
Chapter 2
Predicate Logic with Anaphora

Dynamic semantics has often been preoccupied with pronouns. Pronouns are essen-
tial in interpretation and they succeed in oiling the wheels of efficient linguistic
information exchange. They are naturally involved in all basic features of ordinary
language, like reference, coreference, indexicality, modality, belief, and presupposi-
tion. Pronouns are ubiquitous. (In English, and closely related languages, that is.) But
they almost go unnoticed when they are, as they usually are, conveniently accom-
modated in a context. Taken out of their natural habitat, however, they speak up.
Dynamic semantics provides the means to get a grip on their role in the flow of
information.

In this first substantial chapter of this monograph I lay out the basic framework, the
system of Predicate Logic with Anaphora (PLA). It is a system of interpretation which
extends ordinary first order predicate logic just to capture the results on anaphoric
relationships achieved within Discourse Representation Theory (DRT , Kamp 1981;
Kamp and Reyle 1993), File Change Semantics (FCS, Heim 1982), Situation Seman-
tics (SitS, Barwise and Perry 1983), Game Theoretical Semantics (GTS, Hintikka
1983), proof-theoretic semantics (PTS, Sundholm 1984), and Dynamic Predicate
Logic (DPL, Groenendijk and Stokhof 1991). I will take time and space to explain
and motivate this system even though it covers worn-out results. (The first presenta-
tion of PLA dates from 1994 (Dekker 1994), and related formal literature dates back
to the early eighties of that century.)

The mentioned interpretational architectures, DRT , FCS, SitS, GTS, and DPL, all
have their own sound, formal and intuitive, motivation for deviating from what may
have been the paradigm of truth-conditional semantics, the prime formal semantic
paradigm of the latter half of the twentieth century, conceived by Alfred Tarski, con-
ceptualized by Donald Davidson, rigourously formulated by Richard M. Montague
and implemented by others, e.g., Theo M.V. Janssen. The reasons for departing from
this paradigm have been manifold, ranging across the intuitive insights that meanings
are computed (DRT ), that interpretation is essentially tied to the update of informa-
tion (FCS, DPL), and that its use is essentially tied to situated agents (SitS, GTS).
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There is no reason to complain about any of these enterprises. Still, it seems that
all five of them come with the implication, suggestion, or even slogan, that meaning
is something dynamic. Again, I do not at all object to such a supposition. On the
contrary I do hold the same supposition, but I do believe that it is not motivated by
any of the linguistic data these theories aim to account for.

Meaning is not dynamic in any intuitive sense of the word. In ordinary language,
if we talk about the meaning of an expression, simple or compound, it is simply just
that: the meaning, if any, of the expression. Meanings do not do things. If meanings
would be able to do things, change my commitments or beliefs, I would not want to
use them, and advise you not to do so either. Interpretation, on the other hand, is, in
a certain specific sense, dynamic. If interpretation is conceived of as the assignment
of meanings, it is, by this very description, a dynamic thing. It involves an agent, the
interpreter, and a process, the assignment of meanings.

Logically speaking, and also from a theoretical linguistic perspective, there does
not seem to be independent reason to be interested in this dynamic process. It is
the concern of the psychologist, or sociolinguist, or ethnographer, to see how agents
actually interpret utterances. This is not, or does not seem to be, the objective of the
theoretical linguist. Surely, any serious linguist wants to say something about the
meanings of expressions, and how they relate to how these expressions are inter-
preted, or could be interpreted, or should be interpreted. In this sense, indeed, the
so-called ‘interpretation’ is a matter of concern for the theoretical linguist, but it
comes to be something of a fossilized notion. The idea of ‘the interpretation of an
expression’ is something put forward, be it in a normative or descriptive way, but
once conceived thus it is no longer anything dynamic. Besides, that is, from one fun-
damental insight. The fact that meanings really have to do with actual interpretations,
intended interpretations, or conventionalized interpretations means that there are or
can be systematic aspects of use that a semantic theory should account for, and such
a theory, then, may appropriately be called ‘dynamic’.

Peter F. Strawson rightly claimed that names do not refer. How could they,
linguistic types or tokens, do that? It is normally humans or other agents that refer,
and significantly they do this by using names—or variables. If, on an account of
proper names like that of John Stuart Mill, or Saul Kripke, we say that a certain type
of name refers, rigidly, if you want, and statically, to a certain type of individual, you
can, if you want, equate this with saying that it is used to refer, generally, rigidly, but
dynamically, to that particular individual. Not much seems to be gained by stating
what seems to be the same fact in a static or dynamic way. It is, or seems to be, quite
a different fact that certain expressions, in different contexts, can be used to refer to
different individuals in each of these contexts. As indicated above, indexical expres-
sions can be typically used so, and pronouns, in general do so all over the place.
More intriguingly, the kinds of context which seem to define, or at least determine,
the specific interpretations of these terms, can be entirely linguistic as well.

This point, doubtlessly, must have contributed to the fascination of linguists for
the typical use of certain terms to ‘introduce’ discourse referents, and for the use
of other terms, pronouns, to typically pick them up. Any elementary presentation of
DRT , FCS, or DPL, focuses on especially this phenomenon, originally observed
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by Lauri Karttunen. In certain contexts certain terms, like indefinite descriptions,
introduce discourse referents, and subsequent expressions refer back to them. It is
interesting to see that this may happen without there being a decisive answer to the
question which individuals are actually referred to. Often it is just “the one previously
mentioned”, also referred to as “the such and such who did so and so” without there
being any implication that there was one and only such and such who did so and so.
No matter how these discourse referents, their introduction, revitalization, and death
are actually conceived of, they have shown to be a pertinently useful device in the
treatment of a vast number of phenomena involving quantifiers, tense, aspect, and
models, as shown in the works of Hans Kamp, Nicholas Asher, Reinhard Muskens,
Maria Bittner, and Adrian Brasoveanu.

While the idea of introducing and picking up discourse referents has been very
appealing and successful in the presentation of the dynamic systems of interpretation
mentioned above, Henk Zeevat (1989) has shown at a quite early stage that it does not
presuppose a dynamic notion of meaning in the ordinary sense. The results of DRT
, like those of FCS, and DPL, can be fully captured by means of standard algebraic
operations on suitably structured meanings, statically conceived. More recently, Max
Cresswell has defended the point, from both a philosophical and linguistic point of
view. In response to certain phenomena the analysis of which has been argued to
require a dynamic treatment he sets out: “The purpose of this article is (…) to question
the need for any change in the basic aims of semantics.” (Cresswell 2002). And even
though Zeevat’s algebraic operations are not dynamic, intuitively speaking, a proper
assessment of the system presented in this chapter will show that there really are
dynamic ways of composing meanings. Arguably, Cresswell’s observations point in
the same direction. This intuition then will be key to the system presented in this
chapter, as well as a more technical insight from Kees Vermeulen. In one or another
way, the three explicitly dynamic systems of DRT , FCS, and DPL, deal with updates
of meanings which are sets of variable assignments. For certain technical reasons
Vermeulen has shown we can do with sequences of values as our semantic objects,
and define dynamic notions of compositions on those. Actually, this is what we will
do in the remainder of this chapter.

Before we really start let me briefly note on the status of the ‘examples’ in this
chapter. The system of PLA is meant to eventually evolve into a formal language
adequate for the formulation of the meanings, or structurally interesting aspects of
meanings, of expressions of natural language. With this objective in mind, I suggest
the basic language (i.e., that of PLA) to already model some such aspects, with a
formal conjunction as a model for coordinating operations in natural language, and,
significantly, an existential quantifier modeling the contribution of indefinite descrip-
tions. Needless to say how poorly this is done with first order predicate logical means
only. Even so, I will also use natural language paraphrases to illustrate such delib-
erately defective uses of our logical devices. In this chapter, these paraphrases only
serve an expository purpose, to explain the basic devices. The examples, therefore,
will be rather stilted.

Paying debt to the prehistory of PLA, and in order to set the stage, I will start with
a very concise overview of the architecture of DRT , and the system of DPL. These
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systems have evidently served as the main inspiration for the system presented in
this book and more in general they have been extremely influential in the relevant
literature of the past 20 years or so.

2.1 Static and Dynamic Semantics

The system of DRT was first presented in the innovative (Kamp 1981), appropriately
called ‘a theory of truth and semantic representation’. It is a two-layered architecture
in which, first, sentences from a natural language discourse are mapped into so-called
discourse representation structures (DRS s), which represent the semantic contents of
the current discourse, and extend it with the contents of the sentence next processed.
On a second level these DRS s are assigned Tarski-style truth conditions, specifying
under which circumstances the discourse representations are true, and also in what
way.

I will not go into the way in which a discourse formulated in a stylized fragment of
natural language gets mapped into these DRS s, and refer the reader to the handbooks
(Kamp and Reyle 1993; Kamp et al. 2011) for an extensive treatment. I do want to
say something about the language in which these DRS s are formulated, because
that will enhance the comparison, technically, and philosophically, with the system
presented later in this section.

In most run-of-the-mill applications of DRT the DRS -language is that of a special
kind of a first order predicate logical language, in which atomic conditions, negations,
disjunctions and implications, are always preceded by a (possibly empty) sequence of
existential quantifiers. (Many practical applications employ a multi-sorted language,
which not only quantify over a first order domain of individuals, but also over states,
events, times, worlds, and what have you. More theoretically inspired implementa-
tions of DRT also have second and higher order reference and quantification, as well
as lambda-abstraction. For the purposes of this monograph we can safely assume
such generalizations.) These ‘formulas’, or structures, are very perspicuously and
conveniently displayed, pictorially, as boxes, consisting of two parts, representing a
domain of individuals under discussion, and a series of conditions imposed on them.
They are typically (and schematically) displayed as follows:

•
x1, . . . , xn

φ1
...

φm

In this pictorial representation, the x1, . . . , xn are ‘discourse markers’, which rep-
resent or keep track of the subjects of a discourse under consideration. These subject
are also called ‘discourse referents’. They are no ordinary referents, because their
specific identity may be left undecided, and in more involved discourse representa-
tion structures they may become quantified ‘from the outside’. (For a more logically
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oriented person, they are, hence, like variables.) The φ1, . . . , φm are conditions on
the values of these discourse markers, conditions on the discourse referents exposed
in the discourse at issue. These conditions may atomically ascribe properties of
and relations between the discourse referents, but they can also be compound, for
instance the negation of an embedded DRS , or the statement of an implication rela-
tion between two DRS s. The DRS s are supposed to be partial models of reality, as
construed on the basis of a discourse under construction, but the whole language is
easily seen to be as expressive as first order predicate logic itself.

The statement of the DRS -language just now given is quite unspecific, but I hope
sufficient for the remainder of this monograph. One thing, however, needs to be said
about how it is used, especially in the original (Kamp 1981). The idea, in that paper, is
that the interpretation of a discourse starts from an empty representation—because
nothing has been said yet. (Obviously, it could be a representation of the shared
assumptions of the participants in the discourse.) The idea about what happens is
that any syntactically analyzed sentence uttered in a discourse gets added to the
representation of the preceding discourse, and then decomposed into new discourse
markers, atomic conditions, and compound ones. Thus the interpretation algorithm,
also called ‘discourse representation construction algorithm’, yields a discourse rep-
resentation structure of the contribution of the utterance relative to the preceding
context, with an update (DRS ) of the contents of the discourse. This of course sounds
very natural, but there is a very interesting twist to it. By manipulating discourse rep-
resentational structures, the system is capable of suitably establishing connections
between subjects or discourse referents mentioned in one contribution, and subjects
brought up earlier. Because the DRS s, as models, are partial, these connections can
be efficiently established, even though the identity of the specific referents is still
unresolved. Interestingly, this is the major, and sophisticated, innovation of DRT ,
and by the same token one of the main sources of criticism.

Jeroen Groenendijk and Martin Stokhof have argued that DRT commits itself,
formally, to an indispensable level of representation in the interpretational archi-
tecture. (Hans Kamp has himself motivated this commitment, but does not seem to
think it unconditionally indispensable for all purposes any longer.) The complaint,
in their paper (Groenendijk and Stokhof 1991), is not that a level of representation is
unrealistic, but that a semantic architecture should not be committed to it—or, more
to the point, that the data that motivated the inception of DRT , do not force us to a
representational architecture.

The paper by Groenendijk and Stokhof takes a constructivist stance. (The term
‘constructivist’ here is used in its ordinary, not in its logical or mathematical sense.)
They present an interpretation of the language first order predicate logic, which is
dynamic, but arguably not representational, and which accounts for the kind of dis-
course phenomena that DRT was originally meant to account for. The philosophical,
or methodological, discussion will be postponed to Sect. 2.4. Here I want to briefly
survey the main features of the system of DPL as presented in Groenendijk and
Stokhof (1991).

Groenendijk and Stokhof combine, in a very interesting and sophisticated way,
philosophical insights from Stalnaker (1978), with tools and results from the field of
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artificial intelligence, in particular, the semantics and verification of programming
languages. The leading idea is that sentences, or better, descriptive utterances, are
not just independent means to characterize the world as being a certain way. Rather,
they are context dependent acts, which are meant to change the contexts. As in DRT
, assertions are taken to be contributions to what is assumed to be the content of the
discourse in which they occur, but unlike the way in which this is done in DRT , these
contributions are not taken to be updates of representations of the content, but updates
of the content itself. In order to settle the main theoretical point, and also guided by
the preceding linguistic discussions, Groenendijk and Stokhof deliberately restrict
themselves to the dynamics of establishing anaphoric relationships in discourse.
However, as I have argued above, and will argue below, the dynamics of establishing
these relationships can be taken to be paradigmatic for the dynamic establishment
of structure in discourse in general.

One way of introducing the DPL concept of meaning consists in taking a proce-
dural view upon the interpretation of ordinary first order predicate logic. Consider
the following example, with its first order rendering.

(1) Mary borrowed a copy of Naming and Necessity from a professor in linguistics.
∃x(CNx ∧ ∃y(PLOyx ∧ BORmxy)).

The translation key, simplified of course, runs as follows.

• CNx := x is a copy of Naming and Necessity;
PLOyx := y is a professor in Linguistics who owns x ;
BORmxy := m borrowed x from y.

How can we evaluate this sentences in a model M = 〈D, I 〉, where D is the domain
of individuals under discussion, and I gives us an extensional interpretation of the
individual and predicate/relational constants? We try and find a valuation of the
variable x by means of a variable assignment g, so that it satisfies CNx ; precisely,
so that g(x) ∈ I (CN). As long as we interpret x as something which is not a copy
of Naming and Necessity, we try and find another value of x to see whether that is
one that is such a copy. If we never find any such copy in our model, we report, “this
does not work, the formula is false.” However, if we can find a value for x which
is such a copy, we continue. We then try and find a value for y in our model, such
that is a professor in linguistics; moreover, one that owns the value of x , the copy of
Naming and Necessity. If we do not find such a professor, we give up on the chosen
value for x , and try and find another copy of Naming and Necessity, as a value for
x , and a professor in linguistics, as a value for y, who owns that copy of the book.
If all of this fails, we render the formula false again, but if we can get through, we
continue. We finally test whether our value for x (g′(x)) is something that Mary
(I (m)) borrowed from the professor (g′(y)). If it does not, we have to redo the whole
procedure again, and if the procedure never succeeds, we, again, have to say, “Sorry,
the formula is false.” (In this model.) However, if we do succeed, we can happily
report that the formula is true in the model, and that is all we need to hear—in our
first order predicate logic. DPL, however, does not stop here with only returning
the truth-value true. Rather, it remembers that our g′(x) is that copy of Naming and
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Necessity, which is owned by g′(y), who is a professor in linguistics, and such that
particular professor g′(y) owns that copy g′(x). Having these witnesses g′(x) and
g′(y) is useful, because we can refer back to them. Consider a continuation of the
discourse, with the following sentence, for instance.

(2) Itx was covered with comments and exclamation marks. The professory must
have studied itx extensively.
(Cx ∧ SI yx .)

(Cx rendering that x was covered with all these marks, and SI yx that y must have
studied x intensively.) Because DPL, in a sense, “remembers” the witnesses for x
and y that satisfy the previous sentence, it can take up on that. It merely adds the
condition that what we have found as satisfying values for x and y, also satisfies
the next sentence. If they do not, we have refuted the continuation, but not without
further ado. We might go back to find other values for x and y, which in the end do
satisfy the continuation, and then we can go on, simply and happily, with subsequent
discourse.

What distinguishes DPL from ordinary first order predicate logic, is that, first, it
keeps track of the witnesses g′(x), g′(y), . . . of variables that have been quantified
over in a previous discourse, and, second, and for good reasons, it keeps track of all
of these possible satisfying values. Maybe this is all one needs to know about DPL,
but for a proper understanding of the main contents of this monograph, it is useful
to specify DPL’s formal details.

The language of DPL is that of first order predicate logic, and its semantics is
specified as a relation between variable assignments g and h. Intuitively, a pairs of
assignments 〈g, h〉 stands in that relation, for any given formulaφ, iff g figure as a pos-
sible valuation of the free variables in φ, and h as a possible evaluation of the bound,
existentially quantified, variables inφ. Given any such pair 〈g, h〉 in the interpretation
of φ, the assignment g may count as a possible input for truthfully interpreting the
formula φ, and h a possible output, satisfying, also, constraints on variables intro-
duced in φ. Formally, the definition can be given as follows. Interpretation is stated
relative to a standard model M = 〈D, I 〉, with a domain D of individuals, or objects,
and an interpretation function I for the individual and predicate logical constants of
the language.

Definition 1 (DPL Interpretation)

• g[[Rx1 . . . xn]]M h iff g = h & 〈g(x1), . . . , g(xn)〉 ∈ I (R);
g[[¬φ]]M h iff g = h & ¬∃h: g[[φ]]M h;
g[[∃xφ]]M h iff ∃k: g[x]k[[φ]]M h;
g[[φ ∧ ψ]]M h iff ∃k: g[[φ]]M k[[ψ]]M h.

• A formula φ is true in a model M and relative to assignment g, M, g |= φ, iff ∃h:
g[[φ]]M h

Apart from the revolutionary shift from (sets of) satisfying variable assignments, to
(sets of) pairs of satisfying input-output variable assignments, nothing really freaky
goes on in this definition. An input assignment, and the very same output, satisfies an
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atomic formula if the formula is satisfied in the classical way. Satisfying a negation
¬φ simply comes down to not being able to satisfy the negated sentence φ. A good
input for ¬φ is a variable assignment relative to which (the interpretation of) φ
is unable to render a satisfying output. Existentially quantified formulas ∃xφ are
interpreted as usual, trying to find a satisfying instance of the variable x quantified
over—but for the fact that the satisfying output assignment may remember which
lucky choice of the interpretation of the variable x made φ get satisfied. (Let me
emphasize the may in the previous sentence; it so happens in DPL that a variable x gets
‘reintroduced’, with the effect that previous knowledge about its possible values have
to be discarded. This is an annoying technical issue, which will be readdressed below.)
Since DPL’s interpretations are possible input/output pairs of variable assignments,
conjunction cannot be considered other than as relation composition. If, given input
g, φ may bring me to output k, and ψ , with input k, may produce output h, then, of
course, with g as input, should produce h as output to (φ ∧ ψ).

It is not expedient to illustrate DPL’s interpretation function in full detail here—
for this, consult (Groenendijk and Stokhof 1991; Dekker 2011)—but it is interesting
to see the major difference with ordinary first order predicate logic. It can be argued
that the following observation, Egli’s Theorem, completely characterizes the main
difference, and its corollary the useful result of that Egli (1979).
Observation 1 (Egli’s Theorem)

• (∃xφ ∧ ψ) ⇔ ∃x(φ ∧ ψ).
Observation 2 (Egli’s Corollary)

• (∃xφ → ψ) ⇔ ∀x(φ → ψ).

What is not prominently visible in observation (1), which is a standard equivalence,
is that it lacks the proviso, that x should not be free in ψ . This is, however, DPL’s
distinctive feature. The existential quantifier ∃x in the first conjunct indeed, effec-
tively, binds free occurrences of the variable x in the second conjunct ψ . The second
observation is a direct consequence of this, if we employ the standard definition
of → and ∀x using negation and conjunction. Observation (1) can account for the
following examples.

(3) A man is riding through the park. He is whistling.
(4) A man who is riding through the park is whistling.

Apart from the different ways in which information is presented in (3) and (4), the two
examples seem to be (truth-conditionally) equivalent. But indeed, their fairly natural
translation in a predicate logical language is, fully, equivalent as well in DPL. For
Egli’s Theorem gives us the following result.

• (∃x(Mx ∧ Rx) ∧ W x) ⇔ ∃x((Mx ∧ Rx) ∧ W x)

Moreover, Egli’s Corollary gives us the following result. Consider the following
examples

• If a farmer owns a donkey, he beats it.
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• Every farmer beats every donkey he owns.

These sentences had previously been argued to be equivalent as well, and this equiv-
alence is rendered by the DPL-equivalence of the following formulas.

• (∃x(Fx ∧ ∃y(Dy ∧ Oxy)) → Bxy) ⇔
∀x((Fx ∧ ∃y(Dy ∧ Oxy)) → Bxy) ⇔
∀x(Fx → (∃y(Dy ∧ Oxy) → Bxy)) ⇔
∀x(Fx → ∀y((Dy ∧ Oxy) → Bxy))

DPL thus deals with a number of anaphoric relationships, which had puzzled logi-
cians and philosophers for years. In addition, it can be argued that DPL’s distinctive
feature is that it only does this: rendering Egli’s Theorem a real theorem. For there
is a reduction algorithm that takes any predicate logical formula as input, and pos-
sibly changes that formula into one with the illuminating property that, while it has
exactly the same meaning as the original formula in DPL, the reduced formula has
also exactly the same truth-conditions in first order predicate logic and DPL. The
steps in the algorithm thus reveal what is ‘standard’, and what is ‘new’ in DPL,
and, interestingly, the step where conjunctions are reduced along the lines of Egli’s
algorithm is the only non-standard step. [For a full specification of the algorithm,
see (Groenendijk and Stokhof 1991; Dekker 2011).]

The above characterization of DPL is of course not all there is to say about the
system. Of course, changing things in a logic system have repercussions. Some
of them maybe might have been expected, but it is worth mentioning them. For
one thing, conjunction is not commutative and not idempotent. That is, it is not in
general the case that (φ ∧ ψ) ⇔ (ψ ∧ φ) or that φ ⇔ (φ ∧ φ). Thinking from a
classical perspective this may sound strange, but from a dynamic perspective it makes
sense. If interpretation is dynamic, that is, if it is both context dependent and context
altering, then of course one can expect that the interpretation of one occurrence of
a formula φ may affect a second, subsequent, occurrence of it. Thus, if one formula
φ is repeated, as in (φ ∧ φ), the second occurrence of that formula may have an
interpretation different from that of the first, so that the whole may mean something
different from what a single occurrence of the formula means. As for commutativity,
if a formulaψ occurs after a formula φ has occurred, as in (φ∧ψ), its interpretation
may be different from the one that it is obtained without first establishing φ, as in
(ψ ∧ φ); moreover, the interpretation of φ itself may be different if it ‘occurs out of
the blue’, as in (φ ∧ ψ), or after ψ , as in (ψ ∧ ψ).

DPL also employs a dynamic notion of entailment, which we will not formally
specify here, but which is easily seen to lack the structural properties of reflexivity,
monotonicity, and transitivity. It is dynamic, because it builds on the idea that an
entailment is valid if the conclusion is true, not always in case, but always after the
premises have been accepted. Entailments come as an ordered sequence of formulas,
in which (anaphoric) dependencies may get established in a dynamic way. I will not
go into the (non-)structural properties of this entailment here, because very much
the same holds of the entailment relation of PLA, extensively discussed in Sect. 2.3.
For now, it suffices to observe that if a formula φ is accepted, it may as well have
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changed the context of interpretation, also if that is a context in one wants to conclude
that φ. Since, due to the premise occurrence of φ, it may have changed the context
of interpretation of the conclusion, the same formula but in a different context of
interpretation, it may make the conclusion, on its second interpretation, no longer
guaranteed, or even acceptable. Similar arguments can be given to show that because
of the possibility of context change, and the (im-)possibility of establishing anaphoric
relationships, the DPL-entailment relation is not monotone or transitive either.

2.2 First Order Satisfaction in PLA

It is time now to turn the main subject of this chapter, the system of PLA. I will argue
that most of the findings and results achieved in DRT and DPL can be achieved
in a more classical fashion by means of an arguably static semantics, a Tarskian
satisfaction semantics, which accommodates dynamic interpretation as the dynamic
composition of meanings. The language with which we will be concerned from now
on is literally that of a predicate logic with anaphora, or anaphoric pronouns. It is a
minimal first order predicate logical language that, apart from employing a primitive
category of pronouns as terms, is built up like a language of ordinary predicate logic.
As I said above, I will assume throughout that the reader is familiar with predicate
logic.

Definition 2 (PLA Language) The PLA-language LP L A is built up from relational
constants Rn ∈ Rn , individual constants c ∈ C , variables x ∈ V and pronouns pi ,
for i ∈ N.

• t ::= c | x | pi ;
φ ::= Rnt1 . . . tn | ¬φ | ∃xφ | (φ ∧ φ).

(Later on we will also assume identity formulas (t1 = t2) to be among the atomic
formulas.) As can be seen from the definition, any constant c, variable x , and pro-
noun pi counts as a term t . Terms are those things which fill argument positions of
predicates in atomic formulas. An individual constant simply names an individual
as the argument; a variable indeed is a variable ranging over possible interpretations
of it, to be controlled by corresponding variable binding quantifiers; and a pronoun
refers back to something which has been mentioned before it. Together with n such
terms, an n-place predicate may be saturated in an atomic formula, and it says, when
it occurs, that the n terms have referents which stand in the corresponding n-place
relation.

Constants and variables will be interpreted like they are in ordinary first order
logics; the new category of pronouns will be interpreted in the style of “de Bruijn
indices” (de Bruijn 1972). The interpretation of a pronoun pi totally depends on the
context of its occurrence. In the style of a variable free semantics (Jacobson 1999;
Szabolcsi 1989) it is interpreted like the identity function, which take a contextually
supplied individual as an argument, and delivers the very same individual as a value.
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Pronouns in general are assumed to be a bit more flexible, though. In PLA they are
functions taking a sequence of individuals as an argument selecting a designated one
of them as a value. The sequences of individuals here are the possible values of terms
in previous discourse, and any selective pronoun pi will serve to refer to the i th term
occurring before the pronoun’s occurrence, in a manner detailed below.

The categories of constants, variables, and pronouns are, thus, all dependent on
context, but in different manners. A constant’s interpretation depends on the model,
or the world of interpretation, if you want, in which a name has been defined, or
an object has been baptized; a variable’s interpretation depends on the quantifier
(or other operator) which controls it, or binds it; variables are very useful technical
devices, which are eliminable, though; a pronoun is a device to correlate actual pieces
of discourse and its interpretation serves to establish coreference between actually
occurring linguistic material. Eventually, pronouns are eliminable, too, but in the
practice of structured exchange of information they are indispensable. We will come
back in more detail on the relation between, especially, variables and pronouns, in
Sect. 2.4.

To keep generalizations within easy reach, the language consists of formulas φ,
built up from atomic formulas using negation (¬), existential quantification (∃x)
and conjunction (∧). Other useful operators like the universal quantifier, and other
connectives like disjunction (∨) and (material) implication (→) can be defined in the
usual way. I.e., ∀xφ can be taken to be short for ¬∃x¬φ, (φ ∨ψ) for ¬(¬φ ∧ ¬ψ)
and (φ → ψ) for ¬(φ∧¬ψ). With some of the required hand-waving, the operators
of the language can be taken to correspond to natural language expressions like ‘not’,
‘some’, ‘and’, ‘all’, ‘or’, and ‘if . . . then’; predicates can be taken to stand in for
nouns and verbs, individual constants for proper names, and pronouns, indeed, for
pronouns. This, in short, is the layman’s translation manual for expressing natural
language meanings in first order logic. The only difference with textbook first order
logic is the use of pronouns. As we will see, they are eliminable, but useful as well.

Pronouns are essentially indexical. Like I said, pronouns are a device to refer to
contextually given entities. We cannot state out of the blue what the referent of a
pronoun is, because one and the same pronoun may have different referents in differ-
ent contexts. In natural language such a context is always a context of use, and this
means a context of an occurrence of a pronoun. In PLA, for the time being, I identify
the uses of a pronoun with its occurrences, and thereby employ the formulas in which
they occur as their contexts of utterance. It is through these formulas that pronouns
may find their referents. And when I say that a pronoun refers to a contextually
given entity, I mean it relates to something that is ‘given’ at its point of occurrence,
something given by an expression that literally occurs to the left of the pronoun’s
occurrence in a formula. (We do make generalizations here, which is clear from the
fact that we can talk about the occurrences of a formula in which a pronoun occurs at
a certain place; and these formulas may occur in larger constructions which have their
own occurrences in even larger ones. The notion of an ‘occurrence’, therefore, needs
to be understood relativistically, or contextually, or, indeed, indexically.) Moreover,
the specific choice of the previous ‘antecedent’ is determined in an entirely indexical
way: it is determined by the index i on a pronoun pi by counting back from the
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location of the occurrence of the pronoun in a formula φ, to the i th antecedent term
before that occurrence of pi . This is exactly how de Bruijn’s indices in the lambda
calculus work: they are indices i , who indicate the lambda-occurrence that binds
them, by counting up, from the location of the occurrence of i , to the i th λ that binds
them.

Pronouns take their input, more specifically, from previously used existentially
quantified formulas, typically the expressions that formally render the interpretation
of indefinite noun phrases in natural language. Existentially quantified formulas are
selected for this purpose, partly for theoretical and partly for practical reasons. Like
I said, the formal language in which I want to start to state our investigations is
kept as simple as possible. The very first level to stage discussions of reference and
coreference then is at the level of sentences in what must be at least a first order
logic and the very first operators which we find there are the first order quantifiers;
among these the existential quantifier lends itself best for the present purposes. (From
a philosophical and an historical perspective one could in principle choose among
four quantifiers: one saying that a formula is satisfied by everything, one saying that
it has a satisfying instance, one saying that it has an exception, and one saying that
it is not instantiated; for practical reasons I take the second option as the basic one,
even though philosophically I’d prefer the third, in the spirit of Herakleitos.) There
is also an historical reason. Most of the formal semantic work on the interpretation
of pronouns in DRT , FCS and DPL, has concentrated on anaphoric relationships
of pronouns and preceding indefinite noun phrases. The reason is that these posed
the greatest challenge for both syntactic and semantic treatments of anaphora. As we
will see, this is not a bad motivation, since anaphoric relationships with terms other
than indefinite noun phrases can be easily modeled after those with indefinite noun
phrases.

Before I start with the semantics of the above language, I need to introduce two
syntactic notions with semantic impact. The following definition first spells out how
many potential antecedents a formula may provide for subsequent pronouns yet to
come, and next how many of such antecedents it presupposes itself. The first is
called the domain n(φ) of a formula, which equals the number of ‘active’ existential
quantifier occurrences in φ; the second is called its range r(φ), which is determined
by occurrences of pronouns in φ.

Definition 3 (Domain n(φ) and Range r(φ) of a Formula φ)

• n(Rt1 . . . tm) = 0; n(¬φ) = 0;
n(φ ∧ ψ) = n(φ)+ n(ψ); n(∃xφ) = n(φ)+ 1.

• r(Rt1 . . . tm) = MAX{ j | p j ∈ {t1, . . . , tn}}; r(¬φ) = r(φ);
r(φ ∧ ψ) = MAX{r(φ), (r(ψ)− n(φ))}; r(∃xφ) = r(φ).

If n(φ) = 0, φ is called closed; if r(φ) = 0, φ is called resolved.
(Later in this chapter we will also talk about the domain and range of sequences

of formulas n(φ1, . . . , φn) and r(φ1, . . . , φn). The sequences then are conceived of
as their conjunction.)
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The domain of a formula originates from existentially quantified formulas. Each
quantifier occurrence contributes one item, and in a conjunction they are summed
up. There is one proviso: an existential quantifier should not occur in the scope
of a negation. Negations annul the discourse contribution of existential quantifiers,
as is generally assumed. So n(¬φ) = 0 no matter what n(φ) is. The reason is
that, in general, a negation has the effect of denying the existence of witnesses for
existentially quantified variables in its scope. In this sense, ironically, existentially
quantified variables behave like free variables, as Heim in the spirit of Quine has
rightly claimed. The same effect is observed with indefinite noun phrases in the
scope of a negation in natural language.

The range of a formula originates from pronouns. A pronoun pi literally claims
coreference with the i th existential quantifier before its occurrence, so that it requires
a pre-existing discourse where at least i items have been introduced. From an atomic
formula, the loudest, or most far reaching claim will be heard. If the most demanding
pronoun in a formula is honoured, which requires at least i previous existentials, then
the claims of less demanding pronouns are automatically satisfied.

As one can see from the definition, the range of ¬φ and ∃xφ equals that of φ,
which means that pronominal claims are preserved under negation and quantifica-
tion. (Notice that if a pronoun is in the scope of an existential quantifier ∃x , then
that occurrence of ∃x does not count as a term which precedes the pronoun; for
one thing, this is correct because the pronoun itself contributes to establishing the
possible witnesses for the variable quantified over. We will learn more about this in
due course.) A conjunction, however, allows pronominal demands from the second
conjunct to be weakened. For instance, if the second conjunct ψ in a conjunction
(φ ∧ ψ) requires a number of existential terms before it, and if the first conjunct φ
actually contributes such terms, then the demand of the whole conjunction may be
weakened or even annulled. Of course, pronouns in the first conjunct φ may impose
further, and even stronger, constraints on the discourse preceding the conjunction.
The range of a conjunction, therefore, equals the strongest demand among that of
the first conjunct r(φ) and that of the second conjunct r(ψ), as it is weakened by the
contribution of the first conjunct, so minus n(φ). Here already we can see that the
dynamics of our system of interpretation originates from its notion of conjunction.
Pronominal demands may get satisfied, in a conjunction, where else? And if they
do, that is, if any pronouns at all occur in a formula, and if they are, where they
occur, satisfied by existentials preceding them in the very same formula, then these
pronouns counts as resolved, and the formula counts as resolved as well then.

With the definition of the range of a formula, in terms of the occurrence of exis-
tential quantifiers, and with their use in resolving pronouns, in whatever way this
is going to be spelled out, we face again the issue already mentioned. I could have
chosen to allow individual constants (proper names) and pronouns to contribute to
the domain of a formula, because, for one thing, they are most natural antecedents
for pronouns themselves. For the moment I have chosen not to do so. For expository
reasons it is better to start with one, typical, category of introductory terms only.
Besides, the anaphoric potential of names and pronouns is easily dealt with by sim-
ilar means. [A simple, quite crude, but effective, way of implementing this potential
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is to assume that names and pronouns always come with an existential quantifier
themselves, so that, after all, they do introduce items. Instead of rendering Anne/She
walks as Wa or Wp1, one could render it as ∃x(x = a ∧ W x) or ∃x(x = p1 ∧ W x).
Actually this is also how it works, roughly, in, for instance, (Kamp and Reyle 1993).]

We may now turn to the semantics of PLA. Existentially quantified expressions
(like indefinite descriptions) are evaluated relative to possible satisfying witnesses
for their eventual truth. In standard logic ∃xφ is deemed true iff φ is true under
at least one evaluation of the variable x . That is, if for some individual d from
the domain, φ[x/d] is true under the usual rendering of φ[x/d]. The same will be
required to be the case in PLA, but for the fact that such a witness d of the truth of
∃xφ is remembered, so to speak. If ∃xφ is true because a couple of instantiations
of x make φ true, then, in PLA, ∃xφ is satisfied relative to each of these witnesses.
The witnesses associated with (occurrences of) existentially quantified formulas will
figure as the intended referents of the (occurrences of) coreferential pronouns later
in that formula. Notice that, since any formula may introduce any number of items
(that is, n(φ)may be any number m), we cannot just speak of ‘a possible witness’ of
a formula, but we have to speak of ‘sequences of possible witnesses’, as Tarski has
observed. If n(φ) = 0, a possible witness is the empty sequence. These things being
said, we may now turn to the definition itself.

Formally, the semantics of PLA is spelled out as a Tarskian satisfaction relation, in
which the formulas of our language are said to be ‘satisfied’ (or not satisfied) relative
to the relevant parameters. It is defined, first, relative to the usual first order models
M = 〈D, I 〉, consisting of a domain of individuals D and an interpretation function I
for the relational and individual constants and such that I (Rn) ∈ P(Dn) and I (c) ∈
D. Satisfaction is defined also relative to variable assignments g such that g(x) ∈ D
for all variables x , and relative to sequences of witnesses ê = e1 . . . en ∈ Dn .
The values of variables, given by assignment functions g, are controlled by variable
binding operators, the existential quantifier in the first place, and this is done in
the usual way known from predicate logic. The witness sequences ê establish the
interpretation of pronouns; they are controlled by the linguistic environment of the
pronouns, and essentially keep track of the witnesses of terms (read here: existentially
quantified phrases) which have, or may have, occurred before these sequences are
actually employed. (It may surprise, or even worry, the reader that I propose a separate
treatment of variables and pronouns, and do this in even in formally distinct ways:
the first in terms of variable assignments g; the other in terms of sequences of objects
ê. I will come back to this issue in Sect. 2.4 where I give formal, theoretical, and
methodological arguments for proceeding this way.)

In the definition below, and throughout the monograph, I employ the following
conventions. Formulas φ are in general evaluated relative to sequences ĉe, or âce, or
bĉe, where:

• ĉe is the concatenation of the sequences ĉ and ê,
âce the concatenation of the sequences â, ĉ and ê,
and bĉe the concatenation of an individual b ∈ D and the sequence ĉe.
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All sequences â, ĉ and ê may be empty; their length depends on the formal properties
of the formula φ at issue.

• If φ is evaluated relative to a sequence ĉe (or âce), ê has at least length r(φ); the
sequence is long enough to satisfy pronominal demands;

• ĉ (or âc) is supposed to have exactly length n(φ); the sequence supplies exactly
the right number of witnesses for existentially quantified formulas in φ.

• For the evaluation of a conjunction (φ ∧ ψ) the sequences ĉ and â are used to
distinguish the contributions of φ, and ψ , respectively, so that ĉ is a sequence of
length n(φ) and â a sequence of length n(ψ); thus âc, the concatenation of â and
ĉ has length n(φ ∧ ψ);

• ĉe has length at least r(ψ), and ê has length at least r(φ ∧ ψ), so it is at least
r(φ) elements long and r(ψ) − n(φ) elements long; thus, ê directly satisfies the
pronominal demands of φ, and, together with witnesses for existentials in φ, it
indirectly satisfies the pronominal demands of ψ .

Here is a specific simple example to illustrate these conventions:

(5) A Canadian farmer, whose horse was ill, went to see his veterinarian. She lent
him her donkey.

Neglecting many details, the whole sequence can be translated using the following
abbreviations. ‘CFx’ stands short for ‘x is a Canadian farmer’, ‘OHxy’ for ‘x owns
horse y’, ‘I y’ for ‘y is ill’, ‘SV xu’ for ‘x see x’s veterinarian u’, ‘ODuv’ for ‘u owns
donkey v’, and ‘Luvx’ for ‘u lends v to x’; the choice of the indices on the pronouns
are explained below.

• (∃x((CFx ∧ ∃y(OHxy ∧ I y)) ∧ ∃uSV xu) ∧ ∃v(ODp2v ∧ Lp2vp1))

This formula is a conjunction (φ ∧ ψ), the first conjunct of which:

• φ := ∃x((CFx ∧ ∃y(OHxy ∧ I y)) ∧ ∃uSV xu)

contains no pronouns, and the second one

• ψ := ∃v(ODp2v ∧ Lp2vp1))

contains three occurrences of two pronouns. So r(φ) = 0, and r(ψ) = 2, the highest
index of a pronoun here. We also see that φ contains three existential quantifiers, not
in the scope of a negation, so that n(φ) = 3; and ψ contains one, so that n(ψ) = 1,
and n(φ∧ψ), the domain of the whole formula is 4. The range of the whole formula,
r(φ ∧ψ) is the largest among r(φ) = 0 and (r(ψ)− n(φ)) = (2 − 3) = −1 which
is 0.

Putting things together, I will, according to the stated conventions, evaluate such
a conjunction relative to a sequence âce, where:

• the length of ê is a least 0; the length of ĉ is 3; the length of â is 1.

It will turn out that the above formula, for such a sequence âce of length 4, of
course, imposes no requirements on ê; it will require ĉ to consist of 3 elements, a
Canadian Farmer c, a veterinarian v that the farmer c sees, and an ill horse h that the
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farmer owns; the sequence â, a one element sequence only, is furthermore required
to consists of a donkey d which the veterinarian owns, and which she lends to the
farmer. If one tries to evaluate a formula φ relative to a sequence ê which cannot be
split along the above lines, that is, a sequence that is too short, then interpretation
crashes. Let us now turn to the definition which actually gives us this notion of
satisfaction.

Definition 4 (PLA Satisfaction and Truth)

• [c]M,g,̂e = I (c); [x]M,g,̂e = g(x); [pi ]M,g,̂e = êi ;
• M, g, ê |= Rt1 . . . tn iff 〈[t1]M,g,̂e, . . . , [tn]M,g,̂e〉 ∈ I (R);

M, g, ê |= ¬φ iff there is no ĉ ∈ Dn(φ): M, g, ĉe |= φ;
M, g, bĉe |= ∃xφ iff M, g[x/b], ĉe |= φ;
M, g, âce |= (φ ∧ ψ) iff M, g, ĉe |= φ and M, g, âce |= ψ ;

• φ is true relative to M , g and ê iff there is a ĉ ∈ Dn(φ): M, g, ĉe |= φ.

(In case φ is true relative to M , g and ê, I also write M, g, ê |= φ. This notation is
the same as the one used for the satisfaction of atomic formulas and negations; this
should not be problematic since for these formulas truth and satisfaction coincide.)

Atomic formulas are evaluated in the Tarskian way, relative to sequences of indi-
viduals. A pronoun pi selects the i th individual in the sequence ê, claiming, and
as a matter of fact effectuating, coreference with a variable existentially quantified
over i-terms ago. With an atomic formula Rt1 . . . tn the references of the sequence of
terms t1 . . . tn are required to stand in the said relation R. (With an identity formula
t1 = t2 the references of t1 and t2 are required to be identical.)

An existentially quantified formula ∃xφ behaves like an ordinary quantifier in the
sense that it binds free occurrences of the variable x in its scope. In addition, the first
element of the sequence parameter is required to be a ‘witness’ of x for the satisfac-
tion of the embedded formula φ. We may understand this best in a constructive, or
‘dynamic’ way. If φ can be satisfied relative to a sequence ĉe with b as a witness for
x , then ∃xφ can be said to contribute b to the sequence of possible witnesses, thus
delivering bĉe as a witness sequence. With the notation conventions employed this
means that bĉ is a sequence of witnesses contributed by ∃xφ, relative to M and g,
and relative to a sequence of witnesses ê brought up by preceding discourse. Notice
that the witness b for the existential quantifier is put in the front of the sequence ĉe.
This reflects the fact that the item introduced most recently is the first to be selected
for pick-up afterwards. If the next formula ψ uses a pronoun p1 to refer to the item
introduced last, i.e., to the witness of the last term which has occurred before the
pronoun, it will indeed pick up the witness b from the sequence bĉe relative to which
ψ is evaluated. The combined interpretation of existential quantifiers and pronouns
thus displays the truly indexical nature of the pronouns. A pronoun’s reference can
only be determined from the location in the formula where it occurs.

Here is an elementary example in which two typical formulas are combined in a
conjunction. (Conjunction will be explained in more detail below.)
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(6) There is a boy in the garden. He sneezes.
(∃x BGx ∧ Sp1).

In a model M , and relative to a sequence ê (which turns out to be irrelevant), the
first conjunct is satisfied by an individual b iff b is a boy_in_the_garden in the
model, i.e., iff b ∈ I (BG). For, M, g, b̂e |= ∃x BGx iff M, g[x/b], ê |= BGx iff
[x]M,g[x/b],̂e = g[x/b](x) = b ∈ I (BG). Relative to this sequence b̂e the second
conjunct is true iff the witness b for the first conjunct sneezes, i.e., iff b ∈ I (S).
For, M, g, b̂e |= Sp1 iff [p1]M,g,b̂e = (b̂e)1 = b ∈ I (S). In a model M the whole
conjunction is, thus, satisfied by a sequence b̂e iff b is a boy_in_the_garden who
sneezes in M , and the conjunction is true iff there is such a sequence, that is, iff there
is a boy_in_the_garden who sneezes in M , i.e., iff I (BG) ∩ I (S) 
= ∅.

Real quantificational effects in PLA are obtained by negation (and by the cor-
responding notion of truth). The negation of a formula φ requires that there are no
witnesses for the existentially quantified variables inφ, thus obtaining the usual effect
of denying the quantified variables a satisfying instantiation. (In the definition Dn(φ)

is the set of nφ)-tuples of individuals, the set of sequences that might potentially be
witnesses for existentially quantified terms in φ.) A formula like ¬∃x Fx thus means,
as usual, that no individual has the property F . Saying that a formula φ is true is
claiming that there are witnesses for the existentially quantified variables in φ, thus
stating that φ can be satisfied. The only difference with plain satisfaction is that in
stating the truth of a formula one does not keep track of the witnesses by means of
which it is satisfied.

Let us now inspect the clause defining satisfaction of conjunctions. If such a
conjunction (φ ∧ ψ) is evaluated relative to a sequence ê, the first conjunct φ is
evaluated relative to ê and may contribute a sequence ĉ, so that ĉe satisfies φ. The
second conjunct ψ is then evaluated relative to ĉe, that is the original context plus
the contribution ĉ from φ, and it may contribute its own sequence â next. Such
a conjunction is thus taken to be satisfied by a sequence âce where â satisfies ψ
relative to ĉe, and φ is satisfied by ĉ relative to ê. It may be noticed, as example (6)
already illustrates, that the interplay between existential quantifiers and pronouns
only comes off the ground through the conjunction of the respective elements. (This
is interesting, because we may as well choose to correlate the conjuncts in a different
way. Nothing stands in the way of a notion of conjunction in which pronouns in the
first conjunct get related to quantifiers in the second, as it also may happen in natural
language by the way. Notice that such an alternative way of conjoining information
contents is hardly conceivable in rigid systems of dynamics semantics, in which the
left to right interpretation is taken to be constitutive of the meanings of formulas.)

Let us consider a slightly more involved example in some detail.

(7) There once was a king. He lived in a castle.
(∃x K x ∧ ∃y(Cy ∧ L Ip1 y)).

The whole formula (φ∧ψ) is a conjunction of two formulas φ and ψ each of which
contains one existential quantifier. Neither of them occur in the scope of a negation,
so n(φ ∧ ψ) = (n(φ) + n(ψ)) = (1 + 1) = 2. The second conjunct contains a
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pronoun, and its range r(ψ) = 1, but this is met by the item introduced by the
first conjunct, because n(φ) = 1, so the range r(φ ∧ ψ) of the whole is 0. Unlike
the second conjunct, the whole conjunction counts as resolved. The conjunction is
satisfied by two individuals c and k iff k satisfies the first conjunct (∃x K x) and ck
satisfies the second conjunct (∃y(Cy ∧ L Ip1 y)). This is the case if k is a king and c
a castle which the king lives in. Formally this is spelled out as follows.

• M, g, ck |= (∃x K x ∧ ∃y(Cy ∧ L Ip1 y)) iff
M, g, k |= ∃x K x and M, g, ck |= ∃y(Cy ∧ L Ip1 y) iff
M, g[x/k] |= K x and M, g[y/c], k |= (Cy ∧ L Ip1 y) iff
M, g[x/k] |= K x and M, g[y/c], k |= Cy and M, g[y/c], k |= L Ip1 y iff
k ∈ I (K ) and c ∈ I (C) and 〈k, c〉 ∈ I (L I ).

The conjunction of the two formulas, with an existential quantifier in the first and a
pronoun in the second, is true if we can find a witness sequence for this example.
That is, the conjunction is true in a model M iff that model hosts a king k (an
element of I (K )) and a castle c (an element of I (C)) such that the first lived in the
second (〈k, c〉 ∈ I (L I )). The connection between the existential quantifier in the
first conjunct and the pronoun in the second is properly taken care of.

The observations on PLA’s notion of conjunction bring to bear on the PLA notion
of material implication. Recall the classical definition of (φ → ψ) as ¬(φ ∧ ¬ψ).
Observe that, according to this definition, the implication inherits the combinatory
effects of PLA’s dynamic conjunction, but with a different force. Working through
the clauses for negation and conjunction, an implication is seen to be satisfied under
the following conditions.
Observation 3 (Implication Satisfaction)

• M, g, ê |= (φ → ψ) iff for all ĉ ∈ Dn(φ) there is â ∈ Dn(ψ):
if M, g, ĉe |= φ then M, g, âce |= ψ .

A formula (φ → ψ) is satisfied in a context ê iff the consequent clauseψ is satisfied
relative to all witness sequences satisfying the antecedent φ in that context. In effect,
this implies that variables existentially quantified over in the antecedent are read with
universal force. Consider the following simple example.

(8) If someone is a king, he lives in a castle. (∃x K x → ∃y(Cy ∧ L Ip1 y)).

The implication requires that for every witness of the antecedent, i.e., for every king,
there is a witness for the consequent, a castle which he lives in. So for the implication
to be satisfied, every king must live in some castle.

From the explanatory remarks so far it may be clear that (1) PLA’s semantics is a
proper extension of a classical semantics in both form and content, and (2) that the
dynamics resides in the actual conjunction of information. The format of the clauses
in the above definition is classical, but for the use of an additional parameter, that
of witness sequences; and the contents are classical as well, but for the additional
requirements (dynamically) imposed on these witness sequences. These two features
are persistent. In the extensions proposed below the basic definitions remain classical
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and the only additional machinery relates to the additional parameter of witnessing
sequences.

Let us state the first feature mentioned in a precise manner. Let PL stand for
ordinary first order predicate logic.
Observation 4 (PLA and PL) For all formulas φ without pronouns

• for all M, g: M, g |=P L φ iff M, g |=P L A φ.

Since pronouns, the additional category of terms in PLA, relate to existential quan-
tifiers, but do not interfere with them, the usual laws of quantification remain valid.
In particular, α-conversion is a meaning preserving substitution operation under the
usual conditions, and throughout the PLA-language.
Observation 5 (α-conversion) If y is free for x in φ, then

• for all M, g, ĉe: M, g, ĉe |= ∃xφ iff M, g, ĉe |= ∃y[y/x]φ,

where [y/x]φ is obtained from φ by replacing all free occurrences of x in φ with y.
This fact may rightly surprise only those who are familiar with DPL, in which

this fact fails to obtain. Since pronouns are not conflated with variables in PLA, α-
conversion holds unconstrained, and this fact will turn out to be important when we
turn to PLA’s resolving binding forms below.

Conjunction and Resolution in PLA

In this section I describe in more detail how anaphoric connections are established
in PLA, so as to pave the ground for a fully general comparison with other, static
and dynamic, systems of interpretation. I consider a number of constructions which
display the dynamic properties of PLA’s conjunction and implication in a relatively
natural way. Conjunctions (or implications) with pronouns in them are shown to be
equivalent to certain quantified constructions which are pronoun free. Consider the
following example.

(9) A man is walking in the park. (∃x(Mx ∧ W x).) There is a dog. (∃y Dy.) It
frightens him and he chases it. ((Fp1p2 ∧ Cp2p1).)

As noted above, I use rather stilted examples, and for the purpose of exposition I
neglect all temporal and situational aspects of the interpretation of these sentences.
The above sequence of sentences, with the given translation, fits the equation below.
I use ⇔ to indicate that two formulas are the same in meaning, that is, by definition,
φ ⇔ ψ iff for all M, g, ĉe: M, g, ĉe |= φ iff M, g, ĉe |= ψ .

• ((∃x(Mx ∧ W x) ∧ ∃y Dy) ∧ (Fp1p2 ∧ Cp2p1)) ⇔
∃y∃x(((Mx ∧ W x) ∧ Dy) ∧ (Fyx ∧ Cxy)).

The equivalence can be easily calculated. The second formula requires valuations
of the variables y and x as d and m, respectively, by means of which all of the
formulas Mx , W x , Dy, Fyx , and Cxy are satisfied; if these requirements are met,
then dm constitutes a witness sequence for the formula. The first formula, the one
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from example (9), achieves precisely the same effect, but in a step by step manner.
First it seeks a valuation of x by means of which Mx and W x are satisfied; any such
valuation m counts as a witness; then it seeks a valuation of y by means of which Dy
is satisfied, and such a witnessing dog d is paired with the man m in the sequence dm;
finally it is required that the first of dm (i.e., the dog d) frightens the second (i.e., the
man m) and that the man m chases the dog d. If the tests succeed, then the sequence
dm satisfies the whole conjunction. The satisfaction conditions are, thus, identical
to those of the existentially quantified formula. The equivalence above shows that
the same can be expressed with a pronoun free formula, or, rather, that what can be
expressed by a rather involved existentially quantified formula can be expressed in
a constructive, step by step, manner as well.

The next example is a variant of the previous one with an implication.

(10) If a man is walking in the park (∃x(Mx ∧ W x)), and there is a dog (∃y Dy),
then (→) it frightens him and he chases it (Fp1p2 ∧ Cp2p1).

• ((∃x(Mx ∧ W x) ∧ ∃y Dy) → (Fp1p2 ∧ Cp2p1)) ⇔
∀y∀x(((Mx ∧ W x) ∧ Dy) → (Fyx ∧ Cxy)).

As we have seen in Sect. 2.2, an implication requires its consequent clause to be
satisfied relative to all witness sequences for its antecedent clause. The above impli-
cation, thus, is satisfied if relative to all pairs dm of a dog d and a man m who is
walking in the park, the consequent clause (Fp1p2 ∧ Cp2p1) is satisfied. That is,
it requires of any such pair dm that the first (the dog d) frightens the second (the
man m), and that the man m chases the dog d. These truth conditions are typically
rendered by the (equivalent) formula ∀y∀x(((Mx ∧ W x)∧ Dy) → (Fyx ∧ Cxy)),
which is pronoun free.

Notice that the pronouns p1 and p2 in the examples (9) and (10) refer to the
last and the penultimate introduced term with reference to the location where these
pronouns occur. Thus, p1 picks up the dog there, introduced last in these examples,
and p2 the man, introduced earlier. The order of appearance is the reverse of the
order of salience so to speak, due to the essentially indexical interpretation of the
pronouns. In the next two examples this pattern is different.

(11) A diver found a pearl. (∃x(Dx ∧ ∃y(Py ∧ Fxy)).) She lost it again. (Lp1p2.)

We find two existentially quantified formulas again, both of which are picked up
by a subsequent pronoun. This time, however, the quantified expressions do not
properly succeed one another, but one of them is embedded in the other. The two
existential quantifiers require a pair of witnesses, of a diver d and a pearl p the diver
found. If one carefully inspects the satisfaction clause for existentially quantified
formulas, this pair of witnesses will appear in the order of presentation, as dp. For,
first (Dy ∧ Oxy) will have to be evaluated relative to g[x/d][y/p] for some diver d
and pearl p, and if this is successful p is added to the contextual sequence as a witness
for ∃y(Py ∧ Fxy). Only then (Dx ∧ ∃y(Py ∧ Fxy)) can be evaluated relative to
g[x/d] and if this is successful indeed the diver d is added to the sequence creating
dp as a witness for ∃x(Dx ∧ ∃y(Py ∧ Fxy)). For this reason, the next conjunct
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Lp1p2 states that the last witness constructed, which is the diver d, not the pearl
p, lost the one constructed earlier, i.e., the pearl, not the diver. For this reason the
sequence of sentences turns out to be equivalent to “A diver lost a pearl she found.”

• (∃x(Dx ∧ ∃y(Py ∧ Fxy)) ∧ Lp1p2) ⇔
∃x∃y((Dx ∧ (Py ∧ Fxy)) ∧ Lxy).

Although the terms ‘A diver’ and ‘a pearl’ literally occur in this order, and that one
first hears of a diver, and then of a pearl, the witnesses they introduce are raised
in reverse order, because we have to have a pearl first, to make up the property of
finding that pearl, before we can set up a witness for a diver, who has that property
of finding that pearl. Since, in this sense, the diver comes after the pearl here, it is
the first in prominence when the pronouns are interpreted.

With the witness order in mind, we may now inspect the museum-piece donkey
sentence, which is an implicative variant of example (11).

(12) If a farmer owns a donkey, he beats it.
(∃x(Fx ∧ ∃y(Dy ∧ Oxy)) → Bp1p2).

The antecedent of the implication (∃x(Fx ∧∃y(Dy ∧ Oxy))) is satisfied by any pair
of witnesses f d, where f is a farmer who owns a donkey d. By the satisfaction clause
for implications (Observation 3), the formula requires Bp1p2 to be satisfied by any
such sequence. That is, for any such pair f d the first (the farmer) is required to beat
the second (the donkey). The truth-conditions of this example then are adequately
rendered by the equivalent sentence “Every farmer beats every donkey he owns.”

• (∃x(Fx ∧ ∃y(Dy ∧ Oxy)) → Bp1p2) ⇔
∀x∀y((Fx ∧ (Dy ∧ Oxy)) → Bxy).

The preceding observations are summed up in the following example, in which three
items are introduced.

(13) Once there was a queen. (∃x Qx .) Her son fell in love with a frog. (∃y(Sy ∧
∃z(Fz ∧ Lyz)).) He kissed it, and she got mad. ((Kp1p2 ∧ Mp3).)

The first conjunct may be satisfied by a (any) (former) queen q. The second is satisfied
by any pair s f of a son s and a frog f the son fell in love with. The first two conjuncts
thus will be satisfied, if by anything, by triples s f q of a son, a frog and a queen, the
mother of the son. In this order these contextually given entities are addressed by the
last conjunct Kp1p2 ∧ Mp3, requiring the first (the son) to have kissed the second
(the frog), to the effect that the third (the mother / queen) got mad. Again the order
of the witnesses is the reverse of the order of appearance. The truth conditions are
captured in an equivalent existentially quantified formula.

• ((∃x Qx ∧ ∃y(Sy ∧ ∃z(Fz ∧ Lyz))) ∧ (Kp1p2 ∧ Mp3)) ⇔
∃y∃z∃x((Qx ∧ (Sy ∧ (Fz ∧ Lyz))) ∧ (K yz ∧ Mx)).
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It is interesting to see, then, that the contents of rather involved existentially quantified
formulas can always be displayed in a step by step manner using the pronominal
devices of PLA.

So far we have been looking at some examples of sentences or sequences of
sentences in which pronouns occur, and which are equivalent to ordinary pronoun
free first order formulas. These ‘normalized’, or ‘binding’ alternatives can be defined
fully generally. I will present a ‘normalization’ algorithm below, which essentially
draws from the following equation presented first. (Here, and in what follows, if x̂
is a sequence of variables x1 . . . xn , then ∃x̂φ abbreviates ∃x1 . . . ∃xnφ.) (The notion
of a (normal) binding form is given in the normalization algorithm.)

Observation 6 (Binding Conjunctions) If x̂ is a sequence of variables x1 . . . xn ,
and φ and ψ are closed and in binding form, and if the variables in ŷ respectively x̂
do not occur free in φ respectively ψ , then:

• (∃x̂φ ∧ ∃ŷψ) = ∃ŷ∃x̂(φ ∧ [̂x/pi ]ψ), where

– [x1 . . . xn/pi ]ψ = [pr(ψ)−n/pr(ψ)] . . . [p1/pn+1][xn/pn] . . . [x1/p1]ψ , and
– the variables xi are free for the occurrences of pi in ψ .

The conditions on this equation are that φ andψ themselves are closed and in binding
form, i.e., they do not contain ‘active’ existential quantifiers, and no locally resolved
pronouns. (Cf., the binding algorithm below.)

Even though the conditions may appears rather complicated at first glance, the
idea behind them is conceptually and computationally pretty simple. Observation
(6) shows that quantifiers ∃xi from the left conjunct may take scope over the right
conjunct, if pronouns pi coreferential with them are replaced by variables xi now
bound by the quantifier. (The details of this are explained in a second.) When the
scope of these existential quantifiers ∃x̂ is, thus, extended, we have to make sure that
existential quantifiers ∃ŷ from the second conjunct, which were introduced later,
still make their contribution after the ∃x̂ have done so. This is why the ∃ŷ from the
second conjunct now also are assigned scope over the existential quantifiers ∃x̂ . In
order to make sure that no further existential quantifiers and resolved pronouns are
left in the embedded formulas φ andψ , they are required to be closed and in binding
form before this resolution takes place.

In order for this binding reformulation to be equivalent, two kinds of things have
to happen in the second conjunct ψ . Since ψ is assumed to be closed and resolved,
there are no internally resolved pronouns there. So all pronouns either relate back
to terms in the first conjunct φ, or they relate back to terms before the conjunction.
Pronouns of the first kind, viz., those pronouns pi with i ≤ n(φ), are eliminated and
replaced by the variable xi bound by the i th existential quantifier from ∃x̂ , which
comes to take scope over ψ . Pronouns of the second kind, viz., those pronouns
pn(φ)+ j lose n(φ) preceding terms as an antecedent (the n(φ) existential quantifiers
from φ) so their index reduces to j in p j . They thus remain coreferential with the j th
term before the whole conjunction. I will supply examples of the above observation
after I have presented the PLA-binding algorithm.



2.2 First Order Satisfaction in PLA 29

Observation (6) can be used to produce the (normal) binding forms of a PLA-
formula, which is an equivalent formula from with resolved pronouns removed. We
obtain the binding form of a formula φ by questioning it as [φ]?, which will return
an answer [ψ]! to the effect that ψ indeed is the binding form of φ, also written as
φ•.

Definition 5 (Binding Algorithm) The (normal) binding form φ• of a formula φ is
the formula ψ such that [φ]? �→ [ψ]!, where:

• [(φ ∧ ψ)]? �→ ([φ]? ∧ [ψ]?); ([∃x̂φ]! ∧ [∃ŷψ]!) �→ [∃ŷ∃x̂(φ ∧ [̂x/pi ]ψ)]! 1;
[∃xφ]? �→ ∃x[φ]?; ∃x[φ]! �→ [∃xφ]!;
[¬φ]? �→ ¬[φ]?; ¬[φ]! �→ [¬φ]!;
[Rt1 . . . tm]? �→ [Rt1 . . . tm]!.

The questioning procedure moves us directly, top down, to the atomic subformulas
of a formula φ, in order to observe that these are in binding form: [Rt1 . . . tm]? �→
[Rt1 . . . tm]!. This reflects the fact that in a solitary atomic formula pronouns cannot
get resolved. Once a formula φ is in binding form, its negation ¬φ is as well, and
also the existentially quantified ∃xφ. In a negation and in an existentially quantified
formula there is nothing to be resolved besides what can be resolved in the embedded
(negated or quantified) formula. This means that the feature of being in binding form
percolates bottom up through quantifiers and negations, until it reaches a conjunction.
And such a conjunction, then, will always be of the form (∃x̂φ∧ ∃ŷψ), where φ and
ψ are closed and in binding form. The resulting translation is like the one given in
Observation (6). From this definition it is directly clear where the resolution/binding
does happen, that is, in a conjunction, in which pronominal relations are after all
established. This happens in the way we have seen in Observation (6).

Observe that, of course, it may happen that the side conditions on observation
(6) fail to hold, if variables in ŷ or x̂ do occur free in φ or ψ , respectively, or if an
xi is not free for a pi in ψ . However, in all of these cases we can always use an
α-converted variant of the formula to be resolved, which, by observation (5) above,
is fully equivalent.

I now present an application of the Binding Algorithm to example (13), repeated
here for convenience:

(13) Once there was a queen. Her son fell in love with a frog. He kissed it, and she
got mad. ((∃x Qx ∧ ∃y(Sy ∧ ∃z(Fz ∧ Lyz))) ∧ (Kp1p2 ∧ Mp3)).

The algorithm applies as follows.

• [((∃x Qx ∧ ∃y(Sy ∧ ∃z(Fz ∧ Lyz))) ∧ (Kp1p2 ∧ Mp3))]? �→
((∃x[Qx]? ∧ ∃y([Sy]? ∧ ∃z([Fz]? ∧ [Lyz]?))) ∧ ([Kp1p2]? ∧ [Mp3]?)) �→
((∃x[Qx]! ∧ ∃y([Sy]! ∧ ∃z([Fz]! ∧ [Lyz]!))) ∧ ([Kp1p2]! ∧ [Mp3]!)) �→
(([∃x Qx]! ∧ ∃y([Sy]! ∧ ∃z[(Fz ∧ Lyz)]!)) ∧ [(Kp1p2 ∧ Mp3)]!) �→

1 provided that the conditions in observation (6) obtain.
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(([∃x Qx]! ∧ ∃y([Sy]! ∧ [∃z(Fz ∧ Lyz)]!)) ∧ [(Kp1p2 ∧ Mp3)]!) �→
(([∃x Qx]! ∧ ∃y[∃z(Sy ∧ (Fz ∧ Lyz))]!) ∧ [(Kp1p2 ∧ Mp3)]!) �→
(([∃x Qx]! ∧ [∃y∃z(Sy ∧ (Fz ∧ Lyz))]!) ∧ [(Kp1p2 ∧ Mp3)]!) �→
([∃y∃z∃x(Qx ∧ (Sy ∧ (Fz ∧ Lyz)))]! ∧ [(Kp1p2 ∧ Mp3)]!) �→
[∃y∃z∃x((Qx ∧ (Sy ∧ (Fz ∧ Lyz))) ∧ (K yz ∧ Mx))]!.

All in all, we find that:

• ((∃x Qx ∧ ∃y(Sy ∧ ∃z(Fz ∧ Lyz))) ∧ (Kp1p2 ∧ Mp3))
• =

∃y∃z∃x((Qx ∧ (Sy ∧ (Fz ∧ Lyz))) ∧ (K yz ∧ Mx)).

Before we carry on, it is interesting to observe that indeed all the action in the binding
algorithm takes place in the rule dealing with conjunctions—because conjunctions
are the place where connections get established and pronouns may get resolved.
Also, this is quite the same as what happens in the translation of DPL into a static
predicate logic as given in Cresswell (2002). There, as well, the crucial work is
done in the clause for conjunctions, in which, too, major substitutions take place.
Notice, however, that Cresswell’s specification of the DPL notion of conjunction, in
terms of a number of substitutions, is a way of rendering a dynamic interpretation
of discourse in terms of a static first order translation. The translation, however,
is stipulated, and it is not based on an independently specified semantics for the
discourse itself. Distinctively, the substitutions we find in Observation (6) are sound
with respect to the semantics of PLA, which has been independently specified above.
The PLA-semantics itself, of course, is in no need of any substitutions.

The following observation shows the resolution to be correct.
Observation 7 (Resolution Correctness)

• For all formulas φ: φ• ⇔ φ.

This observation enables a straightforward comparison of PLA with kindred systems.
Observation 8 (PLA, PL, DRT and DPL) For all resolved formulas φ

1. for all M, g: M, g |=P L φ
• iff M, g |=P L A φ;

2. a DRS representing the contents of φ is isomorphic to φ•, up to alphabetic
equivalence;

3. for all M, g: g[[φ]]Mg[̂x /̂c] iff M, g, ĉ |= φ,

where φ• = ∃x̂ψ with ψ closed, and there are no repetitions of quantifiers ∃x in φ.
The first observation is a direct consequence of the Observations (4) and (7). The

resolution of any resolved formula is pronoun free, and, hence, classical.
The second observation builds on the fact that ordinary discourse representation

structures (DRS s) are of the form 〈D,C〉, where D is a set or sequence of discourse
referents, and C a set or sequence of conditions, and the conditions are atomic formu-
las, or negations DRS s (or, for that matter, disjunctions of, or implications between
DRS s). The resolution of a PLA-formula consists of a sequence of existential quan-
tifiers ∃x̂ followed by a sequence of conjunctions of atomic formulas and negations,
where in each negation ¬φ the formula φ is in resolved form, i.e., a DRS . Notice
that while the architecture reaching normal binding forms of PLA-formulas is not
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stated in a compositional fashion, neither is the construction algorithm yielding DRS
for natural language, or natural discourse. However, the interpretation function for
the PLA-formulas themselves gives us the very same results, but in a direct and
compositional way. If we put these facts in a illustrative row, for instance for the
previous example (13), we get the following picture. First we repeat the sentence;
then we translate in a fairly standardly fashion into the language of predicate logic
(with anaphora); next we show the result of applying the normal binding algorithm,
which we have seen before, and finally we get the corresponding DRS that would
have come out of the DRS construction algorithm for example (13).

(13) Once there was a queen. Her son fell in love with a frog. He kissed it, and she
got mad.
(13′) ((∃x Qx ∧ ∃y(Sy ∧ ∃z(Fz ∧ Lyz))) ∧ (Kp1p2 ∧ Mp3)).
(13′•) ∃y∃z∃x((Qx ∧ (Sy ∧ (Fz ∧ Lyz))) ∧ (K yz ∧ Mx)).

(DRC(13))
xzy

Qx Sy Fz Lyz Kyz Mx.

Notice, first, that the order of discourse markers in (DRC(13)) is opposite to that
of the existential quantifiers in (13′•), but this is immaterial; second, that the round
brackets, superfluous here, have disappeared—but they are pieces of structure that
are not omitted in more sophisticated versions of DRT . For the rest we can easily
construct isomorphisms, and the reader is invited to do so with examples of his own,
using the definitions stated above.

The comparison with DPL in Observation (8) is a bit more involved. DPL’s input
variable assignment g plays the ordinary role of an assignment in PL, and PLA, of
the free variables in a formula. A so-called DPL-‘output’ assignment h, which is
g[̂x /̂c] in the case above, encodes possible values of variables quantified over in
φ, viz., the variables in the sequence x̂ . Their possible values are the witnesses ĉ
of the corresponding quantified constructions in PLA, whence the equivalence in
observation (8).

Notice that the stated equivalence cannot be maintained if a formula does not
have a binding form itself and we have to resort to α-conversion in PLA. Since
α-conversion is typically not allowed in DPL, the correspondence between DPL and
PLA breaks down here. Notice that it is precisely in these cases that DPL’s elegance
breaks down as well. In these cases where we would have to resort to α-conversion
in PLA, we find so-called ‘variable-clashes’ in DPL, where information about items
introduced in a discourse gets destroyed because a variable in use is re-used for
another purpose. This nasty and well-known problem in DPL basically originates
from the choice to equate pronouns with variables.

It appears that Vermeulen (1993) provides an interesting alternative motivation
for moving from DPL to PLA. In order to solve the mentioned problem with variable
clashes, Vermeulen argues that one can model the repeated use of one and the same
variable if different uses are taken to invoke stacks of values, instead of singular ones.
Variables indicate whether they relate to the last, or any earlier element of the stack
associated with the variable. As it happens, DPL can thus be modeled by stacking
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all discourse referents on one variable, so that, as a matter of fact, the variable is
useless, and we are left with stacks alone, as in PLA.

A final note concerns the restriction in Observation (8), that we only deal with
resolved formulas φ, which have no unresolved pronouns. For a logical system,
which cannot itself look outside its context of use, this is a natural restriction. For,
similarly, a classical system of predicate logic cannot say much about the resolution
or interpretation of free variables, besides assuming they have some value.

2.3 Logical Properties of PLA

The last part of this section is devoted to the general logical properties of PLA. Not
much would be gained if PLA did not fail some classical logical properties, and
it fortunately does do so. PLA-conjunction, the typically ‘dynamic’ PLA-operation,
fails two characteristic properties of its standard kin: idempotence and commutativity.
Observation 9 (Non-idempotence and Non-commutativity)

• PLA conjunction is not idempotent and not commutative.

Since the idea embodied in a system of dynamic semantics is that the occurrence of
a formula is not only context dependent, but also context changing, clearly these two
properties are under attack. If a formula φ contains pronouns (and its interpretation
is, hence, dependent on context) and if it also contributes items (and, hence, changes
the context), φ may have a different impact before and after it has occurred, i.e. in
(φ∧φ). Let us label φ1 the first occurrence of φ in (φ∧φ), and φ2 the second. Then
we can say that the context for φ2 is the context for φ1 plus what φ1 has contributed
to the context in the meantime; and the contribution of φ1 is present, but put behind
what φ2 contributes. The conjunction (φ ∧ φ) thus may be stronger than φ itself.
Here is a stilted example.

(14) She is seeing a woman. She is seeing a woman.
(∃y(W y ∧ Sp1 y) ∧ ∃y(W y ∧ Sp1 y)) ⇔
∃y∃x((W x ∧ Sp1x) ∧ (W y ∧ Sxy)).

The effect of the first occurrence of φ = ∃y(W y ∧ Sp1 y) consists in the contribution
of a woman seen by she, and this creates a context in which that woman, not the
original antecedent of she, figures as a target referent for the use of she in the second
occurrence of φ. The repetition of the sentence, She is seeing a woman, requires
that she, whoever she is, is seeing a woman who is (also) seeing a woman, some-
thing which was not asserted by one occurrence of the sentence φ alone. Therefore,
conjunction is not idempotent.

By the same token, if two formulas φ and ψ are both context dependent and
context changing, then (φ ∧ψ) and (ψ ∧ φ) are also deemed to be different as well.
The context relevant forψ in (φ∧ψ) is whatever is the context forψ in (ψ∧φ)with
the contribution ofφ added, and the same goes mutatis mutandis for the context forφ.
Moreover, the contributions of φ and ψ are ordered differently in both conjunctions.
So, conjunction is not commutative.
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Of course, this dynamic extension of PL affects the accompanying notion of
entailment. As we will see, however, besides solicited effects, there are no unsolicited
ones. Let me first state the required notion of entailment. (For completeness I add the
standard static notion of entailment, which will become useful later.) In the following
a sequence of formulas is naturally understood as its conjunction.

Definition 6 (PLA Entailment) A sequence of formulas φ1, . . . , φm dynamically
entails a formula ψ , denoted by φ1, . . . , φm |= ψ , iff

• for all M , g, ê ∈ Dr(φ1,...,φn ,ψ) and ĉ ∈ Dn(φ1,...,φm ) there is â ∈ Dn(ψ):
if M, g, ĉe |= (φ1, . . . , φm), then M, g, âce |= ψ .

Naturally, PLA accommodates a notion of entailment involving sequences, not sets,
of premises, which, together with the conclusion, are evaluated as to logical conse-
quence. It is required, relative to any model M and variable assignment g, and relative
to any potentially required sequence ê for unresolved pronouns in φ, . . . , φn, ψ , in
that order, that if any sequence of witnesses satisfies the premises, in the order given,
then it provides a context in which ψ is true—always. The idea is classical, and
the only difference is that possible witnesses may be passed through in the order
of premises to serve as target reference points for subsequent pronouns. Obviously,
when restricted to the pronoun free fragment the PLA-entailment relation is classical.
Observation 10 (Conservative Entailment) The PLA entailment relation |= is clas-
sical relative to the pronoun free formulas of LP L A.

Behaving classically in all classical cases does not mean that PLA entailment is
classical in all respects. The notion is dynamic not only in the rather trivial sense
that anaphoric connections may get established between terms in different premises;
anaphoric connections are also possible between terms in premises and pronouns in
the conclusion. The following inference is modeled after Heim (1982); the translation
is mine.

(15) If a man is from Athens, he is not from Rhodes. There is a man from Athens
here. So, he is not from Rhodes.
(∃x(Mx ∧ Ax) → ¬Rp1), ∃x(Mx ∧ Ax) |= ¬Rp1.

The translation, as entailment, is valid in PLA. A similar, more natural, example
Geach (1962) has taken from Peter Strawson.

(16) A: A man has just drunk a pint of sulphuric acid.
B: Nobody who drinks sulphuric acid lives through the day.
A: Very well then, he will not live through the day.
∃x(Mx ∧ DPSAx),¬∃z(DPSAz ∧ LTDz) |= ¬LTDp1.

The transcription is a valid entailment in PLA. We observe natural entailments here,
with pronouns in the conclusion, which relate back to terms figuring in the premises,
and which are valid entailments.

In the examples from Heim and Strawson we observe, not surprisingly perhaps, a
strong connection between premises and conclusion. Heim’s man from Athens can
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be concluded to be not from Rhodes because no man from Athens is from Rhodes,
at least, this is what one of the premises claims. Likewise, Geach’s man cannot
live through the day, because he has just a drunk a pint of sulphuric acid, and an
additional premise has it that no man who does so will live through the day. The
inferential step from an arbitrary man to a conclusion about him can only be made
because the step is universal, by the logic, and/or by additional premises. This strong
(universal) connection between terms in the premises of an entailment, and pronouns
in its conclusion, is reminiscent of the strong (universal) connection between terms in
donkey sentences. This, again, need not come as a surprise, since it is easily seen that
a valid entailment directly corresponds with an unconditionally valid implication.
Observation 11 (Deduction Theorem)

• φ1, . . . , φm, χ |= ψ iff φ1, . . . , φm, |= (χ → ψ).

Heim’s inference directly follows from the following, valid, identity inference.

• (∃x(Mx ∧ Ax) → ¬Rp1) |= (∃x(Mx ∧ Ax) → ¬Rp1).

Geach’s inference requires some more work, but it can be remodeled to the same
form.

The fact that |= subsumes all classical validities (Observation 10), does not imply
that it obeys classical structural laws. Obviously it does not, since, as we have seen,
entailment is dynamic, and it will not generally be preserved under permutation of the
premises. Order matters. Moreover, like notions of entailment from other systems
of dynamic interpretation, the PLA-entailment relation fails some other structural
properties, characteristic of, and sometimes deemed essential for, standard logical
systems. Entailment is not a reflexive, monotone, and transitive relation. Good rea-
son exist for these failures though, as I will argue, and I will next show that the
consequences are not that bad after all, in PLA that is.

Let us inspect the rationale behind a non-reflexive, non-monotone, and non-
transitive entailment relation. Like I said before, interpretation is context dependent
and context changing. From this it directly follows that, in principle, a formula which
is satisfied in a certain context, may also change the context into one which no longer
satisfies it. This observation relates to the fact that conjunction is not idempotent. A
clear, but artificial, example is the following.

(17) He is an Irish boy, and he wrote a non-Irish friend. So?, he (i.e., the friend) is
an Irish boy and he wrote a non-Irish friend.
(IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)) 
|= (IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)).

The formula at issue (or the rendering of it under the intended interpretation) does
not entail itself, because that would require a non-Irish friend to be Irish. (Worse, the
conjunction of the contingent formula with itself is inconsistent.) Non-monotonicity
comes about for basically the same reason. A conclusion may follow from a sequence
of premises, because the premises always set up a context in which the conclusion is
satisfied, but then an additional premise may undo precisely the relevant contextual
effects. Consider the previous example again. From He is an Irish boy it follows that
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He is an Irish boy. The conclusion, however, does not follow from He is an Irish boy,
and he wrote a non-Irish friend.

(18) IBp1 |= IBp1, but IBp1, ∃y(¬IBy ∧ Wp1 y)) 
|= IBp1.

The non-transitive aspects of entailment already can be witnessed from Johan van
Benthem’s “dynamic” counterexample to Aristotle’s prime example of a valid syl-
logism, Barbara. Barbara relies on the transitivity of the universal quantifier, and
in van Benthem’s counterexample the cutting of Barbara’s middle term causes the
break down of an anaphoric connection.

(19) All men who have a garden sprinkle it on Saturdays.
All men who have a house are men who have a garden.
So?, all men who have a house sprinkle it on Saturdays.

The example has the impact of a practical joke, but it does show a serious problem,
which we have to take to heart. For, inference schemes like Barbara, like basically
all logical schemes, are supposed to be valid because of their form, and the form of
van Benthem’s example is impeccably Barbarian. With the following example we
see essentially the same problem arise for our notion of entailment.

(20) If Jane has a garden, she sprinkles it right now and if Jane owns a house, she
has a garden. Now Jane actually owns a house. So, she has a garden, and, so,
she sprinkles it right now.
((∃y(Gy ∧ H jy) → Sjp1), (∃x(H x ∧ O jx) → ∃y(Gy ∧ H jy)), ∃x(H x ∧
O jx) |= (∃y(Gy ∧ H jy) ∧ Sjp1).)

In this example the second and the third premise yield the first conclusion, that
Jane has a garden, and this conclusion together with the first premise yields the goal
conclusion that she sprinkles it. By ‘cutting’ the inference, taking out the intermediate
conclusion that Jane has a garden, we would like to conclude directly from the three
premises that she sprinkles it.

(21) If Jane has a garden, she sprinkles it right now and if Jane owns a house, she
has a garden. Now Jane actually owns a house. So, she sprinkles it right now.
((∃y(Gy ∧ H jy) → Sjp1), (∃x(H x ∧ O jx) → ∃y(Gy ∧ H jy)), ∃x(H x ∧
O jx) |= Sjp1.)

This obviously sounds absurd and indeed the inference is invalid in PLA. By cutting
the middle term in the inference we lose the appropriate anaphoric connection gets
lost, and the pronoun appears to resolve with the house. The conclusion then, which is
not entailed, would be that Jane sprinkles the house. Naturally, this inference comes
out wrong in PLA, but then it shows that it is not in general allowed to ‘cut’ inferences
this way.

Even though the PLA entailment relation fails the three mentioned properties, for
good reasons I say, it nevertheless retains the valuable aspects of these properties.
That entailment is reflexive and monotone is attractive, or even pertinent, because
an assumption should, if anything, at least entail itself, and a conclusion ought to
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remain valid once it is obtained. In PLA, these facts do remain beyond doubt, however.
If a conclusion is established as an assumption or conclusion at a certain point in
an argument, then it remains as a valid assumption or conclusion throughout the
whole argument; the point is that the same conclusion may have to be reformulated,
in order to adjust it to the fact that the context may have changed in the meantime.
[The point is nicely put by Frege: “Wenn jemand heute dasselbe sagen will, was er
gestern das Wort ‘heute’ gebrauchend ausgedrückt hat, so wird er dieses Wort durch
‘gestern’ ersetzen.” (Frege 1918, p. 62)] As we will see shortly, such a reformulation
can always be given, a possibility which is not obvious in a system like, for instance,
DPL. Transitivity is also a useful property, because it allows us to re-use inferences
made earlier, and not to have to redo every inference time and again. In PLA we can
transport the results of one inference from one context to another, as long as we keep
track of the various changes in context and make suitable reformulations.

In order to state the right structural rules in PLA, we need a general device to adapt
formulas to the fact that the context around it may have been expanded or reduced.
The relevant facts pertain to the number of existentials that have occurred, and that
may have increased or decreased. Obviously, such changes in the context should
be reflected by corresponding increases and decreases of the index on the relevant
pronouns. I therefore define the increase [n+

j ] with n and a decrease [−n
j ] with n of

the index of pronouns which are selected by the auxiliary device j . The definition is
a bit tedious, yet easily computable.

Definition 7 (Pronoun Update and Downdate) [n+
j ]φ and [−n

j ]φ are recursively
defined for variables x̂ free for the pronouns in φ.

• [n+
j ]c = c = [−n

j ]c; [n+
j ]pi = pn+i , if ( j < i);

[n+
j ]x = x = [−n

j ]x ; [−n
j ]pi = xi− j , if ( j < i ≤ ( j + n));

[n+
j ]pi = pi = [−n

j ]pi if (i ≤ j); [−n
j ]pi = pi−n , if (( j + n) < i);

• [n+
j ]Rt1 . . . tn = R[n+

j ]t1 . . . [n+
j ]tn ; [n+

j ]¬φ = ¬[n+
j ]φ;

[−n
j ]Rt1 . . . tn = R[−n

j ]t1 . . . [−n
j ]tn ; [−n

j ]¬φ = ¬[−n
j ]φ;

[n+
j ](φ ∧ ψ) = ([n+

j ]φ ∧ [ n+
j+n(φ)]ψ); [n+

j ]∃xφ = ∃x[n+
j ]φ;

[−n
j ](φ ∧ ψ) = ([−n

j ]φ ∧ [ −n
j+n(φ)]ψ); [−n

j ]∃xφ = ∃x[−n
j ]φ.

The instruction [n+
j ] on φ updates φ to the fact that n more terms have been used,

and [−n
j ] indicates the update of φ to the fact that n less terms have been used. The j

indicates where in the past n more or n less terms have been used, the break-even point
so to speak. This means that pronouns are left untouched if they relate to witnesses
up to j terms back. Pronouns, however, that refer to witnesses beyond that point will
either have to gain a wider reach (increase their index by n) or lower it (decrease
their index by n). If less terms have been used than before, and if a pronoun initially
targeted its referent from among the terms that have gone, then it will be removed
and replaced by a variable. (A variable which eventually is existentially closed.)

In Definition (7), the first half states the required substitutions on terms. In the
left column nothing happens, because it concerns individual constants, variables,
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and pronouns with an index up to j , which are not affected. In the right column the
upgrade and downgrade get accounted for, in the manner just sketched. The second
half of the definition states the required effects for any formula in a recursive manner.
Except for the second conjunct of a conjunction, this effect involves a simple matter
of distribution. In a conjunction (φ ∧ ψ), however, the instruction on the second
conjunct ψ has to adapt to the fact that n(φ) more terms have occurred between ψ
and the break-point j , which means that the break-even point has to be updated to
j + n(φ).

Armed with this notational device we can state acute versions of identity,
monotonicity and a cut rule, the rules which motivate the reflexive, monotone and
transitive nature of entailment.
Observation 12 (Acute Identity and Monotonicity)

• φ1, . . . , φi , . . . , φm |= [k+
0 ]φi

– for k = n(φi , . . . , φm), and

• if φ1, . . . , φm |= ψ , then φ1, . . . , φi−1, χ, φi , . . . , φm |= [k+
j ]ψ ,

– for k = n(χ) and j = n(φi , . . . , φm).

Any formula φ entails itself, or can be repeated, provided that, when it is used
as a conclusion, it is updated with the information that more terms have occurred
than when it was used before. The conclusion drawn from φ is the one obtained
from φ by replacing unresolved pronouns pi by pk+i , with k the number of terms
that have occurred in the meantime. In the example (17) discussed above, indeed
(IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)) does not entail itself:

• (IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)) 
|= (IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)).

However, it does entail [1+
0 ](IBp1 ∧∃y(¬IBy∧Wp1 y))which is (IBp2 ∧∃y(¬IBy∧

Wp2 y)):

• (IBp1 ∧ ∃y(¬IBy ∧ Wp1 y)) |= (IBp2 ∧ ∃y(¬IBy ∧ Wp2 y)).

Also, if ψ is entailed by a sequence of premises, then the same sequence with an
additional premise χ still entails ψ , but after the conclusion is updated with the fact
that n(χ)more terms have occurred. So every pronoun pi inψ which has to ‘bridge’
the interfering terms in χ , is replaced by pn(χ)+i .

The statement of the cut-inference pattern is a bit more involved, because a medi-
ating conclusion which serves as a premise gets cut out, even though it may have
supplied witnesses for the goal conclusion. For this reason, we have to use the [−n

j ]
instruction which deletes pronouns which get rid of their antecedent witness, and
replace these with existentially bound variables.
Observation 13 (Acute Cut Rule)

• If φ1, . . . , φm−1, φm |= ψ and χ1, . . . , χl |= φ′
m ,

then φ1, . . . , φm−1, χ1, . . . , χl |= ψ ′, where
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– φ′
m = [n(χ)+

0 ]φm , with χ = χ1, . . . , χl and

ψ ′ = [n(χ)+
0 ]∃x̂[−n(φm )

0 ]ψ , with x̂ = x1 . . . xn(φm ).

In the second condition for the cut rule the conclusion φ′ says what the premise φ
says in the first condition if χ1, . . . , χl had not occurred. The goal conclusion ψ ′, is
the original conclusion ψ updated to the fact that the premise φm has been cut out,
and χ1, . . . , χl have been added. Pronouns which related back to antecedents in φm

are replaced by variables which get bound by ∃x̂ . Here is how the van Benthem-style
inference gets cured. We find that (a) and (d) entail (e), and that (b) and (c) entail
(d). But we do not find that (a) and (b) and (c) entail (e), but (e′).

(a) If Jane has a garden, she sprinkles it right now. (∃y(Gy ∧ H jy) → Sjp1);
(b) If Jane owns a house, she has a garden. (∃x(H x ∧ O jx) → ∃y(Gy ∧ H jy));
(c) Jane actually owns a house. (∃x(H x ∧ O jx));
(d) Jane has a garden. (∃y(Gy ∧ H jy));
(e) She sprinkles it right now. (Sjp1);

(e′) She sprinkles something right now. ([1+
0 ]∃x[−1

0 ]Sjp1 ≡ ∃x Sj x).

Clearly the (derived) cut rule will never fail for any practical purpose, since the
conditions on identity or cut never fail. The standard structural properties of logical
consequence are thus preserved in a suitably adapted form, and the logic remains
well-behaved.

2.4 On the Representation of Information

The achievements of DRT , FCS, and DPL, and all of their offspring, can be charac-
terized as follows. Agents have representations of the world, or of stories, dreams, or
impressions they have made up, or have been told, or have experienced. These rep-
resentations are very often rather large structured wholes and communicating them
involves cutting them into pieces. When these wholes have been cut into pieces,
and other agents have to glue the pieces together, the structural relations between
(the parts of) the pieces have to be re-established of course. The three frameworks
mentioned present typical ways in which this may be done, for the typical kind of
relationships which, in natural language, we encounter as identity anaphora.

The way in which this task is achieved in classical DRT , that of (Kamp 1981;
Kamp and Reyle 1993), may be pictured as follows. I will, again, use a rather stilted
example, but it displays the essential ingredients. Suppose someone has a picture
of the following situation, in which a man, who was walking in the park, ran away
from a dog he saw there. To simplify things a bit more we neglect the park and all
temporal aspects and then the description, as given, can be represented by means of
the following predicate logic formula:

(22) ∃x((Mx ∧ W x) ∧ ∃y((Dy ∧ Sxy) ∧ Rxy)). (A man is walking and there is a
dog he sees and which he runs away from.)
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In DRT , the corresponding representation is the following discourse representation
structure (DRS ):

(23)
x y

Mx Dy
W x Sxy Rxy

Surely, there is a way of communicating this little ‘story’ in one sentence, like I
did above, but it can be cut in parts, as in the following little discourse.

(24) A man is walking in the park.

(25) He sees a dog.

(26) He runs away from it.

The most interesting part of this little discourse is the sentence in the middle. The
sentence contains a pronoun (‘he’), which needs to be resolved with something
mentioned in the previous sentence, and it contains an indefinite (‘dog’) which may
license subsequent anaphoric pronouns. Classical DRT deals with this sequence of
sentences in the following way. The first sentence (24) gives rise to a preliminary
DRS :

(27)
x

Mx,W x

This DRS represents the information that some man was walking in the park, and the
representation serves as the context of interpretation for the second and subsequent
sentences. The second sentence (25) is then literally plugged into this representation,
yielding the DRS :

(28)
x y

Mx Dy
W x Sxy

This DRS represents the information that some man who was walking through the
park saw a dog, and the representation again serves as the context of interpretation for
the final sentence (26). This third sentence is also plugged into the current discourse
representation and yields the final DRS , which is the same as the original one
(23), and thus captures the information we started out with. In this way, a structured
representation has been cut into pieces, and reconstructed, in a sound and information
preserving way. All more involved structured representations which agents may have,
with structural relationships other than identity, and which cannot that easily be
formulated into one sentence, can similarly be decomposed and reconstructed along
essentially similar lines.

While any occurring discourse representation in the example above comes with
its own content, or meaning, specified in terms of its Tarskian truth-conditions if you
want, one of the major criticisms of DRT has been that almost none of the sentences
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of natural language themselves are assigned a meaning under this approach. In the
example above, the middle sentence (25), does not have a meaning of its own, but
it is associated with an instruction to changes one representation, DRS (27), into
another one, DRS (28). And although each of these DRS ’s have their own truth
conditions, the change from the one into the other cannot be given a truth-conditional
interpretation. For this reason, many authors hold that, although meaning may in the
end be truth-conditional, practically a level of representation is necessary for the
actual interpretation of structured discourse, and, hence, of meaning in general.

However, one of the merits of the DRT interpretation procedure, and also a reason
for its success, is that this representational level is, or can be, extremely rich, much
richer and more fine-grained than a corresponding domain of meanings, so that a
lot of interpretational effects can be modeled there. DRT indeed lends itself most
naturally as an architecture in which to formulate an account of phenomena which
seem to require quite a lot of computation, such as those involving plurals, tense,
ellipsis, and many other phenomena. This wealth, however, also carries a risk.

While it may be obvious to many that this level of representation is called for, as
Groenendijk and Stokhof remark, such a conclusion does not come without philo-
sophical pitfalls (Groenendijk and Stokhof 1991, p. 97). For if such representational-
ist conclusions are implemented in the formal semantic architecture, it may become
vulnerable to cognitive psychologist findings about how agents actually represent
things. If natural language meanings are spelled out, partly, in terms of how they
interact with given discourse representation structures, then these ought to be to
some extent realistic structures, in order for the analyses to be tenable, or at least so
it seems. Furthermore, if it is not the expressions of an arguably public language,
like a natural language, whose meanings we learn in life, but if these are eventually,
equally arguably, private representations, then how at all could we learn them, or
how could there be anything to learn about them at all?

Groenendijk and Stokhof therefore conceive of the decomposition and reconstruc-
tion task differently, in DPL, and as a matter of fact, recent formulations of DRT ,
as in van Eijck and Kamp (1997) and Kamp et al. (2011), appear to agree with their
conception. This alternative conception is nicely displayed as follows. In order to
deconstruct a representation like (23), we can suggestively cut it apart as follows:

(29)
x

Mx
W x

y
Dy
Sxy Rxy

The first part in (29) indicates that we start the story with a man who is walking
in the park, and suggests there may be more to be told about such a man, which
is indicated by omitting the right- and bottom-lines from (23). [Actually, this is the
type of representation employed by Pieter Seuren (1985).] The second part states the
condition that he (x) sees a dog (y), where the omitted top- and left-lines indicate that
x seeks a resolution in previous discourse, and the omitted right- and bottom-lines
indicate that both x (here: the man) and y (the dog) may be elaborated further upon
in subsequent discourse. The third, and final part, adds the condition that x runs away
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from y, that both need to be resolved by previous discourse, and the concluding right-
and bottom-line indicate that this is the end of the story.

Notice that the elegant simplicity of DPL may obscure the remarkable achieve-
ment that it succeeds in associating all three parts of (29), that is each of the sentences
(24), (25), and (26), with an independent and uniform type of meaning. As we indi-
cated above, this is done in terms of input- output-conditions. Most significant is
again the middle part. It requires as an input an assignment which associates x with
someone who sees a dog, and renders as output an assignment with the same value
for x , and which associates y with a dog x sees. Basically, this is the technique DPL
employs to model the decomposition and reconstruction of structured representa-
tions, in terms of a truly compositional semantics.

It can be argued, though, that DPL does not really answer the anti-
representationalist challenge, mentioned above. For while DPL can model the
interpretations of DRS parts as in (29), and, thus, of the type of representa-
tions employed in recent versions of DRT like that in Kamp et al. (2011), it
inherits some of DRT ’s representational nature. For one thing, taking the DPL
metaphor of interpretation literally, a (pseudo-)formula like ∃y((Dy ∧ Sxy), which
corresponds to the second part of (29), carries the information, or presupposi-
tion, that something has been previously mentioned under the label, or by means
of the variable x . It establishes “a fact about the conversation, and not about
the subject matter,” as Stalnaker (1998, p. 13) puts it. In the words of Groe-
nendijk et al. (1996, p. 183): “When one is engaged in a linguistic information
exchange, one (…) has to store discourse information. …. Discourse information
of this type looks more like a book-keeping device, than like real information.”
Of course, there is no point in denying that many devices of natural language have
a typical discourse role to play, and whose meaning partly or even entirely consists
in its function in whole-scale discourses. But it is quite debatable that such should
constitute the core-idea of linguistic meaning, as displayed in the typically dynamic
slogan that meanings are context change potentials.

With Frege, the early Wittgenstein, and Tarski, it seems we can make some sense
of a truth-conditional concept of meaning, or at least of truth-conditional roots of
meaning, and with the radical translations and interpretations of Quine and Davidson,
a truth-conditional methodology in the theory of interpretation may stand up against
relativistic threats. Against such a background, however, the idea that meanings
are context change potentials is hard to hold. The contexts employed in dynamic
semantics, and the changes brought about in them, are very abstract objects, and not
just because they belong to the linguist’s theoretical ontology, but also if they are
conceived of as real objects which these abstracts objects are supposed to model.
As abstract objects, they will not provide the radical translator, or the language
learner, any input. And if they are concrete, say representations or information states
of the individuals involved in a conversation, they are again subject to the anti-
representationalist challenge, and, indeed, provide little or no input to the radical
translator.

How does PLA stand in the face of these conceptual qualms? In the abstract model
of PLA the witnesses, together with a dynamic notion of conjunction, are used to
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establish anaphoric connections. If we generalize over structural relationships other
than identity anaphora only, represented connections have to be established at the
level of meaning, in the real relations between witnesses. Indeed all of this is done
in terms of the models, worlds, and its ingredients relative to which interpretation
takes place, and it makes no representational commitments. In addition to this, as we
have seen, everything that does not belong to establishing meaningful connections,
everything that does not contribute to decomposing and reconstructing meanings, is
totally classical. So while I do not want to deny DRT or DPL any of their respective
merits and benefits, I claim that PLA may serve the same purposes without deviating
from conceptually well-established paradigms.

Variables and Pronouns Another issue different from but also related to repre-
sentation and information, is the use of (free) variables to hang discourse information
upon, or pronouns, or neither. The literature on discourse, quantification, and
anaphora displays a variety of positions one may take in this issue. We can ultimately
deal only with bound variables (classical logic, DPL); we can deal only with free
variables (Kamp, Heim, FCS); we can do without variables (Quine, Jacobson); and
we can deal with bound variables and pronouns (PLA). Mixed logical and theoretical
motivations are given for either of these stances.

First observe that anything that can be said in PLA, with resolved formulas, can be
said by (quantified) formulas which are pronoun-free. This is essentially what Obser-
vation (4) tells us. The converse, however, holds as well. Anything that can be said
in PL, with formulas without free variables, can be said with PLA-formulas without
any (distinct) variables. For, the resolved form ∃x1 . . . ∃xnφ of any such formula can
be written, equivalently, as ((. . . (∃xn(xn = xn) ∧ ∃xn−1(xn−1 = xn−1)) . . .) ∧ φ′)
where φ′ is obtained from φ by replacing all the xi ’s with suitable pronouns. The
proof is left to the reader. Notice that the variables x1 . . . xn in the resulting formula
are completely immaterial, so that we might have written ((. . . (∃ ∧ ∃) . . .) ∧ φ)

instead. The trade-off between variables and pronouns sheds an interesting light on
several discussions about variables and pronouns in the logico-linguistic literature.
The differences among the various approaches must lie in the details of implementing
the various types of semantics coming with them.

The claim that the variables can be dispelled with has been convincingly argued
for in Quine (1960), Jacobson (1999) and Szabolcsi (1989). Without going into
details, the main moral here consists in the fact that the meanings of sentences can be
conceived of in full generality as formulas with n open places, so that their meanings
are functions from sequences of n individuals to the truth values the sentences obtain
when they ate evaluated when the n open places are filled with the n individuals in
these sequences. As a matter of fact, this is how Alfred Tarski conceived of spelling
out the truth conditions of a formal language (Tarski 1923, 1956).

Similarly, while considering variables and pronouns in a dynamic semantic set-
ting, we can identify, on methodological grounds for instance, the use of variable
assignments and that of sequences of individuals. In the framework of a dynamic
semantics, Irene Heim first cashed out the trade-off between variable assignments on
the one hand (assuming an enumeration of the variables), and sequences of individ-
uals, on the other (Heim 1982). Kees Vermeulen and Jan van Eijck proceeded along
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similar lines (Vermeulen 1993; van Eijck 2001). Quite recently, Cresswell (2002)
has argued for a reformulation of DPL in terms of static first order predicate logic.
It is worthwhile to inspect his reformulation in some detail.

Max Cresswell builds his DPL-interpretation of a sentence “A man entered the
house.” on the insight that it is supposed to mean something like, “A man, namely y,
entered the house.” Even though y may be left unspecified, it serves the purpose of
anaphorical pick-up in a continuation “He was broke,” meaning, that he, viz. y, was
broke. Notice that this “namely y” interpretation of uses of indefinite noun phrases
is very much like its PLA interpretation, where we employ the witness d, which can
be supposed to be the interpretation of y. As we mentioned above already, Cress-
well’s main moral is like the one argued for in this monograph. Dynamic semantic
observations do not force us to adjust our notion of meaning, but, as Cresswell also
shows, that they require a more involved, or dynamic notion of conjunction, and of
other coordinating expressions. Notice, too, that the output value of variables in the
static reformulation suggested by Cresswell, is stored under a name (the variable y)
which is required not to belong to the language of DPL itself. Like our witnesses,
one might say, it is ‘alien’.

The difference between Cresswell’s approach and the one offered in this mono-
graph, which one may classify as a formal semantic implementation of Cresswell’s
insights, bears on the present discussion. While the title suggests otherwise, Cresswell
does not really supply a static semantics for dynamic discourse. What he eventually
offers is a translation of DPL into a static first order language, where, like in FCS
and DRT , and PLA, the terms that seems to be existentially bound variables are
treated as free variables, or free variable copies. The translation is effective, but it
is not stated in a compositional way, though. For instance, the (crucial) translation
of a conjunction (φ ∧ ψ) from DPL, is stated, among other things, in terms of the
translation of φ along with a substitution of that translation, of certain variables that
φ—not the translation of φ!—has in common with ψ . To define the interpretation
of the modified translation of φ from the interpretation of the translation of φ itself
i surely not easy.

Nevertheless, the task seems to succeed, but arguably in a rather unrevealing
manner. The main technical result of Cresswell’s paper can be phrased, in more
mundane words, as follows. Where a pair 〈g, h〉 of assignments to the variables in a
DPL-language satisfies a certain formula φ, the standard predicate logical interpre-
tation of Cresswell’s translation of the formula is an assignment μ, which encodes
both g(x)’s possible input value of a variable x , and h(x)’s possible output value
of that variable. In formal semantic terms, it translates a set of pairs of assignments
〈g, h〉 ∈ [[φ]]dpl ⊆ (DV × DV ) into a set of assignments μ ∈ [[φ′]] ⊆ DV ′

, where
V ′ is the disjoint union of V with itself. The two domains are isomorphic, as is easily
seen. Furthermore, I have given the semantic implementation of Cresswell’s ideas
in Dekker (1998, 2000), where the ‘static’ meanings are assignments of both input-
and output values of variables.

While very similar in spirit the approach with PLA is more attractive than the one
suggested by Cresswell. In the first place, PLA does employ a direct and ordinary
interpretation of conjunction, as intersection, whereas Cresswell’s reformulation of
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DPL conjunction requires a translation algorithm involving elaborate substitution
and quantification over the input- and output-values of variables.

As may be obvious from the preceding deliberations, we can easily deal with
variables in terms of sequences of individuals, like Tarski did, or in terms of vari-
able assignments, which may be the standard way now, and which is extensively
studied and motivated by Theo Janssen (1986). The same holds for the interpreta-
tion of pronouns, which can be dealt with by sequences of witnesses of terms that
have occurred previously, as in PLA, or by assignments to variables that name these
previous occurrences, like, e.g., in Groenendijk et al. (1996), among many others.
The fact that variables and pronouns are dealt with by means of different techniques
in PLA is totally immaterial. That they are handled separately, I believe, has some
substance.

For as far as I can make sense of them, variables are theoretical devices. They are
a logician’s or a theoretical linguist’s invention, used to indicate argument places,
binding open slots of predicates and relation expressions, but do not seem to be real-
ized in natural language. In contrast, pronouns, as I think of them, really occur in
natural language, even if invisible. Sure enough, obvious connections exist between
the two, because what can be formulated, in a formal language, using variables, can
be formulated, in a natural language, using pronouns, and vice versa, as most of the
literature on the subjects presupposes. But there is no a priori, or self-evident, justi-
fication that the theorist’s variables really are the natural language user’s pronouns.
The very, valuable, existence of a variable free semantics bear witness to that fact:
we can have a logic without variables, but we cannot deny that natural languages do
accommodate pronouns.

A distinction between pronouns and variables helps to explain some fundamental
features of syntax, having to do with locality constraints on reflexives, and non-
locality constraints on pronouns. [The following observation are taken from Butler
(2003).] Consider the following examples, typically attributed to conditions A and
B of Binding Theory:

(30) David/Every boy shaved himself.

(31) David/Every boy shaved him.

In example (30), the reflexive “himself” must be interpreted as, or bound by, David,
or every boy, in its most local domain. In example (31), such a reading is hardly/not
possible for the pronoun “him.” The pronoun can be interpreted as David, if it can
be construed as being anaphorically dependent on David when David has been men-
tioned before, but it cannot get a bound reading as in example (30). The reason is that
“him” really is a pronoun, which cannot be bound by a controlling term; it can only be
co-valuated with terms mentioned before it. “Himself” is not a pronoun, or variable,
at all, but it is best conceived of as an operator which turns a relation into a reflexive
predicate. Indeed, this is something we can represent very well by using variables
in a language with lambdas. For any relation R, we can take “R him/her-self” to
translate as λx Rxx . In this way, the argument position occupied by “himself” gets
bound by the term this predicate is ascribed to. Likewise, consider:
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(32) Only David voted for himself.

(33) Only David voted for him.

In example (32) we get the reading that only David is a self-shaver, nobody, except
David, is said to shave himself. Conversely, in example (33) we only get the reading
that nobody else but David only shaved “him”, a figure that needs an antecedent from
the context—and maybe this is David himself. Even in the latter case, the reading is
that nobody else but David shaved David.

The above observations are accounted for if we maintain that pronouns cannot be
bound by governing quantifiers, but that they are there in order to pick up a subject
already established in the wider context of their occurrence. Variables, if there are
any [cf., (Szabolcsi 1989)], must be bound and they are, hence, eliminable in their
local context.

Pronouns behave like bound variables in two types of cases:

(34) Every boy thinks he is smart.

(35) No boy brought his umbrella.

However, Butler (2003) argues that sentential complements as in (34) and possessive
constructions as in (35) involve a shift to a structural subdomain where information
about variables is stored on the contextual sequence parameter. Thus, after all, in the
relevant quantified context, it is again contextual information, and not (directly) the
quantifier, which determines the interpretation of the pronoun—not a variable. The
very shift is brought about by a BAR-operator, which, Butler convincingly shows,
can be used to account for condition C effects, locality constraints on different types
of movement (A-bar and A), and strong crossover violations.

In this monograph I do not want to maintain or defend certain syntactic principles,
but at least Butler’s work supports a firm distinction between pronouns and variables.
Maybe it does not so much provide an argument for making the distinction, but
it seems a harmless thing indeed. There may be a methodological argument, so
certainly not a knock-down argument, for preceding the way we do, to distinguish
the two categories of terms. Adding pronouns to the classical, static machinery does
not interfere with it, and not with its quantificational apparatus. Whatever holds
with respect to quantifiers, variables, and binding, continues to hold after we have
introduced our new category of pronouns.

In this context it is interesting to see de Bruijn’s motivation for his variable free
notation, which employs indexical de Bruijn indices.

Manipulations in the lambda calculus are often troublesome because of the need for
re-naming bound variables. (…) It seems to be worth-while to try to get rid of the re-naming,
or, rather, to get rid of names altogether. Consider the following criteria for a good notation:
(i) easy to write and easy to read for the human reader; (ii) easy to handle in metalingual
discussions; (iii) easy for the computer and for the computer programmer. The system we
shall develop here is claimed to be good for (ii) and good for (iii). It is not claimed to be
very good for (i) …. (de Bruijn 1972, pp. 381–382)
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The kind of complications mentioned under (i) may certainly obtain for λ-terms his
calculus generates, and the same goes for Quine (1960)’s rendering of the sentence
“Some student admires no professor which we saw in the introduction.”. (E(R(STU×
N (E(R(I(PRO × ADM))))))) It may be a prejudice due to my specific logical
training, but I believe the average natural language user would very much prefer to
read a first order predicate logical rendering of the sentences, with (bound) variables,
indeed.

When it comes to pronouns, one may feel slightly uneasy if we interpret them
indeed in the de Bruijn fashion. Reformulating formulas into their binding forms
requires, motivated, but tedious, substitution operations, and pronouns which carry
the very same index only occasionally select the same antecedent. One of the major
attractive features of DPL is indeed that it is prima facie obvious from the logical
form of a formula which quantifier semantically binds which variable, and whether
the quantifier syntactically binds the variable or not. The worrying down-side of this
feature is that it severely damages structural logical properties of the system, e.g., it
does not license α-conversion. In response to such effects, Jan van Eijck has resorted
to a variable free notation for pronouns, in terms of inverse de Bruijn indices, which
select an antecedent by counting from the start of a discourse.

Even so, van Eijck’s inverse de Bruijn indices are not well motivated intuitively.
For one thing, such a treatment neglects the inherently indexical nature of pronouns.
Related to this, it obscures the obvious fact that what is most salient is introduced
last in a discourse. In PLA this is always the first and foremost element of a sequence
that a pronoun may take a value from. A default pronoun, roughly, is p1. In van
Eijck’s system of incremental dynamics, the default value of a pronoun has to be
found by first counting how many items have been introduced in the discourse, and
then determining for such a number n, the individual en which is the last element of
a contextually supplied sequence.
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