chemical Thermodynamic Properties (1976–
1984), JANAF Thermochemical Tables (1980–1995), Thermochemical Data of Pure
Substances (1995), Handbook of Chemistry and Physics (2007–2008), and Thermo-
dynamic Properties of Compounds (electronic version, 2004, in Russian). These data
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Table 2.10 Values of n in the Mie equation for molecules MX and M2

M n M n M n M n M n

Ag 3.7 Cd 4.1 In 3.8 Ni 3.1 Th 2.5
Al 3.3 Cr 4.4 K 2.9 Pb 4.7 Ti 4.2
As 3.8 Co 3.1 La 2.7 Pt 3.6 Tl 3.0
Au 4.2 Cs 3.2 Li 2.2 Rb 2.9 U 3.1
B 2.6 Cu 3.2 Mg 3.7 Sb 3.8 V 3.9
Ba 3.2 Fe 4.0 Mn 3.5 Sc 2.6 W 4.5
Be 3.2 Ga 2.5 Mo 4.1 Sn 3.8 Y 3.5
Bi 4.4 Hg 5.0 Na 2.6 Sr 3.3 Zn 3.9
Ca 3.3 Hf 3.3 Nb 3.4 Ta 3.2 Zr 3.6

have been critically compared, corrected and updated using recent original publica-
tions, for which references are given. Where several independent measurements by
the same method are available, the preference is given to the more recent works and
more authoritative researchers, while results of equal reliability have been averaged.

Bond energies of diatomic molecules are listed in Tables S2.2 and S2.4. Evidently,
dissociation energies of hetero-nuclear diatomic molecules increase together with the
bond polarity, i.e. from iodides to fluorides and from tellurides to oxides of the same
metals. Therefore, D(M−X) in halides and chalcogenides are always larger than
the additive value, i.e. the half-sum of D(M−M) and D(X−X). This fact has been
first noticed by Pauling, who formulated the dependence of the bond energy on its
polarity in terms of electronegativity (see Sect. 2.4). For halides of polyvalent metals,
or other elements, e.g. H, B, C, the dissociation energy of a hetero-atomic bond does
not necessarily exceed the additive value, because the bonds under comparison may
differ not only by polarity, but also by the type of bonding orbitals and the bond
order.

Also of paramount importance is the relation between the energy Eb of a bond
and its length d. This question has three distinct, but ultimately connected, aspects,
viz. (i) the potential curve for a chemical bond of a given order between given types
of atoms, (ii) the bond length/bond order relation for a given pair of atoms, and (iii)
the correlation between energies and lengths of bonds formed by different elements.
However, it is probably impossible to establish a universal dependence Eb = f (d),
because the inter-nuclear, nucleus-electron and inter-electron interactions all change
with distance in different fashions, and the combined energy curve can be highly
specific. The most general form of the potential energy (E) for two interacting atoms
is given by the Mie equation:

E = − a

dn
+ b

dm
(2.32)

where a and b are constants of the substance, d is the bond length, and m > n. Here
the first term defines the attraction and the second one the repulsion of atoms. The
sum of m and n and their product (m × n) can be derived from various physical
properties [150], but there is very limited experimental information about the values
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of m and n separately. In the equilibrium state Eq. 2.32 transforms into

E = Ee

n − m

[

n

(
de

d

)m

− m

(
de

d

)n]

(2.33)

From here, supposing m = 2n and thereby transforming the Mie equation into the
Morse function (see Eq. 2.7) which describes energies of molecules very well, we
finally obtain

n = d
√

f/2Ee (2.34)

where f is the force constant. The calculations of n from experimental data for
molecules at normal thermodynamic conditions [151] are presented in Table 2.10.

As mentioned above, at m = 2n the Mie equation transforms into the Morse func-
tion which describes well not only covalent bonds but also van der Waals interactions.
This function was used to estimate van der Waals radii [152] and to rationalize the
properties of Zn2, Cd2 and Hg2 molecules [153]. Very often E is estimated using the
simplified equation

E = a

dn
(2.35)

i.e. neglecting the repulsion term. Having made this assumption, and using experi-
mental data for transition metals, Wade et al. found that n ≈ 5 for C−O bond, 3.3 for
C−C, and 2–7 for M−O bonds [154–156]. The bond energies and lengths in many
molecular and crystalline compounds have been estimated using Eq. 2.35 [157]. The
results are briefly as follows. In molecules of univalent elements, Na2 to Cs2 and Cl2
to I2, n = 1.2 and 1.6 while according to Harrison [158] the bond covalent energy de-
pends on the interatomic distance as d−2. In the successions P2 → Bi2 and S2 → Te2,
n = 2.6 and 1.8, i.e. somewhat less than the canonical factors of 3 and 2, respectively;
in molecules of hydrohalides HX, alkali halides, CuX, and SnX or PbX, n = 1.6, 2.1,
1.9 and 2.5, respectively. Interestingly, in van der Waals molecules Zn2, Cd2, Hg2,
the bond energies vary as d−2.4, although according to London’s theory of van der
Waals interactions, E must be the function of d−6. The values of n in crystalline
compounds are smaller than in the corresponding molecules, by 15–30 %. From
these n values one can deduce the absence of ideal types of chemical bonds in most
molecules and crystals. The bond character in solid metals is especially varied; sev-
eral authors explain this variability by the fact that the effective and formal valences
of atoms are different.

The chemical bond strength usually increases when the bond length decreases.
Noteworthy exceptions are the N−N, O−O and F−F single bonds, which are weaker
than the longer P−P, S−S and Cl−Cl bonds, respectively. This effect can be explained
by the strong repulsion between the bonding and the lone electron pairs at shorter
distances, which agree also with lower electron affinities of N, O and F compared
with P, S and Cl (see Table 1.3). The dissociation energies of the N−N, O−O and F−F
bonds, estimated by extrapolating the D vs. X−X curve (derived for larger atoms),
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exceed the experimental values by 230, 250 and 210 kJ/mol respectively. This effect
should be taken into account at additive thermochemical calculations.

Another example of electron-electron repulsion affecting bond dissociation ener-
gies can be observed on monofluorides of certain elements. Thus, M−F bond energies
in LiF (573 kJ/mol) and BeF (575 kJ/mol) are almost equal, notwithstanding sub-
stantially shorter bond in the latter, due to the repulsion between the nonbonding
s-electron of Be and the electron pair of the Be−F bond, which compensates for the
increased charge on the metal atom. On the contrary, in BF the bond energy is much
higher (742 kJ/mol) as the two nonbonding electrons of the boron atom form a closed
s2-pair interacting weakly with the bond electrons. Introduction of another isolated
electron in CF, again reduces the dissociation energy down to 548 kJ/mol.

The interaction of isolated electrons of an M atom with the bond electrons obvi-
ously would decrease as the latter shift toward the X atom, i.e. as the bond polarity
increases. This explains why the increase of bond energy from M−I to M−F is higher
for alkali earth metals (which have uncoupled s-electrons) than for alkali metals
(which don’t), on average 285 vs. 185 kJ/mol. Note that the bond energies in the
MX2 molecules (where the alkali earth metal has no non-bonding s-electrons) of
the same series differ from the corresponding energies of alkali halides by only ca.
25 kJ/mol. Exceptionally low dissociation energies of M2 molecules of alkali-earth
metals are due to the formation of stable outer s2-electron configurations that prevent
the formation of covalent bonds; the interaction is rather of van der Waals character
and its energy is correspondingly small (see below).

Peculiarities of the electron structures of atoms in molecules become particularly
conspicuous when the dissociation energies of MX or M2 molecules are compared
with those of positively charged MX+ or M2

+ radicals. In agreement with Hess’ law

E(M − M) + I (M) = I (M2) + E(M − M+) (2.36)

Hence, the difference I(M)−I(M2) determines the relationship between E(M2) and
E(M2

+). Textbooks usually give few examples thereof, and often the single one of
H2 vs H2

+, where the dissociation energy decreases from 436 to 256 kJ/mol as one
electron in this molecule is removed on ionization. However, this example is rather
atypical. Tables S2.5 and S2.8 list all the currently known dissociation energies of
positively charged diatomic radicals. For halogens, the picture is easy to interpret.
An electron is removed from a non-bonding orbital which is destabilized (compared
to isolated atom) by electron-electron repulsion in these electron-rich molecules,
hence I(A) > I(A2). Ionization reduces this repulsion, hence E(A2) < E(A2

+). Both
relationships are reversed for hydrogen, as it has only bonding electrons which are
attracted by both nuclei and therefore are bound stronger than in the atom. The loss
of one of these electrons, naturally, weakens the bonding.

One might expect Group 1 metals to be similar to hydrogen in this respect, as
they have no non-bonding electrons in the outer shell. The closed shells evidently
lie too low in energy (the second ionization potential exceeds the first by an order of
magnitude), hence ionization in this case also means the loss of a bonding electron.
Nevertheless, for all these metals I(A) > I(A2) and E(A2) < E(A2

+), i.e. apparently
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two nuclei attract an electron weaker than one and a single electron holds the atoms
together stronger than a Lewis pair! The one plausible explanation can be derived
from the ‘magic formula’ of Mulliken (see below, Eq. 2.46) although there are more
complicated models also [159–162].

In a modified form, Eq. 2.36 can be extended to dications,

E(A2) + 2I (A) = I1(A2) + I2(A2) + E(A2
2+), (2.37)

where I1 and I2 are the first and the second ionization potentials, or indeed to bulk
solids,

Ea(A) + I (A) = Φ(A) + Ea(A+) (2.38)

where Ea(A) and Ea(A+) are the atomization energies of the neutral and charged
solids, respectively, and Φ(M) is the work function, which is the ionization potential
of a bulk solid. Since I(M) > Φ(M) always, it follows that Ea(M+) > Ea(M). How-
ever, for alkali metals, Ea(M+) corresponds to the dissociation of an imaginary solid
consisting of metal cations without any valence electrons. Surely, such a system must
be altogether unbound!?

This paradox can be resolved as follows. The (molar) ionization potential is the
energy required to ionize every atom (or molecule) in a mole of a substance, while
Φ is the minimum energy required to remove the first electron from a neutral solid,
whereas subsequent electrons would require ever greater amounts of energy. To
estimate this energy, let us assume as the first approximation, that the I2/I1 ratio for
a molecule is the same as for an atom with the equal number of valence electrons.
This assumption seems not unreasonable in view of the recent observation [163] that
successive ionization potentials (at least, for the outer electron shell) for atoms of
all elements can be described by a single simple function. Thus, Group 1 diatomic
molecules can be ‘modeled’ by Group 2 or Group 12 atoms. As shown in Table S2.6,
for these atoms the I2/I1 ratio is fairly constant, averaging 1.9. Taking into account
that for metals I(A) ≈ I(A2), Eq. 2.37 can be reduced to

E(A2
2+) ≈ E(A2) − 0.9I (A). (2.39)

From the data in Table S2.7 it is obvious that E(A2
2+) 
 0, i.e. the A2

2+ cation is
strongly unbound, as indeed could be expected for a molecule completely stripped of
valence electrons. This molecule can also serve as a model for a bulk metal deprived
of its electron gas (Eq. 2.38), to estimate the ionization potentials for bulk metals. As
mentioned above, Φ is the energy required to strip the first electrons from a neutral
solid. When each atom in the solid is surrounded by charged atoms, Ea(M+) can be
found by an expression analogous to Eq. 2.39,

Ea(A+) ≈ Ea(A) − 0.9Φ(A). (2.40)

As shown in Table S2.7, Ea(A) is always smaller than 0.9 Φ(A), i.e. the structure is
unbound.
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Comparison of Tables S2.3 and S2.5 shows that removing an electron from a
multiple bond (in N2, P2, As2) reduces the dissociation energy, while removing an
electron from the outer shell in molecules of O2, chalcogens, halogens, alkali metals
strengthens the bond by reducing electron-electron repulsion. Removing an electron
from diatomic molecules of Groups 2, 12 and 18 elements, which have the closed s2

or s2p6 outer shells, transforms the van der Waals interaction into the normal chemical
bond and therefore these cations become more bound than the corresponding neutral
molecules. It is interesting that removing an np-electron from Tl (5s25p shell), on
the contrary, transforms the normal covalent bond in the Tl2 molecule into a weak
one, similar to van der Waals interaction, in the Tl+2 cation.

Ionization of halides of univalent metals, as well as oxides and chalcogenides of
divalent metals, drastically weakens their bonds, because the electron is removed
from the negatively charged atom, thus eliminating the Coulomb component of the
energy. On ionization of a radical which comprises a multivalent atom and a halogen
(or chalcogen), the unpaired electron is removed from the electropositive atom or, if
none is present there, from the electronegative atom. In the former case the bond is
strengthened, in the latter weakened.

During the last decade the information became available concerning the alteration
of bond strengths inA2 molecules on negative ionization. Thus, dissociation energies
of Sn2

− (265 kJ/mol) and Pb2
− (179 kJ/mol) [164] are higher than those of the

corresponding neutral molecules (187 and 87 kJ/mol, respectively). Among transition
metals, M2

− anions with M = Ni, Cu, Pt, Ag and Au have lower bond energies than
the neutral molecules and only Pd2

− has a higher one than Pd2 [165]. The bond
in the As2

− radical is slightly stronger than in the As2 molecule [166]. These data
on the effects of positive and negative ionization on the bond energies and distances
comprise excellent material for quantum chemistry, which still has to be fully utilized.

For a diatomic molecule, determining bond energy invokes no ambiguity: it is
exactly equal to the dissociation energy. However, for a larger molecule, e.g. MXn,
the experiment can give only the energies of successive dissociations of the bonds
Xn−1M−X, Xn−2M−X, etc., until the last X atom is eliminated. A difference of the
consecutive dissociation energies in a polyatomic molecule may be very significant:
thus, D (CH3–H) = 439, D(CH2−H) = 462, D(CH−H) = 424 and D(C−H) = 338
kJ/mol. Although the mean bond energy in MXn cannot be measured directly,
it is generally used in structural chemistry, because in most MXn molecules all
M−X bonds are equivalent and should have equal strength. The average of all these
dissociation energies gives the mean bond energy E,

E(M−X) =
∑

D(M−X)

n
(2.41)

There is a certain parallel here with the concept of the mean ionization potential; the
similarity extends also to some applications of both parameters (see below). In prin-
ciple, the mean bond energy in polyatomic molecules may be directly determined,
if the strong energetic influence atomizes a molecule completely: MXn → M + nX,
however such experiments are not yet available. The energies of successive disso-
ciations differ because after each atom is eliminated, the electron structure of the
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remaining fragment is rearranged, the difference itself being the measure of this
reorganization [167]:

ER = D − E (2.42)

The reorganization energy ER, particularly important in quantum chemistry, will not
be discussed here. Nevertheless, the effects of electron reorganization accompanying
bond rupture in polyatomic molecules have to be taken into account in structural
chemistry also, the dissociation energy being substantially affected by the structure
and composition of the molecule.

While the total dissociation energy always increases with the bond order, this
energy normalized by the number of bonding electron pairs sometimes reveals the
opposite trend, e.g. decreasing in the succession E(C−C) in ethane > ½ E(C=C)
in ethylene > 1/2 E(C≡C) in acetylene (357, 290, 262 kJ/mol, respectively). This
relative weakening of the multiple bond is compensated by strengthening of the
adjacent σ bond: extracting the first H atom from C2H6, C2H4 or C2H2 requires
respectively 423, 459 and 549 kJ/mol, extracting the second one requires 163, 339,
487 kJ/mol [168, 169]. Such complementarity occurs because the effective nuclear
charge of a given atom is screened by the constant number of its electrons and
an accumulation of electrons in one bond naturally reduces the screening in other
directions. Later we shall observe other manifestations of such compensation.

Experimental values of the mean bond energies for some elements are listed in
Tables 2.11 and S2.9. The compilation was based on the above mentioned thermody-
namics reference books, revised and (where reference are given) updated using new
original publications. The energies of similar hetero-polar bonds in di- and poly-
atomic molecules (compare Tables S2.3 and 2.11) are only slightly different; this
fact contradicts the ionic model. Indeed, if the bonds in the BaF2, LaF3 and HfF4

molecules were purely ionic, their (Coulomb) energies would be higher than in the
CaF, LaF and HfF radicals by the same factors as the charges of the metal atoms, i.e.
2-, 3- and 4-fold, respectively. In fact, bond energies in mono- and poly-fluorides
differ only by ±10 %. Given that the Coulomb attraction certainly gives the major
contribution to the bond energy (see below), one has to assume that as the valence
(v) of the metal increases, the bond ionicity should decrease proportionally to 1/

√
ν

[196]. Below it will be shown how this simple rule agrees with the experimental data.
Thus, in polyatomic molecules with different ligands, bonds of the same type

have different energies depending on the composition and structure of the molecule.
Therefore the values listed in Table 2.9 are strictly applicable only to the molecules
for which they have been determined, and only tentatively to other compounds with
similar bonds. Table S2.9 illustrates how the environment of a given bond affects its
energy. Leroy et al. [197] have also demonstrated that the energies of homo-atomic
single bonds, calculated from the heats of formation of organo-element compounds
(C−C 357, P−P 211 and S−S 265 kJ/mol), are close to the energies of the corre-
sponding bonds in elemental substances (adjusted for the number of bonds in the
structures), viz. diamond (358 kJ/mol), P4 (201 kJ/mol) and S8 (264 kJ/mol). The
energies of single covalent bonds, determined by this method from the parameters
of elemental substances, are included in Table 2.12.
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Table 2.11 Average bond energies (kJ/mol) in MXn-type molecules. (Bond energies of halides and
hydrides of Groups 13–15 elements are calculated using the data from [170, 171] and are given
without references)

M F Cl Br I M F Cl Br I 

Halide molecules MX2 Halide molecules MX3

Cu 383a 302 258 Sb 437b 313b 264b 192b

Be 629b 463b 388b 299b Bi 380b 279b 215b 170b

Mg 518b 391b 339b 262b Cr 476 336 299  

Ca 558b 448b 395b 321b Mo 494    

Sr 542b 438b 396b 321b W 569 420 359 285 

Ba 570b 460b 412b 353b S 339i    

Zn 393 320 270 205 Mn 435 319   

Cd 328 274 238 192 Fe 462 345 292 222 

Hg 257 227 185 145 Th 669k 514k 427k  

B 657 426 349 250 U 611k  477k 414 k   

Al 563 387 321 250 Halide molecules MX4

Ga 431 308 258 196 C          487 321 258 199 

In 398 279 232 174 Si 595 e  399e 331 e 246 

Tl 360 253 203 146 Ge 471q  340 q  273 q  209 q

Ti 690 456 436 344c Sn 409 323h 261 210 

Zr 636d  494 d  423 d 340 d Pb 327 249 h 199 164 

Hf 644 588 567 470 Ti 585r 430 r 360r 295r

C 530 367 311 255 Zr 647d 488 d 423 d 346 d

Si 600 e  426e 365 e 293 Hf 658d 496 447 355e

Ge 551f  392 f  341 f  269 f V  382h   

Sn 468 386g 323 254 Nb 574 s 426 s  372 s  293 s

Pb 388 304 g 262 209 Cr 448 333 269  

V  453h 445 375 W 552 405 343 270 

N 305 223 150 85.8 S 339i 204   

P 478 308 249 181 Th 672k 511k 448k   

As 431 288 235 172 U 609k  463k 398k  

Sb 392 264 213 148 Halide molecules MX5

Bi 358 231 180 116 P 461i 260  

Cr 507 387 340 249 As 387 253   

Mo 492   375 Nb 566 s  406 s  344 s   

W 603 464 403 335 Ta 600 430 365 258 

O 192 207   W 530 374 322 247 

S 357i 271   S 316i    

Se 353 256 240  U 571k 412k 351k  
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Table 2.11 (continued)

Halide molecules MX3 OsF6 IrF6 PtF6 UF6  

B 642 442 l  366 285 382w 331w 259w 524

Al 588m 422 m 346 m 284 m Hydride and oxide molecules 

Ga 475m 355 m 322 m 245 m H2O H2S H2Se H2Te  

In 443 m 322 m 285 m 225 m 459t 362 t  320 t  266u  

Sc 629n 470 n  382 n  337 n  NH3 PH3 AsH3 SbH3 BiH3

Y 643o 490p 432p 353p 391 322 297  258 215 

La 641o 513p 456p 378p BH3 AlH3 GaH3 InH3 TlH3

C 477 335 273 205 376 287 255 225 184 

Si 562 374 303 227 CH3 SiH3 GeH3 SnH3 PbH3

Ge 457 351 285 215 408 301 268 235 192 

Sn 391 293 238 170 CH4 SiH4 GeH4 SnH4 PbH4

Pb 349 258 210 142 416 322 288 253 209 

Ti 608 445 380 311 CO2 SO2 SeO2 TeO2 CrO2

V 555 413h 369  804 536 422 385 494 

N 280 202 179 169 MoO2 WO2 SO3 SeO3 TeO3

P 504i 329 259 177 582 636 473 364 348 

As 438b 307b 252b 194b CrO3 MoO3 WO3 RuO3 OsO4

   479 584 630 492 530 

Te 377 284   Halide molecules MX6

Mn 483 397j 342 278 S 329 182 117 42 

Fe 463 398j 343 272 Se 322 182 128 119 

Co 477 382j 325 268 Te 343 204 145 87 

Ni 457 369j 316 252 W 531 364 301 231 

Ru 433    AgF6 AuF6 MoF6 TcF6  

Pt 418    120v 176w 447v 387v 

Th 677k 517k 402k  ReF6 RuF6 RhF6 PdF6  

U 606k 460k 406k  430w 325v 174v 118v 

a[172], b[173], c[174], d[175], e[176, 177], f [178], g[179], h[180], i[181], j[182], k[183], l[184],
m[185], n[186], o[187], p[188], q[189], r[190], s[191], t[192], u[193], v[194], w[195]
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Table 2.12 Energies of single covalent homo-atomic bonds M–M (kJ/mol)

M E M E M E M E M Ec

Li 105a Zn 64c Ge 187d O 144d Tc 263
Na 75a Cd 55c Sn 151d S 264d Re 293
K 53a Hg 33c Pb 73c Se 216d Fe 204
Rb 49a B 286b Ti 175c Te 212d Co 210
Cs 44a Al 168c Zr 225c Cr 185c Ni 210
Cu 201a Ga 135c Hf 232c Mo 263c Ru 319
Ag 163a In 103c N 212b W 341c Rh 273
Au 226a Tl 64c P 211b H 436a Pd 182
Be 119b Sc 161c As 176d F 155a Os 387
Mg 102c Y 181c Sb 142d Cl 240a Ir 326
Ca 87c La 184c Bi 98d Br 190a Pt 277
Sr 80c C 358d V 232c I 149a Th 224
Ba 94c Si 225d Nb 325c Mn 121 U 213

Ta 354c

asee Table S2.3, bsee Table S2.9, c[198], d[199]

Multiple bonds in structural chemistry are traditionally described as combina-
tions of σ- and π-bonds, the proof being the two-step ionization of the C=C bond.
The π-bond energy is conventionally calculated by simply subtracting the σ-bond
energy from the experimental energy of a multiple bond. The π-bond energies ob-
tained in this way are listed in Table S2.10. As one can see, dissociation energies
of multiple bonds in the same molecules, reported by different authors, often show
discrepancies exceeding the experimental error by an order of magnitude, because
different techniques (of both measurement and calculation) involve the products of
dissociation in different valence states. Large discrepancies between the results of
different authors are caused also by inherent difficulty of determining a small value
as the difference of two large ones. In any case, the simple additive scheme is not
applicable here, because the standard energy of the C−C σ-bond (357 kJ/mol) refers
to its equilibrium length of 1.54 Å, whilst the carbon-carbon distance in the double
bond is only 1.34 Å. A rough estimate of how a contraction by 0.2 Å will affect the
energy of the C−C bond can be obtained from the experimental compressibility of
diamond. The Universal equation of state (see Sect. 10.6),

P (x) = 3Bo[(1 − x)/x2] exp [η(1 − x)] (2.43)

where P is the pressure, Bo is the bulk modulus, x = (V /Vo)1/3 (V and Vo are the initial
and the final volumes of the body), η = 1.5(Bo

′–1) and Bo
′ is the pressure derivative

of Bo, permits to calculate the pressure P required to shorten the bond distance in
diamond from 1.54 to 1.34 Å. Taking into account that diamond has Bo = 456 GPa
and Bo

′ = 3.8, we obtain P = 405.6 GPa (!). The work of compression is

Wc ≈ 1

2
P�V (2.44)

Because for diamond, Vo = 3.417 cm3/mol, for x = 0.87 we obtain �V = 1.166 cm3

and Wc = 236.6 kJ/mol. A ratio of the atomization energy of diamond (717 kJ/mol)
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to its elastic energy (BoVo = 1558 kJ/mol) allows to calculate the potential part of
Wc as 0.46 × 236.6 = 108.8 kJ/mol. Since in the diamond structure Nc = 4 and ev-
ery C−C bond involves two atoms, shortening of a C−C bond requires 54 kJ/mol.
Hence, the actual energy of the σ-bond must be reduced from 357 to 303 kJ/mol,
but the π-component correspondingly increased from the conventional 262 (mean
from Table S2.10) to 316 kJ/mol. Thus the σ- and π-bonds in ethylene have in fact
simlar energies, rather than E(π) < < E(σ) of the conventional description. Thus the
conventional breakdown of the bond energy into σ- and π-components is essentially
formal. Nevertheless it is useful, particularly in highlighting relative trends. Thus, it
is evident that π-bond energies decrease in the succession O > N > C > S > P > Si,
both absolutely and relatively to the σ-components, because the overlap of the va-
lence orbitals decreases in the multiple bonds. In the cases of O and N, the π-bond
energy is higher than that of the σ-bond, because the formation of a π-bond reduces
the repulsion between σ-bonded and lone electron pairs, which is especially strong
in electron-rich O and N atoms (see above).

Theoretical calculation of the bond energy is the task of quantum chemistry. So
far, satisfactory quantitative solutions have been achieved only for lighter elements.
Nevertheless, in principle the problem has been treated more than half a century
ago by Mulliken [200] who generalized the results of the molecular-orbital and
valence-bonds methods and derived his ‘magic formula’,

Eb =
∑

Xij − 1

2

∑
Ykl + 1

2

∑
Kmn − PE + Ei (2.45)

where �Xij is the exchange interaction of bonding electrons, �Ykl is the repulsion
of non-bonding electron pairs, �Kmn is the exchange interaction of lone electron
pairs, PE is the promotion energy and Ei is the ionic interaction. Since the exchange
integrals are proportional to the products of wave functions (the overlap integrals)
and the exchange energy of the bonding electrons is proportional to their ionization
potentials, the first term of Eq. 2.45 can be transformed to

�Xij = kĪij
Sij

1 + Sij
(2.46)

where k is an empirical coefficient (usually of the order of 1), Īij is the geometrical
mean of the ionization potentials of the atoms i and j, and Sij is the overlap integral.
Taking into account that the overlap integral defines the fraction of the outer electron
cloud which belongs to both atoms, it follows from Eq. 2.46 that the covalent bond
energy is always less than half the ionization potential of the bonded atom (because
S ≤ 1). The actual Eb/I ratio for A2 molecules with single bonds is 0.2 ± 0.1, for AB
molecules it varies from 0.3 to 0.6, the higher energy shown by polar bonds.

Returning to the problem of positively charged alkali dimers (see above) we
can make use of Eq. 2.46. Indeed, a transition from the two-electron bond in M2-
molecules to the M2

+-cations yields one-half of S, but Ī for M+–M increases much
more. E.g., I1(Li) = 5.39 but Ī = 20.20 eV, for Na respectively 5.14 and 15.59 eV,
etc., whereas for Cu, I1 = 7.72 but Ī = 12.52 eV and the bond energy in Cu2 is 201
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kJ/mol compared to only 155 kJ/mol in Cu2
+. Thus, the relation between the first

and second ionization potentials governs the change of bond energies at the positive
ionization in molecules M2.

Mulliken [201–205] calculated the overlap integrals as functions of two parame-
ters:

p = d

ao

μA + μB

2
and t = μA − μB

μA + μB

(2.47)

where μ = Z∗/n∗ and ao is the Bohr radius. However, calculations have been carried
out only for the integer values of n* and p ≤ 8. Later, the integrals were calculated
for n* = 3.7 and 4.2 up to p = 8 [206], or to p = 20 [207], which is enough for all
the real bond lengths in molecules and crystals.

Other additive descriptions of the energy of a hetero-atomic chemical bond have
been suggested, besides Eq. 2.45. The earliest, as mentioned above, was Pauling’s
equation [18]

E (M−X) = Ecov + Eion (2.48)

where Ecov = ½ [E(M−M) + E(X−X)] and Eion is the extra ionic energy, equaled to
Q, which is the heat of reaction, ½ M2 + ½X2 = MX. Later Pauling suggested, as
an alternative, to calculate Ecov as [E(M−M) · E(X−X)]½. Fereira [208] described
the energy of a M−X bond as the sum of three components,

E(M−X) = Ecov + Eion + Etr (2.49)

representing the covalent, ionic and electron-transfer contributions, respectively;
components of this equation have been modified in numerous works [209–217].
However, for empirical estimations one can use Eq. 2.48.

2.3.2 Bond Energies in Crystals

Bond energy (Ecr) in a crystalline compound MXn can be calculated from the average
bond energy in the corresponding molecule (Emol) and the sublimation energy (�Hs,
see Tables 9.4–9.6),

Ecr = Emol + �Hs/n (2.50)

where n is the number of atoms with the lower valence in the formula unit (i.e. n = 2
for SiO2 or Li2O). Alternatively, the bond dissociation energy in MXn crystals can
be calculated directly from heats of formation �Hf (MXn),

Ecr(M−X) = [�Hf (M) + n�Hf (X) − �Hf (MXn)]/n (2.51)

Average bond energies for crystalline compounds are listed in Table 2.13.
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Table 2.13 Mean bond energies (kJ/mol) in crystalline compounds MnXm (v = valence of M). (Bond
energies for ZnSe, ZnTe, HgTe, SnSe, SnTe, FeS, CoS are the averaged values from handbooks
and original articles)

vM M X

F Cl Br I O S Se Te

I Li 853 682 614 529 580 519 484 430
Na 761 642 581 518 438 425 393 365
K 731 656 595 527 393 418 391 365
Rb 717 639 584 515 374 398 402
Cs 711 648 591 534 374 396 412
Cu 596 557 512 546 514 484 460
Ag 571 545 477 455 423 438 421 408
Au 526 494 501
Tl 582 508 464 425 390 364 343 322

II Cu 514 412 329 741 668 603 578
Be 743 530 453 364 1172 824 725 661
Mg 710 512 452 364 998 739 662 571
Ca 776 604 544 460 1062 925 776 662
Sr 764 612 554 467 1002 910 776 660
Ba 768 639 584 514 984 918 800 707
Zn 526 395 342 276 727 602 532a 456a

Cd 480 372 326 264 618 538 484 402
Hg 325 267 227 190 400 391 344 295a

Ge 607 334 715b 642 589c

Sn 552 453 392 328 833 682 619d 568e

Pb 508 397 350 292 662 570 523d 465e

V 576 551 492 1195
As 481f 389f 352f 312f

Cr 687 518 460 384 824g

Mn 642 506 447 382 917 773 680 585
Fe 621 502 447 358 932 792h 707 650
Co 633 495 433 364 937 805h 721
Ni 616 488 429 359 915 797 728 660
Pd 501 409 358 282 741 724 626
Pt 550 462 429 415 921

III Sc 754 573 474 415 1137 919 789 704
Y 790 597 530 445 1167 951
La 788 622 556 472 1134 972 822 765
U 766 537 500 433 918
B 650 455 386 306 1040 707
Al 688 462 380 317 1027 738 632 541
Ga 560 382 340 276 794 631 542 489
In 555 376 333 265 718 554 491 438
Tl 287 501
Ti 690 505 439 328 1068 617
V 655 484 432 325 998
As 453 325 274 226 669 534 471f 425
Sb 471 336 290 223 666 501 454 407
Bi 447 318 252 209 580 464 422 377
Cr 560 411 378 307 891 651 558i

W 672j 525j 465j 396j
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Table 2.13 (continued)

vM M X

F Cl Br I O S Se Te

Mn 530 758k

Re 469 429
Fe 547 392 339 810
Co 485 319
Ir 426 394
Pt 366 344

IV Ti 610 444 377 320 933 715 650 556
Zr 706 516 452 378 1096 866 737 663l

Hf 720 522 473 384 1131
Si 601 410 341 263 930 610 522
Ge 479 351 288 231 725 526b 454d 348
Sn 445 336 275 230 689 505 438d

Pb 364 255 484
Th 757 573 497 423 1161m 890
U 689 516 454 369 1057m 808
V 559 392 863
Te 255 212 517
Mo 531 407 355 873 742g 659g 586g

W 595j 454j 393j 323j 971 826g 743n 709
Ru 727 705 664
Os 791 740 640
Pt 320 293 268 615

MX Sc Y La B Al Ga In Th U
N 1290 1197 1205 1299o 1113 901p 852q 1426r 1286r

P 1062q 1051 1050 984 827 697 630 1270r 1107r

As 945 1043 1039 745 667 606s 1046
Sb 774t 911t 913t 652u 587 542 930
C 1335r 1435r 1344

a[218, 219, 220, 221], b[222], c[223], d[224], e[225], f [226], g[227], h[228], i[229], j[230], k[231],
l[232], m[233], n[234], o[235], p[236], q[237], r[238], s[239], t[240], u[241]

2.3.3 Crystal Lattice Energies

In Sect. 2.3.1 and 2.3.2 we have considered the dissociation of bonds, molecules and
solids into electroneutral atoms. Alternatively, one can imagine them dissociating
into oppositely charged ions. Although such process is always less favorable ther-
modynamically in vacuum (see above), it can occur in a polar solvent. In any case,
ionic description of the crystal proved a very fruitful model in structural chemistry,
and historically the earliest one. The energy required to convert a solid ionic material
into its independent gaseous ions, is known as the crystal lattice energy (U). It can
be experimentally determined from the Haber-Born thermodynamic cycle,

U298 = −
∑

�H298 (M) +
∑

�H298 (X) − �H298 (MnXm) +
∑

I (M)

−
∑

A (X)

(2.52)
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where �H298(MnXm) is the heat of formation of a crystalline MnXm compound
from the elements under standard conditions, ��H298(M) and ��H298(X) are the
sums of the heats of formation of n isolated atoms of the metal M and m atoms of the
nonmetal X from the elements under standard conditions, I is the ionization potential
and A is the electron affinity.

All the parameters featuring in Eq. 2.52 can, in principle, be experimentally deter-
mined, provided that the ions in question can exist as individual particles. However,
no monoatomic anion with a charge exceeding −1 can exist, as they have A < 0.
Hence, experimental determination of U is possible, in practice, only for metal
halides. For compounds with polyvalent anions, like oxides, chalcogenides, nitrides,
etc., U can be only calculated theoretically. The history and bibliography on this
topic can be found in reviews [242, 243]. When it was realized that inorganic com-
pounds do not have purely ionic bonds, the interest in the concept and values of the
crystal lattice energies declined, therefore only a brief outline of this field is given
here.

The lattice energy can be expressed as the difference of two terms,

U = Ua − Ur (2.53)

Ua representing the Coulomb attraction between oppositely charged ions and Ur the
repulsion between similarly charged ions. The attractive term is determined easily,

Ua = KM
z2

d
(2.54)

where KM is the Madelung constant, which depends on the structure type, stoichiom-
etry of the compound and charges of the ions, z is the ionic charge, d is the interionic
distance. There are several ways of expressing Ur as a function of d, of which the
best are the approaches of Born and Landé [244–246] and Born and Mayer [247],
who expressed the lattice energies in the form of Eqs 2.55 and 2.56, respectively.

UBL = −KM
z2

d
+ c

dn
(2.55)

UBM = −KM
z2

d
+ C

ed/ρ . (2.56)

At the equilibrium interatomic distance ∂2U/∂d2 = 0, i.e. the attractive and the re-
pulsive forces are equal. From here we obtain the well known Born-Landé and
Born-Mayer equations,

UBL = −KM
z2

do
/

(

1 − 1

n

)

(2.57)

UBM = −KM
z2

do
/

(

1 − ρ

do

)

. (2.58)
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Table 2.14 Madelung constants KM

MX KM MXn KM MXn KM MnOm KM

HgI 1.277 HgCl2 3.958 AuCl3 7.471 Cu2O 4.442
HgBr 1.290 BeCl2 4.086 SbBr3 7.644 VO2 17.57
HgCl 1.311 PdCl2 4.109 BiI3 7.669 SiO2

TlF 1.318 ZnCl2 4.268 MoCl3 7.673 β-quartz 17.61
HgF 1.340 TiCl2 4.347 AuF3 7.954 α-quartz 17.68
CuCl 1.638 CdCl2 4.489 SbF3 7.985 tridymite 18.07
NaCl 1.748 CrCl2 4.500 AsI3 8.002 TiO2

CsCl 1.763 CrF2 4.540 FeCl3 8.299 brookite 18.29
AuI 1.988 CuF2 4.560 AlCl3 8.303 anatase 19.20
ZnO 5.994 FeF2 4.624 YCl3 8.312 rutile 19.26
PbO 6.028 SrBr2 4.624 VF3 8.728 SnO2 19.22
BeO 6.368 CdI2 4.710 FeF3 8.926 PbO2 19.26
ZnS 6.552 CaCl2 4.731 YF3 9.276 ZrO2 20.16
CuO 6.591 PbCl2 4.754 LaF3 9.335 MoO2 18.27
MgO 6.990 NiF2 4.756 BiF3 9.824 Al2O3 25.03

MgF2 4.762 SnI4 12.36 V2O5 44.32
MnF2 4.766 UCl4 13.01
CoF2 4.788 ThBr4 13.03
α-PbF2 4.807 ThCl4 13.09
CaF2 5.039 PbF4 13.24
AlBr3 7.196 SnF4 13.52
BCl3 7.357 SiF4 14.32
BI3 7.391 ZrF4 14.36

Many other expressions for the crystal lattice energy have been proposed, none of
which has any real advantage over the abovementioned methods, which therefore
remain in general use.

Born’s repulsion coefficient n depends on the type of the electron shell (see
Table 2.1). For an MX compound, n is calculated as ½ [n(M+) + n(X−)]. The ρ

coefficient is less variable, averaging 0.35(5). For this reason, Eq. 2.58 is more fre-
quently used for calculations. Assuming n = 9 and the interatomic distance d = 3 Å,
the repulsion energy can be estimated as ca. 10 % of the crystal lattice energy.

Equation 2.48 can be improved by adding the third term, which accounts for the
van der Waals forces,

EW =
(

Tcat + Tan

(rcat + ran)
6

)

(2.59)

where rcat and ran are the radii of the cation and the anion, Tcat and Tan characterizes
the van der Waals attractions of the cations and anions, respectively [248]. To recog-
nize the importance of this contribution, compare NaCl and AgCl. They have similar
structures and bond distances, but the van der Waals energy of the latter is 6 times
greater due to higher polarizability [249].

Madelung constants are important in many other areas of physical chemistry.
Their values for the shortest distances in the most common structural types are listed
in Table 2.14 [250–252]. Note that these constants vary widely, from 1.28 to 44.3.
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Their rigorous theoretical computation is a demanding task: to obtain an accurate
result, the contributions of tens of thousands of ions must be taken into account [253–
257] (Madelung constants for organic salts are presented in [258]). This stimulated
the quest for more economic methods of calculating KM; the most successful one
has been suggested by Kapustinskii [259, 260], who related KM to the number (m)
and valence (Z) of ions which comprise the formula unit of the crystal:

kM = 2KM

mzMzX
(2.60)

where kM is the new (reduced) Madelung constant, the values of which are listed in
Table S2.11. As one can see, kM has the average value of 1.55 and varies by ±10 %,
i.e. much less than KM. The deviation of kM from 1 is due to the crystal field, which in
energy terms is characterized by the sublimation heat of the solid. Thus, for the halides
of univalent metals, the ratio of the bond energies in the crystal and molecular states
is equal to this number (1.55). Kapustinskii suggested that crystal lattice energies
can be approximately estimated using for all structures the same kM = 1.745 and the
bond distances equal to the sums of ionic radii rM and rX (calculated for Nc = 6).
Merging all constant factors into one, he obtained the expression

U = 256
mzMzX

rM + rX
(2.61)

for U in kcal/mol and r in Å [259] which later was modified [260], in accordance
with the Born-Mayer equation, to the formula

U = 287
mzMzX

rM + rX

(

1 − 0.345

rm + rX

)

. (2.62)

This method applies to complexes, as well as to binary compounds. By minimizing
the discrepancy between the calculation and the experiment, one can determine the
so-called ‘thermochemical radii’ of complex ions. These radii correspond to the
(imaginary) spherical ions, iso-energetically replacing the real complex ions in the
crystal structure. This problem has been discussed in great detail by Yatsimirskii
[261] and later studied by Jenkins et al. [262–265]. Kapustinskii’s equation has
been successfully applied to the fluorides of mono- and divalent metals and to
solid solutions of the LnF3−MF2 type [266]. A comparison of the experimental
crystal lattice energies of CH3COOM (M = alkali metals), XCH2COOM (M = Li,
Na; X = Cl, Br, I) and ClCH(CH3)COOM (M = Li, Na) with those calculated by
Kapustinskii’s equation [267] showed small differences in the lattice energies of
all these compounds, i.e. M−O bonds define the crystal lattice energies of these
compounds and all differences are due only to their bond distances.

The lattice energies for a variety of mineral and syntetic complex compounds that
can be classified as double salts, were calculated by summing the lattice energies of
the constituent simple salts [268]. A comparison with the lattice energies obtained
from the Born-Haber or other thermodynamic cycles using the Madelung constant or
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Fig. 2.5 Energy bands in
crystals: a formation from
atomic energy levels; b in
dielectric, CB—conduction
band, VB—valence band,
Eg—band gap width,
EF —Fermi energy, Φ—work
function; c in semiconductor
with Eg ≥ 0 (semi-metal); d
in metal (Eg ≤ 0)

more approximately through the Kapustinskii equation shows that this approximation
reproduces these values generally to within 1.2 %, even for compounds that have
considerable covalent character. Application of this method to the calculation of the
lattice energies of silicates, using the sum of the lattice energies of the constituent
oxides are, on average, within 0.2 % of the value calculated from the experimental
enthalpies of formation.

Glasser and Jenkins [269] have formulated the general (but very simple!) pro-
cedures to make thermodynamic prediction for condensed phases, both ionic and
organic/covalent, principally via formula unit volumes (or density). Their volume-
based approach gives a new thermodynamic tool for such assessments, as it does
not require detailed knowledge of crystal structures and is applicable to liquids and
amorphous materials, as well as to crystalline solids. The next step was made in
the work of Glasser and von Szentpály [270] who used the fundamental principle
of electronegativity equalization to calculate the lattice energies for diatomic MY
crystals, taking into account ionic and covalent contributions to the chemical bond.
This method was applied to Groups 1 and 11 monohalides and hydrides, as well as
to alkali metals. A limitation of the model occurs for the coinage metals, Cu, Ag,
and Au, where d orbitals are strongly involved in the metallic bonding, while the
homonuclear molecular bond is dominated by s orbitals.

2.3.4 Band Gaps in Solids

The structures of inorganic crystals usually comprise infinite chains, two- and three-
dimensional networks of atoms linked by strong ionic or covalent bonds, and the
energetic properties of atoms are influenced by all structural units of the crystal.
Therefore the narrow electron energy level, characteristic of an isolated atom, is split
into as many components as there are bonds in a crystal; each resulting level is also
widened due to perturbations from adjacent atoms, the result being a broad band of
continuous values of energy in the crystal (Fig. 2.5).
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Table 2.15 Band gaps (eV) in MX—type compounds

X X 
M 

F Cl Br I M O S Se Te 

Li 12.5 9.4 7.9 6.1 Cu 1.95a  

Na 11.0 8.9 7.4 5.9 Be 10.6b 5.5 4.2 2.8 

K 10.8 8.7 7.4 6.2 Mg 7.3 a  6.0 5.7c 4.2 

Rb 10.3 8.3 7.4 6.1 Ca 6.9 d 5.3d 5.0c 4.1 

Cs 9.9 8.2 7.3 6.2 Sr 5.8d 4.8d 4.7c 3.7 

Cu  3.2 2.9          2.95 Ba 4.0 d  3.9d 3.6d 3.4 

Ag 2.8 3.6           3.05         2.8 Zn 3.4 a 3.7e 2.7 e 2.2 e 

Tl  3.4 3.0 2.8 Cd 2.3 a    2.4 e  1.7 e  1.5 e

X Hg 2.8 f  2.0 g  0.4h 0.1 
M 

N P As Sb Sn 4.2 i  1.3G 0.9j 0.3 

Sc 2.26m 1.1 0.7  Pb 2.8 a  0.4g  0.3 k 0.2

Y 1.5n 1.0o Mn 3.8 a  2.8           2.5            1.3 

La 1.45 o  0.8n Fe 2.4 i 

B           6.1p 2.1q 1.4 q  Co 2.7 a 0.94s  

Al 6.23r 3.63r 3.10r 2.39r Ni 3.8 a  0.5 0.3 0.2 

Ga 3.51 r  2.89 r 1.52 r 0.81 r Pd 2.4t     

In 1.99 r  1.42 r 0.42 r 0.23 r Pt 1.3i     

a[271], b[272], c[273], d[274], e[275], f [276], g[277], G[278], h[279], i[280, 281], j[282], k[283],
l[284], m[285], n[286], o[287], pfor c-BN [288, 289], for h-BN Eg ≈ 5.5 eV [290, 291], q[292],
rfor w-phases [293], s[294], t[295]

Notwithstanding this qualitative difference between the energy spectra of an atom
and a crystal, there are also some broad similarities. Just as an atom has certain per-
mitted orbitals and the areas where the presence of electrons is forbidden, so a crystal
has bands of permitted states: valence band and conduction band, separated by a band
gap (forbidden zones), where no energy states are allowed. In an atom, the outer-shell
electrons are chiefly responsible for chemical bonding—in a crystal the same role is
played by the valence band. On ionization of an atom, an electron is removed from
the valence shell (ideally—to infinity) in a crystal the equivalent process consists in
the transfer of an electron from the valence band into the conduction band.

From the viewpoint of the conventional band theory, the band gap is absent in
metals and has positive width Eg in dielectrics. The latter can be divided into di-
electrics proper, with Eg > 4 eV, and semiconductors, with 0 < Eg < 4 eV. Since
Eg defines the energy required to transform a dielectric into a conducting (metallic)
state, this parameter is widely used for various physical and chemical purposes and
correlations. Tables 2.15, S2.12 and S2.13 comprise the most reliable experimental
measurements of Eg.
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Theoretical calculations of the band structure of crystals belong to solid state
physics and are not discussed here. Quantitative ab initio prediction of a band gap
is a problem of great complexity. However, empirical and semi-empirical estimates
of Eg, using the concepts of structural chemistry, are sufficient for most purposes
of physical chemistry and materials science. Indeed, since the valence band of a
compound usually involves primary orbitals of the anions (nonmetal atoms), and the
conduction band involves primary orbitals of the cations (metal atoms), the energy
of the transition between the two (i.e., Eg) must be related to some atomic properties.

The structural-chemical approach has been pioneered by Welkner [296], who
observed that Eg depends on the chemical bond energy and the effective atomic
charges. The former relation is described by a linear equation [297–300],

Eg(MX) = a [E(M − X) − b] . (2.63)

Among structurally similar compounds, Eg increases together with the difference of
electronegativities ENs (see next Section) of the bonded atoms (�χ). The form of the
correlation is not certain. Thus, for binary compounds Duffy [301, 302] suggested a
linear dependence (on the optical EN),

Eg = a�χ (2.64)

while Di Quarto et al. [280, 281] have recommended

Eg = a�χ2 + b (2.65)

where the constants a and b are different for the main-group (s, p) and transition (d)
elements. On the other hand, the band gap decreases with the increase of the mean
principal quantum number of the components, n, as the interaction of the valence
electrons with the nucleus becomes weaker. The dependence of Eg from both �χ

and n has been mapped by Mooser and Pearson [303] and later expressed in the
analytical form by Makino [304],

Eg = a

√
�χ

n
− b (2.66)

which gave satisfactory agreement with the experimental data for binary crystalline
compounds. Finally, Villars [305, 306] presented a 3D map of Eg, with �χ and the
electron density of atoms as the coordinates. Historical reviews of this approach see
in [112, 307].

The resort to graphical representation of the empirical correlations shows the dif-
ficulties of the analytical description, due to the multiplicity of factors influencing the
electronic structure of crystals. The task can be simplified, making use of the additive
character of Eg. Hooge [308, 309] expressed the band gaps of binary compounds as
the sums of atomic increments, the increment of each element being constant and
depending only on its EN,

Eg(MX) = Eg(M) + Eg(X). (2.67)
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These increments are computational parameters only, but it is also possible to express
the band gap of a compound through the sum of the observed band gaps of the com-
ponent elements corrected by two additional terms, accounting for the ionicity and
metallicity of the bonds, respectively. The alternative equation has been suggested
[310, 311],

Eg(MX) = Eg(M) + Eg(X) + a�χMX − bn (2.68)

where a and b are constants. Band gaps of elements are, of course, different in various
allotropic modifications. Therefore in Eq. 2.68 one should use the Eg values of those
modifications which are structurally most similar to the compound concerned, e.g.
white phosphorus for phosphides, diamond for carbides, etc. The development of the
additive approach naturally encouraged the measurements of band gaps in elemental
solids, which have been carried out for boron, iodine and the elements of the Group
4, 5 and 6. All of them fit the equation

Eg = k
I

n
− c (2.69)

where I is the potential ionization, n is the principal quantum number and k and l
are structure-related constants. For metals k = 0.8, for materials with a continuous
covalent network k = 1.2, for molecular crystals k = 1.6, whilst c = 1.7 in all cases.

It is now evident that the conventional view of all metals having the constant
Eg = 0 is inconsistent both with the above mentioned relations and with the vari-
ability of Eg in dielectrics and semiconductors. The difficulties can be resolved on
the simple assumption that metals have band gaps of variable negative width, equal
to the overlap between the valence and the conductivity bands (Fig. 2.5). In fact, a
negative Eg has been found experimentally in InNxSb1−x [313]. Equation 2.69 also
gives Eg < 0 for metals. Furthermore, in this interpretation the sign of Eg correlates
with the thermal dependence of electric conductivity, which in semiconductors in-
creases on heating (Eg > 0) and in metals decreases (Eg < 0). Table S2.14 lists all
the currently available experimental band gap widths for elements, together with the
values calculated according to Eq. 2.69.

In another variety of the additive approach, the band gap of a compound is rep-
resented by the sum of the covalent and the ionic terms, the former determined by
the geometrical properties of the component elements and the latter by �χ [314].
Phillips [315], by way of quantum-mechanical reasoning, has arrived to a similar
additive representation of the band gap,

E2
g = E2

h + C2 (2.70)

where the covalent component Eh depends on the atomic radius and the Coulomb
contribution C on �χ. It is noteworthy that Welkner’s, Duffy’s and the various addi-
tive approaches are intrinsically related, because (according to Pauling) the energy of
a chemical bond comprises an ionic and a covalent contribution, the latter depending
on �χ.
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Table 2.16 Band gaps in bulk and nano phases

Substance Eg, eV D, nm Substance Eg, eV D, nm

bulk nano bulk nano

graphitea 0 0.65 0.4 Sih 1.1 3.5 1.3
CdSb 2.5 3.85 0.7 Ga2Oi

3 4.9 5.9 14
CdSec 1.7 2.2 7 CeOI

2 3.2 3.45 nano
SnSC 1.0 1.8 7 ZrOj

2 5.2 6.1 7
SnSed 1.3 1.7 19 SnOk

2 3.6 4.7 3
PbSe 0.41 1.0 4.5 WOl

3 2.6 3.25 9
Sb2Sf

3 2.2 3.8 20 HfOm
2 5.5 5.5 5

CdIg
2 3.1 3.6 < 250 diamondn 5.5 3.4 4.5

a[320], b[321], c[322], C[323], d[324], e[325], f [326], g[327], h[328], i[329], I[330], j[331], k[332],
l[333], m[334], n[335, 336]

The problem of band gaps has been challenged on completely fresh basis by
Nethercot [316] who exploited the similarity between electron transfer from an M to
an X atom on formation of a compound, and electric conductivity in a solid. Hence
the EN can be a measure of the latter, as well as the former, process. Using the ENs
according to Mulliken and assuming the EN of a compound to be the geometrical
mean of the elements’ENs (in accordance with Sanderson’s theory, see next Section),
Nethercot determined the Fermi energy as

EF
MX = c(χMχX)1/2 . (2.71)

Then the electron work function can be calculated as

Φ = EF + 1

2
Eg. (2.72)

The work functions, calculated by Eq. 2.72, agree with the experimental results, the
average discrepancy being 3.5 %. For pure metals (for Eg = 0) Eqs 2.71 and 2.72 give
a linear dependence χ = 0.35Φ.

Nethercot’s approach was based on Sanderson’s theory and encouraged more
extensive applications of the latter, to determine work functions of metals and com-
pounds [317]. The results are in good agreement with the experiment, e.g. for
CaF2, SrF2 and BaF2 the calculated Φ = 11.52, 10.95, 10.48 eV and the observed
Φ = 11.96, 10.96, 10.69 eV, respectively. Similar calculations have been repeated
later with equal success [318], using the ENs according to Mulliken. Notwithstand-
ing the obvious efficiency of this method [319], it is noteworthy that good results
have been obtained for solids with predominantly polar bonds, where bond metal-
licity could be neglected. No universal rule, linking Eg directly with EN, atomic
charges, bond energies, work functions, etc., is currently known. Similar alterations
of anions can result in opposite changes of the bang gap with different cations. Thus,
for example the band gap in AgCl is wider than in AgF, and in the zinc and cadmium
sulfides wider than in the oxides of the same elements (see Table 2.16), although the
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bonds are stronger in the latter compounds. A satisfactory agreement with the exper-
iment can be achieved only by taking into account bond polarity and metallicity, as
well as d-electrons’ participation in valence interactions (see above).

Obviously, the above cited values of band gaps correspond to large (ideally, infi-
nite) samples, and can increase substantially for microscopic particles and clusters,
which contain a significant fraction of surface atoms with lower coordination number
and begin to resemble a molecule, with a correspondingly more covalent character
of bonding (cf., k in Eq. 2.69 increasing from 1.2 to 1.6). Measurements of band
gaps in clusters of varying diameter (D) confirmed this conclusion.

Polymorphs which do not differ in the coordination number, have similar band
gaps, viz. for anatase, rutile and amorphous TiO2 these are, respectively, 3.5, 3.2 and
3.8 eV for direct, or 3.2, 2.9 and 3.0 eV for indirect transitions. Crystals of ZnS, CdS
and CdSe, on transition from wurtzite to cubic forms change band gaps from 3.9 to
3.7 eV, from 2.50 to 2.41 eV, and from 1.70 to 1.74 eV, respectively. At the same
time, a transformation of diamond into graphite decreases Eg from 5.5 eV to zero.

2.4 Concept of Electronegativity

Effective charges of atoms are known only for a small minority of polar molecules
and crystals, therefore it is important to find a dependence of these values on such
characteristics of atoms which allows to estimate the polarity of bonds a priori. Such
characteristic is the electronegativity of atom (EN) which, according to Pauling who
introduced this concept in 1932, is the measure of the power of an atom in a molecule
to attract electrons.

2.4.1 Discussion About Electronegativity

For 80 years the concept of electronegativity has been applied and modified in chem-
istry. This concept is used to explain such chemical properties as acidity of solvents,
mechanisms of reactions, electron distributions and bond polarities. The difference
of EN (�χ) allows to classify chemical compounds as ionic when �χ > 1.7, or
covalent when �χ < 1.7. Metal elements have, as a rule, χ ≤ 2.0, nonmetals ≥ 2.0.
These aspects are present in all textbooks of general chemistry published in recent
decades (e.g. [337]). Thus it may seem amasing today that from the start the EN was a
topic of arguments of uncommon intensity. Thus, Fajans ([338] and private commu-
nications) pointed that in the succession HC≡CCl → H2C=CHCl → H3C−CH2Cl,
the charge of the chlorine atom changes sign from +δ to 0 to −δ, which contradicts
the notion of a constant EN of the carbon atom. In fact, χ(C) depends on the state of
hybridization, being 2.5 for sp3, 2.9 for sp2 and 3.2 for sp. With χ(Cl) = 2.9 or 3.0;
this explains the reversion of the charge. In the letter to Fajans in 1959 one of the
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authors (S.S.B.) attracted his attention to this fact. Hückel critisized the dimensional-
ity of EN, the square root of energy, as physically meaningless [339], to which it was
replied [340] that the parameter used to calculate the bond ionicity, was actually �χ2

with the dimensionality of energy, just as for the ψ-function the square of its modulus
was linked to observables. As early as 1962–1963 it was argued that the idea of EN
had run its course and cannot explain new data [341], that it contains actual mistakes
[342–345] or that it uses the ‘atoms in molecules’approach supposedly contradicting
the philosophy of quantum mechanics [346]. The analysis of this critique, exposing
its irrational nature, can be found in [347, 348]. Later, more criticism was directed
at the problem of dimensionality of EN [349], usually without any account of the
earlier discussions. The arguments in favour of EN [350–353] can be summarized
thus. The fact that EN is defined through different observed properties and so has a
non-unique dimensionality, merely reflects the multi-faceted nature of the chemical
bond. Indeed, this can be an asset rather than liability, as EN can serve as nodal point
connecting various physical characteristics of a substance, hence its wide usage in
chemistry. A certain ‘fuzziness’ of the concept is in fact typical for chemistry, cf.
the notions of metallicity, acidity, etc. Half a century later, it is evident that EN is
indispensable in structural chemistry, crystallography, molecular spectroscopy, and
various fields of physical and inorganic chemistry; it was even suggested to use EN
as the third coordinate of the Periodic Table [354, 355].

2.4.2 Thermochemical Electronegativities

Pauling derived the first quantitative scale of EN using bond energies,

�χMX = χM − χX = c�EMX
1
2 (2.73)

where

�EMX = E(M−X) − 1

2
[E(M−M) + E(X−X)] (2.74)

and c = 0.102 for E measured in kJ/mol. This formula gives only the differences of
ENs, and to obtain the absolute values it was necessary to postulate the EN of one
‘key’ element. For this role, Pauling chosed hydrogen, initially assigning it χ = 0
and later χ = 2.05, to avoid negative χ for most metals.

Obviously, Eq. 2.73 makes sense only if �EMX > 0, which is true for all
bonds but a few, such as alkali hydrides which have exceptionally weak M−H
bonds, while H−H is the strongest σ-bond known. To overcome this inconsis-
tency, Pauling replaced the geometrical for the arithmetical mean in Eq. 2.74. As
[E(M−M)·E(X−X)]½ < ½ [E(M−M) + E(X−X)] for purely mathematical reasons,
this change restored the condition �EMX > 0, albeit at the cost of depriving the for-
mula of the clear physical meaning. This approach gives practically the same values
of EN as the previous one, if the factor c = 0.089 is used in Eq. 2.73. The geomet-
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rical mean for the dependence of the bond energy on electronegativities was later
suggested by Matcha [212] and Reddy [215].

Pauling’s work initiated numerous determinations of the ENs of elements in
various valence states, which were based of more extensive and precise sets of
experimental data (for historical reviews see refs. [29, 355, 356]). Most important
advances of this ‘thermochemical’ approach were made in the works of Pauling [28],
Allred [357], Reddy et al. [215], Leroy et al. [358–362], Ochterski et al. [363],
Murphy et al. [199], Smith [364, 365], Matsunaga et al. [366].

Reddy and Murphy showed that Pauling’s equation is valid only for a limited
range of molecules where �χ is small, and substitution of the arithmetical mean by
the geometrical mean makes little improvement. A better correlation is found if the
‘extra ionic energy’ (EIE) is expressed as k�χ rather than as k�χ2. The EIE may
be represented by a quasi-Coulombic expression based on the Born-Mayer equation,
thus Eq. 2.74 transforms into

EAB = 1

2
(EAA + EBB) + a

qAqB

dAB

(
1 − ρ

dAB

)

(2.75)

where q is the fractional charge, d is the bond distance, a and ρ are constants. Because
according to Bratsch [213, 214]

q = χA − χB

χA + χB

(2.76)

substitution of this expression into Eq. 2.75 gives an expression where EIE is pro-
portional to �χ2. Pauling’s approach requires a qualification: the energy of a bond
depends not only on its polarity, but also on its length. Neglecting this in Eq. 2.48
can be justified by the low polarity of the bonds in question, i.e. on the assumption
that purely covalent and slightly polar bonds have the same lengths. Allred [357]
assumed Eq. 2.73 to be valid if �χ ≤ 1.8, but this criterion has not been sufficiently
substantiated and any extension of the database by adding the energies for bonds of
unspecified polarity can alter both the absolute EN values of elements and the order
of their succession. Ionov et al. [367] suggested to remedy this shortcoming by a
principal alteration of Eq. 2.73, so as to utilize both thermodynamic and geomet-
rical data. However, the basic correctness of Pauling’s insight has been confirmed
by other physical methods, hence it is more sensible to account for the geometrical
factor by adding a correcting term to Eq. 2.74, rather than by altering its philosophy.
This has been achieved by using in this equation a variable parameter c which takes
into account the principal quantum numbers, bond distance and valences of atoms,
c = f(n*, d, v) [368]. This correction reflects the fact that (other things being equal)
an elongation of a bond lowers its polarity, by reducing the overlap of the valence
orbitals, and an increase of valence also reduces the bond polarity. However, the
contribution of all these factors is by an order of magnitude smaller than the major
(bond-energy) term. In Table S2.15 are compared a few systems of thermochemical
ENs, and the averaged results are listed in Table 2.17.

A prominent feature of the thermochemical system is the outstandingly high EN of
oxygen, nitrogen and, especially, fluorine, which are often difficult to reconcile with
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Table 2.17 Thermochemical electronegativities of atoms in molecules; χ (H) = 2.2
Li Be B C N O F

1.0  1.5  2.0 2.55 2.9 3.4 3.9 

Na Mg Al Si P S Cl

0.9  1.3     1.6 1.9 2.15 2.6 3.1

K Ca  Sc  Ti   V       Cr  Mn  Fe           Co Ni 

0.75 1.0  1.35  1.6  1.7a    1.7b   1.7c 1.7 d    1.75 e     1.8 e   

Cu Zn Ga Ge As Se Br

1.7f 1.6 1.7 2.0 2.1 2.5 2.9 

Rb Sr Y Zr Nb Mo Tc Ru  Rh Pd 

0.7   0.95   1.2   1.6g  1.6a   2.2h 1.9  2.2  2.2 2.2 

Ag Cd In Sn Sb Te I

1.8 1.7 1.7 1.9 i 2.0 2.1 2.6

Cs Ba La Hf Ta W Re Os   Ir   Pt  

0.6  0.85   1.1   1.5j  1.5   2.2k  1.9  2.2   2.2   2.2 

Au Hg Tl Pb Bi Th k   U k   

2.2 1.9 1.3l 2.1m 2.0 1.5 1.6 

av =  3, bv =  3, for v =  2 � =  1.5, for v =  4 � =  2.0, cv =  3, for v =  2 � =  1.5, dv =  2, for v =  3 � =  2.0, ev =  2, fv =  1, for 
v =  2, � =  2.0, gv =  4, for v =  2 � =  1.4, hv =  4, for v =  2 � =  2.0, iv =  4, for v =  2 � =  1.6, jv =  4, for v =  2 � =  1.3, kv =
 4, lv =  1, for v =  3 � = 1.8, mv =  4, for v =  2 � = 1.7

the physical and chemical properties of these atoms in polyatomic molecules and
crystals. Thus, fluorine is a surprisingly poor acceptor of hydrogen bonds [369, 370].
However, the apparent dissociation energies of the F−F, O−O and N−N bonds are
lower than the intrinsic bond energies because of the electronic destabilization, i.e. the
energetically unfavorable effect of the high electron concentration in a small volume
(see Sect. 2.3.1). The underestimation of E(X−X) in Eq. 2.48 leads to an overestima-
tion of �EMX and hence of χ, as Bykov and Dobrotin were the first to notice in the
case of fluorine [371]. Later, Batsanov [372] calculated the electron destabilization
energies for a number of compounds and re-evaluated the ENs of fluorine, oxygen
and nitrogen as 3.7, 3.2 and 2.7, respectively (cf. the conventional values of 4.0, 3.5
and 3.0). The thermochemical method has been significantly improved by Finemann
[373], who generalized Eq. 2.74 to cover radicals (R),

�EMR = E(M − R) − 1

2
[E(M − M) + E(R − R)] (2.77)

Equation 2.77 was later used to calculate the ENs for radicals of various composition;
the averaged values are listed in Table S2.16. It is evident that the presence of multiple
bonds in radicals substantially affects the atomic ENs. Equation 2.77 was shown
to give the ENs which describe quite accurately the homolytic bond dissociation
enthalpies of common covalent bonds (including highly polar ones) with an average
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error of ca. 5 kJ/mol; by this method the dissociation enthalpies were calculated for
more than 250 bonds, including 79 for which experimental values are not available
[374]. The weakness of Pauling’s approach can be seen in that the electronegativity
of hydrogen (unique in this respect of all elements) is not constant but depends
substantially on the atom or group (R) connected to it [374]. Thus, χ(H) = 1.95 for
R = Me, 2.06 for Et, 2.16 for OH, 2.20 for Cl, 2.26 for F and Ph, 2.27 for ONO2,
and 2.50 for C≡CH. Unique behavior of hydrogen is not uncommon in chemistry
and Pauling noted that hydrogen’s electronegativity ‘misbehaves’. Using an average
value of χ(H) = 2.2, as recommended by Pauling, gives generally the correct
trends in D(H–A), but the overall accuracy is much lower than that obtained for
all other bonds. Therefore Datta and Singh chose χ(OH) = 3.500 as the reference
value [374]. They also sugested to use geometrical means of single bond energies in
organic compounds for calculating the ENs of radicals.

Note that the energies of single covalent bonds (Table 2.12) change regularly in
each subgroup of the Periodic Table. Therefore within each subgroup the ENs of
elements are proportional to the square roots of the energies of the corresponding
homonuclear bonds. Hence, the entire system of thermochemical ENs can be derived
from these energies and the known ENs of the top elements in a group, provided that
the F−F, O−O and N−N bond energies are corrected for the electron destabilization
by adding 220, 170 and 150 kJ/mol, respectively. Now we can, by comparing the
energies of σ- and π-bonds, find out how the EN is affected by the bond order. This
problem has been explored for carbon [375] and other elements capable of multiple
bonding [376], using Eq. 2.78, which follows the philosophy of Eqs 2.73 and 2.74,

(�χ )2 = �E = 1

n
E(A ∼ A) − E(A − A) (2.78)

where �χ is the difference between the ENs displayed by the same element A in
the directions of the single (A−A) and the multiple (A∼A) bond, n is the order of
the latter bond, E is the corresponding energy. Using Eq. 2.78 and the data from
Table S2.10, we can find that the ENs of C, Si, P and S in double bonds are lower
that the standard values, by 0.42, 0.49, 0.43 and 0.34, respectively, but for O and
N the ‘double-bond’ ENs are higher that the standard ones, by 0.43 and 0.34. One-
third of the energy of the triple C≡C bond (262 kJ/mol) is lower than the energy of
one single bond (357 kJ/mol) hence the ‘triple-bond’ EN is by 0.50 lower than the
‘single-bond’ EN. The opposite is true for nitrogen: E (N≡N)/3 = 315 kJ/mol > E
(N−N) = 212 kJ/mol, hence the formation of a triple bond rises the EN of nitrogen
by 0.52. The ENs of elements in the most common multiple bonds are:

(C=) 2.2 (Si=) 1.4 (P=) 1.8 (S=) 2.2 (N=) 3.1 (O=) 3.6

(C≡) 2.1 (P≡) 1.7 (N≡) 3.3

In a single bonds adjacent to a multiple bonds, the EN of the same atom changes in
a compensatory manner. Thus, the ENs of carbon, displayed in the central (single)
C−C bond in the CH3CH2–CH2CH3, CH2 = CH–CH = CH2, and HC≡C−C≡CH
molecules, are 2.6, 3.1 and 3.4, respectively.
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Since the change of the bond order usually implies the change of the coordination
number, it is useful to consider from this viewpoint the transformation of a molecular
structure into a continuous network of covalently bonded atoms in the solid state.
Thermodynamically, the depth of the structural rearrangements during gas → crystal
transition is characterized by the heat of sublimation �Hs (see Chap. 9) from which
it is natural to calculate the crystal-state ENs (χ*) [377]

�χ∗ = a
√

�E + �Hs (2.79)

Usually, �Hs of nonmetals (which retain the molecular structure in crystal) are small
compared to that of metals, where the crystal growth implies the formation of new
chemical bonds. Then, assuming the sublimation heat to be additive, almost the entire
heat effect of crystallization of a compound can be related to the EN of the metallic
component. The same conclusion follows from simple crystallographic reasoning.
When molecules assemble into a crystal structure, both the metal and the nonmetal
atoms increase their coordination numbers. For the nonmetal this means engaging
previously nonbonding electron pairs into chemical bonds, which increases the mean
ionization potential and hence the bond energy, according to Eq. 2.46 (see below for
details). No such increase of the ionization potentials occurs for the metal, which
provides the same number of bonding electrons in the molecular and in the solid state.
For both the metal and the nonmetal, the covalent component of the bond (the overlap
of the wave functions) is smaller in the crystal, where the bonds are somewhat longer
than in the molecules. For the nonmetal the latter effect subtracts from the increase
of the bond energy, whilst for the metal, it produces a net decrease. Thus, the ENs
of nonmetals in crystalline compounds are close to those in molecules, while those
of metals are always lower.

The system of ENs for the crystal state has been developed [378, 379] by com-
paring the atomization energies of the MX-type compounds with the energies of the
M−M and X−X bonds in the solid state, corrected for the difference of the bond
distances in the molecules and solids. The crystalline ENs of the same metal, cal-
culated from different halides, practically coincide. Thus the obtained values are
reproducible and can be recommended for general use in structural chemistry. Other
ENs, tailored for thermodynamic or structural characteristics of crystals, were sug-
gested by Vieillard and Tardy [380] and by Ionov and Sevastianov [381]. For most
elements, their results are close to the thermochemical crystalline ENs, they are
presented in Table 2.18.

2.4.3 Ionization Electronegativities

Pauling’s pioneering paper [18] was soon followed by the work of Mulliken [382,
383], who approached ENs from the viewpoint of quantum mechanics. He proved
that ENs can be calculated as

χ = 1

2
(Iv + Av) (2.80)
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Table 2.18 Thermochemical electronegativities of atoms in crystals

Li Be B C N O F
0.65 1.15 1.4 2.5 2.7 3.2 3.7 

Na Mg Al Si P S Cl

0.6 1.0 1.3  1.9 2.1   2.5 3.0 

K Ca  Sc  Ti   V       Cr  Mn  Fe            Co Ni 

0.5 0.75 1.1 1.55c 1.4e 1.25f 1.2f 1.4f     1.45f       1.5f

Cu Zn Ga Ge As Se Br

1.15a 1.3 1.4 2.0 2.1 2.5 2.8 

Rb Sr Y Zr Nb Mo Tc Ru  Rh  Pd  

0.45 0.7 1. 5 1.4 1.6   1.75    1.35f 

Ag Cd In Sn Sb Te I

1.3 1.35 1.55      1.9d 2.0 2.1 2.5

Cs Ba La Hf Ta W Re Os    Ir   Pt  

0.4 0.65 1.0 1.4   1.5   1.75    1.7f 

Au Hg Tl Pb Bi Th g   U g   

1.4 1.6 1.1b 2.15d 2.0 1.4 1.3 

afor CuII � = 1.6, bfor v = 1, cv = 4,  for v = 2 � = 1.1, dv = 4, for v = 2 � = 1.4, efor v = 3, ffor v = 2,
gfor v = 4

where Iv is the valence-state ionization energy and Av is the electron affinity of the
atom. Mulliken’s ENs (χM) are close to Pauling’s values (χP) multiplied by a factor of
3 ± 0.2. The most remarkable advantage of Mulliken’s method is the opportunity to
calculate ENs for various valence states.As ns electrons have higher ionization energy
than np ones, an increase of the s-character of an orbital rises the EN of an atom in the
succession sp3 < sp2 < sp [384], in agreement with the results of the thermochemical
method (see above). Pritchard and Skinner [385–388] calculated ENs of atoms in
various valence states from spectroscopic data. They obtained good agreement with
the thermochemical EN and thus were able, by combining the methods of Pauling
and Mulliken, to determine the type of hybridization of the bonds in transition metal
compounds. Batsanov [375, 389] calculated the ENs of sp2 and sp hybridized carbon
atoms from the experimental values of the ionization potential. The planar-trigonal
olefinic (sp2) carbon atom has the EN of 2.3 in the double bond and 2.6 in the single
bond, whilst the linear acetylenic (sp) atom (−C≡) displays the EN of 2.0 in the
triple bond and 2.8 in the single bond, also in accordance with thermochemical data.

The theory of EN has been substantially advanced by Iczkowski and Margrave
[390], who have shown that within the same shell the ionization energy is a function
of the charge q (the number of removed electrons),

E(q) = αq + βq2 + γ q3 + · · · (2.81)
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where α, β and γ are constants. Neglecting the third and successive members of the
series, we obtain for a hydrogen-like atom

(∂E/∂q)q=1 = 1

2
(Iv + Av) (2.82)

Thus, the assumption that EN is the derivative of the energy by the charge follows
Mulliken’s formula. Hinze and Jaffe [391–393] regarded EN as the ability of an
atom to attract electrons into a given orbital, and therefore introduced the term
‘orbital EN’ (simultaneously the same term was introduced by Pritchard and Skinner
[388]). Having calculated the orbital ENs exhibited by several elements in single and
multiple bonds, they obtained for the tetrahedral C (sp3) χ = 2.48, for the trigonal C
(sp2) χ = 2.75 in the single bond and 1.68 in the double bond, for the linear acetylenic
carbon χ = 3.29 in the single and χ = 1.69 in the triple bond.

Mulliken’s method, like that of Pauling, tends to overestimate the ENs of flu-
orine, oxygen and nitrogen, and essentially for the same reason: neglecting the
inter-electron repulsion (see above). The quantum-mechanical approach was further
developed using the electron density functional theory [394, 395], according to which
EN is the negative chemical potential μ,

χ = −μ = −
(

∂E

∂N

)

(2.83)

where E is the ground-state energy as a function of the number of electrons (N),
for a given potential μ affecting the system. The electron chemical potential has the
same tendency towards equalization as the macroscopic (thermodynamic) potential:
electrons move from the areas of high potential (μh) to those of low potential (μl),
whereupon μl increases and μh decreases until they become equal. In the DFT
formalism, Mulliken’s equation can be derived on the assumption that the energy of
the system is a quadric function of the number of electrons [396, 397]. An outline of
this approach can be found in the Structure and Bonding edition [398], comprising
contributions from all the major researchers in this field and in excellent reviews by
Allen [399] and Cherkasov et al. [355]. Details of the theoretical calculations are
outside the scope of the present book, which is devoted to experimental aspects of
structural chemistry. The reader can consult a review by Bergmann and Hinze [400]
on the quantum-mechanical calculations of the ENs of elements from the ionization
energies. A purely empirical formula linking EN with the ionization potential I
and electron affinity A has been suggested by Sacher and Currie [401]. Further
development of the Iczkowski-Margrave model is given in [402].

Pearson [403, 404] used the ground-state ionization energy and electron affinity of
an atom (Io and Ao) for calculating ‘the absolute electronegativity’by Eq. 2.80. Since
Io and Ao are known for all elements and for all steps of oxidation, Pearson’s approach
became popular, although it does not conform rigorously to Mulliken’s original
definition of EN. Pearson’s method is now widely used to calculate atomic and
molecular electronegativities; selected ENs from this system (normalized by χ(H) =
2.2) are presented in Table S2.16. In general, Pearson’s ENs follow the expected
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trends in the Periodic Table, increasing from left to right in periods and decreasing
from top to bottom in groups. However, there are some strikingly unrealistic values:
Cl is assigned higher EN than O and N, Br is on par with O and more electronegative
than N, H is as electronegative as N and more so than C or S. The errors disappear if
valence-state ionization energies and electron affinities are used. Unfortunately, there
is serious ambiguity in specifying the valence state; for instance, for three-coordinate
N atom one has to choose from seven possible valence states [406–408].

The ionization energies of ground-state atoms are considerably larger than their
electron affinities, hence EN is defined mostly by Io. Therefore Allen et al. [406–
408] introduced the atomic electronegativity scale based upon the spectroscopic
(averaged) ionization energies of the valence electrons in a ground-state free atom:

χ = mεp + nεs

m + n
(2.84)

where m and n are the numbers of p and s valence electrons, εp and εs are the ion-
ization energies of the p- and s-electrons, determined from atomic spectra. These
characterisrics became known as ‘spectroscopic electronegativities’, SEN. Selected
values of SEN, normalized by χ(H) = 2.2, are listed in Table S2.17. SENs are closer
to the thermochemical ENs than Pearson’s values. According to Allen, SENs char-
acterize the atom’s ability to absorb (or to retain, in the case of rare gases) electrons,
they do not depend on the valence and coordination number and are specific parame-
ters of elements, which can be regarded as the third dimension of the Periodic Table.
SENs correlate with Lewis acidity, defined as Sa = v/Nc, where v is the valence and
Nc is the average coordination number of an element in its compounds with oxygen
[409]. Politzer et al. [405] calculated absolute electronegativities on different levels
of MO theory; these magnitudes of ENs are also given in Table S2.17.

All the abovementioned systems of ENs have been normalized to Pauling’s ther-
mochemical scale. However, the thermochemical and ionization (except Allen’s
system) ENs have different dimensionalities, viz. square root of energy and en-
ergy, respectively. This reflects the fundamental difference, that Pauling’s method
uses mean bond energies, thus treating all electrons of the central atom as equivalent,
while Mulliken’s method uses the first ionization potentials, thus singling out one
electron. To compare the thermochemical and the ionization methods correctly, the
energy of valence electrons in the latter should be characterized by the average, rather
than the first, ionization potential ( Ī ) of all outer electrons. This gives the simple
formula

χ = k
√

Ī (2.85)

where k = 0.39 [410]. Significantly, Eq. 2.85 permits to determine ENs for different
oxidation states by averaging the corresponding number of successive ionization po-
tentials. This equation gives ENs in accordance with Pauling’s scale for sp-elements
(a-subgroups), but for transition elements the calculated ENs are somewhat lower
than the thermochemical values, since d-electrons from the previous shell can par-
ticipate in the bonding. To account for this, in the case of d-elements the values of χ
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Table 2.19 Ionization electronegativities of elements (for H, χ = 2.2)

Li Be B C N O F

0.90 1.45  1.90 2.37  2.85 3.31 3.78 

Na Mg Al Si P S Cl

0.88 1.31 1.64 1.98 2.32  2.65 2.98

K     Ca  Sc  Ti   V    Cr  Mn  Fe Co Ni 

0.81 1.17 1.50 1.25b 1.60c  1.33b  1.32b  1.35b   1.38b   1.40b  

   1.86 1.92d  1.63c  1.70c  1.66c   1.72c   1.76c

    2.22 1.97d 2.02d     

     2.58 2.93    

Cu Zn Ga Ge As Se Br

   1.48 1.64  1.84 2.09 1.70c 2.61 2.88

1.66b 2.35

Rb Sr Y Zr   Nb Mo Tc Ru Rh Pd 

0.80 1.13 1.40 1.22b 1.52c  1.92d  1.93d 1.35b    1.39b    1. 45b

   1.71 2.02   2.36   1.97d     1.99d     2.08d     

Ag Cd In Sn Sb Te I

1.57 1.65 1.80 1.29b 1.60c 2.46 2.70 

2.01 2.24

Cs Ba La Hf Ta W Re Os Ir Pt 

0.77 1.07 1.35 1.28b  1.52c   1.83d   1.83d 1.39b    1.40b   1.45b

   1.73   1.94  2.28  2.48   1.85d    1.87d   1.92d

Au Hg Tl Pb Bi Po Th U 

   1.78 1.79    0.96a 1.31b 1.58c 2.50 1.60d 1.58d

1.89 2.07 2.26    

av =  1, bv =  2, cv =  3, dv =  4

calculated by Eq. 2.85 must be increased by the term

�χ = 0.1
n

v
(2.86)

where n is the principal quantum number and v is the group or the intermediate
valence. The resulting ENs are listed in Table 2.19.

A comparison of the ionization and thermochemical ENs of elements reveals the
largest discrepancies for Cu, Ag, Au and smaller ones for Zn, Cd and Hg, due to d-
electrons participating in the bonding. For Cu, a comparison of the thermochemical
EN with the χ calculated for the s- and d-electrons, revealed a 23 % participation of
the 3d-electrons in the Cu–X bonds [387].
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It has been proposed [411, 412] to transform Pauling’s ENs into Mulliken’s, by
equalizing their dimensionalities accordingly. However, in these works only the first
ionization potentials were used, thus reproducing the shortcoming of Mulliken’s
original approach. Ionization potentials have also been used in these works and in
[413] to determine ENs for groups of atoms (radicals), the mean values of which are
listed in Table S2.18.

To calculate EN for crystals, it is sensible to use the work function (Φ), i.e. the
energy of removing an electron from a solid, which can be regarded as the ionization
potential of the solid (see above). This has been first attempted by Stevenson and
Trasatti, who suggested the simple dependence χ* = kΦ, where k = 0.355 [414] or
0.318 [415, 416]. Eq. 2.87 gives the best agreement with the thermochemical scale
of crystalline EN for metals.

χ∗ = kΦ + k
( v

n∗ − 1
)

(2.87)

where k = 0.32 and other symbols as above. The values of χ* calculated by this
technique using modern values of Φ [417] are listed in Table 2.20; for elements of
Groups 1 to 4 and 11 to 14, using the group valences, for other metals the lowest
oxidation numbers. It is noteworthy that the heats of formation of inter-metallic
compounds can be calculated according to Miedema’s theory assumingχ* = Φ [418–
420]. However, EN is an atomic property and cannot be adequately derived from bulk
properties (see Sect. 1.1.2)

ENs of ions also can be calculated by Mulliken’s method in the same way as for
neutral atoms, by substituting the ionization potential and electron affinity of the
corresponding ion into Eq. 2.80. Thus, to calculate the EN for a cation with the + 1
charge, one should use the second atomic ionization potential as the first cationic I,
and the first atomic ionization potential for A. For an anion charged –1 the first atomic
A should be used for I, and the second atomic A for the electron affinity. The ionic
ENs thus calculated [376, 421, 422], are listed in Table S2.19. Bratsch [423] has
made a rough estimate that the EN of a neutral atom doubles when it acquires the +1
charge and becomes zero when –1. The latter statement has been since confirmed,
whilst the real increase of the EN for cations proved several times, or even an order
of magnitude, higher.

2.4.4 Geometrical Electronegativities

Electronegativity being a qualitative property which describes the power of an atom
in a molecule to attract the bonding electrons, it can be defined by the ratio of the
effective nuclear charge to the covalent radius, Z*/rn. Many authors have proposed
different values of n in order to reconcile the geometrical and thermochemical sys-
tems of EN, see reviews [56, 355, 356, 423]. A brief history of these attempts is
presented in Table S2.20. From the Z* and r, EN can be calculated by the formulae



2.4 Concept of Electronegativity 107

Table 2.20 Work functions (eV, upper lines) and crystal electronegativities (lower lines)

Li Be B C

2.38  3.92   4.5 5.0

0.60 1.25 1.6 1.92  

Na Mg Al Si

2.35 3.64 4.25 4.8a

0.54 1.06 1.36 1.64

K     Ca  Sc   Ti   V  Cr  Mn  Fe   Co  Ni 

2.22 2.75 3.3  4.0b 4.40   4.58   4.52   4.31        4.41   4.50 

0.48 0.73 1.00 1.31 1.35 1.32 1.30 1.23      1.26   1.29 

Cu Zn Ga Ge As Se

4.40 4.24 4.19 4.85 5.11 4.72

1.17 1.21 1.28 1.58 1.75 1.71

Rb Sr Y Zr Nb  Mo Tc Ru  Rh  Pd

2.16   2.35  3.3 4.0 3.99  4.29  4.4 4.6         4.75        4.8          

0.45 0.59 0.98  1.28 1.20 1.37 1.41 1.31        1.36        1.38    

Ag Cd In Sn Sb Te

     4.30 4.10 3.8 4.38 4.08 4.73

1.14 1.15  1.14 1.40 1.38 1.67 

Cs Ba La Hf Ta  W Re  Os  Ir  Pt

1.81 2.49  3.3 3.20c  4.12  4.51  4.99  4.7  4.7     5.32   

0.34 0.63 0.96 1.01  1.23 1.40 1.55  1.34 1.34 1.53 

Au Hg Tl Pb Bi Th U

    4.53 4.52 3.70 4.0 4.4 3.3 2.2

1.21 1.28 1.09 1.26 1.47 1.04 0.69

ap-Si, for n-Si Φ = 4.8 eV, bα-Ti, for β-Ti Φ = 3.65 eV, cα-Hf, for β-Hf Φ = 3.53 eV

of Cottrell and Sutton (Eq. 2.88) [424], Pritchard and Skinner (Eq. 2.89) [425] and
Allred and Rochow (Eq. 2.90) [426].

χ1 = a

(
Z∗

r

)1/2

+ b (2.88)

χ2 = c
Z∗

r
+ d (2.89)

χ3 = e

(
Z∗ − f

r2

)

+ g. (2.90)

where a, b, c, d, e, f, and g are constants. Most of these constants are composition-
dependent and therefore Eqs 2.88–2.90 are of limited utility in structural chemistry.
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In view of this, it is expedient to modify these equations, by making the constants
universal and including additional terms depending explicitly on the nature of the
elements concerned. Thus, Eq. 2.88 was reduced [427] to

χ1 = γ

(
Z∗

r

) 1
2

(2.91)

where γ is the function of the Group number and the effective principal quantum
number. Better agreement between the calculated and thermochemical data can be
attained by reducing Eq. 2.90 to

χ3 = e
Z∗

(r + β)2 + g (2.92)

ENs have been calculated for all elements in different valence states according
to Eqs 2.91, 2.89 and 2.92, showing good agreement with the thermochemical
characteristics.

Electronegativity can be also calculated by the method proposed by Sanderson
[429–431], who has established a correlation between EN and the ‘relative electron
stability’, S = ρa/ρrg of the atom; ρa = Ne/V, where Ne is the number of electrons in
the given atom, V is the its volume, and ρrg is the same for the iso-electronic atom of
the rare-gas type. Sanderson found that the electronic stability, or “compactness”, is
a good measure of electronegativity:

χ 1/2 = aS + b. (2.93)

Individual values of S have been revised from time to time, and refined data of χ by
Sanderson’s method, are given in [431, 432]. This method gives only a qualitative
agreement with thermochemical values, because the electron densities in the core
and valence-shell regions are very different, hence the integral approach cannot give
adequate results (see [433]). It makes more sense to calculate χ in terms of the
electron density of the outer (valence) shell of the atom, ρe. To do this, the number of
valence electrons v should be divided by the volume of the outer shell, Ve = Va – Vc

where Va is the atomic volume, Vc is the core volume, so ρe = v/Ve. Assuming that
the outer electrons in the atom are identical, one can treat them as a Fermi gas. Then
the energy of these electrons is Ee ∼ ρe

2/3 . Since χ is proportional to E½, we obtain

χ4 = Cρ1/2
e (2.94)

[434, 435]. Note, however, that treating the valence electrons as a Fermi gas means
that these electrons are similar to those in metals. In any group of elements in the
Periodic Table, the metallicity of bonding increases on going down the column to
peak in Period 6. Therefore, ρe in Eq. 2.94 should be normalized against these
elements. For example, the ratio of the effective principal quantum number of a
given period to n* is 4.2. The work equation will then appear as

χ4
∗ = 2.65

(
n∗ρe

4.2

)1/3

. (2.95)
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Table 2.21 Geometrical electronegativities of atoms in the group valences, in molecules (upper
lines) and crystals (lower lines)

Li Be B C N O F

1.01 1.54 2.05 2.61 3.08 3.44 3.90

0.38 0.98 1.71 1.97 2.86 3.15 3.48

Na Mg Al Si P S Cl

0.99 1.28 1.57 1.89 2.20 2.58 2.91

0.37 0.70 1.32 1.47 2.09 2.45 2.69

K Ca Sc Ti V Cr Mn Fea Coa Nia

0.83 1.07 1.36 1.60 1.89 2.10 2.33 1.80 1.86 1.92 

0.32 0.58 0.92 1.27 1.06a 1.40b 1.44b 1.17 1.21 1.25 

Cu Zn Ga Ge As Se Br

1.62 1.72 1.89 2.07 2.28 2.53 2.82

0.71 1.14 1.60 1.64 2.16 2.42 2.63

Rb Sr Y Zr Nb Mo Tc Rub Rhb      Pdb

0.82 1.01 1.26 1.50 1.80 1.98 2.20 1.86 1.90     1.92 

0.32 0.56 0.86 1.16 1.03a 1.35b 1.38b 1.46 1.49     1.51 

Ag Cd In Sn Sb Te I

1.49 1.56 1.65 1.86 1.97 2.15 2.41

0.55 1.07 1.41 1.47 1.90 2.08 2.28

Cs Ba La Hf Ta W Re Osb Irb Ptb

0.75 0.96 1.19 1.54 1.81 1.99 2.26 1.89 1.95 1.96 

0.27 0.54 0.81 1.20 1.02 1.37b 1.44b 1.50 1.54 1.54 

Auc Hg Tld Pb Bi Thd Ud

1.55  1.66 1.65 1.81 1.93 1.40 1.44

1.02 1.12 1.41 1.43 1.84 0.98 1.00
аfor v =  3, bfor v =  4, cfor v =  3, � =  2.12 (molecule) and 1.78 (crystal), dfor v =  1,  � =  1.47 (mole-
cule) and 0.56 (crystal)

The satisfactory agreement among χ calculated by the four equations, allows to
set up a scale of the averaged geometrical ENs for atoms in molecules in different
valences (see [428]) which correspond to σ bonding (upper rows in Table 2.21). To
calculate ENs of atoms with π bonds, the covalent radii of atoms for double and
triple bonds must be used (Sect. 1.4). From these we obtain χC= = 2.2, χN= = 4.2,
χO= = 5.2 and χS= = 2.2. Hence, formation of π bonds lowers the EN of C or S but
increases that of N or O. The dependence of χ(C) on the bond order was established
in [436–438].

Strictly speaking, it is incorrect to use the classical (molecular) ENs to interpret
the structures and properties of crystalline inorganic compounds. Therefore, systems
of ENs were derived specifically for atoms in crystals [428, 439]. Geometrical ENs
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in this case should be defined in terms of crystal covalent radii (Sect. 1.4.3). Further-
more, it is necessary to take into account the dependence of χ on the bond order,
q = v/Nc, which changes as Nc increases on transition from molecules to crystals.
Since the bond order figures in the expression for energy, while Pauling’s EN is pro-
portional to

√
E, the data calculated by Eqs 2.92, 2.94 and 2.95 should be multiplied

by
√

q to obtain the atomic ENs for crystals. For elements of Groups 14 through 17,
which have enough electrons to form four or six bonds in the coordination sphere,
this correction is not needed. The lower lines of Table 2.21 list averaged crystalline
atomic ENs for the group-number oxidation states, except for metals of Groups 5–10,
where ENs refer to their usual oxidation states. For Au and Tl, the ENs also are given
for the oxidation states +3 and +1, respectively [428].

Crystalline ENs were also determined by Phillips [440–444]. Assuming that the
outer electrons of an atom can be treated as a Fermi gas, he obtained

χ = 3.6

(
Z

r

)

f + 0.5 (2.96)

where f is the screening factor according to Thomas−Fermi. Constants 3.6 and 0.5
were chosen for consistency with Pauling’s ENs for C and N, while for elements
of Groups 11–14 the obtained values were close to the crystalline ENs considered
above. Li and Xue [445] calculated crystalline ENs using ionic radii (rion) for different
coordination numbers, as

χ∗ = an∗√Ī

rion

+ b (2.97)

where n* is the effective quantum number, Ī is the ionization potential of the given
ion normalized by I(H) = 13.6 eV, a and b are the constants. ENs calculated by Eq.
2.97 are presented in Table S2.21. Later it was proposed [446] to calculate crystalline
ENs using covalent radii of elements in crystals, as

χ∗ = cne

rcov
(2.98)

where c is the constant, ne is the number of the valent electrons and rcov is the
crystalline covalent radius of the atom. The authors assumed that in any covalent
bond the contributions of the two atoms are inversely proportional to their respective
coordination numbers, NcA and NcB. Using the idea of EN equalization on bonding
(see Sect. 2.4.6), the bond EN can be defined as the mean of the electron-holding
energy of the bonded atoms,

χ∗
AB =

(
χA

NcA

χB

NcB

)1/2

. (2.99)

These ENs were used to rationalize the properties of new superhard materials. They
show good agreement with Pettifor’s ‘chemical scale’ of EN [447–449], which
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Table 2.22 Recommended values of electronegativities for atoms in molecules

Li Be B C N O F

0.95 1.5 2.0 2.5 3.0 3.4 3.9

Na Mg Al Si P S Cl

0.90 1.3 1.6 1.9 2.2 2.6 3.0

K Ca Sc Ti V Cr Mn FeII CoII NiII  

0.80 1.05 1.35 1.75 2.0d 2.3f 2.6i 1.5 1.6 1.6 

Cu Zn Ga Ge As Se Br

1.6a 1.7 1.8 2.0 2.25 2.5 2.85

Rb Sr Y Zr Nb Mo Tc RuIV RhIV PdIV 

0.75 1.0 1.3 1.7 1.9e 2.2g 2.4j 2.0 2.0 2.1 

Ag Cd In Sn Sb Te I

1.65 1.6 1.7 1.9c 2.1 2.2 2.6

Cs Ba La Hf Ta W Re OsIV IrIV PtIV

0.70 0.95 1.3 1.7 1.9e 2.2h 2.2j 2.0 2.0 2.05 

Au Hg TlI Pb Bi ThIV UIV 

1.85b 1.8 1.2 1.9c 2.1 1..5 1.6 

av = 1, for v = 2 χ = 1.9,  bv = 1, for v = 3 χ = 2.2,  cv = 4, for v = 2 χ = 1.5,  dv = 5, for v = 3 χ = 1.6,
ev = 5, for v = 3 χ = 1.6, f v = 6, for v = 3 χ = 1.7, gv = 6, for v = 4 χ = 1.9, hv = 6, for v = 4 χ = 1.85,
iv = 7, for v = 3 χ = 1.7,  jv = 7, for v = 4 χ = 1.9, kv = 7, for v = 4 χ = 1.8

adequately explains the structural properties of crystalline substances. These elec-
tronegativity data help to understand the fundamental difference in bonding between
inorganic molecules and crystals. In the former, bonds vary widely in polarity; in
the latter, bonds are less different and more polar, hence the ionic radii describe the
interatomic distances well.

2.4.5 Recommended System of Electronegativities of Atoms
and Radicals

As we have seen, values of EN obtained by different methods are consistent, this
allows us to recommend the generalized systems of EN for molecules (Table 2.22)
and crystals (Table 2.23), taking into account all the available data.

2.4.6 Equalization of Electronegativities and Atomic Charges

The principle of electronegativity equalization (ENE) proposed by Sanderson
[211, 429], states that ‘when two or more atoms with different electronegativity
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Table 2.23 Recommended values of electronegativities for atoms in crystals

Li Be B C N O F

0.55 1.1 1.5 2.0a 2.9 3.2 3.5

Na Mg Al Si P S Cl

0.50 0.9 1.25 1.5a 2.1 2.5 2.7

K Ca Sc Ti VIII CrII MnII FeII CoII NiII 

0.40 0.7 1.0 1.3 1.3 1.0 1.0 1.05 1.1 1.1 

Cu Zn Ga Ge As Se Br

1.0 1.15 1.3 1.6a 2.0 2.4 2.6

Rb Sr Y Zr NbIII MoIV TcIV RuIV RhIV PdIV

0.40 0.6 0.95 1.2 1.2 1.3 1.4 1.4 1.4 1.45 

Ag Cd In Sn Sb Te I

0.95 1.1 1.25 1.3 1.65 1.9 2.3

Cs Ba La Hf TaIII WIV ReIV OsIV IrIV PtIV

0.35 0.6 0.9 1.2 1.1 1.3 1.5 1.4 1.45 1.5 

Au Hg Tl Pb Bi ThIV UIV

1.15 1.3 0.8 1.2 1.65 1.3 1.4 

combine, they become adjusted to the same intermediate EN within the com-
pound’. This approach became very popular and was applied in numerous empirical
[213, 214, 433–435, 450–453] and quantum-chemical [454–472] studies. It allows
fast calculation of atomic charges for large series of molecules and crystals, which
agree well with ab initio calculations and experimental results. According to Parr,
the EN of an atom can be treated as the chemical potential (see Eq. 2.83)

χ = −μ = −
(

∂E

∂N

)

,

so the equalization principle corresponds to equalization of chemical potentials of
atoms in a compound. The problem is that in isolated atoms the number of electrons,
N, must be integer; hence E is not a continuous function of N. However, if Eq.
2.83 is applied to an individual atom in a molecule, fractional N are acceptable.
The mathematics of treating E(N) as being continuous function have been discussed
[473].

A method of calculating the molecular electron compactness by Sanderson as

ECMX = √
ECMECX (2.100)

allows us to calculate the atomic charges in molecules by comparing the molecular
and atomic EC. Sanderson has postulated (assuming the bond ionicity q = 0.75 in
NaCl) that one positive or negative charge on atom A will change its EC by the
increment �q = ±a

√
ECA. The coefficient was estimated as 2.08, later corrected
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to 1.56 [472]. Thereby it is possible to calculate EC for any cations and anions, and
from them to calculate bond ionicities

qA = ECAB − ECA

ECA+ − ECA

. (2.101)

Sanderson has applied this principle indiscriminately, assuming EC to equalize for
all atoms even in such species as K2SO4, where K and S play quite different chemical
roles and have different valences. Later it was suggested [474, 475] to equalize EC
in separate bonded pairs of atoms, rather than throughout the entire molecule. It
was also observed that total equalization in organic molecules would give different
EC for isomers of the same composition, and a novel, rather efficient, method of
calculating EC for isomers was proposed instead [451–453].

One must keep in mind that different scales of EN have different dimensionality,
viz. energy (or potential) in Mulliken’s scale, square root of energy in Pauling’s scale,
relative electron density in Sanderson’s, whereas Parr et al. defined the absolute EN
as the electronic chemical potential. There is no unique method to calculate EN, for
every scale has its own calculation scheme, as it is done by Bratsch for Pauling’s
scale [213, 214]. ENs of atoms M and X in a M−X bonds can be equalized using the
simple rule

χM × f = χX

f
(2.102)

where f is the equalization factor, f = √
χX/χM , and χ is the Mulliken electronega-

tivity of atoms (see Eq. 2.80). EN equalization will influence the interatomic distance,
decreasing the M size in the M−X separation:

rq+ = ro

f
(2.103)

where ro is the orbital radius of the electroneutral atom and rq+ is the radius of the
same atom with a charge of q+ [476]. As the first approximation, the atomic radii
of the metal atoms in molecules with fractional charges can be calculated by linear
interpolation between the radii of neutral atoms and corresponding cations, which
gives the bond ionicity (see Table 2.24) [477],

i = r
o
− rq+

ro − rcat

. (2.104)

Bond ionicities in solids can also be calculated in this manner, taking into account the
real valence states of atoms. Table 2.25 contains the χ(X) for the tetragonal (te, sp3)
and octahedral (oc, sp5) hybridization of bonds in structures of the ZnS and NaCl
types, together with the standard Mulliken’s values of χ(M), and the calculated rq+
and icr, in crystalline compounds MX [477].

Table 2.26 gives the comparison of the bond ionicities in molecules and crystals
(imol and icr, from Tables 2.24 and 2.25) with the bond polarities calculated as p = μ/d
from the dipole moments (μ) and bond lengths (d), and with the effective charges (e*)
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Table 2.24 Bond ionicities (as fractions of e) in MX molecules

MI H F Cl Br I MII O S Se Te

Li 0.40 0.57 0.49 0.46 0.44 Be 0.35 0.24 0.21 0.18
Na 0.44 0.62 0.54 0.51 0.48 Mg 0.43 0.32 0.29 0.25
K 0.58 0.76 0.68 0.65 0.62 Ca 0.61 0.49 0.46 0.42
Rb 0.63 0.83 0.74 0.71 0.68 Sr 0.69 0.57 0.54 0.50
Cs 0.71 0.91 0.82 0.78 0.75 Ba 0.80 0.67 0.64 0.59
Cu 0.29 0.54 0.42 0.38 0.35 Zn 0.40 0.26 0.22 0.17
Ag 0.37 0.68 0.53 0.48 0.44 Cd 0.54 0.37 0.33 0.27
Au 0.22 0.67 0.46 0.39 0.32 Hg 0.50 0.28 0.23 0.15

Table 2.25 Electronegativities (in Mulliken’s scale), orbital atomic radii (in Å) and the bond ionicity
in MX crystals

M χ(M) Foc (15.82)a Cloc (11.22) Broc (10.52) Ioc (9.51)

rq+ icr rq+ icr rq+ icr rq+ icr

Li 3.005 0.691 0.64 0.821 0.55 0.848 0.53 0.891 0.50
Na 2.844 0.726 0.69 0.862 0.59 0.891 0.57 0.938 0.54
K 2.421 0.846 0.84 1.004 0.74 1.037 0.72 1.091 0.68
Rb 2.332 0.878 0.91 1.043 0.80 1.077 0.78 1.132 0.74
Cs 2.183 0.935 0.99 1.111 0.88 1.147 0.86 1.206 0.82

M χ Fte (17.63) Clte (12.15) Brte (11.46) Ite (10.26)

Cu 4.477 0.600 0.68 0.723 0.54 0.744 0.52 0.787 0.47
Ag 4.439 0.645 0.85 0.777 0.68 0.800 0.65 0.846 0.59
Au 5.767 0.679 0.92 0.818 0.67 0.842 0.62 0.890 0.54

M χ Ooc (12.56) Soc (9.04) Seoc (8.64) Teoc (7.83)

Mg 4.11 0.732 0.53 0.862 0.404 0.882 0.385 0.927 0.341
Ca 3.29 0.865 0.72 1.019 0.583 1.043 0.562 1.095 0.517
Sr 3.07 0.908 0.81 1.070 0.665 1.094 0.645 1.150 0.596
Ba 2.79 0.971 0.91 1.144 0.769 1.171 0.746 1.230 0.697

M χ Ote (14.02) Ste (9.84) Sete (9.48) Tete (8.52)

Be 4.65 0.599 0.49 0.715 0.36 0.728 0.35 0.768 0.30
Zn 4.99 0.635 0.57 0.758 0.41 0.773 0.39 0.815 0.33
Cd 4.62 0.680 0.74 0.811 0.55 0.826 0.53 0.872 0.46
Hg 5.55 0.708 0.77 0.846 0.52 0.862 0.49 0.909 0.40
aelectronegativities of non-metals are given in parentheses

of atoms, determined by Szigeti’s method (see Chap. 11). In each case, ic > imol, in
accordance with chemical experience, and the calculated i agrees qualitatively with
the empirical values of p and e*. At the same time, p varies non-monotonically, e.g.
for fluorides as LiF < NaF > KF > RbF > CsF, and for iodides as LiI < NaI < KI <

RbI > CsI, because of two competing effects: (i) EN of the metal atom decreases with
the increase of its size, but (ii) bond ionicity is reduced by the polarizing influence of
anions on cations, which increases with the cation size. For this reason, bond ionicity
in CsX is always lower than in RbX.
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Table 2.26 Calculated and empirical values of the bond ionicity in molecules and crystals MX

MX-type compounds
M Propertya X = F X = Cl X = Br X = I

Li p, imol 0.84 0.57 0.73 0.49 0.70 0.46 0.65 0.44
e*, icr 0.81 0.64 0.77 0.55 0.74 0.53 0.54 0.50

Na p, imol 0.88 0.62 0.79 0.54 0.79 0.51 0.71 0.48
e*, icr 0.83 0.69 0.78 0.59 0.75 0.57 0.74 0.54

K p, imol 0.82 0.76 0.80 0.68 0.78 0.65 0.74 0.62
e*, icr 0.92 0.84 0.81 0.74 0.77 0.72 0.75 0.68

Rb p, imol 0.78 0.83 0.78 0.74 0.77 0.71 0.75 0.68
e*, icr 0.97 0.91 0.84 0.80 0.80 0.78 0.77 0.74

Cs p, imol 0.70 0.91 0.74 0.81 0.73 0.78 0.73 0.75
e*, icr 0.96 0.99 0.85 0.88 0.82 0.86 0.78 0.82

Cu p, imol 0.69 0.54 0.53 0.42
e*, icr 0.68 0.66 0.54 0.64 0.52 0.60 0.47

Ag p, imol 0.65 0.68 0.55 0.53
e*, icr 0.89 0.86 0.71 0.68 0.67 0.65 0.61 0.59

MO-type compoundsb

M Be Mg Ca Sr Ba Zn Cd Hg
imol 0.35 0.43 0.61 0.69 0.80 0.40 0.54 0.50
icr 0.49 0.53 0.72 0.81 0.91 0.57 0.74 0.77
e*/2 0.55 0.59 0.62 0.64 0.74 0.60 0.59 0.57

ap and e* in the left sub-columns, imol and icr in the right ones, bp are not given, because for oxides
the measurements of μ are few and unreliable

Table 2.27 Electronegativities, empirical atomic radii (Å) and the bond ionicity in molecules MX

M χ H (7.176) F (12.20) Cl (9.35) Br (8.63) I (8.00)

rq+ imol rq+ imol rq+ imol rq+ imol rq+ imol

Li 3.005 1.721 0.43 1.320 0.62 1.508 0.53 1.570 0.50 1.630 0.47
Na 2.844 1.907 0.50 1.463 0.69 1.671 0.60 1.739 0.57 1.807 0.54
K 2.421 2.108 0.60 1.617 0.80 1.847 0.70 1.923 0.68 1.997 0.64
Rb 2.332 2.178 0.64 1.670 0.83 1.908 0.74 1.986 0.71 2.062 0.68
Cs 2.183 2.289 0.68 1.755 0.88 2.005 0.79 2.087 0.76 2.168 0.73
Cu 4.477 1.493 0.31 1.145 0.58 1.308 0.46 1.361 0.41 1.414 0.37
Ag 4.439 1.612 0.40 1.236 0.73 1.412 0.58 1.470 0.52 1.527 0.47
Au 5.767 1.766 0.20 1.354 0.59 1.547 0.41 1.610 0.35 1.673 0.29

Since the atomic size is not uniquely defined (see Chap. 1), it is important to
assess how much this uncertainty affects the calculations. Table 2.27 illustrates the
calculation of the polarities using Pearson’s ENs, the empirical radii of neutral iso-
lated atoms [478] and their molecular cations (see Chap. 1). Comparison with the
results in Table 2.24 reveals the average variation of 5.6 %, which is acceptable for
the purposes of structural chemistry.

In conclusion of this section we should note that the concept of EN has been
created by Pauling, first of all, to estimate the bond ionicity (i), i.e. the displacement of
valence electrons towards one of the atoms. Experimental values of i(H–X), defined
as the ratio of the dipole moment to the bond length, have been approximated by
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Table 2.28 Dependence of bond ionicity (%) on differences of electronegativities

�χ molecule crystal �χ molecule crystal �χ molecule crystal

0.1 1 4 1.1 23 39 2.1 54 66
0.2 2 8 1.2 26 42 2.2 58 69
0.3 3 12 1.3 29 45 2.3 61 71
0.4 5 16 1.4 32 48 2.4 64 73
0.5 7 20 1.5 35 51 2.6 70 77
0.6 9 23 1.6 38 54 2.8 75 81
0.7 11 26 1.7 41 57 3.0 80 85
0.8 14 29 1.8 44 59 3.2 84 88
0.9 17 32 1.9 47 61 3.4 88 91
1.0 20 36 2.0 51 64 3.6 91 94

Pauling [479] as

i = 1 − e−A (2.105)

where A = c�χ2 (in the beginning was accepted c = 0.25, and then 0.18). This
formula agrees with observations and is often used in the structural and quantum
chemistry to estimate bond ionicity in molecules. The change of the bond ionic-
ity upon transition from molecules to a solid (which from the structural viewpoint
is principally a change of Nc) can be considered either using ‘crystalline EN’ or
changing an exponent in Eq. 2.105 by 1/Nc [18]. The values of i in molecules and
crystals as functions of �χ, detrmined by all available experimental methods, are
summarized in Table 2.28.

As noted in Chap. 1, a change of the atomic valence has only a slight (≤10 %)
effect on the bond energy. Apparently, an increase of the net charge on the metal
atom in a polar molecule or in a solid, caused by the increasing valence, should
correspondingly enhance the Coulomb component, which is the major part of the
bond energy. However this does not occur. There are two alternative explanations of
this: either the electric charges on two atoms act only within an orbital and charges
of other bonds (accordingly, the total charge on the metal atom) have no effect on
the strength of the given bond or, as the valence changes, atomic charges vary so
that their product (hence, Coulomb’s energy) is invariant. In [313] both alternatives
were considered and the latter proved consistent with available experimental data,
implying that the effective atomic charge varies in inverse proportion to the oxidation
number of the atom. As a first approximation, we assume that as the valence v(M)
in MXn increases in the succession 1 → 2 → 3 . . . → 8, the product of the effective
charges of atoms M and X remains invariant. Expressing the charge of an atom in a
single bond as e*, we obtain:

(e∗)2 = (ve∗)M
m

(e∗)X
m

(2.106)

and, hence, v = m2, where m is the number by which the effective atomic charge (bond
ionicity) must be divided for the Coulomb energy to remain constant. Therefore, as
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v(M) increases and the ligands remain the same, the effective charge of an atom
decreases in proportion to

√
v, i.e. as

√
1 → √

2 → √
3 . . . → √

8. From here, if
we know χ(M) and e∗ of the M−X bond for one v (usually for a low-valence state,
as these are better studied), we can find the bond ionicities for other valences and,
using the dependence i = f (�χ) and data from Table 2.28, to define χ. Such values,
obtained for molecular and crystalline halides, are close to empirical ENs [313].

The values of i calculated from Eq. 2.105 on v(M) in different molecules, give the
average (for 700 molecular halides and chalcogenides) of e∗ = ±0.5e, in agreement
with Pauling’s famous Electroneutrality Rule [480, 481] which states that net charges
of atoms in stable molecules and crystals should not exceed ± ½, even though later he
softened this limitation to ±1 [475]. This principle later has been proved theoretically,
confirmed experimentally and now plays a key role in the description of electronic
structure of molecules and crystals.

2.5 Effective Charges of Atoms and Chemical Behavior

In this section we shall consider only the acid-basic properties and redox reactions,
as the processes most closely connected with the electronic structure of substances.
According to the Brönsted-Lewis theory, the acidity of oxygen-containing molecules
depends on the effective charge on the oxygen atom. Sanderson [482] has shown that
values of EC of oxides are inversely proportional to the pH of their aqueous solutions.
Reed [483] has shown that pK of hydrates and amino-complexes of transition metals
also depends on their atomic charges. The EN concept allows also to explain the
acid-base properties of organic substances: higher acidity of aromatic compounds in
comparison with aliphatic molecules is caused by higher positive charge on the H.
For similar reasons, phenols are more acidic than aliphatic alcohols. Apart from the
effects of the proximity of multiple bonds, the acidic properties of organic compounds
with C−OH bonds depend on other atoms enhancing the EN of the carbon atom and,
therefore, the effective positive charge on H. For this reason, Cl3CCOOH is a stronger
acid than H3CCOOH.

Let us now consider redox reactions from the chemical bonding viewpoint, which
is important for physical and structural chemistry. For this purpose we again must
return to the concept of atomic charge. This term is used to describe two basically
different things: the ‘intrinsic charge of atom, qi’ (ICA) and the ‘coordination charge
of atom, �’ (CCA). The first type is a deficit (positive charge) or an excess (negative
charge) of electrons inside the closed shells of the bonded atoms in comparison with
those in the isolated state. This qi defines the Coulomb energy, is responsible for the
IR absorption, causes the atomic polarization bands, and affects the binding energy
of the internal electrons in the atom. However, what matters for redox reactions is the
electron density in the interatomic space, i.e. the CCA [436]. Suchet, to highlight the
same distinction, introduced the terms ‘physical’ and ‘chemical’ charges [484, 485].
The CCA of the M and X atoms in a MX crystal are

�M = +Z − cNNc and �X = −Z + NNc, (2.107)
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where Z is the formal charge (valence), c and N are the covalency and the order
(multiplicity) of the bonds, Nc is the coordination number. These �M can be com-
pared with the charges determined by X-ray spectroscopy, in which an electron
is promoted from an internal shell and into the region of chemical bonding [54].
Table S2.21 contains the �M of several transition metals in complex compounds,
experimental and calculated by the EN method. According to these calculations,
in crystalline compounds with low bond polarity, �M can even become negative if
Nc > Z. This prediction has been confirmed by physical methods, e.g. XRD studies
of the electron density in PbS, PbSe, and PbTe have shown that within the Pb atom re-
gion, limited by r = 1.66 Å, there is a negative net charge of −0.4, −0.9, and −1.1e,
respectively [486]. Gold compounds provide another proof. Thus, CsAu crystallizes
in a CsCl-type structure and has Eg = 2.6 eV [487], indicating the ionic (rather than
inter-metallic) character of the solid, with Au acting as an anion. Note also the struc-
tural similarity between K3BrO and K3AuO [488]. XRS studies [489] revealed that
the AuLI and AuLIII absorption edge energies monotonically decrease in the succes-
sion Au2O3, AuCl3, AuCN, Au, CsAu and M3AuO, hence in the last two compounds
the charge of Au must be negative. Additional argument in favour of Au− anion is the
dissociation of M7Au5O2 compounds into Au+ and Au− ions [490]. Besides, ESCA
measurements [80, 491] have shown that the electronic structure of BaAu, BaAu2

and BaAu0.5 Pt0.5 compounds can be formulated as Ba2+[e−] · [Au−], Ba2+(Au−)2

and [Ba2+ · 0.5e−] · [Au−
0.5 ·Pt2−

0.5], respectively. Such behavior of Au is caused by
its having the highest electron affinity of all metals (A = 2.31 eV). Platimum takes the
second place with A = 2.12 eV and, accordingly, Cs2Pt has the electronic structure
Cs2

+ Pt2−, i.e. can be considered as an analogue of alkali metal chalcogenides, M2X
[492]. These recent results confirmed negative charges on Pt and Au, predicted from
1959 onwards on the basis of electronegativities [493–495]. This prediction has an
important chemical corollary: oxidation of certain compounds of Au and Pt will rise
the metal valence (without replacing ‘anions’) and yield a salt with mixed ligands,
e.g.

PtI2 + Cl2 → PtI2Cl2

For other metals the result will be substitution of the halogeno anions, which does
not happen here because the halogen atoms are not anions. Similarly, all possible
mixed tetra-halides and di-chalcogenides of Pt, tri-halides ofAu, and di-halides of Cu
were synthesized by Batsanov et al., see reviews in [356, 496]. Similar results were
obtained for other high-EN metals, such as Hg, Tl, Sn, Mn, and by other researchers
for Fe, Sb, Cr, Re, W, U, with a variety of ligands, such as halogens, chalcogens, SCN,
N3, NO3, CO3, SO4 and methyl. Mixed halides of PtIV formed different isomers,
depending on the order in which of halogens were added, e.g. PtX2 has the motif of
squares with shared vertices, but additional halogens complete these to octahedra in
PtX2Y2; such compounds were named square-coordinate isomers [493]. TlSeBr also
showed different properties depending on the route of the synthesis: Se + TlBr →
Se=Tl−Br or 2Tl + Se2Br2 → 2 Tl–Se–Br, where Tl had different valences. The
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Table 2.29 Change of
atomic charges (−∂e*/∂P,
10−4 GPa−1) in crystals
MX under P = 10 GPa

MI F Cl Br I
Li 5.2 1.5 0 1.9
Na 7.0 2.4 1.5 4.0
K 11.7 5.9 5.4 4.1
Rb 10.6 3.9 2.4 1.7
Cs 10.4 6.7 8.3 7.6
Cu −8.4 −4.7 6.9
Ag −3.7 −5.6 −3.4 −6.6
Tl −12.6 −12.5 −11.6 −10.9

MII O S Se Te
Be 0 −1.6 1.6 3.7
Mg 0.9 0 0 5.6
Ca 3.7 2.2 3.3 7.5
Sr 7.0 5.9 7.2 9.6
Ba 16.5 16.5 18.0 24.6
Zn 0 −2.2 0 4.4
Cd 0 −2.8 0 5.9
Hg −5.9 −2.8 0.6 10.0
Sn −12.2 −2.8 0 0
Pb −7.8 −3.7 0 4.7
Mn −0.4 −4.0 1.6

MIII N P As Sb
B 0.6 9.7 4.7
Al 0.6 5.3 0.6 0
Ga 2.2 9.4 2.5 2.8
In 6.9 10.0 1.9 1.9
La 15.3 14.7 14.4
Th 2.5 7.5
U 0 3.4

given structural formulae were confirmed by IR-spectroscopy and these compounds
were named the valence isomers [497]. Dehnicke [498] discovered the reactions
of ‘chemical annihilation of charges’. For example, chloro ligands bear negative
charges in SbCl5 but positive in ClF, thus a reaction between these compounds yields
SbFCl4 and Cl2. Similar reactions was carried out with hydrides, viz. MBH4 + HX =
MBH4−nXn + H2 [499].

2.6 Change of Chemical Bond Character under Pressure

Distribution of the electron density in molecules and crystals depends on thermo-
dynamic parameters. Spectroscopic methods [500–507] show that in crystals under
high pressures, e∗ usually decreases, although in AgI, TlI, HgTe, AlSb, GaN, InAs,
PbF2 it increases with pressure. High-pressure XRD studies of SiO2 also indicated an
increase of bond ionicity [508]. Studies of Se and GaSe under pressure showed that
under compression, bonding electrons are displaced from covalent to intermolec-
ular regions [502, 504] with shortening of the intra- and intermolecular distances.
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However, difficulties of measurements of ε, n and � under high pressures, increasing
anharmonicy of vibrations and deformation of IR absorption bands limits the choice
of investigated substances and reduces the precision. Therefore, it is desirable to have
independent methods of determining the effective charges of atoms in compressed
crystals. It has been proposed [376, 509] to derive atomic charges in crystalline com-
pounds under high pressures from the physical properties of the components of the
system. Suppose that a reaction M + X → MX has the thermal effect Q at ambient
thermodynamic conditions. For such system under pressure, the compression work
(Wc) of the initial reagents and the final product can be calculated as

Wc = 9VoBo/η
2{[η(1 − x) − 1

]
exp

[
η(1 − x)] + 1} (2.108)

deduced by integrating the ‘universal equation of state’(EOS) ofVinet-Ferrante [510]

P (x) = 3Bo

[
(1 − x)

x2

]

exp [η (1 − x)] (2.109)

where Vo and V are the starting and final molar volumes, respectively; x = (V /Vo)1/3;
Bo is the bulk modulus; η = 1.5(Bo

′−1) and Bo
′ is the pressure derivative of Bo.

Obviously, if Wc (mixture) – Wc (compound) > 0, then �Wc should be subtracted
from the standard heat effect to yield the Q corresponding to high pressures, and
vice versa. Usually �Wc > 0, hence under pressure Q and �χ decrease. The results
of such approach qualitatively agree with the experiment, except for alkali hydrides,
where calculations predict e∗ to fall to 0 already at several tens of GPa while in fact no
change of electronic structure occurred up to 100 GPa and even beyond [511, 512].
This contradiction can be resolved by taking into account that the compression work
only partly goes into changing the chemical bonds [513]. Studies of A2 molecules
and chalcogens in condensed state, revealed that the compression initially (or mainly)
results in the contraction of intermolecular distances and only after the bond equal-
ization, i.e., the transformation of the molecular structure into a monatomic one, the
covalent bonds begin to shorten. Therefore Wc calculated using Eq. 2.109 must be
multiplied by the ratio of vdW energy (�Hs) to the A–A bond energy (Eb) in order
to obtain the ‘efficiency factor’, Φ, of high pressure. For metals and semi-metals
Φ = Ea/BoVo where Ea is the atomization energy and BoVo is the compression en-
ergy reduced to P = 0, and the product Φ × Wc characterizes the compression energy
(Ec) spent on altering the chemical bonding.

Thus, a comparison of Ec of mixtures and compounds allows to define a change of
Q (and hence of the ENs of atoms) on variation of P, and from Table 2.28 to find the
effective charges of atoms. The decrease of Q and the bond polarity under pressure is
observed in crystals of AB-type, viz. Group 1– Group 17, Group 2– Group 16, Group
13–Group 15 compounds. Table 2.29 shows that ∂e*/∂P for these crystals decrease
by 10−4 to 10−3 GPa−1. Szigeti’s method predicts the same signs and similar absolute
values, ∂e*/∂P = 1 to 3.3 × 10−4 GPa−1. Remarkably, the increase of Q(P) in CuX,
AgX, and TlX under high pressures indicates an increase of polarity; unfortunately,
corresponding data by Szigeti’s method are not available.



2.6 Change of Chemical Bond Character under Pressure 121

Chalcogenides of bivalent metals can be divided into two classes: compounds
of the Group 2 metals, crystallizing in the B1 structures, become less ionic under
compression, while compounds of the Group 12 metals, crystallizing in the B3 struc-
ture, become more ionic. On compression of crystalline compounds of the Group 13
and Group 15 elements, the effective charges decrease in agreement with the results
of Szigeti’s method. Such behavior of substances under pressure can be explained
assuming the additive character of compressibility of compounds. If the anion is
softer than the cation (e.g. in halides of Cu, Ag and Tl) it will be compressed more
strongly. The electronegativity of the anion, being inversely related to the atomic
size, will increase and so will �χ, as χX > χM. In the case of softer cation (e.g.,
in alkali halides) χM on compression will increase more strongly than χX, and ion-
icity will decrease. However, under stronger compression, as calculated from the
experimental EOS, �Wc does not change to P ≈ 100 GPa and on further compres-
sion even decreases, as has been shown experimentally by the shock-wave technique
[514]. Hence, the situation when �Wc = Q, i.e. when the compound must dissociate
to neutral atoms (elements), cannot be reached at any pressure. However, metal-
lization of ionic crystals under pressure has been proven experimentally. As noted
above, the volumes of MX crystals under P when �Wc = Ea , i.e. when chemi-
cal bonds are destroyed and valence electrons delocalized, correspond to distances
d(M−X) = r(M+) + r(Xo) [515]. It means that if on compression of MX bond polar-
ity decreases, as in alkali halides, ZnO and GaAs [517], then the donor of electrons
must be Mo, since I(M) < I(X). If the bond polarity increases, as in SiC [516], SiO2

[508], ZnS [63], or remains nearly constant, as in AlN and GaN [507], then X− must
be the donor, since A(X) < I(M).

The behavior of metals under pressure is remarkable. At ambient conditions,
the metal atoms are ionized (by releasing itinerant electrons), but only partly so.
Under compression the rest of the outer-shell electrons are ‘squeezed out’, and the
degree of ionization of atoms increases. Ultimately, the atomic cores become cations
and the crystal structure of a metal will correspond to a close-packing of cations.
Stabilization of such a system requires very high pressures, to counterbalance the
repulsion of cations. The parameters of such ultimate states have been calculated
[517], see Table S2.22. The internuclear distances are expected to equal the sums of
cationic radii.

There have been other attempts to estimate the change of EN and bond polarity
under compression. The principal difficulty is that intra- and intermolecular distances
change differently. In [518] the increase of covalent radii was calculated as the
inverse of the reduction of vdW-radii of elements, and in [519] as being proportional
to the ratio of energies of the chemical and vdW-bonds. For the metallic state, the
following radii were obtained (Å): F 1.00, Cl 1.25, Br 1.41 and I 1.61, whereas
experimental values are Br 1.41 Å [523] and I 1.62 Å [521]; for fluorine and chlorine
data are unavailable. Certainly, this approach is not rigorous: it makes no allowance
for polymorphic transformations, at which the material changes its properties by a
jump. Nevertheless, the obtained values of ∂e∗/∂P, summarized in Table S2.23, are
close to experiemental results. The problem of changing bond lengths under pressure
has been explored theoretically in terms the bond-valence model [522], yielding for
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ionic crystals a quantitative dependence

�do

�P
= 10−4 �d4

o

B
, (2.110)

where do is the initial bond length, B = 1/b − 2/do and b = 0.37. This relationship
allows to compute the effects of pressure on bond lengths and force constants.

2.7 Conclusions

The formation of chemical bonds in molecules or crystals release the energy equal
to a few tenths, and more often not exceeding 0.1, of the ionization potentials of the
individual (isolated) atoms involved. The ionization potentials of atoms in molecules
decrease by similar amounts compared to the free state. Bond energies themselves are
determined by the ionization potentials of the isolated atoms, according to Mulliken’s
theory. Thus the major part of the energy of any chemical system in any aggregate
state depends on the nature of the component atoms, and the remaining energy is
mostly defined by the immediate atomic environment, or the short-range order in
a crystal structure. Inversely the ionization potential, i.e. the electron energy of an
atom in molecule or crystal, differs but slightly from that in isolated state. Therefore,
in most cases it is a good approximation to regard a molecule as a combination of
atoms and to account for all interactions as perturbations. From this viewpoint the
geometrical structure of substances will be discussed in the next chapters.

Appendix

Supplementary Tables

Experimental data from the Handbook of Chemistry and Physics, 88th edn (2007–
2008) are presented without reference, otherwise the references to original papers
are given.
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Table S2.1 ‘XRD’ effective atomic charges in silicates and complex compounds

   A Be2SiO4 Mg2SiO4 Mn2SiO4 Fe2SiO4 Co2SiO4

+ M 0.83 1.75 1.35 1.15 1.57 

+ Si 2.57 2.11 2.28 2.43 2.21 

− O 1.06 1.40 1.25 1.19 1.29 

  A MgCaSi2O6  Mg2Si2O6 Fe2Si2O6 Co2Si2O6 LiAlSi2O6

+ M 1.42 1.82 1.12 0.95 1.0, 1.74 

+ Si 2.56 2.28 2.19 2.28 1.8 

− O 1.33 1.37 1.10 1.08 1.06 

   A Al2SiO4F2 CaAl2Si3O10 LiFePO4 NaH2PO4

+ M 1.53 2, 1.90 1, 1.35 0.2, 0.6 

+ Si 1.75 1.84 0.77 1.8 

− O 1.00 1.14 0.78 0.8 

   A K2NiF4 Cs2CoCl4 K2PdCl4 K2PtCl4

+ A 1.82 0.7 0.5 1.0 

− X 0.95 0.7 0.6 0.75 

   A K2ReCl6 K2PdCl6 K2OsCl6 K2PtCl6

+ A 1.6 1.97 2.5 1.88 

− Cl 0.6 0.66 0.75 0.65 

Complex А е*  Complex А е*

N −0.62 C +0.22 
H +0.36 N −0.54[Co(NH3)6] 
Co −0.49

[Cr(CN)6] 
C −0.38

−+

−+

−+

−+

−+

Table S2.2 Bond metallicity in crystalline halides MX

MI F Cl Br I

m1 m2 m1 m2 m1 m2 m1 m2

Li 0.06 0.07 0.12 0.10 0.14 0.11 0.17 0.12
Na 0.04 0.05 0.11 0.08 0.10 0.09 0.13 0.11
K 0.03 0.03 0.06 0.07 0.08 0.08 0.10 0.09
Rb 0.02 0.03 0.06 0.06 0.08 0.07 0.10 0.09
Cs 0.02 0.02 0.05 0.05 0.06 0.06 0.08 0.08
Cu 0.12 0.08 0.15 0.09 0.18 0.11
Ag 0.06 0.05 0.12 0.09 0.14 0.10 0.18 0.11
Tl 0.06 0.05 0.12 0.10 0.14 0.12 0.18 0.14

MII O S Se Te
Be 0.15 0.12 0.24 0.14 0.27 0.17 0.32 0.18
Mg 0.09 0.10 0.15 0.14 0.19 0.16 0.23 0.17
Ca 0.07 0.09 0.13 0.13 0.15 0.15 0.19 0.17
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Table S2.2 (continued)

MI F Cl Br I

m1 m2 m1 m2 m1 m2 m1 m2

Sr 0.06 0.07 0.12 0.12 0.13 0.13 0.17 0.16
Ba 0.06 0.06 0.11 0.11 0.13 0.12 0.16 0.14
Zn 0.13 0.11 0.17 0.15 0.20 0.17 0.26 0.19
Cd 0.12 0.11 0.16 0.15 0.19 0.16 0.25 0.19
Hg 0.15 0.20 0.18 0.26 0.20 0.30 0.23
Sn 0.12 0.10 0.16 0.15 0.19 0.16 0.25 0.19
Pb 0.12 0.11 0.16 0.16 0.19 0.18 0.25 0.21
Cr 0.18 0.14 0.21 0.15 0.26 0.18
Mn 0.11 0.09 0.18 0.12 0.20 0.13 0.25 0.17
Fe 0.13 0.10 0.20 0.15 0.23 0.17 0.29 0.20
Co 0.13 0.11 0.21 0.17 0.24 0.18 0.30 0.21

MIII N P As Sb
B 0.25 0.18 0.38 0.21 0.44 0.23
Al 0.20 0.18 0.32 0.24 0.38 0.28 0.40 0.26
Ga 0.21 0.18 0.35 0.24 0.42 0.28 0.44 0.28
In 0.21 0.13 0.34 0.19 0.41 0.23 0.44 0.22
Sc 0.15 0.15 0.26 0.22 0.32 0.26 0.33 0.26
Y 0.13 0.13 0.23 0.21 0.29 0.25 0.31 0.25
La 0.12 0.12 0.22 0.20 0.28 0.24 0.29 0.24
U 0.16 0.14 0.28 0.22 0.33 0.26 0.36 0.26

Table S2.3 Dissociation energies of diatomic molecules (kJ/mol) (E(M2), kJ/mol: Nb2 513, Tc2

330, Re2 432, Os2 415, Ir2 361)

M Molecules

MF MCl MBr MI MH M2

H 570 431 366 298 436 436
Li 577 469 419 345 238 105
Na 477 412 363 304 186 74.8
K 489 433 379 322 174 53.2
Rb 494 428 381 319 173 48.6
Cs 517 446 389 338 175 43.9
Cu 427 375 331 289 255 201
Ag 341 311 278 234 202 163
Au 325 302a 286a 263a 292 226

Be 573 434 316 261 221 11.1b

Mg 463 312 250 229 155A 4.82b

Ca 529 409 339 285 163 13.1bb

Sr 538 409 365 301 164 12.94b

Ba 581 443 402 323 192 19.5b

Zn 364 229 180 153 85.8 3.28c

Cd 305 208 159 97.2 69.0 3.84c

Hg 180 92.0 74.9 34.7 39.8 4.41c

B 732 427 391 361 345 290
Al 675 502 429 370 288 133
Ga 584 463 402 334 276 106
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Table S2.3 (continued)

M Molecules

MF MCl MBr MI MH M2

In 516 436 384d 307 243 82.0
Tl 439 373 331 285 195 59.4
Sc 599 435e 365e 300e 205 163
Y 685 523 481 423 270
La 659 522 446 412 223E

C 514 395 318 253 338 618
Si 576 417 358 243 293 320f

Ge 523 391 347 238g 263 261f

Sn 476 350 337 235 264 187
Pb 355 301 248 184 158h 83f

Ti 569 405 373 262 205 118
Zr 627 530 420 298i 312 298
Hf 650 328j 328

NI 320 321 254 203 331k 945
PI 459 342 294 243 293k 489
AsI 463 336 280 240 270k 386
SbI 430 292 240 183 260k 302
BiI 366 285 181 124 212k 204
V 590 477 439 209 269
Ta 573 544 390

OI 234 269 241 237 428 498
SI 344 264 241 194 351 425
SeI 317 227 186 158 300 330
TeI 326 209 166 134 256 258
Cr 523 378 328 287 190 152
Mo 464 313 211 436
W 597m 458m 396m 328m 666

F 159 261 280 272 570 155
Cl 261 243 219 211 431 240
Br 280 217 193 179 366 190
I 272 211 179 151 298 149
Mn 445 338 314 283 251 61.6

Fe 447 330 298o 241P 148q 118
Co 4315 338 326 285P 190q 163n

Ni 437 377 360 293P 243q 200n

Ru 402 234q 193
Rh 247q 236
Pd 234q > 136
Pt 582 352q 307

Th 652 489 364 336 284
U 648 439 377 299 222

a[2.1], A[2.2], b[2.3], c[2.4, 2.5], d[2.6], e[2.7], E[2.8], f [2.9], g[2.10], h[2.11], i[2.12], I[2.13],
j[2.14], k[2.15, 2.16], l[2.17], m[2.18], n[2.19], o[2.20], p[2.21], q[2.22]
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Table S2.4 Dissociation energies of MZ molecules (kJ/mol)

M Z

O S Se Te N P C

Cu 287 274 255 230
Ag 357 279 210 196
Au 233 254 251 237
Be 440a 372
Mg 338a 234
Ca 383a 335
Sr 415a 338 251
Ba 559a 418
Zn 289a 225 171 118
Cd 231a 208 128 100
Hg 269 217 144 89
B 809a 577 462 354 378 347 448
Al 511a 332 318 268 278 217 268
Ga 354a 265 230
In 316a 288 245 215 198
Tl 213a 209
Sc 671 477 385 289 464 444
Y 714 528 435 339 477 418
La 799 573 477 381 519 462
C 1076 713 590 564 750 508 607
Si 800 617 534 429 437 452
Ge 660 534 444b 409b 456
Sn 528 467 401 338
Pb 374 343 303 250
Ti 668 491 381 289 476 423
Zr 766 572 565 496
Hf 790 590 540
N 631 467 370 945 617 754
P 599 442 364 298 617 489 507
As 481c 389c 352c 312c 489 433 382
Sb 434 379 277 460 357
Bi 337 315 280 232 282
V 637 449 347 523 423
Nb 726 524
Ta 839 670 607 611
O 498 518 465 376 631 589 1076
S 518 425 371 335 464 444 714
Se 430 371 330 293 370 364 590
Te 377 339 2932 258 298
Cr 461 331 378 378
Mn 362 301 239
Th 877 577 372 453
U 755 528 531 293 455

M Mo W Tc Re Fe Co Ni
DMO 502 720 548 627 407 384 366

M Pd Os Ir Pt Ru Rh
DMO 381 575 414 415 528 405
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Table S2.4 (continued)

M Z

O S Se Te N P C

M Fe Co Ni Pt
DMS 329 331 318 407d

M Mo Tc Fe Ni Ru Rh
DMC 482 564 376e 337 648 580

M Pd Os Ir Pt
DMC 436 608 631 610

a[2.23], b[2.24], c[2.25], d[2.26], e[2.27]

Table S2.5 Dissociation energies D (kJ/mol) of M+
2 cations

M D M D M D M D

Ag 168 Cr 129 Li 132 S 522.5
Al 121 Cu 155 Mg 125 Sb 264
Ar 116 Cs 62.5 Mn 129 Se 413
As 364 F 325.5 Mo 449 Si 334
Au 234.5 Fe 272 N 844 Sn 193
B 187 Ga 126 Na 98.5 Sr 108.5
Be 196.5a Ge 274 Nb 577 Ta 666
Bi 199 H 259.5 Ne 125 Te 278
Br 319 He 230 Ni 208 Ti 229
C 602 Hg 134 O 648 Tl 22
Ca 104 I 263 P 481 V 302
Cd 122.5 In 81 Pb 214 Zr 407
Cl 386 K 80 Pd 197 Xe 99.5
Co 269 Kr 84 Pt 318 Y 281

La 276b Rb 75.5 Zn 60

a[2.28], b[2.8]

Table S2.6 Ionization
potentials (eV) for M and M+
atoms

M I1(M) I2(M) I2/I1

Be 9.32 18.21 1.95
Mg 7.65 15.04 1.97
Ca 6.11 11.87 1.94
Sr 5.69 11.03 1.94
Ba 5.21 10.00 1.92
Zn 9.39 17.96 1.91
Cd 8.99 16.91 1.88
Hg 10.44 18.76 1.80

Table S2.7 Ionization and
dissociation energies (kJ/mol)
for metal atoms and
molecules

A I(A) I(A2) E(A2) E(A+
2 ) Ea(A) 0.9 Φ(A)

Li 520 493 105 132 159 207
Na 496 472 75 99 107 204
K 419 392 53 80 89 193
Rb 403 376 49 76 81 188
Cs 376 357 44 63 76.5 157
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Table S2.8 Dissociation energies D (kJ/mol) of MH+ and MO+ cations

MH+ D MH+ D MO+ D MO+ D

CuH 93 CrH 136 LiO 39 VO 582
AgH 43.5 MoH 176 NaO 37 NbO 688
AuH 144 WH 222 KO 13 TaO 787
BeH 307 OH 488 RbO 29 NO 115
MgH 191 SH 348 CsO 59 PO 791
CaH 284 SeH 304 CuO 134 AsO 495
SrH 209 TeH 305 AgO 123 BiO 174
ZnH 216 MnH 202 BeO 368 CrO 276
HgH 207 TcH 198 MgO 245 MoO 496
ScH 235 ReH 225 CaO 348 WO 695
YH 260 HH 259 SrO 299 SO 524
LaH 243 ClH 453 BaO 441 TeO 339
BH 198 BrH 379 ZnO 161 Re 435
TiH 227 IH 305 ScO 689 FO 335
ZrH 219 FeH 211 YO 698 ClO 468
CH 398 CoH 195 LaO 875 BrO 366
SiH 317 NiH 158 BO 326 IO 316
GeH 377 RuH 160 AlO 146 FeO 343
VH 202 RhH 165 GaO 46 CoO 317
NbH 220 PdH 208 TiO 667 NiO 276
TaH 230 OsH 239 ZrO 753 RuO 372
NH ≥ 436 IrH 306 HfO 685a RhO 295
PH 275 UH 284 CO 811 PdO 145
AsH 291 SiO 478 OsO 418

GeO 344 IrO 247
SnO 281 PtO 318
PbO 247 ThO 848a

a[2.29]

Table S2.9 Average bond energies (kJ/mol) (Subscripts p, s and t indicate primary, secondary and
tertiary carbon atoms; 1 and 2 indicate the number of atoms of a given type, connected to the atom
under consideration; superscript indicate the element bonded to the polyvalent atom)

A–B E(A–B) A–B E(A–B) A–B E(A–B)

Li−Be 87.4 P=S 441 F(C−H)t 398
Li−B 101 P−F 483 Cl(C−H)p 405
Li−C 126 P−C 331 Cl(C−H)s 403
Li−N 243 O−O 192 Cl(C−H)t 401
Li−O 406 S−S 266 Br(C−H)p 406
Be−Be 119 P=O 643 Br(C−H)s 404
Be−B 186 Li(Be−H) 297 Br(C−H)t 405
Be−C 232 BeC(Be−H) 298 I(C−H)p 409
Be−N 340 CF(Be−H)1 299 I(C−H)s,t 406
Be−O 488 N(Be−H) 302 Li(N−H)1 384
Be−F 653 O(Be−H) 311 Li(N−H)2 395
B−B 286 Li(B−H)1 383 Be(N−H)1 400
B−C 323 Li(B−H)2 386 Be(N−H)2 401
B−N 443 Be(B−H)1 375 B(N−H)1 395
B−O 544 Be(B−H)2 378 B(N−H)2 400
B−F 659 B(B−H)1 382 C(N−H)1 380
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Table S2.9 (continued)

A–B E(A–B) A–B E(A–B) A–B E(A–B)

B−Cl 489 B(B−H)2 381 C(N−H)2 383
B−Br 414 C(B−H)1 376 N(N−H)1 373
B−I 334 C(B−H)2 375 N(N−H)2 378
C−C 357 C(B−H)3 375 P(N−H)1 380
C=C 579 N(B−H)1 379 P(N−H)2 390
C≡C 786 N(B−H)2 386 O(N−H)1 371
C−N 319 O(B−H)1 378 O(N−H)2 375
C=N 571 O(B−H)2 374 S(N−H)1 390
C≡N 872 F(B−H)1 372 S(N−H)2 391
C−P 271 Li(C−H)p 433 F(N−H)1 369
C=P 448 Li(C−H)s 428 F(N−H)2 370
C−O 383 Li(C−H)t 426 C(P−H)1 314
C=O 744 Be(C−H)p 431 C(P−H)2 318
C−S 301 Be(C−H)s 428 N(P−H)1 309
C−F 486 Be(C−H)t 426 N(P−H)2 311
C−Cl 359 B(C−H)p 425 P(P−H)1 320
C−Br 300 B(C−H)s 424 P(P−H)2 317
C−I 234 B(C−H)t 423 O(P−H)1 303
Si−C 295 C(C−H)p 411 O(P−H)2 305
Si−F 606 C(C−H)s 408 S(P−H)1 310
Si−Cl 414 C(C−H)t 405 S(P−H)2 312
Si−Br 343 N(C−H)p 406 F(P−H)1 298
Si−I 262 N(C−H)s 402 F(P−H)2 301
N−N 212 N(C−H)t 402 Cl(P−H)1 303
N=N 515 P(C−H)p 413 Cl(P−H)2 306
N≡N 945 P(C−H)s 411 Li(O−H) 454
N−P 265 P(C−H)t 410 Be(O−H) 471
N=P 450 O(C−H)p 401 B(O−H) 466
N−O 223 O(C−H)s 399 C(O−H) 452
N=O 541 O(C−H)t 397 S(O−H) 458
N−S 224 S(C−H)p 409 F(O−H) 433
N=S 413 S(C−H)s 407 N(S−H) 355
P−P 211 S(C−H)t 404 P(S−H) 362
P=P 360 F(C−H)p 399 O(S−H) 346
P−O 358 F(C−H)s 398 S(S−H) 354

Table S2.10 Additive energies of π-bonds (kJ/mol)

X Y a b c X Y a c

C C 222 291 272 N N 303 251
C Si 57.5 151 159 N P 185 184
C N 252 338 264 N O 317 259
C P 177 206.5 180 N S 189 176
C S 220 233 218 P P 149 142
Si Si 36 101 105 P O 285 222
Si N 31 155 151 P S 180 167
Si P 95 124 121 O O 306 306
Si O 240 233.5 209 O S 249 249
Si S 168 182.5 209 S S 159.5 159.5

a[2.30–2.33], b[2.34], c[2.35]
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Table S2.11 Reduced Madelung constants

Structure type kM Structure type kM Structure type kM

AlBr3 1.199 BeCl2 1.362 MnF2, TiO2 1.589
BCl3 1.226 SiF4 1.432 PbF2, SnO2 1.602
SnI4 1.236 CdI2 1.455 CuCl, ZnS 1.638
AuCl3 1.245 SiO2 1.467 Y2O3 1.672
V2O5 1.266 Cu2O 1.481 CaF2, ZrO2 1.680
HgI 1.277 CrCl2 1.500 NiAs 1.733
TlF 1.318 BN 1.528 NaCl, MgO 1.748
AsI3 1.334 BeO 1.560 CsCl 1.763

Table S2.12 Band gaps (eV) in MX2 type compounds

M X M X

F Cl Br I O S Se Te

Mg 14.5a 9.2 8.2 Ti 3.1c 2.0 1.6 1.0
Ca 12.5b 6.9 6.0 Zr 5.2d 2.1
Sr 11.0b 7.5 Hf 5.5e 1.9f 1.1 0.4f

Ba 9.5b 7.0 Si 9.0c 1.7 1.0
Zn 4.75g Ge 5.4c 3.4 2.5 1.2
Cd 8.7h 5.7 4.5 3.5 Sn 3.7c 2.1i 1.02i

Hg 4.4 3.6j 2.35k Pb 1.6 1.0
Sn 3.9 3.4 2.4 Mo 1.9 1.2l 0.9
Pb 4.0 3.1m 2.3n W 1.8 1.4 0.1
Mno 10.2 8.3 7.7 5.2 Re 1.5p 1.35p

Feo 8.3 7.4 6.0 Ru 1.4p 0.9p

Coo 8.3 7.4 6.0 Pt ≥ 3.5q

Nio 8.8 8.4 7.5 6.0 U 5.5

a[2.36], b[2.37], c[2.38], d[2.39], e[2.40], f [2.41, 2.42], g[2.43], h[2.44], i[2.45], j[2.46], k[2.47,
2.48], l[2.49], m[2.50], n[2.51], o[2.52], p[2.53], q[2.54]

Table S2.13 Band gaps (eV) in MnXm type compounds

M2X3 Eg M2X3 Eg MnXm Eg MnXm Eg

Sc2O3 5.7a Tl2O3 2.2 Li3N 2.2p SbI3 2.3
Sc2S3 2.8 Tl2Te3 0.7h Li2O 8.0q CrCl3 9.5χ

Y2O3 5.6 As2O3 4.5 Cu2O 2.2r CrBr3 8.0χ

La2O3 5.4 As2S3 2.4i Cu2S 0.34s ZrS3 2.5φ

La2S3 2.8 As2Se3 1.7 Cu2Se 1.3t ZrSe3 1.85φ

La2Se3 2.3b As2Te3 0.8 Cu2Te 0.67u HfS3 2.85φ

La2Te3 1.4 Sb2O3 3.25a Ag2S 1.14v HfSe3 2.15φ

B2S3 3.7c Sb2S3 1.7i Ag2Se 1.58w MoO3 3.8a

Al2O3 9.5 Sb2Se3 1.2 TlS 0.9x WO3 2.6λ

Al2S3 4.1 Sb2Te3 0.2j Tl2S3 1.0x UO3 2.3μ

Al2Se3 3.1 Bi2O3 2.85k TlS2 1.4x TeO2 3.8a

Al2Te3 2.4 Bi2S3 1.6i Tl2S5 1.5x MnS4 3.7η

Ga2O3 4.9d Bi2Se3 0.8l GeS 1.6y MnSe4 3.3η

Ga2S3 3.2 Bi2Te3 0.2m SiC 3.1z MnTe4 3.2η
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Table S2.13 (continued)

M2X3 Eg M2X3 Eg MnXm Eg MnXm Eg

Ga2Se3 1.75e Cr2O3 1.6 GaSe 2.0α NbCl5 2.7ϕ

Ga2Te3 1.2f Cr2S3 0.9 MgH2 5.6β NbBr5 2.0ϕ

In2O3 3.3a Cr2Se3 0.1 YH3 2.45γ NbI5 1.0ϕ

In2S3 2.6g Fe2O3 2.2n LaF3 9.7δ V2O5 2.5π

In2Se3 1.5 Fe2Se3 1.2 GaF3 9.8ε Nb2O5 3.4a

In2Te3 1.2f Rh2O3 3.4o InF3 8.2κ Ta2O5 4.0a

a[2.38, 2.41, 2.42], b[2.55], c[2.56], d[2.57], e[2.58], f [2.59], g[2.60], h[2.61], i[2.62], j[2.63, 2.64],
kfor α-Bi2O3 (for β-Bi2O3 Eg = 2.58 eV) [2.65], l[2.66], m[2.67], n[2.68], o[2.69], p[2.70], q[2.71],
r[2.72, 2.73], s[2.74], t[2.75], u[2.76], v[2.77], wglass [2.78], x[2.79], y[2.80, 2.81], z[2.82], α[2.83],
β[2.84], γ[2.85, 2.86], δ[2.39], ε[2.87], κ[2.88], χ[2.89], φ[2.90], λ[2.91], μ[2.92], η[2.93], ϕ[2.94],
π[2.95]

Table S2.14 Additive band gaps (eV) of elements

Li Be B C N  O F

0.4  0.8 1.3 5.5 7.0 6.5 10

Na Mg Al Si P S Cl Nea

−0.3 +0.3  −0.1 +1.2 2.6 2.6 5.2 21.7

K Ca  Sc Ti V Cr  Mn Fe Co Ni

−0.8 −0.5 −0.4 −0.3 −0.3 −0.3 −0.2 −0.1 −0.1 −0.1

Cu Zn Ga Ge As Se Br Ara

−0.2 +0.2 −0.5 +0.7 +1.2 +1.8 +1.9 14.2

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd 

−1.0 −0.8 −0.7 −0.6 −0.6 −0.6 −0.5 −0.5 −0.5 −0.4

Ag Cd In Sn Sb Te I Kra

−0.5 −0.3 −0.8 +0.1 +0.1 +0.35 + 1.3 11.6

Cs Ba La Hf Ta W Re Os Ir Pt 

−1.2 −1.0 −0.9 −0.8 −0.7 −0.6 -0.6  −0.5 −0.5 −0.5

Au Hg Tl Pb Bi P At Xea

−0.5 −0.3 −0.9 −0.7 −0.2 0 +0.7 9.3

a[2.96]
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Table S2.15 Thermochemical electronegativities of elements. From top to bottom: Pauling [2.97],
Allred [2.98], Batsanov [2.99], Smith [2.100]

Li Be B C N O F

1.0 1.5                   2.0 2.5 3.0 3.5 4.0

0.98 1.57 2.04 2.55 3.04 3.44 3.98

1.0 1.4                   2.0 2.6 2.7 3.2 3.7

  1.80 2.59 3.11 3.44 3.84

Na Mg Al Si P S Cl

0.9 1.2 1.5 1.8 2.1 2.5 3.0

0.93 1.31 1.61 1.90 2.19 2.58 3.16

0.9 1.3 1.6 2.0 2.15 2.6 3.2

  1.71 1.98 2.50 3.06

K Ca Sc Ti V Cr Mn FeII CoII NiII

0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.9 

0.82 1.00 1.36 1.54 1.63 1.66 1.55 1.83 1.88 1.91 

0.7 1.0 1.35 1.7 1.8 1.9 1.9 1.6 1.65 1.7 

Cu Zn Ga Ge As Se Br

1.8 1.6 1.6 1.8 2.0 2.4 2.8

1.90 1.65 1.81 2.01 2.18 2.55 2.96

1.5 1.6 1.75 2.1 2.1 2.5 3.0

1.93 2.06 2.37 2.86

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd 

0.8 1.0 1.2 1.6 1.6 1.8 1.9 2.2 2.2 2.2 

0.82 0.95 1.22 1.33  2.16   2.28 2.20 

0.7 0.95 1.25 1.6 1.6 2.2 1.9 2.2 2.2 2.2 

Ag Cd In Sn Sb Te I

1.9 1.7 1.7 1.8 1.9 2.1 2.5

1.93 1.69 1.78 1.96 2.05 2.10 2.66

1.7 1.7 1.7 2.0 2.0 2.2 2.7

1.79 1.91 2.14 2.47

Cs Ba La Hf Ta W Re Os Ir Pt 

0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.2 2.2 2.2 

0.79 0.89 1.10   2.36   2.20 2.28 

0.5 0.8 1.1 1.6 1.5 2.2 1.9 2.2 2.2 2.2 

Au Hg Tl Pb Bi Th U 

2.4 1.9 1.8 1.8 1.9 1.3 1.7 

2.54 2.00 2.04 2.33 2.02  1.38 

1.8 1.8 1.8 2.1 2.0 1.5 1.6 
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Table S2.16 Average thermochemical electronegativities of radicals R

R χ R χ R χ R χ

CH3 2.6 NH2 3.1 BH2 1.9 [HCO3] 3.4
CF3 2.9 NF2 3.2 PH2 2.3 [HPO4] 3.4
SiF3 2.0 NCS 3.2 SiCH3 1.9 [NO3] 3.7
CHCH2 2.7 NNN 3.3 OCH3 3.4 [SO4] 3.7
CCH 2.8 NC 3.3 OC6H5 3.5 O2 3.5
CHO 2.9 NO2 3.4 OH 3.5

Table S2.17 Ionization electronegativities according to Pearson (upper lines), Allen (middle lines),
Politzer (lower lines)

Li Be B C N O F

0.92 1.43 1.31 1.92 2.23 2.31 3.19
0.87 1.51 1.96 2.43 2.93 3.45 4.01
0.99 1.64 2.14 2.63 3.18 3.52 4.00

Na Mg Al Si P S Cl
0.87 1.17 0.98 1.46 1.72 1.91 2.54
0.83 1.24 1.54 1.83 2.15 2.47 2.74
0.96 1.36 1.59 1.86 2.25 2.53 2.86

K Ca Ga Ge As Se Br
0.74 0.94 0.98 1.40 1.62 1.80 2.33
0.70 0.99 1.68 1.91 2.11 2.32 2.57
0.98 1.08 1.67 1.82 2.09 2.31 2.60

First transition series

Sc Ti V Cr Mn Fe Co Ni Cu Zn

1.03 1.06 1.11 1.14 1.14 1.23 1.31 1.35 1.37 1.44
1.14 1.32 1.46 1.58 1.67 1.72 1.76 1.80 1.77 1.52
1.15 1.21 1.27 1.17 1.33 1.31 1.28 1.38 1.48 1.57

Table S2.18 Average ionization electronegativities of radicals R

R χ R χ R χ R χ R χ

CF3 3.3 CCH 3.1 NO2 4.0 OH 3.5 [ClO4] 4.9
CCl3 2.9 CO 3.7 NO 3.8 SH 2.3 [ClO3] 4.8
CBr3 2.6 CN 3.8 NC 3.7 SCN 2.9 [SO4] 4.6
CI3 2.5 NF2 3.7 NCS 3.5 SF5 2.9 [PO4] 4.4
CH3 2.3 NCl2 3.2 OF 4.1 SeH 2.2 [CO3] 4.3
CHCH2 2.5 NH2 2.7 OCl 3.7 TeH 2.1
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Table S2.19 Ionization electronegativities of atoms with charges of ±1

A+ χ A+ χ A+ χ A+ χ A− χ

Li 16.7 Ba 2.5 C 6.3 Bi 4.2 F –0.1
Na 10.6 Zn 4.7 Si 4.2 V 3.6 Cl 0.2
K 7.2 Cd 4.4 Ge 4.1 Nb 3.6 Br 0.2
Rb 6.2 Hg 5.0 Sn 3.8 Ta 4.2 I 0.2
Cs 5.7 B 6.2 Pb 3.8 O 9.5
Cu 5.2 Al 4.6 Ti 3.4 S 6.5
Ag 5.4 Ga 5.0 Zr 3.3 Se 6.0
Au 5.5 In 4.6 Hf 3.8 Te 5.3
Be 4.7 Tl 5.0 N 7.8 F 10.3
Mg 3.9 Sc 3.2 P 5.2 Cl 7.2
Ca 3.0 Y 3.1 As 4.9 Br 6.5
Sr 2.8 La 2.8 Sb 4.3 I 5.7

Table S2.20 Short history of the development of the geometrical electronegativity concept
(pioneering works are shown in bold)

Year Authors Equation Notes

1942 Liu χ=a(N* + b)/r2/3 N* is the number of e-shells

1946 Gordy χ=a (n + b)/r + c n is the number of electrons
1957 Wilmshurst ≈
1964 Yuan ≈
1966 Chandra ≈
1968 Phillips applied to semiconductors
1979 Ray, Samuel, Parr for multiple bonds
1982 Inamoto, Masuda for polar bonds
1983 Owada n* instead of n
1988 Luo, Benson reduced to Pauling’ scale

1951 Cottrell, Sutton χ=a(Z*/r)1/2 + b dimensionality of E1/2

1989 Zhang, Kohen theoretical Z*and r
1993 Batsanov for normal and vdW molecules

1952 Sanderson χ=a(N/r3) + b N = �e
1980 Allen, Huheey for rare gases
1955 Pritchard, Skinner χ=a(Z*/r) + b Z* according to Slater
1964 Batsanov corrected Z*
1971 Batsanov Z* for valence states
1975 Batsanov for crystals
1980 Allen, Huheey for rare gases

1956 Williams χ=a (n/r)b n is the number of valence electrons

1958 Allred, Rochow χ=a(Z*–b) r2 + c Z* of Slater
1964 Batsanov corrected Z*
1971 Batsanov Z* for valence states
1975 Batsanov for crystals
1977 Mande experimental Z*
1980 Allen, Huhee for rare gases
1981 Boyd, Marcus b is calculated by ab initio
1982 Zhang experimental Z*
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Table S2.20 (continued)

Year Authors Equation Notes

1978 Batsanov χ =a(Ne
1/2 )/r Ne is the number of outer electrons

1986 Gorbunov, Kaganyuk r is calculated by ab initio

1990 Nagle χ =a(N/α1/2 ) + b α is the polarizability

2006 Batsanov all formulae Z* and r for valence states

Table S2.21 Crystalline electronegativities according to Li and Xue [2.101, 2.102]

Li Be B C N O F

1.01 1.27 1.71 2.38 2.94 3.76 4.37

Na Mg Al Si P S Cl

1.02 1.23 1.51 1.89 2.14 2.66 3.01

K Ca Sc Ti VIII CrIII MnIV FeIII CoIII NiIII

1.00 1.16 1.41 1.73 1.54 1.59 1.91 1.65 1.69 1.70 

Cu Zn Ga Ge As Se Br

1.16 1.34 1.58 1.85 2.16 2.45 2.74

Rb Sr Y Zr NbIII MoIV TcIV RuIV RhIV     PdIV

1.00 1.14 1.34 1.61 1.50 1.81 1.77 1.85 1.86     1.88 

Ag Cd In Sn Sb Te I

1.33 1.28 1.48 1.71 1.97 2.18 2.42

Cs Ba La Hf TaIII WIV ReIV OsIV IrIV PtIV

1.00 1.13 1.33 1.71 1.54 1.78 1.85 1.89 1.88 1.90 

AuI Hg TlI Pb Bi Th U 

1.11 1.33 1.05 1.75 1.90 1.40 1.44 

Table S2.22 Effective coordination charges of metal atoms
Metal Compounds Ωcal Ωexp Metal Compounds Ωcal Ωexp

CrSO4·7H2O 1.8 1.9 Co(NO3)3 0.6 1.2 

Cr(NO3)3 1.3 1.2 Co(C5H5)2 0.7 0.4 

K2CrO4 0.5 0.1 

Co 

Co(C5H5)2Cl 0.9 1.0 
Cr 

Cr(C6H6)2 1.4 1.3 Ni(C5H5)2 0.6 0.7 

Mn(NO3)2·4H2O 1.8 1.8 
Ni 

Ni(C5H5)2Cl 0.8 1.0 

K3Mn(CN)6 0.6 0.9 OsO2 0.7 0.8 Mn 

Mn(C5H5)2 1.3 1.5 K2OsCl6 0.5 0.8 

(NH4)2Fe(SO4)2·6H2O 1.7 1.9 K2OsO4 0.7 0.8 

K3Fe(CN)6 0.4 1.0 K2OsNCl5 0.8 0.7 

Fe(C5H5)2 0.7 0.6 

Os 

KOsO3N 0.9 1.0 
Fe 

Fe(C5H5)2Cl 0.8 0.7 
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Table S2.23 Comparison of high pressure radii (rP) and crystallographic radii (rc) of cations

Cation rp rc Cation rp rc Cation rp rc

Li+ 0.75 0.76 Mg2+ 0.70 0.72 Sc3+ 0.74 0.74
Na+ 0.98 1.02 Ca2+ 1.03 1.00 Y3+ 0.88 0.90
K+ 1.37 1.38 Sr2+ 1.15 1.18 Cr3+ 0.67 0.62
Rb+ 1.52 1.52 Ba2+ 1.38 1.35 Mn3+ 0.66 0.64
Cs+ 1.63 1.67 Zn2+ 0.76 0.74 Fe3+ 0.66 0.64
Cu+ 0.78 0.77 Cd2+ 0.95 0.95 Th4+ 1.07 1.05
Ag+ 1.17 1.15 Pb2+ 1.23 1.19 U4+ 0.97 1.00
Tl+ 1.44 1.50 B3+ 0.38 0.27 Zr4+ 1.06 0.84
Be2+ 0.47 0.45 Al3+ 0.63 0.54 Hf4+ 0.90 0.83

Table S2.24 Change of effective atomic charges under pressures, de*/dP 102GPa

M Cl Br I

[2.103] [2.104] [2.103] [2.104] [2.103] [2.104]

Li 1.22 0.8 2.15 0.95 2.87
Na 1.26 1.1 2.20 1.3 2.91 1.9
K 1.32 1.8 2.26 2.1 2.94 2.8
Rb 1.33 2.1 2.26 2.6 2.93 3.3
Cs 1.38 2.35 3.01
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